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Integrability of Nonlinear Systems
and Perturbation Theory

V.E. Zakharov and E.I. Schulman

1. Introduction

The theory of so-called integrable Hamiltonian wave systems arose as a result of
the inverse scattering method discovery by Gardner, Green, Kruskal and Miura
[1] for the Korteveg—de Vries equation. This discovery was initiated by the
pioneering numerical experiment by Kruskal and Zabusky [2]. After a pragmatic
phase, which was devoted to finding new soliton equations, the theory became
rather complicated. One of its branches may be called the “qualitative theory of
infinite-dimensional Hamiltonian systems”, to which the results reviewed in this
paper belong. We consider only Hamiltonian systems possessing Hamiltonians
with a quadratic part which may be transformed in normal variables to the form

N
Ho=3 / wiMaPa D dk . (1.1.1)

a=1

Here, ai") are normal coordinates of the a-th linear mode (usually simply

expressed through Fourier components of physical fields): k& = (ky, ... , kg) is the
wave vector; d is the dimension of space; and w;:’) is the dispersion law of the
a-th mode. Corresponding Hamiltonian systems, i.e., those having Hamiltonians
of the form

H=Ho+Hp , (1.12)

are called “Hamiltonian wave systems”. The majority of nonlinear wave theory
problems may be mapped into this class. The crucial property of systems (1.1.2)
is that they make a weak nonlinear approximation possible. Our approach is based
on treating Hiy as a perturbation; besides, we assume that Hj, is an analytic
functional of the fields ag"’). This is not very limiting since it is usually true at
the weak nonlinear approximation,

The qualitative theory of infinite-dimensional Hamiltonian systems now being
developed stems from the qualitative theory of ordinary differential equations;
all existing methods can somehow be linked with this theory. The approach
used in the papers by Newell, Tabor and by Siggia, and Ercolani, presented in
this volume, actually originates from the analytic theory of ordinary differential
equations, while Makhailov, Sokolov and Shabat’s method can be traced to the
Sophus Lie symmetry theory. Our own work stems from Poincaré’s proof of
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the nonexistence of the invariants of motion, analytic in a small parameter, and
from Birkhoff’s results on the canonical transformations of Hamiltonians to the
normal form near the equilibrium. The main theorem in Sect. 2.2 is an infinite-
dimensional generalization of the well-known Poincaré theorem [3] which de-
termines the sufficient conditions for the nonexistence of an additional motion
invariant; the theorem in Sect. 2.6 should be considered as a theorem which in
analogy with Birkhoff’s result determines the conditions for a Hamiltonian wave
system to be reducible to the form of the Birkhoff’s infinite-dimensional inte-
grable chain. In the infinite-dimensional case a new notion arises, which is absent
in the finite-dimensional case: the degenerative dispersion laws.

The Painlevé test method is based on the study of solution singularities and
works effectively both in one-dimensional and in multidimensional cases, It may
be used to determine whether a given equation is solvable exactly. If the equation
satisfies the test, a Lax representation may be found for it. The “Lie-Biicklund
symmetry approach” is used for one-dimensional systems with functional free-
dom: it permits conclusions about the existence or absence of additional local
motion invariants and symmetries, thus making possible a choice of “good”
equations among those of a given functional form. This method is, however,
inappropriate for finding L-A pairs.

Our approach does not permit functional arbitrariness in an equation but
effectively proves the nonexistence of additional motion invariants analytic in
ai") independent of its locality or nonlocality and the dimensionality. For reasons
which will be explained below, this method is often simpler in multidimensional
spaces.

An approach based on perturbation theory has another important advantage.
It concerns the definition of the content of the concept “integrable equations™, It
leads to a natural subdivision into two classes of all systems of the form (1.1.2)
with additional integrals: i) exactly solvable but not integrable in Liouville’s sense
and ii) exactly solvable and completely integrable. For example, the Kadomtsev-
Petviashvili (KP) equation

(ue + 6uUs +Uzzz), = 307Uy, (1.1.3)

with a? = 1, belongs to the first class, while this equation with o? = —1 and the
well-known Davey-Stewartson equation (DS),

i + 0y, — W, + ST =0

2 & (1.1.4)
L. +¢Wl = ('a? h ’é'y_i) lsplz )

belong to the second class [4-7].

