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Abstract. We study soliton collisions in the Dyachenko–
Zakharov equation for the envelope of gravity waves in deep
water. The numerical simulations of the soliton interactions
revealed several fundamentally different effects when com-
pared to analytical two-soliton solutions of the nonlinear
Schrodinger equation. The relative phase of the solitons is
shown to be the key parameter determining the dynamics of
the interaction. We find that the maximum of the wave field
can significantly exceed the sum of the soliton amplitudes.
The solitons lose up to a few percent of their energy dur-
ing the collisions due to radiation of incoherent waves and in
addition exchange energy with each other. The level of the
energy loss increases with certain synchronization of soliton
phases. Each of the solitons can gain or lose the energy after
collision, resulting in increase or decrease in the amplitude.
The magnitude of the space shifts that solitons acquire af-
ter collisions depends on the relative phase and can be either
positive or negative.

1 Introduction

The existence and interactions of coherent structures like
solitons and breathers on the surface of a deep water are a re-
markably rich and fascinating subject for both experimental
and theoretical studies. The exact mathematical model de-
scribing gravity waves in the ocean is the Euler equation,
yet it is often rather complicated to study it by analytic or
numerical means. Instead, various reduced models for water
waves have demonstrated good agreement with the experi-
mental data and have been widely adopted in the fluid dy-
namics and geophysics communities.

The most prominent and widely used model for weakly
nonlinear surface waves in deep water is the nonlinear
Schrödinger (NLS) equation. It describes time evolution
of the envelope of a quasi-monochromatic wave train (Za-
kharov, 1968) and is integrable via the inverse scattering
transform (IST) in 1-D (Zakharov and Shabat, 1972). Other
models for weakly nonlinear waves include the Dysthe equa-
tion (Dysthe, 1979), and the compact Dyachenko–Zakharov
equation (DZ) (Dyachenko and Zakharov, 2011), neither of
which is known to be integrable by the IST.

By means of the IST one can find NLS soliton solutions
and track their evolution in time until their collision and be-
yond analytically. The collision of the NLS solitons is per-
fectly elastic; that is, no loss of the energy occurs. The equa-
tions which are not integrable by the IST may have exact sta-
tionary solitary solutions interacting inelastically. For exam-
ple, the Dysthe equation is known to admit solitary solutions
whose existence has been demonstrated by other approaches
unrelated to the IST (see Akylas, 1989; Zakharov and Dy-
achenko, 2010).

Both the NLS and Dysthe equations are formulated to de-
scribe the evolution of the envelope function. They require
that the steepness of the wave train is small and that it is
modulated weakly, i.e., that there are sufficiently many car-
rier wavelengths in the characteristic scale of the modula-
tion. In terms of the Fourier transform of the surface eleva-
tion this is equivalent to having a sufficiently narrow band
concentrated in the vicinity of the carrier wave number. The
DZ equation is formulated for the wave train itself and is
free from the assumptions of the weak nonlinearity and nar-
row bandness (Dyachenko and Zakharov, 2011, 2012). More
precisely, the DZ equation describes the evolution of the
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review by Zakharov and Kuznetsov, 2012). Here we have
found that the dynamics of a single collision is not univer-
sal: the direction of energy swap is determined by the soliton
phases.

Furthermore, we have studied space shifts that solitons ac-
quire after the collision. Solitons of the NLS equation always
acquire a positive constant shift δx to their space position
after interaction with another soliton moving with a differ-
ent velocity. The value of δx is defined only by the ampli-
tudes and velocities of the colliding solitons. The interaction
of solitons in the DZe equation also leads to the appearance
of the space shifts. We show that the character of this effect
is not universal (δx can be positive or negative) and is deter-
mined in addition by the soliton phases.

The inelasticity of soliton collisions in nonintegrable mod-
els may destroy the initially coherent wave groups. However,
as we have demonstrated here the total energy loss for inter-
actions described by Eq. (1) does not exceed a few percent of
energy of the solitons and we expect that observation of sev-
eral subsequent soliton collisions will be possible. The study
of the influence of the relative phase of the colliding soli-
tons in the fully nonlinear model is of fundamental interest.
As was shown by Dyachenko et al. (2016b), the DZ equa-
tion quantitatively describes strongly nonlinear phenomena
at the surface of deep fluid. Thus we believe that the effects
reported here for the solitons of the DZe equation can also be
observed for the fully nonlinear Euler equations.

