УДК 532.59

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ИЗОТРОПНОЙ ОКЕАНСКОЙ ЗЫБИ В. В. Геогджаев^{1,2,*}, академик РАН В. Е. Захаров^{1,2,**}, С. И. Бадулин^{1,2,***}

Поступило 28.08.2019 г.

Новый алгоритм применяется для детального моделирования эволюции изотропной зыби в однородном океане. Показано, что установление спектра Захарова—Филоненко происходит взрывным образом за короткое время. Произведено численное определение слаботурбулентной колмогоровской константы. *Ключевые слова*: морское волнение, зыбь, кинетическое уравнение, спектры Колмогорова—Захарова.

DOI:

1. ВВЕДЕНИЕ

В настоящей статье, как и в [1], производится численное решение кинетического уравнения для волн на воде (уравнения Хассельманна) при отсутствии взаимодействия с ветром, т.е. воспроизводится эволюция свободной океанской зыби. Отличие от статьи [1] — это использование нового численного алгоритма. Ранее мы применяли код Ресио— Трейси [2], усовершенствованный нашей группой. В настоящей работе мы используем совершенно новый код, разработанный одним из авторов (В.В. Геогджаев). Детали его ещё не опубликованы, но новый код, существенно более точный и быстрый, уже применялся нами [3].

Новый код позволяет более полно, детально и убедительно подтвердить выводы слаботурбулентной теории ветрового волнения. Заметим, что сравнение с экспериментом главных предсказаний этой теории было уже проделано в работе [1]. Таким образом, данная статья имеет, прежде всего, теоретическое значение. Главные результаты, полученные в этой статье, следующие:

 При умереных значениях начальной крутизны (μ < 0,1) степенная асимптотика спектра возникает за несколько сот периодов исходных волн, то есть, почти на порядок быстрее, чем предсказывают размерностные оценки. Установление степенных асимптотик происходит взрывным образом, за конечное время;

2. Колмогоровская константа, найденная в численных экспериментах, с хорошей точностью со-

² Институт океанологии П.П. Ширшова

Российской Академии наук, Москва

впадает с предсказанной стационарной теорией, изложенной в статье [3]. Кроме того, работа показывает, что новый численный метод решения уравнения Хассельманна имеет хорошие перспективы.

СЛАБОТУРБУЛЕНТНАЯ ТЕОРИЯ ОКЕАНСКОГО ВОЛНЕНИЯ (WTT)

История теории слабой турбулентности (Weak Turbulence Theory — WTT) началась с работы Филлипса [4], который высказал предположение, что основным физическим процессом для волн на поверхности океана является четырёхволновое взаимодействие. Взаимодействуют четвёрки волн (квадруплеты), волновые вектора которых связаны условиями резонанса

$$\mathbf{k}_{l} + \mathbf{k}_{2} = \mathbf{k}_{3} + \mathbf{k}_{4} \boldsymbol{\omega}_{1} + \boldsymbol{\omega}_{2} = \boldsymbol{\omega}_{3} + \boldsymbol{\omega}_{4}$$
 (1)

 $(\omega_{\mathbf{k}} = \sqrt{g|\mathbf{k}|}$ — закон дисперсии волн на глубокой воде).

В 1962 г. Клаусс Хассельманн вывел кинетическое уравнение для спектра волнового действия N_k [5–7]. С учётом возбуждения волн ветром и диссипации за счёт обрушений, кинетическое уравнение имеет вид

$$\frac{\partial N_{\mathbf{k}}}{\partial t} + \frac{\partial \omega_{\mathbf{k}}}{\partial \mathbf{k}} \frac{\partial N_{\mathbf{k}}}{\partial \mathbf{r}} = S_{\mathrm{nl}} + S_{\mathrm{in}} + S_{\mathrm{diss}}.$$
 (2)

