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Abstract. In this paper we formulate the nonlocal dbar problem dressing method of Man-
akov and Zakharov [28, 29, 27] for the 4 scaling classes of the 1+1 dimensional Kaup–
Broer system [7, 13]. The method for the 1+1 dimensional Kaup–Broer systems are re-
ductions of a method for a complex valued 2+1 dimensional completely integrable partial
differential equation first introduced in [23]. This method allows computation of solutions
to all cases of the Kaup–Broer system. We then consider the case of non-capillary waves
with usual gravitational forcing, and use the dressing method to compute N-soliton solu-
tions and more general solutions in the closure of the N-soliton solutions in the topology
of uniform convergence in compact sets called primitive solutions. These more general
solutions are an analogue of the solutions derived in [11, 30, 31] for the KdV equation.
We derive dressing functions for finite gap solutions. We compute counter propagating
dispersive shockwave type solutions numerically.

1. Introduction

It was recently demonstrated experimentally by Redor et. al. that a soliton gas consist-
ing of many solitons propagating in both directions can be formed in a flume [22]. More-
over, they demonstrated that the counter propagating Kaup–Broer (Kaup–Boussinesq) 2-
soliton soliton collision compares favorably to laboratory data provided that we ignore
non-integrable effects which are of small amplitude relative to the solitons in small ampli-
tude regime [22]. Because of the finite size of the flume, experimental observations were
necessarily of counter propagating solitons to achieve the length of propagation needed
to produce the soliton gas [22]. In this paper we consider the problem of computing
solitons to the Kaup–Broer system consisting of many interacting solitons. This is done
by considering the primitive solutions, which were first introduced for the KdV equation
[11, 30, 31, 19]. We also discuss how the method appears as a reduction of the dressing
method for the complete complexification of the 2+1D completely integrable generaliza-
tion of the Kaup–Broer system originally considered by Rogers and Pashaev [23].

It should be noted that the Kaup–Broer system has been shown to be ill-posed in Sobelev
space [2]. However, this does not mean there can be no practical application of particular
solutions to the Kaup–Broer system in the small amplitude and long wave regime. This
does mean trying to apply conventional numerical or perturbation theory methods to the
Kaup–Broer system is not a good idea. However, given that the collision of two counter
propagating solitons modeled by the Kaup–Broer system compares favorably to experi-
ment [22], a soliton gas described by the Kaup–Broer system could be interesting from
a practical point of view. Moreover, as mentioned in [22], the observations of Chen and
Yeh [8] that show that the head on collision of solitons produces an amplification over a
simple linear superposition of KdV solitons means we can expect a counter propagating
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soliton gas to have larger amplitude statistics than a sum of counter propagating KdV soli-
ton gases. The splitting of the scattering theory into left and right moving components
makes the Kaup–Broer system an intuitive model for describing a soliton gas consisting of
counter propagating solitons.

In 1975 Kaup [13] and Broer [7] independently derived the following system of nonlin-
ear partial differential equations

ηt + h0ϕxx + (ηϕx)x +

h3
0

3
−

h0τ

ρg

ϕxxxx = 0,(1)

ϕt +
1
2

(ϕx)2 + gη = 0,(2)

which we have expressed in dimensional form. We will call this system of equations the
Kaup–Broer system. This system describes weakly nonlinear long shallow water waves in
a channel of constant depth. In system (1,2) the constant h0 is the quiescent water depth, g
is the gravitational acceleration, τ is the surface tension of the fluid, and ρ is the density of
the fluid. The variable η is the free surface displacement from quiescent water depth, and
ϕ is the velocity potential evaluated on the free surface.

Broer arrived on the system (1,2) by considering Hamiltonian approximations to the
Hamiltonian equations for water–waves in a narrow channel. Kaup showed that system
(1,2) when g > 0 and h2

0
3 > τ

gρ can be solved by the Inverse Scattering Method (ISM); he
studied the direct and inverse scattering problem, and found one-solition solutions. Peri-
odic and quasiperiodic finite gap solutions and their N-soliton limit were found by Matveev
and Yavor [16]. The N-soliton solution have also been computed using the Hirota bilinear
form [26]. Complete integrability of the Kaup–Broer system was proven by Kupershmidt
[14].

Consider the general form of the Kaup–Broer system

(3) ηt + µ1ϕxx + µ2(ηϕx)x + µ3ϕxxxx = 0,

(4) ϕt + ε1
1
2

(ϕx)2 + ε2η = 0.

The system (3, 4) has 4 distinct scaling classes that can be represented by systems of the
form

(5) ηt + ϕxx + (ηϕx)x + µϕxxxx = 0,

(6) ϕt +
1
2

(ϕx)2 + εη = 0,

determined by the 4 possible choices defined by ε = ±1 and µ = ± 1
4 . The 4 scaling class of

the Kaup–Broer system are analogous to the 4 scaling classes of 1D Boussinesq equations
discussed by Bogdanov and Zakharov in [5]. The 4 scaling classes of the Kaup–Broer
system have the following physical interpretations:

(1) ε = 1, µ = 1
4 corresponds to gravitational non-capillary waves.

(2) ε = 1, µ = − 1
4 corresponds to gravitational capillary waves.

(3) ε = −1, µ = 1
4 corresponds to non-capillary waves in reversed gravity.

(4) ε = −1, µ = − 1
4 corresponds to capillary waves in reversed gravity.

It is known (see, for instance [28]) that any integrable system in 1+1 dimensions admits
a generalization to an equation in 2+1 dimensions, preserving integrability. For instance,
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the KdV equation

(7) ut + 6uux + uxxx = 0

admits generalizations to the KP equation

(8)
∂

∂x
(ut + 6uux + uxxx) = ±3uyy,

and the Veselov–Novikov equation

ut = uzzz + uz̄z̄z̄ + (uv)z + (uv̄)z̄(9)
vz̄ = −3uz, u = ū.(10)

A completely integrable 2+1 dimensional generalization of the Kaup–Broer system was
discovered by Rogers and Pashaev using the Hirota bilinear form [23].

All four scaling classes of the Kaup–Broer system are dimensional reductions of the
completely complexified version of the system

st + αs2
u − βs2

v + Π = 0(11)

ct + 2α(suc)u − 2β(svc)v − 2aPs +
1
2

Psuv(12)

with

(13) P = α
∂2

∂u2 − β
∂2

∂v2

and Π is defined in terms of c by solving

(14) Πuv = 2Pc.

By complete complexification, we mean all coordinates, fields, and coefficients are taken to
possibly be complex numbers. The Π dependence in (11) can be removed by differentiating
(11) by u and v and applying (14). This completely integrable generalization of the Kaup–
Broer system was first introduced by Rogers and Pashev [23] (for a particular choice of
parameters). The system (11,12) is Hamiltonian in the sense that it is the the canonical
system

(15) st = −
δH
δc
, ct =

δH
δs

for the Hamiltonian functional

H =

"
αcs2

u − βcs2
v + asPs −

1
4

sPsuv +
1
2

cΠ dudv.(16)

We can see that all 4 scaling classes of the Kaup–Broer system are achievable as the
dimensional reduction of the complete complexification of integrable 2+1 dimensional
generalization of the Kaup–Broer system. Consider the choice parameters α = −β = 1

4 and
a = ±1, suppose there exists a solution s, c to (11,12) such that

(17) σs(u, v, σt) = ϕ(u + v, t), −ac(u, v, σt) = η(u + v, t).

If we write x = u + v, then P acts on the 1+1 dimensional fields as 1
2
∂2

∂x2 , and the equation
for Π becomes Πxx = −aηxx. It is thus easy to see that ϕ(x, t) and η(x, t) solve

ϕt +
1
2
ϕ2

x − aσ2η = 0(18)

ηt + (ϕxη)x + ϕxx −
a
4
ϕxxxx = 0.(19)
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We see that all 4 scaling classes are attainable from the complete complexification based
on the two choices a = ±1 and σ = 1, i. The 2+1 dimensional Hamiltonian then reduces to

H =

∫
1
2
ηϕ2

x −
1
2
ϕϕxx −

a
4
ϕϕxxxx −

aσ2

2
η2 dx.(20)

Remark 1. The fact that we can solve the complete complexification allows us to produce
solutions to other interesting reductions of the completely complexified equations. A par-
ticularly interesting reduction from the complete complexificaiton corresponds to taking
u = z = x + iy and v = z̄ = x − iy with α = β = 1 so that

(21)
∂2

∂u∂v
=

1
4

(
∂2

∂x2 +
∂2

∂y2

)
=

1
4

∆,

(22) P =
1
2

(
∂2

∂x2 −
∂2

∂y2

)
=

1
2
�,

and the 2+1 dimensional equation becomes

st −
i
2

sxsy + Π = 0,(23)

ct − i(sxc)y − i(syc)x − a�s +
1

16
∆�s = 0,(24)

∆Π = 4�c.(25)

The linearization of this system can be expressed in terms of c and Π as

ctt + a�Π −
1
16

∆�Π = 0,(26)

∆Π = 4�c.(27)

If we take the Fourier transform

(28) cpq =
1

2π

"
c(x, y)e−i(px+qy) dxdy,

then equation (26) becomes

(29) (cpq)tt + a(p2 − q2)Πpq −
1

16
(p2 + q2)(p2 − q2)Πpq = 0.