Pairwise collisions of solitons (or breathers) is an impor-
tant elementary process that can be observed in the wave dy-
namics of an arbitrarily disturbed fluid surface. For example,
the recent numerical simulations of the DZe equation demon-
strate that an ensemble of interacting solitons can appear as
a result of modulation instability driven by random perturba-
tions of an unstable plane wave (Dyachenko et al., 2017a).
Another important field of studies is the turbulence of rari-
fied soliton gas where pairwise collision processes play the
key role in the formation of wave field statistics (see the re-
cent works of Pelinovsky et al., 2013; Shurgalina and Peli-
novsky, 2016). We believe that the results presented here can
serve as a starting point in the analytical description of such
processes. Moreover, the reported dependence of soliton in-
teraction dynamics on the relative phase is to be verified in
laboratory experiments.
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Abstract 

In the current review, the most pessimistic events of the globe in history are addressed when we present severe impacts caused by storm surges. 
During previous decades, great progresses in storm surge modeling have been made. As a result, people have developed a number of numerical 
software such as SPLASH, SLOSH etc. and implemented routine operational forecast by virtue of powerful supercomputers with the help of 
meteorological satellites and sensors as verification tools. However, storm surge as a killer from the sea is still threatening human being and 
exerting enormous impacts on human society due to economic growth, population increase and fast urbanization. To mitigate the effects of storm 
surge hazards, integrated research on disaster risk (IRDR) as an ICSU program is put on agenda. The most challenging issues concerned such as 
abrupt variation in TC’s track and intensity, comprehensive study on the consequences of storm surge and the effects of climate change on risk 
estimation are emphasized.  In addition, it is of paramount importance for coastal developing countries to set up forecast and warning system and 
reduce vulnerability of affected areas. 
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1. Introduction 

Storm surge, an extraordinary sea surface elevation induced by atmospheric disturbance (wind and atmospheric 
pressure), is regarded as a most catastrophic natural disaster. According to long term statistical analysis, total death 
toll amounted to 1.5 million and property losses exceeded hundred billions USD globally since 18751. They could 
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Abstract

A self-sustained analytic theory of a wind-driven sea is presented. It is shown that the wave field can be separated into two
ensembles: the Hasselmann sea that consists of long waves with frequency ω < ωH , ωH ∼ 4 − 5ωp (ωp is the frequency of the
spectral peak), and the Phillips sea with shorter waves. In the Hasselmann sea, which contains up to 95 % of wave energy, a
resonant nonlinear interaction dominates over generation of wave energy by wind. White-cap dissipation in the Hasselmann sea
in negligibly small. The resonant interaction forms a flux of energy into the Phillips sea, which plays a role of a universal sink
of energy. This theory is supported by massive numerical experiments and explains the majority of pertinent experimental facts
accumulated in physical oceanography.
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1. Introduction

We will start with the taken-for-granted aphorism that ”there is nothing more practical than a good theory.” Since
the time of Galileo, physicists have tried to develop theoretical models of natural phenomena. They have succeeded for
phenomena of very different scales: from the scale of elementary particles to the scale of the Universe. Geophysical
phenomena - weather forecasting, prediction of earthquakes or origin of hurricanes - are intermediate in scale but
not in complexity. As a rule, these phenomena are very difficult for theoretical investigation because there are too
many factors involved. Creation of a theoretically justified analytic theory of wind-driven sea looks, at first glance,
to be ”mission impossible.” Waves are generated by turbulent winds; these waves break, forming white caps, sprays,
bubbles, etc. Nevertheless, the development of an adequate analytic theory of wind-driven sea is possible. The purpose
of this paper is to demonstrate this possibility.