Здесь S_{in} описывает возмущение волн ветром, S_{diss} — их диссипацию в результате обрушений, S_{nl} нелинейное взаимодействие, подчиняющееся резонансным условиям Филлипса (1). Член S_{nl} естественным образом разбивается на "приходящий" и "уходящий" члены [8]:

$$S_{\rm nl} = F_{\rm k} - \Gamma_{\rm k} N_{\rm k}.$$
 (3)

Здесь

¹Сколковский институт науки и технологий, Москва

^{*}E-mail: vvg@mail.geogjaev.ru

^{**}E-mail: zakharov@math.arizona.edu

^{***}E-mail: badulin.si@ocean.ru

$$F_{\mathbf{k}} = \pi g^{2} \int_{\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}} |T(\mathbf{k},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4})|^{2} N_{2} N_{3} N_{4} \times$$

$$\times \delta(\mathbf{k} + \mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{4}) \delta(\mathbf{\omega} + \mathbf{\omega}_{2} - \mathbf{\omega}_{3} - \mathbf{\omega}_{4}) \times \quad (4)$$

$$\times d\mathbf{k}_{2} d\mathbf{k}_{3} d\mathbf{k}_{4},$$

$$\Gamma_{\mathbf{k}} = \pi g^{2} \int_{\mathbf{k}_{a},\mathbf{k}_{a},\mathbf{k}_{b}} |T(\mathbf{k},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4})|^{2} \times$$

$$\times (N_3 N_4 - N_2 N_3 - N_2 N_4) \delta(\mathbf{k} + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4) \times (5)$$

$$\times \delta(\omega + \omega_2 - \omega_3 - \omega_4) d\mathbf{k}_2 d\mathbf{k}_3 d\mathbf{k}_4.$$

Ядро $T_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3\mathbf{k}_4}$ — однородная функция степени 3, подчиняющаяся условиям симметрии. Наиболее простое выражение для неё содержится в статье [3].

Явный вид неконсервативных членов Sin и Sdiss является предметом дискуссии (см. например, [2]). Однако сейчас твёрдо установлено [8, 9], что эти члены, как правило, на порядок меньше, чем отдельные слагаемые члена Snl. Поэтому построение детально разработанной аналитической теории ветрового волнения (такая программа была заявлена в статьях [10, 11]) следует начинать с систематического изучения временной эволюции пространственно однородной зыби, то есть с решения уравнения

$$\frac{\partial N_{\mathbf{k}}}{\partial t} = S_{\mathrm{nl}}.$$
(6)

Мы решали это уравнение в общем анизотропном случае в работе [1]. В данной работе мы детально изучаем изотропный случай. Будем предполагать, что поток волнового действия из области очень коротких волн отсутствует. Тогда полное волновое действие

$$N = \int N_{\mathbf{k}} d\mathbf{k} \tag{7}$$

является строгим интегралом движения, тогда как энергия

$$E = \int E_{\mathbf{k}} d\mathbf{k} \tag{8}$$

теряется за счёт потока в область больших волновых чисел посредством колмогоровского каскада. При этом единственное решение стационарного уравнения $S_{\rm nl} = 0$ есть

$$N(\mathbf{k}) = c_p \frac{|dE/dt|^{1/3}}{g^{2/3} |\mathbf{k}|^4}.$$
 (9)

Это спектр Захарова—Филоненко, впервые найденный в работе [12], c_p — безразмерная колмогоровская константа, согласно работе [3] $c_p = 0,194$.

ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ

Численное исследование проводилось для идеализированной задачи эволюции волнового поля в однородном изотропном океане при отсутствии генерации и диссипации. Начальное состояние отвечало изотропному распределению, локализованному в области частот

$$0,04\pi < \omega < 4\pi \, \text{rad/s} \quad 0,02 < f < 2 \, \text{Hz.}$$
 (10)

Такая постановка позволяет минимизировать число параметров задачи и сосредоточиться на вопросах качества алгоритма вычисления интеграла столкновений $S_{\rm nl}$, не отвлекаясь на вопросы, связанные с нетривиальной зависимостью решений от угла (ср. [1]).