This method of classification, properties of the equations from the first and
the second classes, interrelations between solvability (existence of commutation
representation and infinite number of conservation laws) and complete integra-
bility (introduction of virtual action-angle variables which do not disappear at
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periodic boundary conditions) are considered in Sect. 2.6 for the general case of
periodic boundary conditions. ,

Besides the above-mentioned direct methods, other approaches may be ef-
fectively applied in some cases: the Walquist-Estabrooq method of finding L-A
pairs, the method of searching for alternative commutation representation (when
a linear operator defining time dynamics arises as the Gateux derivative of the
original equation; see Chen, Lie, Lin [8]), etc.

Our paper is organized as follows: Chap. 2 is self-contained; it is devoted to
the description of the general theory in the case of zero boundary conditions at
infinity with the exception of Sect.2.6, in which periodic boundary conditions
are explored. Chapter 3 contains some information about the physics giving rise
to various universal, exactly solvable equations (Sect.3.1) and their properties
from the viewpoint of the general theory (Sects. 3.2, 3); it also offers examples
of verification of the integrability of some particular systems (Sects. 3.4, 5). The
appendices contain proofs of the most important theorems.

2. General Theory

2.1 The Formal Classical Scattering Matrix in the Solitonless Sector of
Rapidly Decreasing Initial Conditions [6)

Consider a homogeneous medium of d dimensions, where the waves of N types
can propagate, and their dispersion laws are wi"), a=1,...,N. The Hamiltonian
of such a medium can be represented in the form (1.2) (see Sect.3.1), with Hp
of the form (1.1.1) and Hj, practically always being the functional series in
the complex normal coordinates a(,:'), a,':("), a=1,...,N. The a{*) indicate the
wave amplitudes for corresponding linear modes with wave vector k. Amplitudes

a{® obey the equations

. 6 Hi
16 = w@al® + E—_(E:-) . _ @2.1.1)
k

In analogy with the quantum scattering theory, let us consider the system
with interaction, adiabatically decreasing as ¢ — Foco:
H = Ho + Hige™ !l . (2.1.2)

For the system (2.1.1), the global solvability theorem may not be fulfilled,
and asymptotic states may not exist as ¢ — t-co. However, for the system with
the Hamiltonian (2.1.2) at finite and sufficiently small ag, they do exist, i.e., the
solution of (2.1.1) turns asymptotically into the solution of the linear equation:

a(t) — [af,"’(t)]i = [b';“’]*e-‘wi"". (2.13)
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Furthermore, asymptotic states may contain solitons, which certainly cannot exist
at finite €. So our consideration should be restricted to the class of initial states
without solitons and with smooth C;". We shall call this class the solitonless
sector. Although our consideration is restricted to a special class of initial states,
the result will be very useful because the structure obtained for the formal series
for the S-matrix provides us with the structure of motion invariants (Sect. 2.5).

Functions C{** are not independent; there is a nonlinear operator S¢[C~],
transforming them into each other. To study this operator we go as usual to the
interaction representation:

aio)"(t) - bia)"(t)c_hw:‘)t ) (2.1.4)

Here, s = +1, a}(t) = ax(?), a; ' (t) = a}(t). The motion equations now take the
form
6Him

o=l 2.15)

si(o)e _
siby™* =

In (2.1.5), Hin is the interaction Hamiltonian expressed in the variables b.
Equation (2.1.5) is equivalent to an integral equation:

- s ! 6H,
Bove = folee] ™ _ 8 [ gy STim el 2.16
k [ k ] 2 —o0 lsbia)’_‘(h) ( )

Equation (2.1.6) gives a map Cﬁ“)" — bﬁ")"’(t) which may be written in the
form .

bﬁa),c = Sg")"(-—oo,t) [{C’:}] . 2.1.7)
Ast —» +oo in (2.1.7), one finds
e =58, [{cr)] 2.1.8)

where S = §()(— o0, c0).