It is obvious that a wind-driven sea needs a statistical description. In the system under consideration, such a de-
scription can be performed efficiently if we have at least one small parameter. The absence of a small parameter makes
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we see very good qualitative coincidence but large quantitative differences. The Snyder model overestimates the rate
of energy growth with fetch by almost an order of magnitude. Because of the limited length of this article we cannot
discuss an extremely important question: the shape of spectra in the universal spectral range 1 < σ < 5. Eq. (48)
does not preserve energy that leaks from the Hasselmann sea to the Phillips sea, forming an energy flux P. Thus the
solution of Eq. (48) must have asymptotic behavior

G(ξ)→ βP1/3

σ4 (57)

Because γ0 � 1, β is a small number. This implies the inevitable formation of Zakharov-Filonenko spectral tails
F(ω) ∼ 1/ω4. Such tails are routinely observed in numerous field and laboratory experiments, see for example [42],
[43]. This important subject deserves a special consideration.

7. Conclusions

Let us summarize the results. We claim that the majority of data obtained in field and numerical experiments can
be explained in a framework of a simple model

dε
dt
= S nl + γin(ω, φ)ε

Moreover, most of the facts can be explained by the assumption that γin(ω, φ) is a powerlike function on frequency,
γin(ω, φ) = γ0 ω

1+s f (φ). Here 1 < s < 2.3 and f (φ), γ0 are tunable. This model pertains only to the description of the
Hasselmann sea, 0 < ω < ωH , ωH � (4 − 5)ωp.

In fact, this model is a simplification of the widely accepted model in oceanography (1). What is the difference
between these models? The main difference is obvious: we excluded from our consideration any mention of wave
energy dissipation. This does not mean that we deny a crucial role of wave-breaking in the dynamics of ocean surface.
But, from the spectral viewpoint, the wave-breaking takes place outside the Hasselmann sea. It is going into the
Phillips sea, in the spectral area of short scales. This very important statement is supported by experimental data and
by numerical solutions of dynamical phase-resolving equations for a free surface.

What we offer could be called ”poor man’s oceanography.” A ”poor man” refuses attempts to derive the equation
for S in from ”first principles,” but has in his possession powerful analytic and computer models to use as test beds for
compatibility of models for γin(ω, φ) with experimental data. The Snyder model does not pass this test and should be
excluded from operational models.
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Abstract

We compare two recently developed sets of source terms, based on different assumptions of wave energy input and dissipation, for
Hasselmann equation. The numerical simulation, performed for limited fetch conditions with the constant wind speed shows the
difference in total energy and mean frequency distributions along the fetch as well as in wave energy spectra. Possible reasons of
such deviations are offered.
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1. Introduction

The physical oceanography community consents on the fact [5] that deep water ocean gravity surface wave fore-
casting models are described by Hasselmann equation (hearafter HE) [10, 11], also known as kinetic equation for
waves, or energy balance equation:

∂ε

∂t
+
∂ωk

∂�k

∂ε

∂�r
= S nl + S in + S diss (1)

where ε = ε(ωk, θ,�r, t) is the wave energy spectral density, as the function of wave frequency ωk = ω(k), angle θ,
two-dimensional real space coordinate �r = (x, y) and time t. S nl, S in and S diss are the nonlinear, wind input and wave-
breaking dissipation source terms, respectively. Hereafter, only the deep water case, ω =

√
gk is considered, where g

is the gravity acceleration and k = |�k| is the absolute value of the vector wavenumber �k = (kx, ky).
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is the gravity acceleration and k = |�k| is the absolute value of the vector wavenumber �k = (kx, ky).
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Since Hasselmann work, Eq.(1) has become the basis of operational wave forecasting models such as WAM, SWAN
and Wavewatch III [24, 22]. While the physical oceanography community consents on the general applicability of
Eq.(1), there is no consensus agreement on universal parameterizations of the source terms S nl, S in and S diss.

Two different forms of S nl term have been derived independently from the Euler equations for free surface incom-
pressible potential flow of a liquid by [10, 11] and [30]. Their identity on the resonant surface

ω�k1
+ ω�k2

= ω�k3
+ ω�k4

(2)

�k1 + �k2 = �k3 + �k4 (3)

has been shown in [21].
S nl term is the complex nonlinear operator acting on εk, concealing hidden symmetries [31, 33]. The most robust,

first approximation of HE

S nl = 0 (4)

plays the crucial role in the weak turbulent theory [33] due to leading role of the S nl source term in HE [28, 29]. Its
simplest solution

ε � P1/3

ω4 � βg
P1/3

ω4 �
βgU∗
ω4 � 2παgUλ/2

ω4 (5)

where P is the energy flux toward high wave numbers, β is small dimensionless parameter (the ”Toba constant” [23]), g
is the gravity acceleration, U∗ is the wind friction velocity, Uλ/2 is the wind velocity at the height of half wavelength of
the wave-number, corresponding to the spectral peak, and α = 0.00553 [19]. Eq.(5) is known as Zakharov-Filonenko
solution of HE [30], which is the subset of Kolmogorov-Zakharov (hearafter KZ) solutions .