Moreover, (27) implies

(30) Πpq = 4
p2 − q2

p2 + q2 cpq.

so we can remove Πpq from the equation for cpq to get

(31) (cpq)tt + 4a
(p2 − q2)2

p2 + q2 cpq −
1
4

(p2 − q2)2cpq = 0.

Therefore, this version of the 2+1 dimensional system is a nonlinear wave equation with
cubic nonlinearity, and dispersion relation

(32) ω2 =
1
4

(p2 − q2)2 − 4a
(p2 − q2)2

p2 + q2 .

When a < 0 this is a stable wave equation in the long wave limit, while for a > 0 this
is stable only in the long wave limit with p >> q or q >> p. These could potentially be
physically relevant wave equations.
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In this paper we will construct solutions to system (5,6) and its generalization (11,12)
by the dressing method developed in papers of Zakharov and his collaborators [27, 28, 29,
4]. The dressing method makes it possible to find much broader classes of solutions of
integrable systems than the ISM, and is based on the use of the nonlocal ∂̄-problem first
used by Ablowits, Fokas, and Bar-Yaacov [1] for the solution of the KP-2 equation (the
KP-2 is equation (8) with the positive choice of sign). Moreover, since u, v, t and α, β, a
will appear as parameters in the Kaup–Broer system, this method leads immediately to
solutions of the completely complexified system as well.

One important property of the 2+1 dimensional generalization of the Kaup–Broer sys-
tem is that the nonlocal ∂̄ problem for the 4 cases of the Kaup–Broer system are dimen-
sional reductions of the nonlocal ∂̄ problem for the 2+1 dimensional generalization. The
operator for the scattering problem for our 2+1 dimensional generalization of the Kaup–
Broer system is the non-relativistic quantum Hamiltonian for a charged particle under the
influence of a magnetic field.

In the case of ε = 1 and µ = 1
4 , we will explicitly construct the N-soliton solutions, and

also construct solutions that can be interpreted as a limit of the N-soliton solutions as the
number of solitons diverges to∞. We will provide numerical evidence that the second type
of solution can describe counter propagating dispersive shockwave type solutions.

The problem of computing solutions to completely integrable partial differential equa-
tions that are limits of sequences N-soliton solutions as the number of solitons diverges to
infinity is an intriguing area of research with many interesting unsolved problems. Recent
progress on this problem was made by Dyachenko, Zakharov and Zakharov who demon-
strated in [11, 30, 31] that periodic, dispersive shockwave, and turbulent solutions to the
KdV equation can be computed as limits of N-soliton solutions. From the point of view
of the inverse spectral theory of 1D Schrödinger operators, a continuum limit was taken
in which discrete eigenvalue coalesce into spectral bands. These potentials were dubbed
primitive potentials. This work was continued in [19] where the case of symmetric primi-
tive potentials was considered in detail. An analytic procedure for computing all the Taylor
coefficients of symmetric primitive potentials was presented, as well as the special case of
an elliptic potential. The asymptotic behavior of genus one dispersive shockwave behav-
ior of a soliton was analyzed rigorously by Girotti, Grave and McLaughlin [12] using
the Riemann–Hilbert problem formulation of the infinite soliton limit presented by Dy-
achenko, Zakharov and Zakharov [11, 30, 31]. It was shown how to produce all finite gap
solutions using primitive solution in [18].

One draw back of using the KdV equation as a model of 1+1D (one spatial and one
temporal dimension) shallow water long waves is that the KdV equation is derived by
assuming wave motion in a single direction. A common completely integrable alternative
to the KdV equation is the 1+1 dimensional Boussinesq equation. However, one issue is
that the scattering problem used to solve the Boussinesq equation by the inverse scattering
transform (IST) is of degree three making application of nonlinear steepest descent more
difficult [5]. However, the Kaup–Broer system which has a degree 2 scattering problem
that separates into left and right moving KdV scattering problems.

A more in depth comparison of the dressing method for the Kaup–Broer system to the
dressing method for the Korteweg–de Vreis and the Kadomtsev–Petviashvili equations can
be found in chapter 2 of the first author’s PhD dissertation [17] done under the supervision
of the second author. However, in the PhD dissertation only N-soliton solutions were
computed by the dressing method. In this paper we extend the results first presented in the
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dissertation to compute solutions to the Kaup–Broer system in the closure of the N-soliton
solutions with respect to the topology of uniform convergence in compact sets.

1.1. Outline of Paper. This paper is structured as follows:

• In section 2 we provide the Manakov triple formulation of the 2+1 dimensional
generalization of the Kaup—Broer system.

• In section 3 we give the nonlocal ∂̄ formulation of the dressing method for the 2+1
dimensional generalization of Kaup–Broer system, and use it to formally compute
a new class of solutions to this generalization in subsection 3.1. We then discuss
how the dimensional reduction of the 2+1 dimensional system to the 1+1 dimen-
sional Kaup–Broer system is achieved from the point of view of the nonlocal ∂̄
problem in subsection 3.2.

• In section 4 we discuss the most studied case of the 1+1 dimensional Kaup–Borer
system (ε = 1, µ = 1

4 ), and show how the dressing method can be used to produce
a new class of solutions to the 1+1 dimensional Kaup–Broer system called prim-
itive solutions that can be interpreted as the infinite soliton limit of the N-soliton
solutions.

• In section 5 we discuss how finite gap solutions to the Kaup–Broer system can be
computed

• In section 6 we compute numerical approximations (corresponding to exact N-
soliton solutions with large N) to some of these new solutions to the 1+1 Kaup–
Broer system.

• In section 7 we provide some concluding remarks.

2. TheManakov Triple for the 2+1 Dimensional Generalization of the Kaup–Broer
System

We will construct the Manakov triple and the corresponding linear system for the 2+1
dimensional generalization of the Kaup–Broer system. The existence of the Manakov triple
is what justifies the use of the dressing method discussed in the next section. The system
(11,12) is equivalent to a solution of the Manakov triple operator equation

(33) Lt = [M, L] + QL,

where

(34) L =
∂2

∂u∂v
+ A

∂

∂v
+ B − a,

(35) M = α
∂2

∂u2 + β
∂2

∂v2 + F
∂

∂v
+ G,

and Q = Fv − 2αAu. The equation for the Manakov triple is equivalent to the simultaneous
solvability of the linear system

(36) Lψ = 0, ψt = Mψ.

In the next section we will discuss how the nonlocal ∂̄ problem can be used to compute a
solution ψ to (36), corresponding potentials, and a solution to the 2+1 dimensional gener-
alization of the Kaup–Broer system.
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In terms of A, B, F and G, the Manakov triple equation is

At
∂

∂v
+ Bt =(2βAv − Fu)

∂2

∂u2 + (2αBu −Gv)
∂

∂u
(37)

+ (αAuu + βAvv + 2βBv − Fuv + FAv − FvA −Gu)
∂

∂v
(38)

+ αBuu + βBvv + FBv −Guv − AGv − aFv + 2αaAu.(39)

The coefficients for the constant, ∂
∂v , ∂

∂u , ∂2

∂u2 terms solve the nonlinear system

At = αAuu + βAvv + 2αBu + 2βBv − Fuv + FAv − FvA −Gu(40)
Bt = αBuu + βBvv + FBv −Guv − AGv − aFv + 2αaAu(41)
Fu = 2βAv,(42)
Gv = 2αBu.(43)

We will now show that this system is equivalent to the complete complexification of the
2+1 dimensional completely integrable generalization of the Kaup–Broer system. If we
suppose the A has the potential form A = su for some potential s (we will this potential
exists when we discuss the dressing method in the next section) then F = 2βsv + C for
some constant C. Since we will remove the F dependence we can take C = 0 and produce
a solution to the nonlinear system (40-43). There also exist some antiderivative ∂−1

v such
that G = 2α∂−1

v Bu.
Eliminating the F and G dependance in (40,41), replacing A with the potential s and

anti-differentiating equation (40) with respect to u and v implies

st + α(su)2 − β(sv)2 − Ps + ρ = 0,(44)
Bt + α2(suB)u − β2(svB)v + PB − aPs = 0,(45)

where ρ is defined in terms of B as a solution to

(46) ρuv = 2PB,

and we recall that P is the differential operator operator

P = α
∂2

∂u2 − β
∂2

∂v2 .

