Nonlin. Processes Geophys., 25, 553-563, 2018
https://doi.org/10.5194/npg-25-553-2018

© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the phase dependence of the soliton collisions in the
Dyachenko-Zakharov envelope equation

Dmitry Kachulin! and Andrey Gelash'->
I'Novosibirsk State University, Novosibirsk, 630090, Russia

2Institute of Thermophysics, SB RAS, Novosibirsk, 630090, Russia

Correspondence: Dmitry Kachulin (d.kachulin@gmail.com)

Received: 15 February 2018 — Discussion started: 5 March 2018

Revised: 3 July 2018 — Accepted: 23 July 2018 — Published: 15 August 2018

Abstract. We study soliton collisions in the Dyachenko—
Zakharov equation for the envelope of gravity waves in deep
water. The numerical simulations of the soliton interactions
revealed several fundamentally different effects when com-
pared to analytical two-soliton solutions of the nonlinear
Schrodinger equation. The relative phase of the solitons is
shown to be the key parameter determining the dynamics of
the interaction. We find that the maximum of the wave field
can significantly exceed the sum of the soliton amplitudes.
The solitons lose up to a few percent of their energy dur-
ing the collisions due to radiation of incoherent waves and in
addition exchange energy with each other. The level of the
energy loss increases with certain synchronization of soliton
phases. Each of the solitons can gain or lose the energy after
collision, resulting in increase or decrease in the amplitude.
The magnitude of the space shifts that solitons acquire af-
ter collisions depends on the relative phase and can be either
positive or negative.

1 Introduction

The existence and interactions of coherent structures like
solitons and breathers on the surface of a deep water are a re-
markably rich and fascinating subject for both experimental
and theoretical studies. The exact mathematical model de-
scribing gravity waves in the ocean is the Euler equation,
yet it is often rather complicated to study it by analytic or
numerical means. Instead, various reduced models for water
waves have demonstrated good agreement with the experi-
mental data and have been widely adopted in the fluid dy-
namics and geophysics communities.

The most prominent and widely used model for weakly
nonlinear surface waves in deep water is the nonlinear
Schrodinger (NLS) equation. It describes time evolution
of the envelope of a quasi-monochromatic wave train (Za-
kharov, 1968) and is integrable via the inverse scattering
transform (IST) in 1-D (Zakharov and Shabat, 1972). Other
models for weakly nonlinear waves include the Dysthe equa-
tion (Dysthe, 1979), and the compact Dyachenko—Zakharov
equation (DZ) (Dyachenko and Zakharov, 2011), neither of
which is known to be integrable by the IST.

By means of the IST one can find NLS soliton solutions
and track their evolution in time until their collision and be-
yond analytically. The collision of the NLS solitons is per-
fectly elastic; that is, no loss of the energy occurs. The equa-
tions which are not integrable by the IST may have exact sta-
tionary solitary solutions interacting inelastically. For exam-
ple, the Dysthe equation is known to admit solitary solutions
whose existence has been demonstrated by other approaches
unrelated to the IST (see Akylas, 1989; Zakharov and Dy-
achenko, 2010).

Both the NLS and Dysthe equations are formulated to de-
scribe the evolution of the envelope function. They require
that the steepness of the wave train is small and that it is
modulated weakly, i.e., that there are sufficiently many car-
rier wavelengths in the characteristic scale of the modula-
tion. In terms of the Fourier transform of the surface eleva-
tion this is equivalent to having a sufficiently narrow band
concentrated in the vicinity of the carrier wave number. The
DZ equation is formulated for the wave train itself and is
free from the assumptions of the weak nonlinearity and nar-
row bandness (Dyachenko and Zakharov, 2011, 2012). More
precisely, the DZ equation describes the evolution of the
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review by Zakharov and Kuznetsov, 2012). Here we have
found that the dynamics of a single collision is not univer-
sal: the direction of energy swap is determined by the soliton
phases.

Furthermore, we have studied space shifts that solitons ac-
quire after the collision. Solitons of the NLS equation always
acquire a positive constant shift §x to their space position
after interaction with another soliton moving with a differ-
ent velocity. The value of §x is defined only by the ampli-
tudes and velocities of the colliding solitons. The interaction
of solitons in the DZe equation also leads to the appearance
of the space shifts. We show that the character of this effect
is not universal (6x can be positive or negative) and is deter-
mined in addition by the soliton phases.

The inelasticity of soliton collisions in nonintegrable mod-
els may destroy the initially coherent wave groups. However,
as we have demonstrated here the total energy loss for inter-
actions described by Eq. (1) does not exceed a few percent of
energy of the solitons and we expect that observation of sev-
eral subsequent soliton collisions will be possible. The study
of the influence of the relative phase of the colliding soli-
tons in the fully nonlinear model is of fundamental interest.
As was shown by Dyachenko et al. (2016b), the DZ equa-
tion quantitatively describes strongly nonlinear phenomena
at the surface of deep fluid. Thus we believe that the effects
reported here for the solitons of the DZe equation can also be
observed for the fully nonlinear Euler equations.