At finite ¢ and sufficiently small a{”, operators ${*)(— oo, c0) and S may
be obtained in the form of a convergent series by iterations of (2.1.6). Let & — 0
now in each term of the series. As we shall see, the expression obtained is
finite in the sense of generalized functions. The series obtained for the operator
5 (—co,t) as ¢ — 0 will be called the classical transition matrix. We shall
refer to the corresponding series for S as the formal classical scattering matrix.
Let us designate

5 —00,t) = lim ${7)(~co,?) 2.19)
S = lin}) 5 (—c0,00) ,
&~

where the limits are to be understood in the above-mentioned sense.
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Before proceeding, let us introduce a more convenient notation. For the func-
tion Hﬁ'ﬂ’. Y Eon we will write simply IT4y,.. +n. Moreover, we will deisgnate

Ou,. anbGEski £ ... £ 3,Kn) =M, 2n
and
i, 206 (5100, £ .. £ 8qwk, ) = a1, 4n -

This notation reduces the length of the formulae and makes their structure visible.
In addition we will use the special notation

Eqy,. gn=tsiwp, £ ... £ spwi,

(2.1.10)
Py, an=xs1ki £ ... s, kn

As ¢ — 0, the series for S.(—o0,t) and for S, are generally speaking diver-
gent and formal. Consider the structure of the classical scattering matrix in the
simplest case of a cubic interaction Hamiltonian Hi, and only one mode:

1
Humg ¥ [Vinieiatia;
88,82
X 6(sk+81k1 +32k2)dk dk]dkz . (2.1.11)
From the fact that the Hamiltonian is real, it follows that
Vi, =Vt 2.1.12)
Besides, coefficient functions V' possess an evident symmetry,
Vi = Vil =i, 2.1.13)
In the interaction representation, we have the integral equation

t
is (b3(t) — cb) =% Z/

dt) /dk]dkzvkz;’;‘,”(h)
838, YV —®

x B8 (110652 (82)8 (= sk — s1k1 + s2ks) 2.1.14)
Viein®) = Vil exp (iB 12 t —elt)) (2.1.15)
Bl = swi + 81wiy + Sk, © (2.1.16)

Equation (2.1.14) may be symbolically represented in graphical form:

1

s=mm==mg —mm —o oz (2.1.17)
Taa

where ===== indicates the two-component over the index s unknown

value b}, s = £1; —.—.— designates c; *; corresponds to the factor

exp{—iEg % .*}; O indicates V3211 6(—sk + s1 ky + sk,), and summation is
assumed over sy and sz. Using (2.1.17), certain graphical expressions (diagrams)
may be attributed to each term of the series arising when iterating (2.1.14). These
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graphical expressions are connected graphs, having no loops; they are, in other
words, “trees”.

Each graph consists of two types of elements: lines and vertices; the former
are subdivided into inner and external lines. One of the external lines is different
from the others (we shall call it a “root”); the other ones may be called “leaves”.
Each tree, corresponding to the n-th iteration, contains exactly n vertices and
n +2 leaves. Inner lines are usually called “branches”. They correspond to both
the external and internal lines, a certain value of wave vector k; and the index
s;. The “external” value of k and s corresponds to the root. Integration goes over
all k; except k; = k; the summation goes over all s; except 3i=s. To each leaf
with the wave vector k, and index s, corresponds a factor c,, ’,

The graph conespondmg to the N-th iteration contains N' integrations over
time variables #1, ... ,¢y. Each time variable ¢; in the diagram for the transition
matrix corresponds to its own branch. The external time ¢ corresponds to the root.
The presence of the root leads to partial ordering of the graph elements. From
each vertex in which three lines meet there is a unique path to the root. The line
leading to the root we shall designate as the exiting line. Let the corresponding
wave vector and index be ko and s,. The other two lines are entering. Let them
correspond to the wave vector kg, k., and indices sg, s.. It is important that both
entering lines correspond with one and the same time variable t4. Corresponding
to this vertex factor is

Vioksk, " €Xp [iEL 50 —eltql] §(=sako+spks+s ky) . (2.1.18)

Let us cut the graph across the line exiting from the vertex. Now that part of the
graph which is cut off from the root is to be integrated over the variable ty in
the limits —oo < ¢, < t,. In fact this method of ordering is equivalent to the
chronological ordenng usod in quantum field theory.

To conclude our description of the diagram technique let us note that the
set of digarams which correspond to the n-th iteration consists of all possible
trees containing n-vertices and fixed roots. In front of each diagram there is a
numerical factor i/p. The number p is equal to the number of the symmetry
group elements for the diagram under consideration, i.e. the number of rotations
at different vertices which leaves the diagram unchanged, identity transformation
included.