The accuracy advantage of knowing the analytical expression for the S nl term, also known in physical oceanog-
raphy as XNL, is overshadowed by its computational complexity. Today, none of the operational wave forecasting
models can afford to perform XNL computations in real time. Instead, their low computational capacity operational
approximations, known as DIA and its derivatives, are used as its surrogates. The implication of such simplification
is the inclusion of a tuning coefficient in front of nonlinear term; however, several publications have shown that DIA
does not provide a good approximation of the actual XNL form. The paradigm of replacement of the XNL by the
DIA and its variations leads to even more grave consequences: other source terms must be adjusted to allow the model
Eq.(1) to produce desirable results. In other words, deformations suffered by XNL model due to the replacement of S nl

by its surrogates, need to be compensated by non-physical modification of other source terms to achieve reasonable
model behavior in any specific case, leading to a loss of physical universality in HE model.

In contrast to S nl, the knowledge of S in and S diss source terms is poor; furthermore, both include many heuristic
factors and coefficients. The creation of a reliable, well justified theory of S in has been hindered by strong turbulent
fluctuations, uncorrelated with the wave motions, in boundary layer over the sea surface. Even one of the most crucial
elements of this theory, the vertical distribution of horizontal wind velocity in the region closest to the ocean surface,
where wave motions strongly interact with atmospheric motions, is still the subject of debates. The history of the
development of different wind input forms is full of heuristic assumptions, which fundamentally restrict the magnitude
and directional distribution of this term. As a result, the values of different wind input terms scatter by a factor
of 300 − 500% [2, 17]. For example, experimental determination of S in, as provided by direct measurements of
the momentum flux from the air to the water, cannot be rigorously performed in a laboratory due to gravity waves
dispersion dependence on the water depth, as well as the problems with scale effects for laboratory winds. The good
demonstration of the fact has been presented by [9]. Additional information on the detailed analysis of current state
of the art of wind input terms can be found in [17].

Similar to the wind input term, there is little consent on the parameterization of the dissipation source term S diss.
The physical dissipation mechanism, which most physical oceanographers agree on, is the effect of wave energy
loss due to wave breaking, while there are also other dubious ad-hoc ”long wave” dissipation source terms, having
heuristically justified physical explanations. Currently, there is no even an agreement on the location of wave breaking
events in Fourier space. The approach currently utilized in operational wave forecasting models mostly relies on the
dissipation, localized in the vicinity of the spectral energy peak. Recent numerical experiments [17, 8, 32] show,
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Fig. 4. Local mean frequency exponent −q = d ln<ω>
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ABSTRACT

Absence of mathematically justified criteria during develop-

ment of the wind energy input and wave breaking energy dissi-

pation source terms in Hasselmann equation (HE), used as the

framework of modern operational wave forecasting models, lead

to creation of plethora of parameterizations, having enormous

scatter, disconnected from the physical background and obey-

ing dozens of tuning parameters to adjust the HE model to the

specific situation. We show that it’s possible, based on analyti-

cal analysis and experimental observation data, to create the new

set of source terms, reproducing experimental observations with

minimal number of tuning parameters. We also numerically ana-

lyze six historically developed and new wind input source terms

for their ability to hold specific invariants, related to HE self-

similar nature. The degree of preservation of those invariants

could be used as their selection tool. We hope that this research

is the step toward the creation of physically justified tuning-free

operational models.

∗Address all correspondence to this author.