The ρ dependence in the system can be removed by differentiating (44) by u and v and
applying (46). We can change variables to fields c and s related by

(47) c = B −
1
2

suv

so that we end up with the system

st + αs2
u − βs2

v + Π = 0

ct + 2α(suc)u − 2β(svc)v − 2aPs +
1
2

Psuv = 0

with Π defined in terms of c as the solution to

Πuv = 2Pc.

This is the 2+1 dimensional generalization of the Kaup–Broer system. The function Π so
defined is related to s and ρ by Π = ρ−Ps. This is the system discussed in the introduction.
Moreover, this change of variables is a canonical transformation.
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Remark 2. If we transfer to complex coordinates u = x + iy and v = x − iy, then operator
L is

(48) L =
1
4

(
∂2

∂x2 +
∂2

∂y2

)
+

A
2

(
∂

∂x
+ i

∂

∂y

)
+ B − a,

which has the physical interpretation as being proportional to the quantum mechanical
Hamiltonian for a 2 dimensional non-relativistic charged quantum particle under the in-
fluence of an electromagnetic field. The solutions to the nonlocal ∂̄ problem will allow us
to compute solutions to Lψ = 0. The inverse spectral theory of periodic and finite gap op-
erators of this form was studied extensively by Novikov and his collaborators, see [9, 20]
for a review of this theory.

3. The DressingMethod for the 1+1 Dimensional Kaup–Broer System and Its 2+1
Dimensional Generalization

The nonlocal ∂̄ problem can be used to find solutions ψ to the system (36) with coeffi-
cients in the linear operators depending on the solution. Since the coefficients depend on ψ,
this method computes a solution to the 2+1 dimensional generalization of the Kaup–Broer
system using ψ. We can produce a meromorphic family of solutions ψ(λ; u, v, t) to (36) by
taking ψ(λ; u, v, t) = eφ(λ;u,v,t)χ(λ; u, v, t) where

(49) φ(λ; u, v, t) = λu + aλ−1v + (αλ2 + βλ−2)t

and χ solves the nonlocal ∂̄ problem

(50)
∂χ

∂λ̄
(λ; u, v, t) =

"
C

R(λ,w)eφ(w;u,v,t)−φ(λ;u,v,t)χ(w; u, v, t)dA(w)

and is normalized so χ → 1 as λ → ∞. Equivalently, χ solves the equivalent integral
equation

(51) χ(λ; u, v, t) = 1 +
1
π

"
C

"
C

eφ(w;u,v,t)−φ(ζ;u,v,t)

λ − ζ
R(ζ,w)χ(w; u, v, t)dA(w)dA(ζ).

Define the operators

L1χ =DuDvχ + ADvχ + (B − a)χ(52)

=χuv + λχv + aλ−1χu + Aχv + Aaλ−1χ + Bχ,(53)

and

L2χ =Dtχ − αD2
uχ − βD2

vχ − FDvχ −Gχ(54)

=χt − α(χuu + 2λχu) − β
(
χvv + 2aλ−1χv

)
− F

(
χv + aλ−1χ

)
−Gχ,(55)

where

(56) Du =
∂

∂u
+ λ, Dv =

∂

∂v
+ aλ−1, Dt =

∂

∂t
+ (αλ2 + βλ−2)t.

Applying L j to the nonlocal ∂̄ problem (50) we find that L jχ solve the nonlocal ∂̄ problem

(57)
∂L jχ

∂λ̄
(λ) = γ jδ(λ) +

"
C

R(λ,w)eφ(w;u,v,t)−φ(λ;u,v,t)L jχ(w; u, v, t)dA(w),

for L jχ, where

(58) γ1 = πa (χu(0) + Aχ(0)) , γ2 = −πa(2βχv(0) + Fχ(0))
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are such that

(59)
[
∂

∂λ̄
, L j

]
= γ jδ(λ).

The condition that γ j = 0 is equivalent to the assumption that L jχ(λ) is holomorphic at
λ = 0.

The crux is that if A, B, F and G are set according to

(60) s = − log(χ0
0), A = su, B = −(χ∞1 )v, F = 2βsv, G = −2α(χ∞1 )u,

then L jχ → 0 as λ → ∞, and γ j = 0 making L jχ holomorphic off of λ ∈ C \ {poles}. If it
can be proved that the integral equation for χ is a Fredholm integral equations of index 0,
then

(61) L1χ(λ; u, v, t) = 0, L2χ(λ; u, v, t) = 0

because L jχ must satisfy homogenous Fredholm integral equations of index 0. It is easy
to see that χ solves (61) if and only if eφ(λ;u,v,t)χ(λ; u, v, t) solves (36). Since we have
produced a meromorphic family of solutions to (36), the functions s and c = B − 1

2 suv

solve the 2+1 dimensional Kaup–Broer system. In the soliton case, the integral equations
is clearly Fredholm because it is equivalent to a finite dimensional linear equation.

Theorem 3. Suppose the R : C2 → C is a generalized function that has been chosen so
that the operator F defined by

(62) F χ(λ; u, v, t) =
1
π

"
C

"
C

eφ(w;u,v,t)−φ(ζ;u,v,t)

λ − ζ
R(ζ,w)χ(w; u, v, t)dA(w)dA(ζ)

is a Fredholm operator of index 0 with a trivial null space. Then there is a unique solution
to the integral equation

(63) (I − F )χ(λ; u, v, t) = 1.

The function χ solves the ∂̄ problem

(64)
∂χ

∂λ̄
(λ; u, v, t) =

"
C

R(λ,w)eφ(w;u,v,t)−φ(λ;u,v,t)χ (w; u, v, t) dA(w),

and is the unique solution normalized by χ(λ)→ 1 as λ→ ∞.
The function χ has expansions

(65) χ(λ; u, v, t) =

∞∑
n=0

χ0
n(u, v, t)λn, χ(λ; x, t) =

∞∑
n=0

χ∞n (u, v, t)λ−n.

The functions c and s computed from

(66) s(u, v, t) = − log(χ0
0(u, v, t)), c(u, v, t) = −(χ∞1 )v(u, v, t) −

1
2

suv(u, v, t),

and Π determined from c by solving the linear differential equation

(67) Πuv = 2Pc

solve the complete complexification of the integrable 2+1 dimensional generalization of
the Kaup–Broer system (11,12).

Remark 4. In principle, all systems obtained from the solution χ to the nonlocal ∂̄ problem
(50) are conservation laws of (11,12). The function χ is nothing but the famous τ-function
used in the Sato theory. This is a consequence of the theory discussed in [28, 29, 27].
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Remark 5. The operators Du,v,t and L1,2 and the dressing functions R with a = 1 discussed
in this section are closely related to those used to solve the Veselov–Novikov equation with
the dressing method [3]. The differences are:

• We replace the “light cone” coordinates u, v with complex conjugate coordinates
u→ z̄, and v→ z.

• We replace αλ2 + βλ−2 in the definitions of Dt and φ with λ3 + λ−3.
The Riemann–Hilbert problem used in [3] is really just a nonlocal ∂̄ problem in the case
where R is supported on an arc. By setting A = 0 and replacing u and v with the complex
conjugated coordinates z̄ and z, we end up with the operator L evolving in the lax equation
for the Veselov–Novikov equation [3, 15, 21].

3.1. A Class of Exact Solutions to the 2+1 Dimensional Kaup–Broer System General-
izing the N-Soliton Solutions. We can consider a completely solvable case of the nonlocal
∂̄ problem complex 2+1 dimensional system corresponding to a dressing function of the
form

(68) R(λ,w) =

N∑
n=1

fn(λ)gn(w).

Then the solution to the nonlocal ∂̄ problem is of the form

(69) χ(λ; u, v, t) = 1 +
1
π

N∑
n=1

Φn(u, v, t) f̂n(u, v, t),

where f̂n denotes the integral transform

(70) f̂n(λ; u, v, t) =

"
C

fn(ζ)e−φ(ζ;u,v,t)

λ − ζ
dA(ζ)

of fn, and

(71) Φn(u, v, t) =

"
C

gn(w)eφ(w;u,v,t)χ(w; u, v, t)dA(w).

Substitution of (69) into the definition of Φn gives the equation

(72) Φn(u, v, t) = Gn(u, v, t) +

N∑
m=1

Mnm(u, v, t)Φm(u, v, t),

where

(73) Gn(u, v, t) =

"
C

gn(w)eφ(w;u,v,t)dA(w),

and

(74) Mnm(u, v, t) =
1
π

"
C

"
C

fm(ζ)gn(w)eφ(w;u,v,t)−φ(ζ;u,v,t)

w − ζ
dA(ζ)dA(w).