At finite ¢ > 0, the actual calculation of diagrams is a rather difficult task.
However, it becomes much simpler as ¢ — 0. We shall refer to integration
over the time variable ¢; closest to the root as outer integration; all the other
integrations will be called inner integrations. It is important that when integrating
over any inner variable t,, one may make the replacement

e—eltl _, eete | (2.1.19)

We shall not prove this statement here. The analogous statement has been proved
in the quantum field theory (see [10], for example). It is important to notice that
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using (2.1.19), all the integrations over inner times may be carried out explicitly,
greatly simplifying the diagram technique.

Consider an inner branch with the wave vector k, and the index s, such
that when cutting it, we may separate a tree having m leaves (m > 2) from the
root. Let these leaves have wave vectors k; and indices s;, i = 1, ... ,m. Let
the vertex, from which this tree grows, be entered from the other sides by lines
(branches or leaves) with the wave vectors and indices kg, k, and s4, s,. Then
the expression corresponding to this vertex is as follows (the line with k,, s, is
the exiting line):

Vk_l:’:rhs(—sqkq+3rkr+3pkp) y (2.1.20)

while the expression corresponding to the branch with the wave vector k, and
the index s, is

eXpiEy,t + met)  exp(iEn,t)

= = . 2.1.21
Cm = M = F, —ime) ~ (B — 10) 2.1.21)
Consider now the last (outer) integration over ¢,. We have
t
SNe(—o00,t) = WN/ exp [—s|t1|+iENtl] dty . (2.1.22)
—o0
Here,
Wy =Wy " 6(—sk+siki+ ... +snkn) (2.1.23)

is some expression which tends to the constant in the limit ¢ — 0. At finite ¢ we
have, from (2.1.22),

. WNeiE‘Nt
— - - o 2.1.24
SN( oo,t) }11-110 SN!( °°1t) I(EN — l0) ’ ( )
as t — +oo, we have
Sy = linL Sne(—00,00) =278(EN)WN . (2.1.25)
e

So the expressions for the Sy(—o0,t) and Sy have the singularity on a manifold
defined by the equations

Pny=—-sk+s1ky+... +sykny=0

(2.1.26)
En= —swp + S1wp, + ... + 8w, =0.
Equation (2.1.26), depending on the choice of the s, sy, ... , s, splits into a set
of relations:
kE+ki+...+kn=kpu+... +kpm (2.1.27)

Wi+ Wiyt F Wk, S Wk e T Wk

ntm *
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Equation (2.1.27) determines a manifold which we shall call the resonant mani-
fold '™*\™, We designate the corresponding entity Wy via

n+l,m _ n+l,m
Wk,h,... a1y kngpm w :

It is important to notice that Wy is regular on the manifold (2.1.27) in the
points of a general position. However it has singularities on the submanifolds of
lower dimension on which at least one of the entities E,, becomes zero, which
corresponds to one of the inner lines of any diagram constituting the W™, As
can be seen from (2.1.21), these singularities may be of two types, in agreement
with the two terms in (2.1.21). The first item in (2.1.21) is distributed over all
of I'™*\™_ while the second one is localized on a manifold (to be more precise,
on a set of manifolds):

—8pWk, + S1Wk, + ... + SmWk,, =0 (2.1.28)

—-s,,kp+31k1+ oo+ 8k =0.

Manifolds (2.1.28) may be considered the youngest resonant manifolds in com-
parison with (2.1.27). Equations (2.1.28) together with (2.1.27) determine a set
of submanifolds of I'""*!'™ having the codimension unity. The division of two
items in (2.1.21) has a certain physical meaning. One may say that the first
item describes processes which go via virtual waves while the second item de-
scribes processes going via real intermediate particles. The elements of a classical
S-matrix with interactions going via real waves may be called singular. They
decompose on the singularity powers, depending on the number of inner lines in
which the Green function G,, denominator becomes zero and on the correspon-
dent codimension of the younger resonant manifold. For any concrete dispersion
law there is an element of the scattering matrix possessing maximal singularity.

Let us now set some additional symmetry property of the amplitudes of the
classical scattering matrix, i.e., let us consider the equation

6 Hinte

isag = weap + —=,
Sa,

(2.1.29)
where Hin« may be obtained from Hiy in (1.1.2) by the substitution of com-
plex conjugated Hamiltonian coefficients, for example, into (2.1.6): Vieres =
Virk, '~ . As before, we shall assume the interaction to be the adiabatically
switched on and off. Then as ¢ — oo, the solutions of (2.1.29) and of (1.1.2)
as well will degenerate into those of the linear equation.