1 INTRODUCTION

The statistical theory of wind driven gravity waves on the

surface of water has been started with the invention of Hassel-

mann kinetic equation [1, 2]

∂ε

∂ t
+

∂ωk

∂~k

∂ε

∂~r
= Snl + Sin + Sdiss (1)

where ε = ε(ωk,θ ,~r, t) is the wave energy spectrum, ω(k) =√
gk is the deep water wave frequency as the function of the ab-

solute value of the vector wavenumber~k=(kx,ky); θ is the angle,

~r =(x,y) is the real space coordinate and t is the time. Snl, Sin and

Sdiss are the nonlinear, wind input and wave-breaking dissipation

source terms, correspondingly.

Eq.(1) is the basis of modern operational wave forecasting

models, which use DIA-type surrogates of Snl nonlinear interac-

tion term for computational capacity reasons, and the plethora of

parameterizations for the wind input Sin and wave energy Sdiss

dissipation source terms. This approach a-priori erodes the hope

for universal tuning-free operational model, because of the lead-

ing role of Snl term [3, 4] in Eq.(1). In other words, due to dis-

tortion of Snl first approximation in Eq.(1), subsequent attempts
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We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density
(proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing
one-dimensional nonlinear Schrödinger (NLS) equation. To model such gas we use N -soliton solutions (N -SS)
with N ∼ 100, which we generate with specific implementation of the dressing method combined with 100-digits
arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the
kurtosis, the wave-action spectrum and the probability density function (PDF) of wavefield intensity. We show
that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well
described by the analytical relations derived without taking into account soliton interactions. With increasing
soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these
relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum
is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and
velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied
soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons.
Rogue waves emerging in soliton gas are multisoliton collisions, and yet some of them have spatial profiles very
similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for
which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution
of the second order.

DOI: 10.1103/PhysRevE.98.042210

I. INTRODUCTION

Statistical behavior of nonlinear integrable systems, called
in general integrable turbulence [1], is a rapidly developing
area of theoretical and experimental studies, as illustrated by
the recent publications [2–5]. On the one hand, up to a certain
degree of accuracy many physical systems can be described
with nonlinear integrable mathematical models. In compari-
son with nonintegrable models, the corresponding integrable
equations demonstrate significantly different statistical prop-
erties; see, e.g., Refs. [6,7]. On the other hand, an integrable
system allows transformation to the so-called scattering data,
which is in one-to-one correspondence with the wavefield and,
similarly to the Fourier harmonics in the linear wave theory,
changes trivially during the motion. With numerical methods,
see, e.g., Refs. [8,9], the scattering data can be partly ana-
lyzed, that may bring some insights into the dynamical behav-
ior. Another distinctive feature of an integrable system is the
conservation of infinite series of invariants, so that different
types of initial conditions are characterized by different sets
of integrals of motion and, during the evolution, demonstrate
different statistical properties; see, e.g., Refs. [3–5].

In the present paper we examine integrable turbulence
using controlled initial conditions, in the sense that we con-
struct these initial conditions from known scattering data.

*Corresponding author: gelash@srd.nsu.ru; agelash@gmail.com

In contrast to other studies, this gives us exact knowledge
which nonlinear objects interact during the evolution, for
instance, when a rogue wave appear. As a model, we consider
one-dimensional nonlinear Schrödinger (NLS) equation of the
focusing type with initial conditions in the form of N -soliton
solutions (N -SS), with N of order 100. Our methods allow
generation of sufficiently dense N -SS with essential interac-
tion between the solitons, in contrast to rarefied multi-soliton
solutions analyzed, e.g., in Refs. [10–12] for KdV and mKdV
equations. We believe that our approach can also be used to
examine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types of
breathers; see Refs. [13,14].

For spatially localized wavefield, the scattering data con-
sists of discrete (solitons) and continuous (nonlinear disper-
sive waves) parts of eigenvalue spectrum, which is calculated
for specific auxiliary linear system. At the first step in our
study, we generate an ensemble of multiple realizations of
scattering data, with each realization containing N discrete
eigenvalues and N complex coefficients. Such scattering data
corresponds to N -SS. Then, we find the wavefield for N -SS
from this data, that for N ∼ 100 is made possible by specific
implementation of the dressing method applied numerically
with 100-digits precision. To our knowledge, multisoliton
solutions containing so many solitons were not generated
by anyone else before. The generating procedure is very
expensive from the computational point of view and returns

2470-0045/2018/98(4)/042210(12) 042210-1 ©2018 American Physical Society
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very well described by analytical relations Eq. (25) derived
without taking into account soliton interactions. For larger
density ρ and characteristic soliton velocity V0, we observe
increasing next-order corrections leading to increased abso-
lute values for all these three characteristics. These next-order
corrections come from enhanced soliton interactions due to
decreased spacing and more frequent collisions, respectively.
The wave-action spectrum for soliton gas is smooth, decays
close to exponentially at large wave numbers and widens with
increasing ρ and V0.