Pairwise collisions of solitons (or breathers) is an impor-
tant elementary process that can be observed in the wave dy-
namics of an arbitrarily disturbed fluid surface. For example,
the recent numerical simulations of the DZe equation demon-
strate that an ensemble of interacting solitons can appear as
a result of modulation instability driven by random perturba-
tions of an unstable plane wave (Dyachenko et al., 2017a).
Another important field of studies is the turbulence of rari-
fied soliton gas where pairwise collision processes play the
key role in the formation of wave field statistics (see the re-
cent works of Pelinovsky et al., 2013; Shurgalina and Peli-
novsky, 2016). We believe that the results presented here can
serve as a starting point in the analytical description of such
processes. Moreover, the reported dependence of soliton in-
teraction dynamics on the relative phase is to be verified in
laboratory experiments.
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Abstract

A self-sustained analytic theory of a wind-driven sea is presented. It is shown that the wave field can be separated into two
ensembles: the Hasselmann sea that consists of long waves with frequency w < wpy, wy ~ 4 — 5w, (w, is the frequency of the
spectral peak), and the Phillips sea with shorter waves. In the Hasselmann sea, which contains up to 95 % of wave energy, a
resonant nonlinear interaction dominates over generation of wave energy by wind. White-cap dissipation in the Hasselmann sea
in negligibly small. The resonant interaction forms a flux of energy into the Phillips sea, which plays a role of a universal sink
of energy. This theory is supported by massive numerical experiments and explains the majority of pertinent experimental facts
accumulated in physical oceanography.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the IUTAM Symposium Wind Waves.

Keywords: Kinetic (Hasselmann) equation; wave turbulence; Kolmogorov-Zakharov spectra; self-similarity of wave spectra; wind-wave
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1. Introduction

We will start with the taken-for-granted aphorism that “there is nothing more practical than a good theory.” Since
the time of Galileo, physicists have tried to develop theoretical models of natural phenomena. They have succeeded for
phenomena of very different scales: from the scale of elementary particles to the scale of the Universe. Geophysical
phenomena - weather forecasting, prediction of earthquakes or origin of hurricanes - are intermediate in scale but
not in complexity. As a rule, these phenomena are very difficult for theoretical investigation because there are too
many factors involved. Creation of a theoretically justified analytic theory of wind-driven sea looks, at first glance,
to be “mission impossible.” Waves are generated by turbulent winds; these waves break, forming white caps, sprays,
bubbles, etc. Nevertheless, the development of an adequate analytic theory of wind-driven sea is possible. The purpose
of this paper is to demonstrate this possibility.

It is obvious that a wind-driven sea needs a statistical description. In the system under consideration, such a de-
scription can be performed efficiently if we have at least one small parameter. The absence of a small parameter makes
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we see very good qualitative coincidence but large quantitative differences. The Snyder model overestimates the rate
of energy growth with fetch by almost an order of magnitude. Because of the limited length of this article we cannot
discuss an extremely important question: the shape of spectra in the universal spectral range 1 < o < 5. Eq. (48)
does not preserve energy that leaks from the Hasselmann sea to the Phillips sea, forming an energy flux P. Thus the
solution of Eq. (48) must have asymptotic behavior

1/3

G - B (57

Because yy < 1, S is a small number. This implies the inevitable formation of Zakharov-Filonenko spectral tails
F(w) ~ 1/w*. Such tails are routinely observed in numerous field and laboratory experiments, see for example [42],
[43]. This important subject deserves a special consideration.

7. Conclusions

Let us summarize the results. We claim that the majority of data obtained in field and numerical experiments can
be explained in a framework of a simple model

d—f = S0 + Yin(w. p)e

Moreover, most of the facts can be explained by the assumption that y;,(w, ¢) is a powerlike function on frequency,
Yinlw, @) = yo w'** f(¢). Here 1 < s < 2.3 and f(¢), yo are tunable. This model pertains only to the description of the
Hasselmann sea, 0 < w < wy, wy = (4 = 5)w,.

In fact, this model is a simplification of the widely accepted model in oceanography (1). What is the difference
between these models? The main difference is obvious: we excluded from our consideration any mention of wave
energy dissipation. This does not mean that we deny a crucial role of wave-breaking in the dynamics of ocean surface.
But, from the spectral viewpoint, the wave-breaking takes place outside the Hasselmann sea. It is going into the
Phillips sea, in the spectral area of short scales. This very important statement is supported by experimental data and
by numerical solutions of dynamical phase-resolving equations for a free surface.

What we offer could be called “poor man’s oceanography.” A poor man” refuses attempts to derive the equation
for S ;, from “first principles,” but has in his possession powerful analytic and computer models to use as test beds for
compatibility of models for y;,(w, ¢) with experimental data. The Snyder model does not pass this test and should be
excluded from operational models.
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Abstract

We compare two recently developed sets of source terms, based on different assumptions of wave energy input and dissipation, for
Hasselmann equation. The numerical simulation, performed for limited fetch conditions with the constant wind speed shows the
difference in total energy and mean frequency distributions along the fetch as well as in wave energy spectra. Possible reasons of
such deviations are offered.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the [IUTAM Symposium Wind Waves.

Keywords:
Hasselmann equation; wind and dissipation source terms; self-similar solutions; Kolmogorov-Zakharov spectra; wave-breaking dissipation; magic
relation

1. Introduction

The physical oceanography community consents on the fact [5] that deep water ocean gravity surface wave fore-
casting models are described by Hasselmann equation (hearafter HE) [10, 11], also known as kinetic equation for
waves, or energy balance equation:

0s  Owy Oe

8_+__,__,=Snl+sin+sdiss (1)
t Kk OF

where ¢ = g(wy, 0, 7, 1) is the wave energy spectral density, as the function of wave frequency wy = w(k), angle 6,

two-dimensional real space coordinate 7 = (x, y) and time ¢. S, S ;, and S 45, are the nonlinear, wind input and wave-

breaking dissipation source terms, respectively. Hereafter, only the deep water case, w = +/gk is considered, where g

is the gravity acceleration and k = IIEI is the absolute value of the vector wavenumber k = (ky, ky).
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ABSTRACT