If det(I − M) , 0 then the functions χ0
0(u, v, t) and χ∞1 (u, v, t) given by

(75) χ∞1 (u, v, t) =
1
π

N∑
n=1

Φn(u, v, t)Fn(u, v, t)

where

(76) Fn(u, v, t) =

"
C

fn(ζ)e−φ(ζ;u,v,t)dA(ζ),



KAUP–BROER SYSTEM 11

and

(77) χ0
0(u, v, t) = 1 + f̂n(0; u, v, t),

can then be used to compute a solution s, c to the 2+1 dimensional Kaup–Broer system by
theorem 1. When fn and gn are taken to be constant multiples of delta functions supported
on some points zn, wn, this solution reduces to an N-soliton solution.

3.2. Reduction of the 2+1 Dimensional Dressing Method to 1+1 Dimensions. We now
present the Dressing Method for the Kaup–Broer system. The dressing method allows
solutions to all 4 scaling classes of the Kaup–Broer to be computed by solving a nonlocal
∂̄ problem.

From (17) we see that dimensional reduction to the 4 scaling classes of the Kaup–Broer
system can be achieved provided the solution depends only on x = u + v, and α = −β = 1

4 .
The u, v, and t dependence enters the ∂̄ problem only in terms of the combination

(78) φ(w; u, v, t)−φ(λ; u, v, t) = −(λ−w)u− a(λ−1 −w−1)v− (αλ2 + βλ−2 −αw2 − βw−2)t.

This will depend only on x = u + v if and only if

(79) λ − w = a(λ−1 − w−1)

which is solved if w relates to a by w = −aλ−1. Therefore suppose that

(80) R(λ,w) = δ(w + aλ−1)R0(λ)

where R0 has compact support on C \ {−1, 0, 1}. Then (50) reduces to the nonlocal ∂̄
problem

(81)
∂χ

∂λ̄
(λ; x, t) = R0(λ)e−2φ̃(λ;x,t)χ

(
−aλ−1; x, t

)
,

where

(82) φ̃(λ; x, t) =
1
2

(
λ + aλ−1

)
x +

1
4

(
λ2 − λ−2

)
t.

This nonlocal ∂̄ problem depends only on x, so the solution to (the 2+1 dimensional gen-
eralization of the). We look for a solution χ to the nonlocal ∂̄ problem normalized so that
χ(λ)→ 1 as λ→ ∞. This solution χ solves the integral equation

(83) χ(λ; x, t) = 1 + F0χ(λ) ⇐⇒ (I − F0)χ = 1,

where I is the identity operator and F0 is the integral operator given by

(84) F0χ(λ; x, t) =
1
π

"
C

R0(ζ)e−2φ̃(ζ;x,t)

λ − ζ
χ(−aζ−1; x, t)dA(ζ).

Therefore the following is a corollary to theorem 1:

Corollary 6. Suppose the dressing function R0 : C → R has been chosen so that the
operator F0 given by (84) is a Fredholm operator of index 0 with a trivial null space. Then
there is a unique solution to the integral equation

(85) (I − F0)χ(λ; x, t) = 1.

The function χ solves the nonlocal ∂̄ problem

(86)
∂χ

∂λ̄
(λ; x, t) = R0(λ)e−2φ̃(λ;x,t)χ

(
−aλ−1; x, t

)
,

and is the unique solution normalized by χ(λ)→ 1 as λ→ ∞.
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The function χ has expansions

(87) χ(λ; x, t) =

∞∑
n=0

χ0
n(x, t)λn, χ(λ; x, t) = 1 +

∞∑
n=1

χ∞n (x, t)λ−n.

Then the functions ϕ and η defined by

(88) ϕ(x, t) = −σ log(χ0
0(x, σt)), η(u, v, t) = a(χ∞1 )x(x, σt) +

1
2

a log(χ0
0(x, σt)),

solve the Kaup–Broer system (5, 6) with ε = −aσ2 and µ = − a
4 .

Remark 7. Remark 3 should still applies. Therefore χ should be equivalent to the τ
function in the Sato theory, and any system derivable from χ should be a conservation law
of (5, 6). In particular, the normal and reversed gravity systems are conservation laws for
each other (although they will not both be real and nonsingular).

Remark 8. The function ψ(λ; x, t) = eφ̃(λ;x,t)χ(λ; x, t) solves the linear system

(89) L̃(λ, t)ψ(λ; x, t) = 0,

(90) M̃(λ, t)ψ(λ; x, t) = ψt(λ; x, t),

where

(91) L̃(λ, t) =
∂2

∂x2 + A
∂

∂x
+ B −

λ − aλ−1

2
A −

(
λ + aλ−1

2

)2

,

(92) M̃(λ, t) =

(
λ − aλ−1

2
+ F

)
∂

∂x
+ G −

λ − aλ−1

2
F.

The compatibility condition to be able to find a simultaneous solution to both equations
in the system is equivalent to the Kaup–Broer system. The potentials are set according
to the (60) except we use coefficients from (87) and the u and v derivatives reduce to x
derivatives.

Any choice of R0 leads to a solution to the Kaup–Broer system, however most choices
of R0 will lead to complex solutions with singularities. Reality conditions on R0 must be
imposed to guarantee the solutions so produced are real and bounded.

4. N-Soliton Solutions and the Limit N → ∞ for the 1+1 Dimensional Kaup–Broer
System

In this section we will consider the case of the N-soliton solutions in the 1+1 dimen-
sional case with a = −1, σ = 1 (the most studies case). We then take the infinite soliton
limit using the primitive solution method.

To produce an N-soliton solutions consider some parameters {λn, rn}
N
n=1 which we will

call the discrete spectral data for the N-soliton solutions. We will assume λn ∈ R\{−1, 0, 1},
rn > 0 if λn ∈ (−1, 0) ∪ (1,∞), and rn < 0 if λn ∈ (−∞,−1) ∪ (0, 1). The positive
λn correspond to left moving solitons, while the negative λn correspond to right moving
solitons.

We take the dressing function

(93) R0(λ) =

N∑
n=1

rnδ(λ − λn)
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so the integral equation becomes the algebraic equation

(94) χ(λ; x, t) = 1 +
1
π

N∑
n=1

rne−φ̃(λn;x,t)

λ − λn
χ
(
λ−1

n ; x, t
)
.

In particular, the solution is a rational function of the form

(95) χ(λ; x, t) = 1 +
1
π

n∑
n=1

fn(x, t)
λ − λn

.

Plugging the rational form of the solution into the algebraic equation (94) gives the linear
equation

(96)
N∑

m=1

δnm +
1
π

rne−φ̃(λn;x,t)

λm − λ−1
n

 fm = rne−φ̃(λn;x,t).

This linear equation can be solved numerically for the values fm, m = 1, 2, · · · ,N. From
these values fm an N-solution ϕ, η to the Kaup–Broer system can be computed by theorem
1 via

(97) ϕ(x, t) = − log

1 − 1
π

∞∑
n=1

fn(x, t)
λn

 , η(x, t) = −
1
2
ϕxx −

1
π

N∑
n=1

( fn)x(x, t).

We describe these solutions as N-solitons, because as t → ±∞ the field η that could rep-
resent a free surface water wave has the form of N well separated solitary waves. The
corresponding field ϕ limits to a solution with N kinks as t → ±∞. The constituent soli-
tons of η have well defined velocities vsol

n = −(λn + λ−1
n )/2 when the solitons are well

separated and noninteracting.
Consider the contour

(98) Γ = [−γ2,−γ1] ∪ [−γ−1
1 ,−γ−1

2 ] ∪ [γ−1
2 , γ−1

1 ] ∪ [γ1, γ2]

with 1 < γ1 < γ2 < ∞ oriented from left to right on all components, and let R1 be a real
valued functions on Γ that is nonnegative on [−γ−1

1 ,−γ−1
2 ] ∪ [γ1, γ2] and nonpositive on

[−γ2,−γ1] ∪ [γ−1
2 , γ−1

1 ]. Moreover, we assume that R1 only vanishes on a finite number of
intervals, and that R1 is Hölder continuous on the support of R1. The pair {Γ,R1} are the
spectral data for a class of solutions determined by the dressing functions

(99) R0(λ) =

∫
Γ

δ(λ − s)R1(s)ds.