Let us consider the solution of (2.1.29), which becomes Ct exp(—iw,t) as
1 —00:

a — Ce™ = Cpteiunt

As in (1.1.2), (2.1.29) possesses a classical scattering matrix, C}, = S.[C,].
One should note here that (2.1.29) is derived from (1.1.2) by complex conjugation
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and change of the time sign. So, on account of the unique solution of the Cauchy
problem for (1.1.2) and also for (2.1.29), S.[Cy*]=C;™.
Substituting the definition of the classical scattering matrix (2.1.8), we get

S [s* el =ct . (2.1.30)

Identity (2.1.30) is analogous to the unitarity condition for the scattering matrix
in quantum mechanics.

Nonlinear operator S, can be easily calculated. It coincides with the operator
S, where the Hamiltonian coefficient function V is substituted for the complex
conjugated in each vertex of a diagram. It is convenient for us to introduce
operator R by the following formula:

S=1+R. (2.1.31)
Then from (2.1.30) we obtain the following condition for R :

R.[C;7]+R* [C7]+R. [R*[C[]] =0. (2.1.32)
One may also simply verify that
ot = = Wi (2.1.33)

It follows from (2.1.33) in particular that the amplitude W, » is asymmetric
relative to the permutation of the m-indices, so that the diagram root does not
really occur as a marked line. From physical considerations it is clear that the
classical scattering matrix we have constructed coincides with the quantum one,
were radiation corrections are not taken into account, and only diagrams of the
“tree type” are retained.

Formulae for the case of many modes can be obtained from those above
by ascribing mode numbers o, a = 1, ... , N, to the field variables, coefficient
functions V' of the Hamiltonian and other objects. We will do so in what follows
without further explanation.

2.2 Infinite-Dimensional Generalization of Poincaré’s Theorem. Definition
of Degenerative Dispersion Laws [4, 5, 6]

The classical scattering matrix introduced in Sect.2.1 may be used to under-
stand what restrictions should be imposed on the Hamiltonian system in order
for additional motion invariants to exist. Indeed, let the system (2.1.1) have a
Hamiltonian

1 > s
Hi=g 3 / Voo x@en g, o) 0o dky dikadks @2.1)

) 8)82383

The cubic term in
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Ma)=To+...= S £ | P dk + ... 222
o
is

L= -31—'/f12301a2a3dk1dk2dk3 .

Using the condition dI/dt = 0 and motion equations (2.1.1), we find, after
collecting terms cubic in a;:

Evsha = VisFis (2.23)
where
P =s1f) +saf 2 + s3fi? (2.2.4)

The existence of the integral Ifa] depends on the presence of the limit of the
right-hand side of (2.2.3) as E 53 = s1w;:l‘ +...0+ s;w:: — 0. We remember
that V = V§(Pyz3).

Now two cases are possible. Consider a system of equations,

Py =81k + s2ky + 53k3 =0 (2.2.5)

B = 5105} + 82057 + 5302 = 0., (2.2.6)

If this system has no solution, the formula (2.2.4) gives the nonsingular expres-
sion for I123 and there is no nontrivial information available in this order. If
the system (2.2.5, 6) has nontrivial solutions, it determines the simplest possible
resonant surface on which the coefficient functions of a new motion invariant
may have singularities. One of the following alternatives should take place in
the absence of this singularity on the resonant surface (2.2.5,6); either

Vim = Vil @00 =0, @2.7)
or
Fis = 81 f8t + s2f7 + 5322 = 0. (2.2.8)

In the latter case, if a nontrivial solution of (2.2.8) exists, we call the set of

dispersion laws {w*,wy?,wi®} degenerate with respect to the process (2.2.5, 6).

If there is only one type of waves in the system with the dispersion law

wy satisfying wy > O (the absence of waves with negative energy), the system
"(2.2.5,6) is reduced to the equation

w(kr + k2) = w(ky) + wiky) . (2.2.9)

If this equation is solvable, the dispersion law is called decaying.
The alternative (2.2.7, 8) allows a generalization to higher orders of pertur-
bation theory. To do this it is necessary to use the classical scattering matrix
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introduced in Sect. 2.1, The result stated below is really the infinite-dimensional
generalization of the well-known Poincaré theorem [3].