Absence of mathematically justified criteria during develop-
ment of the wind energy input and wave breaking energy dissi-
pation source terms in Hasselmann equation (HE), used as the
framework of modern operational wave forecasting models, lead
to creation of plethora of parameterizations, having enormous
scatter, disconnected from the physical background and obey-
ing dozens of tuning parameters to adjust the HE model to the
specific situation. We show that it’s possible, based on analyti-
cal analysis and experimental observation data, to create the new
set of source terms, reproducing experimental observations with
minimal number of tuning parameters. We also numerically ana-
lyze six historically developed and new wind input source terms
for their ability to hold specific invariants, related to HE self-
similar nature. The degree of preservation of those invariants
could be used as their selection tool. We hope that this research
is the step toward the creation of physically justified tuning-free
operational models.
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1 INTRODUCTION

The statistical theory of wind driven gravity waves on the
surface of water has been started with the invention of Hassel-
mann kinetic equation [1, 2]

%+%%zsnl+sin+sdiss (1)
where € = (g, 0,7,1) is the wave energy spectrum, w(k) =
\/gk is the deep water wave frequency as the function of the ab-
solute value of the vector wavenumber k = (K, k.,,); 0 is the angle,
7= (x,y) is the real space coordinate and ¢ is the time. S,;, S;, and
S4iss are the nonlinear, wind input and wave-breaking dissipation
source terms, correspondingly.

Eq.(1) is the basis of modern operational wave forecasting
models, which use DIA-type surrogates of S,,; nonlinear interac-
tion term for computational capacity reasons, and the plethora of
parameterizations for the wind input S;, and wave energy S s,
dissipation source terms. This approach a-priori erodes the hope
for universal tuning-free operational model, because of the lead-
ing role of S,; term [3,4] in Eq.(1). In other words, due to dis-
tortion of S, first approximation in Eq.(1), subsequent attempts
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the dimensionless fetch y =xg/U~, 2 calculated as < f >= 2n
e(w 0) .

ACKNOWLEDGMENT

The research presented in the section 1 was funded by the
program of the presidium of RAS “Nonlinear dynamics: fun-
damental problems and applications”. The research set forth in
the other sections has been accomplished due to the support of
the grant Wave turbulence: the theory, mathematical modeling
and experiment of the Russian Scientific Foundation No 14-22-
00174. The authors gratefully acknowledge the support of these
foundations.

REFERENCES

[1] Hasselmann, K., 1962. “On the non-linear energy transfer
in a gravity-wave spectrum. Part 1. General theory”. Jour-
nal of Fluid Mechanics, 12, pp. 481 — 500.

[2] Hasselmann, K., 1963. “On the non-linear energy transfer
in a gravity wave spectrum. Part 2. Conservation theorems;
wave-particle analogy; irrevesibility”. Journal of Fluid Me-
chanics, 15, pp.273 -281.

[3] Zakharov, V. E., 2010. “Energy balances in a wind-driven
sea”. Physica Scripta, T142,p. 014052.

[4] Zakharov, V. E., and Badulin, S. I., 2011. “On energy bal-
ance in wind-driven sea”. Doklady Akademii Nauk, 440,
pp. 691 — 695.

[5] Badulin, S. I., Pushkarev, A. N., Resio, D. T., and Zakharov,

0.0 T T T T T T T T T T T T T 7
-0.1}- .
< F E
£ C L ]
kS C e e A e~ \\“)7ﬂ\*
g -0'2: - F/’:#//‘<r-':::;1"1‘#"‘:1;:-« o - .
v k- S .
o s i A B
0.3 o — )
'0.4 : | | | 1 1 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il ]
0 2.0°10° 4.0+10° 6.0°10° 8.0+10° 1.0+10* 1.2+10* 1. 4-104
X
FIGURE 4. Mean frequency local power index —q = 4100 a5 the

function of dimensionless fetch y = xg/U? for U = 10 m/sec limited
fetch case. Solid line - ZRP case, dotted line - Plant case, short-dashed
line - Donelan case, dashed-dotted line - Snyder case, dash-triple-dotted
line - ”Synthetic” case, long dashed line - Hsiao-Shemdin case.

V. E., 2005. “Self-similarity of wind-driven seas”. Nonl.
Proc. Geophys., 12, pp. 891 —945.

[6] Pushkarev, A., and Zakharov, V., 2016. “Limited fetch re-
visited: comparison of wind input terms, in surface wave
modeling”. Ocean Modeling, 103, pp. 18 —37.

[7] Zakharov, V. E., Resio, D., and Pushkarev, A.,
2012. New wind input term consistent with ex-
perimental, theoretical and numerical considerations.
http://arxiv.org/abs/1212.1069/.

[8] Zakharov, V., Resio, D., and Pushkarev, A., 2017. “Bal-
anced source terms for wave generation within the Hassel-
mann equation”. Nonlin. Processes Geophys., 24, pp. 581
- 597.

[9] Resio, D. T., and Long, C. E., 2007. “Wind wave spec-
tral observations in Currituck Sound, North Carolina”. J.
Geophys. Res., 112, p. C05001.

[10] Badulin, S., Babanin, A. V., Resio, D. T., and Zakharov,
V., 2007. “Weakly turbulent laws of wind-wave growth”.
J.Fluid Mech., 591, pp. 339 — 378.