The spectral data give rise to the nonlocal ∂̄ problem

(100)
∂χ

∂λ̄
(λ; x, t) =

∫
Γ

δ(λ − s)e−2φ̃(s;x,t)R1(s)χ(s−1)ds,

and the integral equation giving the solution χ to the nonlocal ∂̄ problem normalized so
that χ→ 1 as λ→ ∞ is

(101) χ(λ) −
1
π

∫
Γ

e−2φ̃(s;x,t)R1(s)
λ − s

χ(s−1)ds = 1.

A subtlety here is that when R1(s) , 0 and R1(s−1) , 0 simultaneously, then χ can become
singular on Γ. This means that we should interpret the nonlocal dbar problem (100) as a
jump problem

(102) χ+(s) − χ−(s) = R1(s)e−2φ̃(s;x,t)(χ+(s−1) + χ−(s−1))
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where the solution has the form

(103) χ(λ; x, t) = 1 +
1
π

∫
Γ

f (s)
λ − s

ds.

The function f solves the 1D integral equation

(104) f (s; x, t) − e−2φ̃(s;x,t)R1(s)HΓ f (s−1; x, t) = e−2φ̃(s;x,t)R1(s),

whereHΓ is the Hilbert transform on Γ defined by

(105) HΓg(s) =
1
π

?
Γ

g(s′; x, t)
s − s′

ds′.

Note that the support of the function f solving (104) is the same as the support of R1.
Once the solution f (s) to integral equation (104) has been computed, a solution ϕ, η to the
Kaup–Broer system can be computed by theorem 1 as

(106)


ϕ(x, t) = − log

(
1 −

1
π

∫
Γ

f (s; x, t)
s

ds
)

η(x, t) = −
1
2
ϕxx(x, t) −

1
π

∫
Γ

fx(s; x, t)ds
.

We call these solutions primitive solutions, these are analogous to the primitive solutions
to the KdV equation [11, 30, 31, 19].

Theorem 9. Let R1 be a real valued functions on Γ that is nonnegative on [−γ−1
1 ,−γ−1

2 ] ∪
[γ1, γ2] and nonpositive on [−γ2,−γ1] ∪ [γ−1

2 , γ−1
1 ]. Suppose that f (s, x, t) solves (104),

then η and ϕ defined from f according to (106) solve the 1+1D Kaup–Broer system with
a = −1 and σ = 1.

Consider the following property (I) on R1: If s is in the support of R1, then s−1 is not in
the support of R1. If R1 satisfies this property, then the principle value integral appearing in
equation (104) reduces to a regular integral and the equation is a regular Fredholm integral
equation of the second kind on the support of R1. Otherwise, equation (104) is a nonlocal
singular integral equation.

Suppose that property (I) is satisfied, the integral equation (104) is approximated via
an N point quadrature rule on the support of R1, and the integrals appearing in (106) are
approximated by the same quadrature rule. Then the approximations of (104) and (106) by
quadrature have the form of (96) and (97), and thus the approximation to the solution de-
termined by {Γ,R1} is an exact N-soliton solution. In this manner, the solution determined
by {Γ,R1} can be interpreted as an element of the closure of the N-soliton solutions to the
Kaup–Broer system in the topology of uniform convergence in compact sets. If property
(I) is not satisfied, then care needs to be taken in dealing with the singularity in defining
such a quadrature rule. However, even when property (I) is not satisfied, the interpretation
of the solution as an element of the closure of the N-solitons solutions is still valid.

The primitive solutions to the Kaup–Broer system determined by {Γ,R1} can also be
computed via the solution to a Riemann–Hilbert problem. To see this, consider the function
χ(λ) = [χ(λ), χ(λ−1)] and the contour

(107) Γ̃ =
{
s ∈ Γ : R1(s) , 0 or R1(s−1) , 0

}
.

The contour Γ̃ consists of Γ with a finite number of intervals removed by the assumption
that R1 vanishes only on a finite number of intervals in Γ. Then χ solves the following
Riemann–Hilbert problem:
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Riemann–Hilbert Problem 10. For all x, t find a 1 × 2 vector valued function χ(λ; x, t)
such that

(1) χ is a holomorphic function of λ ∈ C \ Γ̃.
(2) The boundary values

(108) χ+(s; x, t) = lim
ε→0+
χ(s + iε; x, t), χ−(s; x, t) = lim

ε→0+
χ(s − iε; x, t)

of χ for s ∈ Γ̃ \ {endpoints of Γ̃} from above or below are continuous.
(3) The function χ has singularities that are less severe than poles on the endpoints of

Γ̃.
(4) The boundary values χ±(λ; x, t) of χ(λ; x, t) from above and below for λ ∈ Γ are

related by

(109) χ+(s; x, t) = χ−(s; x, t)V(s; x, y)

where

(110) V(s; x, t) =

 1+R1(s)R1(s−1)
1−R1(s)R1(s−1)

2iR1(s−1)
1−R1(s)R1(s−1) e

2φ̃(s;x,t)

−
2iR1(s)

1−R1(s)R1(s−1) e
−2φ̃(s;x,t) 1+R1(s)R1(s−1)

1−R1(s)R1(s−1)

 .
(5) The function χ has the limiting behaviors χ1(λ)→ 1 as λ→ ∞ and χ2(λ)→ 1 as

λ→ 0.
(6) χ satisfies the symmetry

(111) χ(s−1; x, t) = χ(s; x, t)
(
0 1
1 0

)
.

Proposition 11. A solution to the Riemann–Hilbert problem has Taylor expansions of the
form

(112) χ(λ; x, t) = (χ∞0 (x, t), χ0
0(x, t)) + (χ∞1 (x, t), χ0

1(x, t))λ−1 + O(λ−2), λ→ ∞,

(113) χ(λ; x, t) = (χ0
0(x, t), χ∞0 (x, t)) + (χ0

1(x, t), χ∞1 (x, t))λ + O(λ2), λ→ 0,

where χ∞0 = 1. We can construct primitive solutions to the Kaup–Broer system using the
Taylor coefficients via

(114) ϕ(x, t) = − log
(
χ0

0(x, t)
)
, η(x, t) = −

1
2
ϕxx(x, t) − (χ0

0)x(x, t)

by corollary 2.

5. Finite Gap Primitive Solutions

In this section we construct a family of algebro-geometric finite gap solutions to the
Kaup–Broer system that can be constructed as primitive solutions. We thus end up with
an effective way to compute sequences of N-soliton solutions converging to these algebro-
geometric finite gap solutions. These are the algebro-geometric finite gap solutions that
can be thought of as nonlinear superpositions of counter propagating solutions to the KdV
equation. We work these solutions out in detail for the case a = −1 and σ = 1. This
construction is analogous to the construction for the KdV equation appearing in [18].

We can consider the hyperelliptic projective curve Σ′ defined by

(115) w2 = P4g(λ), P4g(λ) =

2g∏̀
n=1

(λ − η−1
n )(λ − ηn)

2gr∏
m=1

(λ + ξm)(λ + ξ−1
m ).
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This curve has genus g′ = 2(g` + gr) − 1. Consider the involution

(116) ι(λ,w) = (λ−1,−w)

and define the curve Σ = Σ′/ 〈ι〉 where 〈ι〉 is the group {id., ι} which acts on Σ. We put
the branch cuts of

√
P4g(λ) on [η2n−1, η2n], [η−1

2n , η
−1
2n−1] for n = 1, . . . , g` and [−ξ2n,−ξ2n−1],

[−ξ−1
2n−1,−ξ

−1
2n ] for n = 1, . . . , gr. One sheet of Σ′ gives a coordinate λ ∈ C \ Γ̃ where

(117) Γ̃ =

g⋃̀
n=1

[η2n−1, η2n] ∪ [η−1
2n , η

−1
2n−1] ∪

gr⋃
m=1

[−ξ2m,−ξ2m−1] ∪ [−ξ−1
2m−1,−ξ

−1
2m]

that covers all of Σ except g circles. We will not need to make reference to the points on
the interiors of the branch cuts, however the branch points will be important. If λ0 is a
branch point of

√
P4g(λ), then λ−1

0 is also a branch point of
√

P4g(λ). Moreover, λ0 and
λ−1

0 correspond to the same point on Σ, and we use the notation 〈λ0〉 to refer to this point.
Since Σ′ is a double covering of Σ it follows from the Euler characteristic that Σ has genus
g = g` + gr.

We will now compute a basis of abelian differentials of the first kind on Σ as follows:
Consider the basis

(118) α′n =
λn−1dλ√

P4g(λ)

for j = 1, 2, . . . , 2g − 1 of Abelian differential of the second kind on Σ′. The involution ι
acts on the above basis of abelian differential of the first kind by ι∗ as

(119) ι∗α′n =
λ2g−n−1dλ√
λ4gP4g(λ−1)

=
λ2g−n−1dλ√

P4g(λ)
= α′2g−n

where it is easy to verify that λ4gP4g(λ−1) because each root of P4g(λ) is the multiplicative
inverse of another root of P4g(λ).