Theorem 2.2.1. For the existence of an additional motion invariant of 2.1.1)
I[a] of the form [6]

Hal=Klal+hlal+ ... , =3 £ |ag [ dk
aj

it is necessary that on each resonant surface,
Ei.q=0, Py _,=0, (2.2.10)

in the points of general position, the following alternative occurs: either the
amplitude W of the classical scattering matrix, corresponding to (2.2.10), equals
zero,

Wi..=0, (2.2.11a)

or the following condition holds:
q
Fi.g=) sifei=0. (2.2.11b)
1

Proof. The conservation of the integral I[a] results in the equality of its limit
values as ¢t — +oo:

Jim 1 [bre™1rt] = Jm 1 [bee™trt] | (2.2.12)

where the limits in (2.2.12) should be understood in terms of distributions.

By definition of the classical scattering and transition matrices (2.1.7, 8) we
have: be(t) = Si(—o0,t)[C™] C: = S[C~]. Now let us insert this formula
into (2.2.12), taking into account (2.1.32) and the explicit form of the integral
quadratic part Ip. By doing so we reduce two limit points, ¢ = +oo, to only one
point, ¢ = —oc0, and obtain

n
lim 3" A [Cr@” ROC1)

t——oco

+C,:_(°)R£°)[C_](t)] dk=7D, . (2.2.12a)

Here we have already used the fact that limg_,_ b = Cy. In (22.12a) we
keep an explicit dependence of R,(t) = S(—o00,t) — 1 on ¢, because this depen-
dence leads to the important fact that each term in (2.2.12a) is localized on the
corresponding resonant surface.

The Dj contains the term 3= [ f{* R)" R® dk resulting from the I, and
all terms resulting from the higher orders in I[a]. As we have already seen in
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Sect.2.1, Ry is a series, and each of its terms, S,:‘l'"' nam corresponding to some
nonlinear processes “n — m”, has the structure (2.1.24).

Recalling now (2.1.3) and using the well-known identity from distribution
theory,

 giBt

lim —E_—_ld = W&(E) N

we see that the integrand in Sp'™ takes the form

W:; Ci... Cpamb(a1in + ... + SpemWnem)
and each term resulting from the left-hand side of (2.2.12a) is localized on
the resonant surface. As to Dy, each contributing it term contains at least one
additional -function of frequencies and is therefore localized on the submanifold
of codimensionality 1 or more.

* To see this, consider an arbitrary term in Dy, for example one resulting from
the cubic part of I{a]:

wkngm

. 1 (), s(a),s1(ra), 82 pls,a) ~—(81,01) ~v—(22,02)
dim = >0 [ AV, RGO,

8,0

3 8818 2818 -1
x [cxp (Bt (Bapia ] dkdkydk; .

This term has two é-functions of frequencies: one resulting from R(,l"") and the
other from the expression in squared brackets. Certainly, the integrand is local-
ized on a submanifold of a codimensionality 1 of the whole resonant manifold,
and in points of a general position this term should not be taken into account.
Analogously, each term constituting D, possesses the property.

Now consider points of a general position (D; = 0) of a resonant surface for
terms (on the left-hand side) which contain a combination of fields (C for C~):

cl .ol L oo

By symmetrizing these terms we obtain

n) (&) (Gm) O e O &Y e B
/[ff.‘f')* T e R 1 AN
XCS:‘) cz(f"')é(k] + ... +kn—E1 - ... —Em)
x 6 (wi‘:‘) o +w£:") - “’E”) - —w(i‘-:n"'))

xdky ... dk.dky ... dE, =0.

Hence, due to the arbitrariness of C, we obtain that in points of a general
position of the resonant surface

kit ... —km=0, w2+ . —wf™=0, (2.2.13)
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the following equality should hold true:

R Tt/ W L/ i L
from which the alternative (2.11a-b) follows. (End of proof.)
We now present a more general definition of degenerative dispersion laws.

Definition. The set of dispersion laws
{wg', ,wg'}, @;=1,...,N (2.2.149)

is called degenerative with respect to the process (2.2.13) in the point Q of a
manifold (2.2.12), if (2.2.11b) in the neighbourhood of the point Q on (2.2.13)
has a nontrivial solution, i.e., f& # (v, k)+ Awf +const. The set (2.2.14) is called
degenerative in the domain {2 in (2.2.13) if it is degenerative in each point of (2.
And the set (2.2.14) is called completely degenerative (or simply “degenerative”)
on (2.2.13) if it is degenerative in each point of the manifold. If the domain 2
does not exist, the set (2.2.14) is called nondegenerative with respect to (2.2.13).