[11] Zakharov, V., 2018. “Analytic theory of wind driven sea”.
In Procedia IUTAM, IUTAM Symposium Wind Waves, 4-8
September 2017, London, UK.

[12] Kahma, K. K., and Calkoen, C. J., 1992. “Reconciling
discrepancies in the observed growth of wind generated
waves”. J. Phys. Oceanogr., 22, pp. 1389 — 1405.

[13] Plant, W. J., 1982. “A relationship between wind stress and

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/02/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



PHYSICAL REVIEW E 98, 042210 (2018)

Strongly interacting soliton gas and formation of rogue waves

A. A. Gelash"?" and D. S. Agafontsev'-3
I Novosibirsk State University, Novosibirsk, 630090, Russia
2 Institute of Thermophysics, SB RAS, Novosibirsk, 630090, Russia
3P P Shirshov Institute of Oceanology, RAS, 117218, Moscow, Russia

® (Received 1 June 2018; published 18 October 2018)

We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density
(proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing
one-dimensional nonlinear Schrodinger (NLS) equation. To model such gas we use N-soliton solutions (N-SS)
with N ~ 100, which we generate with specific implementation of the dressing method combined with 100-digits
arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the
kurtosis, the wave-action spectrum and the probability density function (PDF) of wavefield intensity. We show
that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well
described by the analytical relations derived without taking into account soliton interactions. With increasing
soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these
relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum
is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and
velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied
soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons.
Rogue waves emerging in soliton gas are multisoliton collisions, and yet some of them have spatial profiles very
similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for
which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution

of the second order.

DOI: 10.1103/PhysRevE.98.042210

I. INTRODUCTION

Statistical behavior of nonlinear integrable systems, called
in general integrable turbulence [1], is a rapidly developing
area of theoretical and experimental studies, as illustrated by
the recent publications [2-5]. On the one hand, up to a certain
degree of accuracy many physical systems can be described
with nonlinear integrable mathematical models. In compari-
son with nonintegrable models, the corresponding integrable
equations demonstrate significantly different statistical prop-
erties; see, e.g., Refs. [6,7]. On the other hand, an integrable
system allows transformation to the so-called scattering data,
which is in one-to-one correspondence with the wavefield and,
similarly to the Fourier harmonics in the linear wave theory,
changes trivially during the motion. With numerical methods,
see, e.g., Refs. [8,9], the scattering data can be partly ana-
lyzed, that may bring some insights into the dynamical behav-
ior. Another distinctive feature of an integrable system is the
conservation of infinite series of invariants, so that different
types of initial conditions are characterized by different sets
of integrals of motion and, during the evolution, demonstrate
different statistical properties; see, e.g., Refs. [3-5].

In the present paper we examine integrable turbulence
using controlled initial conditions, in the sense that we con-
struct these initial conditions from known scattering data.
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In contrast to other studies, this gives us exact knowledge
which nonlinear objects interact during the evolution, for
instance, when a rogue wave appear. As a model, we consider
one-dimensional nonlinear Schrodinger (NLS) equation of the
focusing type with initial conditions in the form of N-soliton
solutions (N-SS), with N of order 100. Our methods allow
generation of sufficiently dense N-SS with essential interac-
tion between the solitons, in contrast to rarefied multi-soliton
solutions analyzed, e.g., in Refs. [10-12] for KdV and mKdV
equations. We believe that our approach can also be used to
examine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types of
breathers; see Refs. [13,14].

For spatially localized wavefield, the scattering data con-
sists of discrete (solitons) and continuous (nonlinear disper-
sive waves) parts of eigenvalue spectrum, which is calculated
for specific auxiliary linear system. At the first step in our
study, we generate an ensemble of multiple realizations of
scattering data, with each realization containing N discrete
eigenvalues and N complex coefficients. Such scattering data
corresponds to N-SS. Then, we find the wavefield for N-SS
from this data, that for N ~ 100 is made possible by specific
implementation of the dressing method applied numerically
with 100-digits precision. To our knowledge, multisoliton
solutions containing so many solitons were not generated
by anyone else before. The generating procedure is very
expensive from the computational point of view and returns

©2018 American Physical Society
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very well described by analytical relations Eq. (25) derived
without taking into account soliton interactions. For larger
density p and characteristic soliton velocity Vj, we observe
increasing next-order corrections leading to increased abso-
lute values for all these three characteristics. These next-order
corrections come from enhanced soliton interactions due to
decreased spacing and more frequent collisions, respectively.
The wave-action spectrum for soliton gas is smooth, decays
close to exponentially at large wave numbers and widens with
increasing p and V.

The PDF of relative wave intensity has the form of a
composition of PDFs representing a singular soliton and
soliton interactions. Compared to the cnoidal wave initial
conditions, the PDF deviates from the exponential (Rayleigh)
distribution Eq. (1) much more pronouncedly, especially at the
region of soliton interactions where it exceeds the exponential
PDF by orders of magnitude. This excess is larger for soliton
gas with larger velocities, that corresponds to more frequent
soliton collisions. For rarefied soliton gas p < 1, the average
amplitude of the wavefield is much smaller than the soliton
amplitude and the PDF deviates from the exponential PDF
drastically. For larger densities, solitons interact stronger and
the PDF transforms closer to the exponential distribution. We
think that for dense soliton gas p > 1 the PDF may match
the exponential one, that is supported by the behavior of the
kurtosis approaching to 2 with increasing density. Soliton gas
containing solitons of different amplitudes demonstrate the
similar properties, except that the regions of soliton interac-
tions on the PDF are less pronounced.