The PDF of relative wave intensity has the form of a
composition of PDFs representing a singular soliton and
soliton interactions. Compared to the cnoidal wave initial
conditions, the PDF deviates from the exponential (Rayleigh)
distribution Eq. (1) much more pronouncedly, especially at the
region of soliton interactions where it exceeds the exponential
PDF by orders of magnitude. This excess is larger for soliton
gas with larger velocities, that corresponds to more frequent
soliton collisions. For rarefied soliton gas ρ � 1, the average
amplitude of the wavefield is much smaller than the soliton
amplitude and the PDF deviates from the exponential PDF
drastically. For larger densities, solitons interact stronger and
the PDF transforms closer to the exponential distribution. We
think that for dense soliton gas ρ � 1 the PDF may match
the exponential one, that is supported by the behavior of the
kurtosis approaching to 2 with increasing density. Soliton gas
containing solitons of different amplitudes demonstrate the
similar properties, except that the regions of soliton interac-
tions on the PDF are less pronounced.

Rogue waves emerging in soliton gas are collisions of
solitons, and some of these collisions have spatial profiles
very similar to those of the (scaled) Peregrine solutions of
different orders. In particular, we present specifically designed
examples of two- and three-soliton collisions, which have
almost the same spatial profiles as the Peregrine solutions of
the first and the second orders. In the case of the three-soliton
collision, even the temporal dependency of the maximal

amplitude is very well approximated by that of the Peregrine
solution of the second order. When soliton parameters are
far from the “ideal” sets, the emerging large waves differ
significantly from the rational breathers. In our opinion, these
results highlight that the similarity in spatial and/or temporal
behavior cannot be used to draw conclusions on rogue waves’
composition and origin.

For a statistical study, it is crucial to define the ensemble of
initial conditions. In this paper, we have used initial conditions
with fixed value of wave action (average intensity) and with
zero momentum, while the integrals of higher order were not
fixed; for instance, the total energy could change significantly
from one realization to another. To check the influence of this
effect, we examined soliton gas for which—in addition to the
wave action and the momentum—the value of the total energy
was also fixed, and came to the identical results.

We suggest that our methods for generation of initial
conditions from known scattering data can be used to ex-
amine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types
of breathers [13,14]. We believe that, in general, our ap-
proach can be promising, as it allows to study turbulence
with controlled initial conditions, i.e., with exact knowledge
which nonlinear objects interact during the evolution. Our
methods can also be used in optical fibre communications,
where strongly interacting N -SS were recently proposed as
information carrier [13].
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The incompressible three-dimensional Euler equations develop very thin pancake-like regions of

increasing vorticity. These regions evolve with the scalingωmax ∝ l−2/3 between the vorticity maximum

and the pancake thickness, as was observed in the recent numerical experiments [D. S. Agafontsev

et al., “Development of high vorticity structures in incompressible 3D Euler equations,” Phys. Fluids

27, 085102 (2015)]. We study the process of pancakes’ development in terms of the vortex line

representation (VLR), which represents a partial integration of the Euler equations with the explicit

conservation of the Cauchy invariants and describes the compressible dynamics of continuously

distributed vortex lines. We present, for the first time, the numerical simulations of the VLR equations

with high accuracy, which we perform in adaptive anisotropic grids of up to 15363 nodes. With these

simulations, we show that the vorticity growth is connected with the compressibility of the vortex

lines and find geometric properties responsible for the observed scaling ωmax ∝ l−2/3. Published by