If 2 exists but does not coincide with (2.2.13), the set (2.2.14) is called par-
ticularly degenerative and if an additional integral exists, the scattering amplitude
outside {2 should become zero according to (2.2.11a). If all functions w: i from
the degenerative set of dispersion laws coincide, the correspondent dispersion
law is called degenerative.

Degenerative and particularly degenerative dispersion laws and degenerative
sets represent in themselves exclusive phenomena. The properties of such exclu-
sive w will be described in the next paragraph.

2.3 Properties of Degenerative Dispersion Laws [6]

Properties of degenerative dispersion laws differ strongly in spaces of dimension-
ality d=1, d =2 and d > 3. For this reason we shall describe them separately.

2.3.1 Dimension d = 1 In this case any three functions wp,1=1,23 a=
1, ..., N form a degenerative set with respect to the process

oy _ &g as (2.3.1)
1

if such a process is possible.

Actually, (2.3.1) defines the one-dimensional manifold in a three-dimensional
space (ky, ky, k3) so that locally k; = k;(¢), { = 1,2, 3. Consider any two functions
£2 and £, On the surface (2.3.1), we define £{(¢) by the equality e =

ﬁ)(f) + ff)(f). Then we have to invert the equality k& = k;(¢) to obtain the

function fﬁ = fD(é(k1)) which, together with £ and £, forms a nontrivial
solution of (2.2.8).
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Any dispersion law w; in a one-dimensional case is degenerative with respect
to the scattering process “2 waves into 2 waves” (“2 — 2"):

ky+ky=ks+ks

w|+w2=u)3+w4 .

232)

In fact, (2.3.2) defines the two-dimensional manifold in the four-dimensional
space (k;, i=1,...,4). On the other hand it is obvious that (2.3.2) is satisfied
by the substitution

ki =ks k‘=k‘}  @33)
k2=k4} C h=kf

corresponding to the trivial scattering. The manifolds of trivial scattering prove
to be very important when constructing action-angle variables. )

Manifolds (2.3.2) and (2.3.3) obviously coincide. But on (2.3.3), any function
fi obeys the corresponding equation (2.2.11b), namely,

hA+fh=fi+fa; (2.3.4)

this is proof of nondegeneracy. For the process “2 — 2 with several modes, t!'lis
is in general not so. For example, a set wg) = k2, w(,f) = c|k| is only degenerative

to the process

k1 + q= kz +q
1
W + 0@ =) + 0 .
The manifold (2.3.5) is split onto two parts, I and T, The first correqunds
to the forward scattering of a sound wave and the second, to backward scattering,
Corresponding parametrization has the form [11]:
for I},

k1=3(ke+€) a=30n-0

(2.3.6a)
kr=iEe—6 @=30+0,
and for I},
ki =3n+2€) @=E0FO 2.3.65) '

kr=3(nF2f) q@=E((xo).

It happens that the set ™), w@ is degenerative on (2.3.6a) and nondcfcnerativc

on (2.3.6b). The solution of a corresponding equation (2.2.11b) on I,

ky q2 ?

has the form

FO@ = (6= 5) + A8 +(B - Aok

235)

N, é?=f£‘,’+ @) 237
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P = B¢, Yu(®) = p(=f).
1y _

Consider two dispersion laws: w},’ = cik?, wf) = cok?, When ¢ # ey,
the manifold (2.3.5) is nondegenerative. Indeed, let o = ¢, /¢; # +1. Manifold
(2.3.5) then allows the following rational parametrization [12]:

-1 +1
k=2 i+ QT
o+l o1 (2.3.8)

k2=“T41+ R

Substituting (2.3.8) into (2.3.7), differentiating two times in ¢; and one in ¢; and
setting ¢; = g2 = £/p, we obtain

(0% - (e = DFY" () = (% - Do+ DFV" @) .
Hence, at p # +1, fO" = 0:
fM = AV + BN+ CD 2.39)

ie., the set {c1k2,c2k?,c1/c; # 1} is nondegenerative to (2.3.5). At p = +1,
(2.3.5) is degenerative.