The Abelian differentials of the first kind αn on Σ that can be represented as

(120) αn = α′n + α′2g−n =
λn−1 + λ2g−n−1√

P4g(λ)
dλ

for n = 1, 2, . . . , g form a basis. Let a j and b j for j = 1, 2, . . . , g be a canonical homology
basis for the first homology group H1(Σ) satisfying ai ◦ b j = δi j, ai ◦ a j = 0 and bi ◦ b j = 0.
We can then form a basis of normalized abelian differentials of the first kind ωn satisfying

(121)
∫

a j

ωi = 2πiδi j

as linear combinations of αn.
The normalized basis of abelian differentials of the first kind allows us to define the

Able map A with entries

(122) An(λ) =

∫ λ

∞

ωn

mapping Σ into the Jacobi variety. The Riemann matrix for Σ is

(123) Bi j =

∫
b j

ωi.
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The vector of Riemann constants K has entires

(124) K j =
2πi + B j j

2
−

1
2πi

∑
`, j

∫
a`

A j(λ)ω`.

We can also define the abelian differentials of the second kind ω(n) with asymptotic
behavior ω(n) = (nλn−1 +O(1))dλ as λ→ ∞, asymptotic behavior ω(n) = (nλ−n−1 +O(1))dλ
as λ→ 0, and

(125)
∫

a j

ω(n) = 0.

These differentials are given by

(126) ω(n) =
n(λ2g+n−1 + λ−n−1)√

P4g(λ)
dλ +

g∑
j=1

c(n)
j ω j

where

(127) c(n)
j =

i
2π

∫
a j

n(λ2g+n−1 + λ−n−1)√
P4g(λ)

dλ.

The integrals of these differentials satisfy

(128)
∫ λ

∞

ω(n) = λn + O(1), as λ→ ∞;
∫ λ

∞

ω(n) = −λ−n + O(1), as λ→ 0.

An important aspect of ω(n) is the vector Ω(n) with entries

(129) Ω
(n)
j =

∫
b j

ω(n), for j = 1, 2, . . . , g.

Let us pick a degree g divisor P as a direct sum of points

P1 ∈ [η−1
1 , η1],(130)

P j ∈ [η−1
2 j+1, η

−1
2 j ] ∪ [η2 j, η2 j+1] for j = 2, 3, . . . , g`,(131)

Pg`+1 ∈ [−ξ1,−ξ
−1
1 ],(132)

Pg`+ j ∈ [−ξ2 j+1,−ξ2 j] ∪ [−ξ−1
2 j ,−ξ

−1
2 j+1] for j = 2, 3, . . . , gr(133)

This divisor is nonspecial because all points are distinct [6, 24].
The Baker–Akheizer 2-point function for the Kaup Broer system is the unique mero-

morphic function ψ on Σ such that ψ has simple poles on the points of P and asymptotic
behavior

(134) ψ(λ; x, t) = eφ̃(λ;x,t)(1 + O(λ−1)), λ→ ∞ and ψ(λ; x, t) = eφ̃(λ;x,t)O(1), λ→ 0.

The function e−φ̃(λ;x,t)ψ(λ; x, t) is holomorphic at∞ and 0 respectively, and therefore ψ(λ; x, t)
has the following uniformly convergent expansions:

(135) ψ(λ; x, t) = eφ̃(λ;x,t)

1 +

∞∑
n=1

χ∞n (x, t)λ−n


as λ→ ∞ and

(136) ψ(λ; x, t) = eφ̃(λ;x,t)
∞∑

n=0

χ0
n(x, t)λn

as λ→ 0.
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Remark 12. A standard application of the Riemann–Roch theorem tells us that the space
of functions satisfying all properties of the Baker–Akheizer function except we allow the
more general asymptotic behavior ψ(λ; x, t) = eφ̃(λ;x,t)O(1), λ→ ∞ is one dimensional [9].

Therefore the Baker–Akheizer 2-point function is unique. In fact, the Baker–Akheizer
function has the explicit formula
(137)

ψ(λ; x, t) = exp
(

1
2

∫ λ

∞

ω(1)x +
1
4

∫ λ

∞

ω(2)t
)
θ(A(λ) + Ω(1)x + Ω(2)t − A(P) −K; B)θ(−A(P) −K; B)
θ(A(λ) − A(P) −K; B)θ(Ω(1)x + Ω(2)t − A(P) −K; B)

,

where θ(z; B) is the Riemann theta function

(138) θ(z, B) =
∑
n∈Zg

exp
(

1
2

n · Bn + n · z
)
.

Remark 13. This representation of the Kaup–Broer system spectral curve is different than
that of Matveev–Yavor [16]. The spectral curve Σ is isomorphic to a spectral curve of the
form considered by Matveev–Yavor. Let us consider the projective curve ΣMY defined by

(139) r2 = P2g+2(k), P2g+2(k) = (k2 − 1)
g∏̀

n=1

(k − ηn)
gr∏

n=1

(k + ξn) = P2g+2(k).

The mapping

(140) h(λ) = (k(λ), r(λ)), k(λ) =
λ + λ−1

2
, r = sgn ◦ log(|λ|)

√
P2g+2 (k(λ))

maps Σ bijectively onto ΣMY . Therefore, ΣMY and Σ are isomorphic. If π is the projection
π(k, r) = k then π(h(µn)) ∈ [η2n−1, η2n] and π(h(µg`+n)) ∈ [−ξ2n,−ξ2n−1]. Therefore, our
spectral data satisfied the reality and regularity conditions determined by Smirnov [25].

Recall that L̃ and M̃ were defined in remark 8. We set the potentials in L̃ and M̃ accord-
ing to the (60) except we use coefficients from (135,136) and the u and v derivatives reduce
to x derivatives. The functions e−φ̃(λ;x,t)L̃ψ(λ) and e−φ̃(λ;x,t)M̃ψ(λ) are regular at 0 and satisfy
the asymptotic conditions e−φ̃(λ;x,t)L̃ψ(λ)→ 0 and e−φ̃(λ;x,t)M̃ψ(λ)→ 0, λ→ ∞. Moreover,
it can be verified that L̃ψ(λ) and M̃ψ(λ) satisfy all the properties of the Baker–Akheizer
function except we allow the more general asymptotic behavior ψ(λ; x, t) = eφ̃(λ;x,t)O(1),
λ → ∞. This means L̃ψ = 0 and M̃ψ = 0 by remark 12. Remark 8 then leads to the
following proposition:

Proposition 14. We can construct solutions to the Kaup–Broer system using asymptotic
expansion (135,136) by taking

(141) ϕ(x, t) = − log
(
χ0

0(x, t)
)
, η(x, t) = −

1
2
ϕxx(x, t) − (χ0

0)x(x, t).

This argument is analogous to the corresponding argument justifying the ∂̄ dressing
method.

Remark 15. The g values ηn, ξn determining Σ and the degree g divisor P on Σ constitute
the spectral data for the finite gap solutions. The positive spectral data corresponds to a
left moving finite gap KdV scattering problem, and the negative spectral data corresponds
to a right moving finite gap KdV scattering problem.
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Let us introduce an auxiliary Baker–Akheizer function ψ(aux)(λ) set by the zero divisor
P and pole divisor P0 consisting of a direct sum of the points

〈
η2 j−1

〉
and

〈
−ξ2 j−1

〉
. This

function is given by

(142) ψ(λ; x, t) = exp

 g∑
n=1

∫ λ

∞

ω(n)tn

 θ(A(λ) − A(P0) −K; B)θ(−A(P) −K; B)
θ(A(λ) − A(P) −K; B)θ(−A(P0) −K; B)

where the coefficient t j are determined by solving

(143) Ωt ≡ A(P) − A(P0)

where Ω is the matrix with entries Ω jn = Ω
(n)
j , and ≡ is equivalence within the Jacobi

variety.
This construction is analogous to the analogous construction used by Trogdon and De-

coninck in studying the KdV equation. The construction of Trodon and Deconinck was
used in [24] to compute finite gap primitive solutions to the KdV equation.

Proposition 16. The matrix Ω is invertible and the solution t has real entries tn.

Proof. The proof of this theorem is similar to the analogous proof for the KdV equation
given in [24]. The proof of invertibility is based off arguments presented in [10].