Rogue waves emerging in soliton gas are collisions of
solitons, and some of these collisions have spatial profiles
very similar to those of the (scaled) Peregrine solutions of
different orders. In particular, we present specifically designed
examples of two- and three-soliton collisions, which have
almost the same spatial profiles as the Peregrine solutions of
the first and the second orders. In the case of the three-soliton
collision, even the temporal dependency of the maximal

amplitude is very well approximated by that of the Peregrine
solution of the second order. When soliton parameters are
far from the “ideal” sets, the emerging large waves differ
significantly from the rational breathers. In our opinion, these
results highlight that the similarity in spatial and/or temporal
behavior cannot be used to draw conclusions on rogue waves’
composition and origin.

For a statistical study, it is crucial to define the ensemble of
initial conditions. In this paper, we have used initial conditions
with fixed value of wave action (average intensity) and with
zero momentum, while the integrals of higher order were not
fixed; for instance, the total energy could change significantly
from one realization to another. To check the influence of this
effect, we examined soliton gas for which—in addition to the
wave action and the momentum—the value of the total energy
was also fixed, and came to the identical results.

We suggest that our methods for generation of initial
conditions from known scattering data can be used to ex-
amine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types
of breathers [13,14]. We believe that, in general, our ap-
proach can be promising, as it allows to study turbulence
with controlled initial conditions, i.e., with exact knowledge
which nonlinear objects interact during the evolution. Our
methods can also be used in optical fibre communications,
where strongly interacting N-SS were recently proposed as
information carrier [13].
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The incompressible three-dimensional Euler equations develop very thin pancake-like regions of
increasing vorticity. These regions evolve with the scaling wmax o< I~%/3 between the vorticity maximum
and the pancake thickness, as was observed in the recent numerical experiments [D. S. Agafontsev
et al., “Development of high vorticity structures in incompressible 3D Euler equations,” Phys. Fluids
27, 085102 (2015)]. We study the process of pancakes’ development in terms of the vortex line
representation (VLR), which represents a partial integration of the Euler equations with the explicit
conservation of the Cauchy invariants and describes the compressible dynamics of continuously
distributed vortex lines. We present, for the first time, the numerical simulations of the VLR equations
with high accuracy, which we perform in adaptive anisotropic grids of up to 1536 nodes. With these
simulations, we show that the vorticity growth is connected with the compressibility of the vortex
lines and find geometric properties responsible for the observed scaling wmax o I=2/3. Published by

AIP Publishing. https://doi.org/10.1063/1.5049119

. INTRODUCTION

The mechanism of vorticity growth in the incompress-
ible 3D Euler equations was intensively studied over the
last decades because of its relation to a possible finite-time
blowup and subsequent transition to turbulence. Several ana-
lytical blowup and no-blowup criteria were established; see
the reviews in Refs. 1 and 2. The central result is the Beale—
Kato—Majda theorem,® which states that at a singular point
(if it exists), the time integral of maximum vorticity must
explode. In parallel, a large effort was made with numeri-
cal analysis. One of the early numerical studies* examined
the evolution of periodic flows starting from random initial
conditions and the symmetric Taylor—Green vortex. In both
cases, maximum of vorticity was growing nearly exponen-
tially with time and the regions of high vorticity represented
pancake-like structures (thin vortex sheets) compressing in
the transverse direction. The tendency toward a vortex sheet
should suppress the three-dimensionality of the flow and,
hence, the formation of a finite-time singularity since the
dynamics within 2D Euler equations are known to be reg-
ular; see, e.g., Refs. 5-9. Thus, further numerical studies
were mainly focused on specific initial conditions providing
enhanced vorticity growth, e.g., antiparallel or orthogonal vor-
tices; we refer to Refs. 2 and 10 for a brief review and to
Refs. 11-15 for examples of recent numerical studies. Despite
these efforts, the existence of a blowup (unless it is trig-
gered by a physical boundary'®) remains a highly controversial
question.

In our previous papers, we returned to the problem
of vorticity growth from generic large-scale initial conditions.
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We carried out several simulations in anisotropic grids of up to
20483 total number of nodes and observed in detail the evolu-
tion of high-vorticity regions. We confirmed that these regions
represent pancake-like structures and found that the flow near
the pancake is described locally by a novel exact self-similar
solution of the Euler equations combining a shear flow with
an asymmetric straining flow. The maximum vorticity growth
Wmax (1) o €52 and the pancake compression in the transverse
direction () oc eP1" are characterized by significantly differ-
ent exponents B,/51 ~ 2/3, leading to the Kolmogorov-type
scaling law

Wmax(1) o 1(1) ™3 (1

observed numerically during the pancake evolution. On the
other hand, the pancake model solution allows for an arbi-
trary scaling between the vorticity maximum and the pancake
thickness, and our observation of the 2/3-scaling remained
unexplained. Note that rewritten for the velocity variation,
the relation (1) has the same form as the 1/3-Holder veloc-
ity continuity necessary for the energy cascade in developed
turbulence.!”?” The pancake structures emerge in increasing
number with time and provide the leading contribution to the
energy spectrum, where, for some initial conditions,'®!” we
observed the gradual formation of the Kolmogorov spectrum,
E(k) oc k=33, in a fully inviscid flow.