AIP Publishing. https://doi.org/10.1063/1.5049119

I. INTRODUCTION

The mechanism of vorticity growth in the incompress-

ible 3D Euler equations was intensively studied over the

last decades because of its relation to a possible finite-time

blowup and subsequent transition to turbulence. Several ana-

lytical blowup and no-blowup criteria were established; see

the reviews in Refs. 1 and 2. The central result is the Beale–

Kato–Majda theorem,3 which states that at a singular point

(if it exists), the time integral of maximum vorticity must

explode. In parallel, a large effort was made with numeri-

cal analysis. One of the early numerical studies4 examined

the evolution of periodic flows starting from random initial

conditions and the symmetric Taylor–Green vortex. In both

cases, maximum of vorticity was growing nearly exponen-

tially with time and the regions of high vorticity represented

pancake-like structures (thin vortex sheets) compressing in

the transverse direction. The tendency toward a vortex sheet

should suppress the three-dimensionality of the flow and,

hence, the formation of a finite-time singularity since the

dynamics within 2D Euler equations are known to be reg-

ular; see, e.g., Refs. 5–9. Thus, further numerical studies

were mainly focused on specific initial conditions providing

enhanced vorticity growth, e.g., antiparallel or orthogonal vor-

tices; we refer to Refs. 2 and 10 for a brief review and to

Refs. 11–15 for examples of recent numerical studies. Despite

these efforts, the existence of a blowup (unless it is trig-

gered by a physical boundary16) remains a highly controversial

question.

In our previous papers,10,17,18 we returned to the problem

of vorticity growth from generic large-scale initial conditions.

a)dmitrij@itp.ac.ru

We carried out several simulations in anisotropic grids of up to

20483 total number of nodes and observed in detail the evolu-

tion of high-vorticity regions. We confirmed that these regions

represent pancake-like structures and found that the flow near

the pancake is described locally by a novel exact self-similar

solution of the Euler equations combining a shear flow with

an asymmetric straining flow. The maximum vorticity growth

ωmax(t) ∝ eβ2t and the pancake compression in the transverse

direction l(t) ∝ e−β1t are characterized by significantly differ-

ent exponents β2/β1 ≈ 2/3, leading to the Kolmogorov-type

scaling law

ωmax(t) ∝ l(t)−2/3 (1)

observed numerically during the pancake evolution. On the

other hand, the pancake model solution allows for an arbi-

trary scaling between the vorticity maximum and the pancake

thickness, and our observation of the 2/3-scaling remained

unexplained. Note that rewritten for the velocity variation,

the relation (1) has the same form as the 1/3-Hölder veloc-

ity continuity necessary for the energy cascade in developed

turbulence.19,20 The pancake structures emerge in increasing

number with time and provide the leading contribution to the

energy spectrum, where, for some initial conditions,10,17 we

observed the gradual formation of the Kolmogorov spectrum,

E(k) ∝ k−5/3, in a fully inviscid flow.

In the present paper, we study the pancake vorticity struc-

tures from the point of view of the vortex line representation

(VLR). The VLR is the transformation from the Eulerian coor-

dinates of the fluid to the Lagrangian markers of the vortex

lines,21 which is compressible so that its Jacobian may take

arbitrary values. In gas dynamics, the similar in spirit trans-

formation from the Eulerian to the Lagrangian coordinates

of the flow can be used to completely characterize the areas

1070-6631/2018/30(9)/095104/13/$30.00 30, 095104-1 Published by AIP Publishing.
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gradual dependence of the pancake model parameters with the

pancake segment together with the finiteness of the pancake

in the a-space is connected with the finiteness of the Hessian

elements γij; however, more study is necessary to clarify this

phenomenon in detail.

The results discussed above are related to the high-

vorticity structure corresponding to the global vorticity max-

imum and are obtained from the simulation of the initial

condition I2. We verified that several other pancakes from the

same simulation corresponding to other local maxima of vor-

ticity, as well as pancakes from the simulation of the initial

flow I1 discussed in Appendix C, demonstrate the same prop-

erties for the Jacobi and the Hessian matrices and follow the

2/3-scaling (1).