Использовалась логарифмическая сетка по частоте с инкрементом $(\omega_{i+1} - \omega_i)/\omega_i = 1,03344$ (141 узел). Выбор 49 152 резонансных квадруплетов производился специальным образом, чтобы обеспечить оптимальное покрытие областей интенсивных взаимодействий [3]. Для частотного спектра энергии

$$\varepsilon(\omega)d\omega = \frac{4\pi |\mathbf{k}|^2}{g} N(\mathbf{k})d|\mathbf{k}|$$
(11)

колмогоровский спектр (спектр Захарова—Филоненко) имеет вид

$$\varepsilon(\omega) = 4\pi c_p g^{4/3} \left| \frac{dE}{dt} \right|^{1/3} \omega^{-4}.$$
 (12)

Начальное условие представляет собой "ступеньку": $\varepsilon(\omega) = 2, 0, 1 < \omega/2\pi < 0, 2, \varepsilon(\omega) = 10^{-6}$ вне этой области. Характерный начальный период составляет около T = 7 с. Начальная крутизна, определённая через среднюю частоту ω_m

$$\mu = \sqrt{\frac{E\omega_m^4}{g^2}} \cong 0,1.$$
(13)

Численный эксперимент для физического времени 200000 с (около 56 ч) требует менее 2 ч машинного времени персонального компьютера и легко может быть продолжен до нескольких миллионов секунд. Код реализован для параллельных вычислений, что приближает его быстродействие к требованиям оперативных моделей ветрового волнения.

Как и ожидалось, эволюция данного начального условия приводит к возникновению у спектра "колмогоровского хвоста", описываемого в [12]. Колмогоровская асимптотика устанавливается "взрывным образом" за конечное время. Этот эксперименталь-

75

ный факт ещё нуждается в теоретическом объяснении. Из соображений размерности имеем

$$\frac{T}{\mu^4} \approx 70\ 000\ c,$$
 (14)

что на порядок больше наблюдаемых в эксперименте 3000 с. На рис. 1 совмещены начальный спектр и результат его эволюции при t = 3000 с. Видно, что колмогоровская асимптотика вполне развита уже для времени около 400 начальных периодов.

Рисунок 2 представляет собой компенсированный спектр $\varepsilon(\omega)\omega^4/g^2$ в момент времени $t \approx 15$ ч. Видно, что асимптотика (12) доминирует при частотах $\omega > 4$ рад/с (период около 1,5 с, длина волны 3,5 м).

В работе [1] было показано, что эволюция широкого класса начальных условий приводит к установлению автомодельного решения

$$\varepsilon(\omega, t) = \varepsilon(\omega t^{1/11}). \tag{15}$$

Наш численный эксперимент показывает, что установление этого режима требует достаточно большого времени 50000 с и более, т.е. более 7000 начальных волновых периодов. Установление автомодельного режима показано на рис. 3 как эволюция нормированных на максимальное значение спектров

Рис. 1. Частотные спектры энергии в начальный момент *t* = 0 и при *t* = 3000 с. Видно установление степенного распределения.

Рис. 3. Нормированные спектры энергии как функции безразмерной частоты в разные моменты времени (см. легенду, в с).

Рис. 4. Эволюция полной энергии и частоты спектрального пика для консервативного кинетического уравнения (1).

в безразмерных частотах ω/ω_p (ω_p – частота спектрального пика). Таким образом, стремление к автомодельному поведению в терминах форм спектров выражено заметно слабее, чем установление колмогоровского "хвоста" и поведение интегральных параметров зыби. Эта особенность подробно рассматривалась в [1].

На рис. 4 показана эволюция полной энергии и частоты спектрального пика в консервативном кинетическом уравнении (1). За 200000 с теряется не более 30%, тем не менее, этого темпа потери хватает для формирования слаботурбулентного колмогоровского спектра. Декремент убывает со временем.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 5 2019

Оценка безразмерной константы ср даёт $c_p = 0,203$, что вполне согласуется с теоретическим значением, найденным в [1].