In the present paper, we study the pancake vorticity struc-
tures from the point of view of the vortex line representation
(VLR). The VLR is the transformation from the Eulerian coor-
dinates of the fluid to the Lagrangian markers of the vortex
lines,”! which is compressible so that its Jacobian may take
arbitrary values. In gas dynamics, the similar in spirit trans-
formation from the Eulerian to the Lagrangian coordinates
of the flow can be used to completely characterize the areas

Published by AIP Publishing.
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gradual dependence of the pancake model parameters with the
pancake segment together with the finiteness of the pancake
in the a-space is connected with the finiteness of the Hessian
elements y;;; however, more study is necessary to clarify this
phenomenon in detail.

The results discussed above are related to the high-
vorticity structure corresponding to the global vorticity max-
imum and are obtained from the simulation of the initial
condition /,. We verified that several other pancakes from the
same simulation corresponding to other local maxima of vor-
ticity, as well as pancakes from the simulation of the initial
flow I discussed in Appendix C, demonstrate the same prop-
erties for the Jacobi and the Hessian matrices and follow the
2/3-scaling (1).

VIl. CONCLUSIONS

In the present paper, we have studied high-vorticity struc-
tures developing in the incompressible 3D Euler equations in
terms of the vortex line representation (VLR). The VLR is
the transformation from the Eulerian coordinates of the flow
to the Lagrangian markers of the vortex lines and represents
a partial integration of the Euler equations with the explicit
conservation of the Cauchy invariants. The latter means that
a numerical simulation of the VLR equations must conserve
the Cauchy invariants along the vortex line trajectories with
the round-off accuracy. This property may be very important
in the sense of the accuracy and control of the 3D Euler simu-
lations while approaching sharp gradients. We have developed
a new numerical method for the Euler equations in terms of
the VLR and performed high-resolution simulations for two
initial flows.

As the first result, we have demonstrated that the growth
of vorticity is related to the smallness of the Jacobian of the
VLR, with the inverse-proportional relation between the two,
Wmax < 1/Jmin- This agrees with the pancake model solution
of Ref. 18 and the relation (12) derived under the assump-
tion of unidirectional vorticity. Thus, a high-vorticity region
for which the vorticity direction changes sharply with the
coordinate may feature a different relation between the vor-
ticity and the Jacobian. The pancake model solution turns
out to be degenerate in terms of the VLR so that all time-
dependency for the vorticity comes from the denominator of
Eq. (8), i.e., the Jacobian. The inverse of the Jacobian has the
meaning of the density of vortex lines so that the vorticity
within the pancake grows proportionally to this density. The
latter is the manifestation of the compressibility of the vortex
lines.

A developing pancake structure affects the VLR map-
ping, which we examine with the singular value decomposition
(SVD) of the Jacobi matrix. As indicated by the singular val-
ues, the mapping is strongly compressed along one direction
with the rate proportional to the pancake thickness o o [
o P’ Assuming that such behavior persists in the limit
t — +oo, this may be seen as touching of the vortex lines,
with the vorticity growing unboundly, wmax(f) — +00. Along
the other two directions, the mapping either does not change
substantially, o o« 1, or stretches as 03 o w7l o Pt

max ‘]
In the local coordinate system of the pancake, the rotation
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matrix of the SVD in the x-space is close to unity, U ~ 1,
while the rotation matrix in the a-space V approaches to
a constant matrix that depends on the initial parameters.
The main characteristic size of the pancake—its exponen-
tially decaying thickness—corresponds in the a-space to the
distance of unity order. Thus, in the space of Lagrangian
markers a, the high-vorticity region does not shrink, in con-
trast to the previously made assumption’> made by anal-
ogy with the gas dynamics case. These results also follow
analytically from the VLR written for the pancake model
solution of Ref. 18, what confirms the applicability of this
model.

In simulations, the Jacobian changes sharply along the
pancake perpendicular direction x;. This property can only
come from the next-order corrections to the pancake model
solution since the Jacobian for the model does not depend
on spatial coordinates. Assuming that these corrections are
present, we demonstrate that the Hessian y for the Jaco-
bian in the basis induced by the rotation matrix V must
be close to the diagonal and the sharp dependency for
the Jacobian along the xj-axis comes from small but finite
element yq;.

The pancake model solution allows for an arbitrary power-
law scaling between the vorticity maximum and the pancake
thickness, given by the ratio of the exponents [5,//3;. For the
first time, we discovered numerically that this ratio is close
to 2/3 in Ref. 10; however, we were not able to explain this
observation. With the present VLR study, we identify that
the 2/3-scaling (1) comes from the finite Hessian element
33 o 1 and the finite lateral pancake size {3 oc 1. We think
that the finiteness of y33 is connected with the two proper-
ties of the pancake structures, namely, the gradual dependence
of the pancake model parameters with the pancake segment
and the finiteness of the pancake thickness in the a-space.
However, more study is necessary to clarify this connection in
detail.

Our approach utilizes the general properties of the frozen-
in-fluid fields and, potentially, can be generalized to a wider
group of physical phenomena far beyond the scope of this
paper. For instance, the compressibility of magnetic field
lines®® should play an essential role in the generation of mag-
netic filaments in the convective zone of the Sun and in the
magnetic dynamo theories in space plasma; see, e.g., Refs. 28
and 31. As shown in Refs. 29, 32, and 33, the compressible
character of the frozen-in-fluid divorticity field is an impor-
tant factor in the formation of a direct Kraichnan cascade in
2D hydrodynamic turbulence.
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Formation of rogue waves from a locally perturbed condensate
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The one-dimensional focusing nonlinear Schrédinger equation (NLSE) on an unstable condensate background
is the fundamental physical model that can be applied to study the development of modulation instability (MI)
and formation of rogue waves. The complete integrability of the NLSE via inverse scattering transform enables
the decomposition of the initial conditions into elementary nonlinear modes: breathers and continuous spectrum
waves. The small localized condensate perturbations (SLCP) that grow as a result of MI have been of fundamental
interest in nonlinear physics for many years. Here, we demonstrate that Kuznetsov-Ma and superregular NLSE
breathers play the key role in the dynamics of a wide class of SLCP. During the nonlinear stage of MI development,
collisions of these breathers lead to the formation of rogue waves. We present new scenarios of rogue wave
formation for randomly distributed breathers as well as for artificially prepared initial conditions. For the latter case,
we present an analytical description based on the exact expressions found for the space-phase shifts that breathers
acquire after collisions with each other. Finally, the presence of Kuznetsov-Ma and superregular breathers in
arbitrary-type condensate perturbations is demonstrated by solving the Zakharov-Shabat eigenvalue problem
with high numerical accuracy.

