Нелинейные волновые процессы

ИТФ им. Л.Д.Ландау РАН НИУ ВШЭ

Метод Рунге-Кутты

Пусть дано дифференциальное уравнение первого порядка

$$\dot{y}(t) = F(y(t))$$

с начальным условием $t=t_0$, $y(t_0)=y_0$ В окрестности точки t_0 функцию y(t) разложим в ряд Тейлора:

$$y(t) = y_0 + (t - t_0)\dot{y}(t_0) + \frac{(t - t_0)^2}{2}\ddot{y}(t_0) + \dots$$

Этот ряд используем для приближенного вычисления функции y(t). Для увеличения аппроксимации необходимо учитывать большее количество членов ряда. Однако при этом возникает необходимость аппроксимации производных от правых частей дифференциального уравнения.

Метод Рунге-Кутты 2 порядка

$$\dot{y}(t) = F(y(t))$$
 $t = t_0, y(t_0) = y_0$

$$y(t) = y_0 + (t - t_0)\dot{y}(t_0) + \frac{(t - t_0)^2}{2}\ddot{y}(t_0) + \dots$$

Основная идея метода Рунге-Кутты состоит в том, что производные $\dot{y}(t_0)$, $\ddot{y}(t_0)$ и т.д. аппроксимируются через значения функции F(y) в точках на интервале $[t_0, t_0 + \tau]$.

А эти точки выбираются из условия наибольшей близости алгоритма к ряду Тейлора. В зависимости от старшей степени au, с которой учитываются члены ряда, получаются вычислительные схемы Рунге-Кутты разных порядков точности.

Метод Рунге-Кутты 2 порядка

$$\dot{y}(t) = F(y(t)) \qquad t = t_0, y(t_0) = y_0$$

$$y(t_0 + \tau) = y_0 + \tau \dot{y}(t_0) + \frac{\tau^2}{2} \ddot{y}(t_0) + \dots$$

$$y(t_0 + \tau) = y_0 + \tau \dot{y}(t_0) + \frac{\tau^2}{2} \frac{\partial F}{\partial y} \dot{y}(t_0) + \dots$$

или

$$\dot{y}(t) = F(y(t))$$
 \Rightarrow $\ddot{y} = \frac{\partial F}{\partial y}\dot{y}$

Избавимся от

$$\frac{\partial F}{\partial y}\dot{y}(t_0)$$

Метод Рунге-Кутты 2 порядка

$$y(t_0 + \tau) = y_0 + \tau \dot{y}(t_0) + \frac{\tau^2}{2} \frac{\partial F}{\partial y} \dot{y}(t_0) + \dots$$

Вычислим

$$\frac{\partial F}{\partial y}\dot{y}(t_0)$$

$$y(t_0) \to y_n \qquad y(t_0 + \tau) \to y_{n+1}$$

$$F(\underline{y_n + \tau \dot{y}_n}) = F(y_n) + \tau \frac{\partial F}{\partial y}\dot{y}_n$$

Стало быть

$$\tau \frac{\partial F}{\partial y} \dot{y}_n = F(\underline{y_n} + \tau \dot{y}_n) - F(y_n)$$

Или

$$y_{n+1} = y_n + \frac{\tau}{2} [F(y_n) + F(\underline{y_n + \tau F(y_n)})]$$

Чтобы получить 2 порядок по τ , F(y) нужно вычислить в двух точках: $F(y_n)$ и $F(y_n + \tau F(y_n))$:

Метод Рунге-Кутты 4 порядка

Чтобы получить 4 порядок по τ , F(y) нужно вычислить в четырех точках:

$$k_{1} = F(y_{n})$$

$$k_{2} = F(y_{n} + \frac{\tau}{2}k_{1})$$

$$k_{3} = F(y_{n} + \frac{\tau}{2}k_{2})$$

$$k_{4} = F(y_{n} + \tau k_{3})$$

$$y_{n+1} = y_{n} + \frac{\tau}{6}[k_{1} + 2k_{2} + 2k_{3} + k_{4}]$$

Ошибка - $\mathcal{O}(au^5)$

Дискретное преобразование Фурье

Преобразование Фурье для периодической функции

$$f_n = rac{1}{L} \int_0^L f(x) \exp(-ik_n x) dx, \qquad f(x) = \sum_{n=-\infty}^{\infty} f_n \exp(+ik_n x)$$
 $k_n = rac{2\pi n}{L} \qquad n \in (-\infty, \infty)$

f(0) = f(L)

$$[0,L] \Rightarrow$$
 $Ha сетке:$ $h=rac{L}{N}$ $x_m=mh,$ $\exp(-ik_nx_m) \Rightarrow$ $\exp(-irac{2\pi n}{L}mh)=\exp(-irac{2\pi nm}{N})$

Дискретное преобразование Фурье

$$\exp(-ik_{n}x_{m}) = \exp(-i\frac{2\pi nm}{N})$$

$$f(x_{m}) \Rightarrow f_{m} \qquad k_{n} = \frac{2\pi n}{L} \quad n \in (-N/2 + 1, N/2)$$

$$f_{n} = \frac{1}{N} \sum_{m=0}^{N-1} f_{m} \exp(-i\frac{2\pi nm}{N}), \qquad f_{m} = \sum_{n=-N/2+1}^{N/2} f_{n} \exp(i\frac{2\pi nm}{N})$$

$$f_{m} = \sum_{n=-N/2+1}^{N/2} \left[\frac{1}{N} \sum_{m'=0}^{N-1} f_{m'} \exp(-i\frac{2\pi nm'}{N}) \right] \exp(i\frac{2\pi nm}{N}) =$$

$$= \frac{1}{N} \sum_{m'=0}^{N-1} f_{m'} \left[\sum_{n=-N/2+1}^{N/2} \exp(-i\frac{2\pi n(m'-m)}{N}) \right] =$$

$$= \frac{1}{N} \sum_{m'=0}^{N-1} f_{m'} N\delta_{m', m} = f_{m}$$

Дискретное преобразование Фурье. Смешение частот.

Количество Фурье-гармоник = N, Количество точек сетки = N

В нелинейных уравнениях произведение функций - типичная ситуация.

Рассмотрим произведение двух сеточных функций:

$$f_m g_m = \sum_{n=-N/2+1}^{N/2} f_n \exp(i\frac{2\pi nm}{N}) \times \sum_{n'=-N/2+1}^{N/2} g'_n \exp(i\frac{2\pi n'm}{N})$$

$$f_m g_m = f_n g_{n'} \exp(i\frac{2\pi(n+n')m}{N})$$

Что будет, если n+n'>N/2 или n+n'<-N/2+1?

$$n + n' > N/2$$
 $\tilde{n} = n + n' - N$

Aliasing

$$f_m g_m = f_n g_{n'} \exp(i\frac{2\pi \tilde{n}m}{N})$$

Дискретное преобразование Фурье. Смешение частот.

Каким образом можно уменьшить влияние aliasing?

Увеличением числа точек на сетке, куда "складываюся неправильные частоты"

Дискретное преобразование Фурье. Вычисление производных.

Для непрерывных функций производную f' можно вычислить так:

$$f(x) \rightarrow f_n \rightarrow ik_n * f_n \rightarrow f'(x).$$

Точно также, с использованием ДПФ вычисляется и производная на сетке:

$$f_m \xrightarrow{DFT} f_n \rightarrow ik_n * f_n \xrightarrow{IDFT} f'_m.$$

Преобразование Гильберта:

$$f_m \xrightarrow{DFT} f_n \rightarrow i sign(k_n) * f_n \xrightarrow{IDFT} \hat{H}(f_m).$$

Производная порядка р:

$$f_m \xrightarrow{DFT} f_n \rightarrow (ik_n)^p * f_n \xrightarrow{IDFT} f_m^{(p)}.$$