VII. CONCLUSIONS

In the present paper, we have studied high-vorticity struc-

tures developing in the incompressible 3D Euler equations in

terms of the vortex line representation (VLR). The VLR is

the transformation from the Eulerian coordinates of the flow

to the Lagrangian markers of the vortex lines and represents

a partial integration of the Euler equations with the explicit

conservation of the Cauchy invariants. The latter means that

a numerical simulation of the VLR equations must conserve

the Cauchy invariants along the vortex line trajectories with

the round-off accuracy. This property may be very important

in the sense of the accuracy and control of the 3D Euler simu-

lations while approaching sharp gradients. We have developed

a new numerical method for the Euler equations in terms of

the VLR and performed high-resolution simulations for two

initial flows.

As the first result, we have demonstrated that the growth

of vorticity is related to the smallness of the Jacobian of the

VLR, with the inverse-proportional relation between the two,

ωmax ∝ 1/Jmin. This agrees with the pancake model solution

of Ref. 18 and the relation (12) derived under the assump-

tion of unidirectional vorticity. Thus, a high-vorticity region

for which the vorticity direction changes sharply with the

coordinate may feature a different relation between the vor-

ticity and the Jacobian. The pancake model solution turns

out to be degenerate in terms of the VLR so that all time-

dependency for the vorticity comes from the denominator of

Eq. (8), i.e., the Jacobian. The inverse of the Jacobian has the

meaning of the density of vortex lines so that the vorticity

within the pancake grows proportionally to this density. The

latter is the manifestation of the compressibility of the vortex

lines.

A developing pancake structure affects the VLR map-

ping, which we examine with the singular value decomposition

(SVD) of the Jacobi matrix. As indicated by the singular val-

ues, the mapping is strongly compressed along one direction

with the rate proportional to the pancake thickness σ1 ∝ l1
∝ e−β1t . Assuming that such behavior persists in the limit

t → +∞, this may be seen as touching of the vortex lines,

with the vorticity growing unboundly, ωmax(t) → +∞. Along

the other two directions, the mapping either does not change

substantially, σ2 ∝ 1, or stretches as σ3 ∝ ω−1
maxl−1

1
∝ eβ3t .

In the local coordinate system of the pancake, the rotation

matrix of the SVD in the x-space is close to unity, U ≃ 1,

while the rotation matrix in the a-space V approaches to

a constant matrix that depends on the initial parameters.

The main characteristic size of the pancake—its exponen-

tially decaying thickness—corresponds in the a-space to the

distance of unity order. Thus, in the space of Lagrangian

markers a, the high-vorticity region does not shrink, in con-

trast to the previously made assumption25 made by anal-

ogy with the gas dynamics case. These results also follow

analytically from the VLR written for the pancake model

solution of Ref. 18, what confirms the applicability of this

model.

In simulations, the Jacobian changes sharply along the

pancake perpendicular direction x1. This property can only

come from the next-order corrections to the pancake model

solution since the Jacobian for the model does not depend

on spatial coordinates. Assuming that these corrections are

present, we demonstrate that the Hessian γ for the Jaco-

bian in the basis induced by the rotation matrix V must

be close to the diagonal and the sharp dependency for

the Jacobian along the x1-axis comes from small but finite

element γ11.

The pancake model solution allows for an arbitrary power-

law scaling between the vorticity maximum and the pancake

thickness, given by the ratio of the exponents β2/β1. For the

first time, we discovered numerically that this ratio is close

to 2/3 in Ref. 10; however, we were not able to explain this

observation. With the present VLR study, we identify that

the 2/3-scaling (1) comes from the finite Hessian element

γ33 ∝ 1 and the finite lateral pancake size ℓ3 ∝ 1. We think

that the finiteness of γ33 is connected with the two proper-

ties of the pancake structures, namely, the gradual dependence

of the pancake model parameters with the pancake segment

and the finiteness of the pancake thickness in the a-space.

However, more study is necessary to clarify this connection in

detail.

Our approach utilizes the general properties of the frozen-

in-fluid fields and, potentially, can be generalized to a wider

group of physical phenomena far beyond the scope of this

paper. For instance, the compressibility of magnetic field

lines26 should play an essential role in the generation of mag-

netic filaments in the convective zone of the Sun and in the

magnetic dynamo theories in space plasma; see, e.g., Refs. 28

and 31. As shown in Refs. 29, 32, and 33, the compressible

character of the frozen-in-fluid divorticity field is an impor-

tant factor in the formation of a direct Kraichnan cascade in

2D hydrodynamic turbulence.
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