DOI: 10.1103/PhysRevE.97.022208

1. INTRODUCTION which we assume to be real without loss of generality. T
condensate is unstable with respect to long-wave perturbatic

(MI phenomena, see, e.g., [9]) with the following growth ra

(k) = ky/AZ — k2/4,

where k is the perturbation wave number. In the region 0 < k
2, the amplitude of these perturbations grows ~e'" in the init
(linear) stage. The nonlinear stage of MI is of fundamen
interest and may lead to the formation of rogue waves [1,2

The NLSE describes only the first-order nonlinear effec
However, its universality and integrability allows us to c:
ture the fundamentally important features of MI and to fi
analytical rogue wave solutions. Indeed, the IST links !
initial NLSE wave field with the so-called scattering da
which play the role of elementary nonlinear modes, similar
Fourier harmonics in linear wave theory. In the case of spatia
localized NLSE solutions, the scattering data are represen!
by the discrete (solitons) and continuous (nonlinear dispers
waves) parts of the eigenvalue spectrum of the Zakharc
Shabat auxiliary linear system (ZH system).

The IST for the spatially localized wave field and z
background (A =0) was developed in [8], where the
soliton solutions were found analytically and the gene
Cauchy problem was solved implicitly via the integral Gelfar
Levitan-Marchenko equations (GLME). In 1977, Kuznets
[10] and later Kawata and Inoue (in 1978, [11]) and !
(in 1979, [12]) generalized this theory to the case of 1
condensate background. In this model the discrete spectri
solutions, interacting with condensate, transform from solitc
to the oscillating structures—breathers. The family of NL
breathers includes the well-known solutions of Peregrine [1
Kuznetsov-Ma [10-12], and Akhmediev [14].

The formation of extreme-amplitude waves is among the
most remarkable phenomena in the physics of wave processes.
In the linear case, these events may appear only as a result of
simple wave interference, whereas the interactions of nonlinear
waves exhibit a wide range of nontrivial mechanisms, such as
the development of modulation instability (MI) and nonlinear
wave focusing [1,2]. The localized extreme-amplitude events,
so-called rogue waves, are of special interest as they are
observed more frequently than predicted by Gaussian statistics
and can appear from relatively weak perturbations of a calm
background [1,3]. This phenomenon being studied first in
oceanography has been observed experimentally in different
nonlinear media, such as optical fiber with Kerr nonlinearity,
Bose-Einstein condensate, surface of a fluid, and plasmas,
which demonstrates its universal nature [2,4-7].

The one-dimensional focusing nonlinear Schrodinger equa-
tion (NLSE)

iV + 3+ (VP - Ay =0 m

is the fundamental mathematical model describing weakly
nonlinear wave propagation. Here, ¥(f,x) is the complex-
valued envelope of the physical wave field, and 7 and x are
the time and space coordinates. Zakharov and Shabat found
that the NLSE can be completely integrated using the inverse
scattering transform (IST) [8]. Here we study solutions of the
NLSE (1) on the so-called condensate background—a simple
quasimonochromatic plane wave. The condensate solution of
Eq. (1) is ¥o(t,x) = A, where A is the background amplitude,
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FIG. 9. Fourier spectra for analytical scenarios of rogue wave
formation from the condensate locally perturbed by (a) superregular
and (b) one Kuznetsov-Ma and one superregular breathers presented
in Fig. 6. Black dotted lines correspond to the value of kmax. Colors
of the lines of the spectra match with the notation of Fig. 6.

that superregular breathers with y 2 A/+/2 are responsible
for the fastest perturbation growth.

VIII. DISCUSSION AND CONCLUSION

The eigenvalue spectrum does not reveal the impact of the
continuous spectrum waves (we also need to study the reflec-
tion coefficient, see, e.g., [10,12]). The numerical simulation
of the evolution of the perturbations presented in Fig. 8 shows
complicated wave patterns that are apparently driven by non-
linear interaction between discrete and continuous spectrum
solutions. Another important task is to study the combinations
of imaginary and real perturbations or perturbations based on
broadband random noise. For the latter case, Kibler et al. found
strong signatures of superregular breathers at the intermediate
stage of MI development [25]. All these questions demand
separate consideration.