Let ε < min{η1, ξ1, η
−1
2g`
, ξ−1

2gr
}. Let C0 be the circle of radius ε centered at 0 oriented

counterclockwise, and let C∞ be the circle of radius ε−1 cantered at 0 oriented clockwise.
Let D0 be the disc with boundary C0 containing 0, and let D∞ be the disc with boundary
C∞ containing ∞. Inversion maps C0 into C∞ and vise versa. Let us choose the a j, b j so
that they avoid D0 and D∞, and let λ0 be a point on Σ that is in neither D0 nor D∞ and
avoid a j, b j. Using stokes theorem and the fact primitives of abelian differentials are single
valued on Σ \

⋃
j a j ∪ b j, we can compute [10]

(144) 0 =

"
Σ

αm ∧ ω
(n) =

g∑
j=1

∫
a j

αm

∫
b j

ω(n) −

∫
C0

(∫ λ

λ0

αm

)
ω(n) −

∫
C∞

(∫ λ

λ0

αm

)
ω(n),

or equivalently

(145) Ω jn =

g∑
j=1

A−1
jmDmn

where

(146) Am j =

∫
a j

αm, Dmn =

∫
C0

(∫ λ

λ0

αm

)
ω(n) +

∫
C∞

(∫ λ

λ0

αm

)
ω(n).

It is well known that a matrix of a-periods of any basis of abelian differentials of the first
kind on a Riemann surface is invertible, therefore if Dmn is invertible then Ω jn is invertible.

The first integral appearing in Dmn can be computed using the calculus of residues as∫
C̃0

(∫ λ

λ0

αm

)
ω(n) =

∫
C0

∫ λ

λ0

λm−1
1 + λ

2g−m−1
1√

P4g(λ1)
dλ1

nλ−n−1√
P4g(λ)

dλ(147)

=
2πi

(n − 1)!
dn−1

dλn−1

λm−1 + λ2g−m−1√
P4g(λ)

∣∣∣∣∣∣∣
λ=0

(148)

where we only need to keep the singular part of ω(n) because the integral involving the
regular part is 0. We have made use of the fact that P4g(0) = 1. The second integral
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appearing in Dmn is seen to be equal to the first because it is represented in the z-plane as∫
C∞

(∫ λ

λ0

αm

)
ω(n) = −

∫
C0

∫ z−1

P0

λn−1
1 + λ

2g−n−1
1√

P4g(λ1)
dλ1

nz−n−1√
P4g(z)

dz(149)

=

∫
C0

∫ z

P0

zn−1
1 + z2g−n−1

1√
P4g(z1)

dz1
nz−n−1√

P4g(z)
dz.(150)

Therefore,

(151) Dmn =
4πi

(n − 1)!
dn−1

dλn−1

λm−1 + λ2g−m−1√
P4g(λ)

∣∣∣∣∣∣∣
λ=0

.

We see that Dmn = 0 for n < m, Dnn = 4πi/(n − 1)! for n = 1, 2, . . . , g − 1 and Dgg =

8πi/(g − 1). The matrix Dmn is invertible because it is triangular with nonzero entries on
the diagonal.

We will prove that tn are real by choosing a canonical homology basis a j and b j so that
Ω is real, and choosing contours for the Abel map so that A(P) − A(P0) is real.

Let b1 be the contour traversing [η−1
1 , η1] oriented from right to left. Let bn for n =

2, 3, . . . , g` be the contour traversing [η2n−2, η2n] and then traversing [η−1
2n , η

−1
2n−2] oriented

from right to left (while this is disjoint in the λ plane, it is a single connected loop on
the Riemann surface Σ). Let bg`+1 be the contours traversing [−ξ1,−ξ

−1
1 ] oriented from

right to left. Let bg`+n for n = 2, 3, . . . , gr be the contour traversing [−ξ2n−1,−ξ2n−2] and
then traversing [−ξ−1

2n−2,−ξ
−1
2n−1] oriented from right to left. Let an for n = 1, 2, . . . , g` be

the contour looping once [η−1
2g`
, η−1

2n−1] counterclockwise that can be deformed down to this
interval. Let ag`+n for n = 1, 2, . . . , gr be the contour looping once around [−ξ2gr ,−ξ2n−1]
counter clockwise that can be deformed down to this interval.

The integral of α j around ai can be written as integrals on the bottom and top of branch
cuts of

√
P4g(λ) on which

√
P4g(λ) is purely imaginary. This means that

∫
ai
α j are purely

imaginary because α j are purely imaginary on the top and bottom of the branch cuts.
Therefore, the coefficients for expanding the normalized differentials ω j in terms of αn are
purely real. The function

√
P4g(λ) is purely real on bi so ω(n) is purely real on bi. Therefore

the entires
∫

bi
ω(n) of Ω are purely real.

We can write

(152) A j(P) − A j(P0) =

g∑̀
n=1

∫ Pn

〈η2n−1〉

ω j +

gr∑
m=1

∫ Pg`+m

〈−ξ2m−1〉

ω j.

We can choose the contour from 〈η2n−1〉 to Pn so that it stays in [η−1
1 , η1] for n = 1 or

[η−1
2n−1, η

−1
2n−2]∪ [η2n−2, η2n−1] for n = 2, 3, . . . , g`. We can choose the contour from 〈−ξ2m−1〉

to Pg`+m so that it stays in [−ξ1,−ξ
−1
1 for m = 1 or [−ξ2m−1,−ξ2m−2] ∪ [−ξ−1

2m−2,−ξ
−1
2m−1] for

m = 2, 3, . . . , gr. The differentials α j are real on these intervals which means ω j are real on
these intervals too. Therefore, A(P) − A(P0) is real for this choice of contours. �

We define the function

(153) χ(λ; x, t) = ξ(λ)e−φ̃(λ;x,t)−φ(aux)(λ)ψ(aux)(λ; x, t)ψ(λ; x, t)

where

(154) ξ(λ) =

g∏̀
n=1

4
√
λ − η2n−1

4
√
λ − η−1

2n−1

4
√
λ − η2n

4
√
λ − η−1

2n

gr∏
n=1

4
√
λ + ξ2n−1

4
√
λ + ξ−1

2n−1

4
√
λ + ξ2n

4
√
λ + ξ−1

2n
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where we choose ξ to have branch cuts on Γ̃ and asymptotic behaviors ξ = 1 + O(λ−1) as
λ→ ∞.

Theorem 17. The vector valued function χ(λ; x, t) = [χ(λ; x, t), χ(λ−1; x, t)] solves Riemann–
Hilbert problem 10 with R1(s) = e1(s) f1(s) where

(155) e1(s) = exp

−2
g∑

n=1

tn(sn − s−n)


(156) f1(s) =

g∑̀
n=1

(
1[η2n−1,η2n](s) − 1[η−1

2n ,η
−1
2n−1](s)

)
+

gr∑
m=1

(
1[−ξ−1

2m−1,−ξ
−1
2m](s) − 1[−ξ2m,−ξ2m−1](s)

)
.

These finite gap solutions can alternatively be computed from R1(s) by solving (104) for
f (s, x, t) and then computing a solution to the Kaup–Broer system from f (s, x, t) using
(106).

Proof. The proof of this theorem is a straight forward verification of the properties of the
Riemann–Hilbert problem. The steps differ only minimally from the proof of the analogous
result for the KdV equation appearing in [18]. We will verify conditions (3) and (4). The
proofs of the other conditions are straight forward, and we leave their verification to the
reader.

We will say a singularity has order −p we mean it locally behaves like z−p. The poles
of ψ̃(λ) on Σ at 〈η2n−1〉 and 〈−ξ2m−1〉 manifest themselves in the λ plane as order − 1

2 singu-
larities at η2n−1, η

−1
2n−1 and −ξ2m−1,−ξ

−1
2m−1. This means that χ has order − 1

4 singularities on
the endpoints of Γ̃. These are less severe than poles verifying condition (3).

Let us write ψ̃(s) = ψ(aux)(s)ψ(s; x, t), which is a meromorphic function on Σ \ {0,∞}.
Its representation in the λ plane therefore satisfy the nonlocal jump relations

(157) ψ̃+(s) = ψ̃+(s−1), ψ̃−(s) = ψ̃−(s−1)

for s ∈ Γ̃. The function ξ satisfies the nonlocal jump relations

(158) ξ+(s) = −iξ+(s−1), ξ−(s) = −iξ−(s−1)

for s ∈ [−ξ−1
2m−1,−ξ

−1
2m] or s ∈ [η2n−1, η2n]. Let ẽ(s) = e−φ̃(s)−φ(aux)(s), then ẽ(s) satisfies

ẽ(s) = e−2φ̃(s)−2φ(aux)(s)ẽ(s−1) for all s, and in particular for s ∈ Γ̃. Putting these nonlocal
jump relations together gives the nonlocal jump conditions
(159)

χ+(s; x, t) = −ie−2φ̃(s;x,t)R1(s)χ+(s−1; x, t), χ−(s−1; x, t) = ie2φ̃(s;x,t)R1(s−1)χ−(s; x, t)

for s ∈ Γ̃, where we use R1(s) = e1(s) f1(s). Using χ+(s; x, t) = [χ+(s; x, t), χ−(s−1; x, t)]
and χ−(s) = [χ−(s; x, t), χ+(s−1; x, t)] we see that χ+(s; x, t) = χ−(s; x, t)V(s; x, t) where

(160) V(s; x, t) =

(
0 iR1(s)e2φ̃(s;x,t)

−iR1(s)e−2φ̃(s;x,t) 0

)
.