РЕЗУЛЬТАТЫ И ВЫВОДЫ

Как было отмечено выше, основным результатом является демонстрация установления слаботурбулентных асимптотик для численных решений кинетического уравнения для волн на воде (уравнения Хассельманна). Важно, что результаты получены с помощью принципиально нового численного алгоритма, развитого В.В. Геогджаевым. Этот алгоритм позволяет приблизиться к требованиям оперативных моделей при несравнимо более высоких показателях точности и разрешения по масштабам волн (по частотам и направлениям). Ранее проведённые численные исследования свойств решений кинетического уравнения [13, 14], показав соответствие основным результатам теории слабой турбулентности, обнаружили принципиальные ограничения алгоритма Вебба—Ресио—Трейси (Webb—Resio—Tracy [2, 15]) как по показателям точности, так и по быстродействию.

Подчеркнём, что развиваемый алгоритм использует собственную параметризацию резонансных поверхностей (1), что позволяет точнее описывать спектральные потоки и достигать высоких показателей точности при относительно небольшом количестве резонансных квадруплетов. Этим он отличается от других подходов, в частности, от применяемых в оперативных моделях версий Discrete Interaction Approximation.

Источники финансирования. Теоретическая часть работы выполнена в соответствии с темой госзадания Института океанологии П.П. Ширшова РАН, тема 0149–2019–0002. Численные расёты поддержаны Российским научным фондом, проект № 19–72–30028.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Badulin S.I., Zakharov V.E.* // Nonl. Proc. Geophys. 2017. V. 24. P. 237.
- Tracy B., Resio D. // WES Rep. 11. 1982. US Army, Engineer Waterways Experiment Station, Vicksburg, MS.
- Геогджаев В.В., Захаров В.Е. // Письма в ЖЭТФ. 2017. № 106. С. 175.
- 4. *Phillips O.M.* // J. Fluid Mech. 1960. V. 9. P. 193.
- 5. Hasselmann K. // J. Fluid Mech. 1962. V. 12. P. 481.
- 6. Hasselmann K. // J. Fluid Mech. 1963a. V. 15. P. 273.
- 7. Hasselmann K. // J. Fluid Mech. 1963b. V. 15. P. 385.
- 8. Захаров В.Е., Бадулин С.И. // ДАН. 2011. Т. 440. С. 691–693.
- 9. Zakharov V.E. // Phys. Scr. 2010. T142. P. 014052.
- 10. Zakharov V.E. // Procedia IUTAM. 2018. V. 26. P. 43.
- Zakharov V.E., Badulin S.I., Geogjaev V.V., Pushkarev A.N. // Earth and Space Science. 2019. https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2018EA000471.
- Захаров В.Е., Филоненко Н.Н. // ДАН. 1966. Т. 170. С. 1292–1296.
- 13. Pushkarev A.N., Resio D., Zakharov V.E. // Phys. D: Nonlin. Phenom. 2003. V. 184. № 29.
- Badulin S.I., Babanin A.V., Resio D., Zakharov V.E. // IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Springer), 2008. P. 45–47.
- 15. Webb D.J. // Deep Sea Res. 1978. V. 25. P. 279.

NUMERICAL STUDY OF ISOTROPIC OCEAN SWELL V. V. Geogjaev, Academician of the RAS V. E. Zakharov, S. I. Badulin

V. V. Ocogjacv, Academician of the KAS V. E. Zakharov, S. I. Daudin

¹Skolkovsky Institute of Science and Technology, Moscow, Russian Federation ²P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

Received August 28, 2019

A new algorithm is used for detailed numerical study of the evolution of isotropic swell in a homogeneous ocean. It is shown that the Zakharov-Filonenko spectrum occurs in an explosive manner in a short time. The Kolmogorov constant of the solution is estimated numerically.

Keywords: isotropic swell in a homogeneous ocean, kinetic equation, Zakharov-Filonenko spectra.