Another fundamental problem is the development of MI
from spatially periodic condensate perturbations (see, e.g., the
monograph [34]). In 2015, Agafontsev and Zakharov found
that in this case, MI driven by small-amplitude perturbations
(~1075A) leads to the formation of Gaussian wave-field
statistics [35]. In the same year Walczak et al. demonstrated
(numerically and by experiment with laser fields in optical
fiber) that in the case of strong initial condensate disturbances,
the tail of the probability density function of wave amplitudes
increases [36] (in other words they observed the emergence of
heavy-tailed wave-field statistics). In 2016, Soto-Crespo et al.
numerically investigated the transition between the cases of
low- and high-amplitude condensate perturbations and studied
the influence of the perturbation amplitude both on the wave-
field statistics and on the distribution of eigenvalues of the
ZS system [37]. They concluded that initial perturbations of
significant amplitude can contain spatially localized breathers,
which is consistent with the theory suggested here. Indeed
the minimal amplitude of SLCP generated by breathers is
determined by the perturbation width; see Sec. II. Moreover, in
2016 the precise wave-field dynamics of strongly fluctuating
condensate was experimentally recorded and reported [38].

FIG. 10. Fourier spectra for scenarios of rogue wave formation
from the condensate locally perturbed by random distributions of (a)
superregular and (b) Kuznetsov-Ma breathers presented in Fig. 7.
Black dotted lines correspond to the value of kmax. Colors of the lines
of the spectra match with the notation of Fig. 7.

Meanwhile Randoux et al. have suggested that the key
role in the development of periodic perturbations should be
attributed to the finite-band solutions of the NLSE [33] (see
also [39]). The problems of localized and periodic condensate
perturbations are complimentary and both have fundamental
importance. The understanding of the link between the local-
ized and periodic IST description of MI is an important task.
The obtained pictures of eigenvalues for real and imaginary
SLCP correlate with results presented earlier for the periodic
perturbations [31], which can be a starting point for such study.

The found space-phase shifts in Eq. (14) are critically
important to describing the interactions of NLSE breathers
when theirnumber N > 3. They can be used for further studies,
among which the experimental realization of complicated
multibreather dynamics is of special interest. Similar breathers
describe the dynamics of unstable backgrounds in different
integrable models (see, e.g., [40-43]), which allows us to
generalize our results.
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soliton will be stable and unstable in the opposite case. This crite-
rion represents the analog of the Vakhitov-Kolokolov criterion[11]
for the NLS equations. In the case of power law nonlinearity
f(u) = uP, the dependence of momentum P on V turns out to
be power faw: P oc ¥¥ where

Hence one can see that the 3D solitons for the ZK equation (p =3,d =
3) are stable, in a full agreement with boundedness of the Hamiltonian
proved in [3]. The instability criterion for selitens with p — 2> 4/d
coincides with the unboundedness condition of the Hamiltonian.
Like for the NLS-type equations we can state that the nonlinear
stage of this instability should result in the wave collapse.

3. Conclusion =

Thus, we havé_ found the linear stability criterion for ground
soliton solutions in the ZK-type equation. This criterion is nec-
essary and sufficient: if aP/0V > 0 the solitons are stable and

unstable in the opposite case. This criterion is analogous to the_

Kolokolov-Vakhitov criterion for soliton stability in the NLS-type
equations. For power law nonlinearity this criterion demonstrates
different behavior of the system. In the stable region selitons reai-
ize minimum of the Hamiltonian with fixed momentum P, i.e. they
are stable in the Lyapunov sense. But it does not mean that scat-
tering of solitons will be elastic. While scattering of such solitons
it is energetically favorable to form solitons with higher amplitude.
This process will be accompanied by radiation of small amplitude
waves which play the role of friction in the system. For the systems
with Hamiltonians unbounded from below the nomnlinear stage of
the soliton instability should result in the formation of singularity,
probably, in a finite time.
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Jna serpoxciaomeiics JBYMEPHOH IHAPOJHHAMHYCCKOR TypOyJNeHTHOCTH TMOJe POTOpa 3aBHXPEHHOCTH
B = rotw Gnarcaaps TCHICHIHEE X ONPOKHABBAHHIO COCPEIOTOYCHO B OKPECTHOCTY THHNUH, COOTBETCTRYIOIIIK
HOJIOXKEHHI0 KBA3H-IIOKOB 3auxpennoctd. Ha craguu (opMHpoBaiys KBa3H-IIOKOB MARKCHMAJILHOE 3HATEHHe
POTOPA 3ABUXPEHHOCTH Binar PACTET SKCIOHEHIMANLHO RO EPEMENH, IPH 5TeM Toiammua £(t) MakcuMamnnof
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a a2 2/3. Taxoe noBejeHue CBUJETEILCTBYET B HOJIL3Y (QOPMUPOBAHAA CRIAIDK [T Ge3/EEREPIEHTHOTD BEK-

TOPHOIC 10JIs1 POTOPA 3aBHXPEHHOCTH.

1. Berenenue

B asymepuoil passuroil rugpoaunasuueckoil Typoy-
nentHoctH (npu umenax Peiinossaca Re > I, kak O

J10 BhLCHeHO B paborax [1, 2, 3], dbopmuposanue upsno-
CURTATE, TT0 VKAZAHHOE COOTHOMMEHIC MOACHO DACCRaT-

PHBATL KaK ylHHBEpCaILIIoe = —

3. 3aknwoyeHHe

OcuoBHOH BBIBOJ 9TOi paboTbl COCTONT B TOM, YTO
opMHpOBaHzE CTEIIEHHON 3aBHCHMOCTH Baz OT IIH-
punsl £ - 3aK0H 2/3 - MOKHO })accnanHBaTb KaK OpoaB-
Jjienvie (hOPMEPOBALNI CKIIAYH, HO/EPKHeM, s Ges-
JTUBCPTEHTHOIO BEKTOPHOTO NOJA - POTOPA 3aBHXPEH-
Hocty. Kak yike 0TMe4YasIoch BO BBEJIEHHH, TAKOH Ke-
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