Using the fact that R1(s−1) = −R1(s)−1 for the choice of dressing function R1(s) = e1(s) f1(s),
we see the jump matrix V(s; x, t) is equal to the jump matrix given by (110). �

6. Numerical Primitive Solutions

In this section we compute numerical primitive solutions to the Kaup–Broer system
determined by the continuum spectral data with γ1 = 9

8 , γ2 = 2 using various functions
R0(s) satisfying property (I). These particular solutions appear to describe counter propa-
gating dispersive shockwaves with space time regions that appear to be described by finite
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gap solutions with various numbers of periods. We believe that these solutions are lo-
cally described by the finite-gap solutions discussed in the previous section. In producing
solutions to the Kaup–Broer system in this section we will make use of the invariance
of the Kaup–Broer system with respect to the time reversal symmetry η(x, t) → η(x,−t),
ϕ(x, t)→ −ϕ(x,−t).

6.1. Case 1: The case of

(161) R1(s) = πe−10
(
−1[

−
7
4 ,−

5
4

](s) + 1[
3
2 ,2

](s)
)

where if I is an interval then 1I(s) is the indicator function of the interval I. When nu-
merically solving (104) and numerically computing the integrals in (106) we use Gauss-
Legendre quadrature with 50 points on each interval [− 7

4 ,−
5
4 ] and [ 3

2 , 2]. The solutions
were computed on a uniform space time grid, and the x derivatives appearing in (106) were
computed spectrally with fast Fourier transforms. The matrix approximation of the integral
equation (104) has a large condition number in this case, and was solved in Mathematica
with 90 digits of precision. From the solutions η, ϕ produced by the numerical approxima-
tion to (106), we define the time reversed solution η1(x, t) = η(x,−t), ϕ1(x, t) = −ϕ(x,−t)
to the Kaup—Broer system. While this is a numerical approximation to (106), it can also
be interpreted as a 100-soliton solution (97).

Spacetime plots for the solutions η1 and ϕ1 are provided in figures 1 and 2, and spatial
plots of these solutions are provided in figures 3 and 4. At early times we see that the
η1 component of this solution approximates counter propagating dispersive shockwaves
with 1-period trailing waves. These dispersive shockwaves collide, and when the 1-period
trailing waves begin to interact we see what we believe to be described by a 2-period
solution to the Kaup–Broer system.

6.2. Case 2: We now consider the case of

(162) R1(s) = πe−10
(
−1[

−
15
8 ,−

13
8

](s) − 1[
−

6
4 ,−

5
4

](s) + 1[
11
8 ,

13
8

](s) + 1[
7
4 ,2

](s)
)
.

When numerically solving (104) and numerically computing the integrals in (106) we use
Gauss-Legendre quadrature with 25 points on each of the intervals [− 15

8 ,−
13
8 ], [− 6

8 ,−
5
4 ],

[ 11
8 ,

13
8 ] and [ 7

4 , 2]. The solutions were computed on a uniform space time grid, and the x
derivatives appearing in (106) were computed spectrally with fast Fourier transforms. The
matrix approximation of the integral equation (104) has a large condition number in this
case, and was solved in Mathematica with 90 digits of precision. From the solutions η, ϕ
produced by the numerical approximation to (106), we define the time reversed solution
η2(x, t) = η(x,−t), ϕ2(x, t) = −ϕ(x,−t). The solution η2, ϕ2 can be interpreted as a 100-
soliton solution to the Kaup–Broer system.

Spacetime plots for the solutions η2 and ϕ2 are provided in figures 5 and 6, and spatial
plots of these solutions are provided in figures 7 and 8. At early times we see that the η2
component of this solution approximates counter propagating dispersive shockwaves with
trailing waves that we believe to be described by 2-period solutions to the Kaup–Broer
system. When these solutions collide, we initially see what appears to be a region where
counter propagating modulated 1-period solutions are interacting. We then see regions with
modulated 1-period solutions interacting with the 2-period trailing waves in a region where
we believe the solutions can be described by modulated 3-period solutions to the Kaup–
Broer system. There also appear to be space time regions where the 2-period trailing waves
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are interacting in what we believe to be described by a 4-period solution to the Kaup–Broer
system.

6.3. Case 3: The case of
(163)

R1(s) = πe−10
(
−1[

−2,− 15
8

](s) − 1[
−

7
4 ,−

13
8

](s) − 1[
−

11
8 ,−

5
4

](s) + 1[
11
8 ,

13
8

](s) + 1[
7
4 ,2

](s)
)
.

When numerically solving (104) and numerically computing the integrals in (106) we use
Gauss-Legendre quadrature with 30 points on each of the intervals [−2,− 15

8 ], [− 7
4 ,−

13
8 ],

[− 11
8 ,−

5
4 ], [ 11

8 ,
13
8 ] and [ 7

4 , 2]. The solutions were computed on a uniform space time grid,
and the x derivatives appearing in (106) were computed spectrally with fast Fourier trans-
forms. The matrix approximation of the integral equation (104) has a large condition num-
ber in this case, and was solved in Mathematica with 100 digits of precision. From the so-
lutions η, ϕ produced by the numerical approximation to (106), we define the time reversed
solution η3(x, t) = η(x,−t), ϕ3(x, t) = −ϕ(x,−t). The solution η3, ϕ3 can be interpreted as a
150-soliton solution to the Kaup–Broer system.

Spacetime plots for the solutions η3 and ϕ3 are provided in figures 9 and 10, and spatial
plots of these solutions are provided in figures 11 and 12. This solution has a fairly com-
plicated structure. We believe this solution has regions described by modulated g-period
solutions to the Kaup–Broer with g ranging from 0 thru 5 (g = 0 corresponding to constant
solutions).
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Figure 1. A spacetime plot for the field η1 for the 100-soliton case 1
solution to the Kaup–Broer system.

Figure 2. A spacetime plot for the field ϕ1 for the case 1 solution to the
Kaup–Broer system.
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Figure 3. Spatial plots for the field η1 for the case 1 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.

Figure 4. Spatial plots for the field ϕ1 for the case 1 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.
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Figure 5. A spacetime plot for the field η2 for the case 2 solution to the
Kaup–Broer system.

Figure 6. A spacetime plot for the field ϕ2 for the case 2 solution to the
Kaup–Broer system.
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Figure 7. Spatial plots for the field η2 for the case 2 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.

Figure 8. Spatial plots for the field ϕ2 for the case 2 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.
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Figure 9. A spacetime plot for the field η3 for the case 3 solution to the
Kaup–Broer system.

Figure 10. A spacetime plot for the field ϕ3 for the case 3 solution to the
Kaup–Broer system.
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Figure 11. Spatial plots for the field η3 for the case 3 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.

Figure 12. Spatial plots for the field ϕ3 for the case 3 solution to the
Kaup–Broer systems plotted at times t = 0, t = 25 and t = 50.
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7. Conclusion

In this paper we derived the ∂̄ dressing method for the 4 cases of the Kaup–Broer system
as dimension reductions of the complete complexification of a completely integrable 2+1
dimension generalization of the Kaup–Broer system. We then applied the dressing method
to compute examples of interesting solutions to the most common scaling of the Kaup–
Broer system describing non-capillary waves with normal gravitation forcing. However,
this method also provides a starting place for the computation of many other solutions. A
logical next step is the computations of exact real solutions to the other canonical scalings
of the Kaup–Broer system. We have also barely touched on exact solutions to the 2+1
dimensional generalization of the Kaup–Broer system, this gives much room for further
research. In particular, the solutions briefly discussed in subsection 3.1 should be analyzed
with more detail. In section 6 we made some conjectures on the structure of some nu-
merical solutions related to the finite gap g-period solutions of Matveev and Yavor [16].
We believe that an approach similar to that Girotti, Grava and McLaughlin [12] can be
applied to the Riemann–Hilbert problem discussed in section 4 of this paper. The isomor-
phism of the Kaup–Broer system with a complexified NLS equation [16] means that the
construction of NLS primitive solutions should be similar. Finally, as mentioned in the
introduction, this method should be well suited to analysis of soliton gasses consisting of
many counter propagating solitons. These topics will be discussed in future papers.
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