Processes with more than four waves have not been very well studied, in spite
of some special results. It is certainly clear that degeneracy in such processes is an
exclusive phenomenon. For example, the same set (c; k2, c;k?) is nondegenerative
with respect to a “3 — 3” process:

k1+k2+k3=k4+k5+k6

(2.3.10)
W) +wr tw3 =wy +ws+we

at any p. The proof can be performed by using a rational parametrization of
(2.3.10) of the form [12]:

3Py 1 1
k1—1+29+R[u+;—;+(1+29)v]

Po 11
ky= - =
2 1+29+R[u+u+v (1+29)v]

2

ho 3P 2R o

1+20 u @3.11)

3P 2R 3.
k4—1+2 +— ~2Ru

3Py 1
5=173 +R[u——-+;+(1+29)v]

3Pp 1 1
k6—1+29+R[u—;—;—(1+29)v] .

Parametrization (2.3.11) should be substituted into the condition corresponding
to (2.2.11b):
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1 1
O+ fﬁ"’ + fﬁ) =f@+ fgj + f{" ) (23.12)

After this, the proof of nondegeneracy can be obtained by three differentiations
and by subsequently taking a corresponding limit to obtain a differential equation
from the functional one.

2.3.2 Dimensionality d = 2. Consider the simplest nonlinear process: decay of
the wave into two waves of the same type. If the correspondent dispersion law is
decaying, corresponding manifold (2.2.9) defines a three-dimensional manifold
I in a four-dimensional space (k1, k2). As an example of a decaying dispersion
law, one can consider an isotropic function,

we =w(k]), w©=0, ' >0. (2.3.13)
The equation (2.2.8) then takes a simple form,
Sertks = fio + fra - (2.3.14)

Let us now show that the degenerative decaying dispersion laws exist at
d = 2. We designate components of a vector k via (p,q) and let w(p,q) be
defined parametrically by formulae

p=£—¢&: g=al®) —a(®); we=H¢-b), (2.3.15)

where a(¢) and 5(¢) are arbitrary functions of one variable. (The natural ap-
pearance of a parametrization of this type in exactly solvable systems from an
underlying linear problem was shown by Manakov in [38].) We consider the
three-dimensional manifold I'"? defined by

n=6(-§ p=b-&
a=aé)—a&) @ =al)—alé). (2.3.16)
Now

p=ptp=L—-&
g=q+q@=a&)—ala),
and in accordance with (2.3.15),
Wiy+k, =0(€1) — B(&2) = B(&1) — B(&a)
+ b(&) — ¥(&2) = wiy — Wk, (23.17)
Thus, the manifold [+ is a domain in ['1:2,
Consider now a function f(p,q) parametrized by

p=t—&, g=a&)—al), f=d&)-d&), (2.3.18)

where ¢(¢) is an arbitrary function. Obviously f(p, g) obey (2.3.14) on "2, and
the law (2.3.15) is at least particulary degenerative. Its complege degeneracy
should be considered separately.
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Let a(¢) = &2, b() = 4£% in (2.3.15). Then

3 2
wip,q) = p* + % : 2.3.19)

This is a dispersion law of the Kadomtsev-Petviashvily equation (1.1.3) (referred
to in the following as KP-1) with o® = 1.
Equation (2.3.13) now takes the form:

2
(2 _2
(p1 + p2f (Pl Pz) , (2.3.20)

and it is clear that it consists of two parts. Simple analysis shows that [
coincides with the I'i*2 part given by the formulae

q1 (e}
1+pp=— —=. 2.3.21
prp n p2 . ( )

Dispersion law (2.3;19) can also be obtained from a parametrization a(¢) =
—€2, b(¢) = 4£°. Now I coincides with I'"*? when

Q.9
pEpp ===t 2322
™ ( )

Thus the dispersion law (2.3.19) is proved to be completely degenerative.
Now let & — &2 = § < 1 in (2.3,15-18). Then in the first order in § relations,

q ! w /
- = , —= b .

also define the degenerative dispersion law, and it is the homogeneous function
of degree one,

= )
w pﬁ’(p) (2.3.24)

We should note that (2.3.24) together with the function (2.3.15) are not analytic
at p — 0. Thus, the homogeneous function of degree one dispersion law is
degenerative. The manifold I''? for dispersion law (2.3.24) is

a_o_4

m o p op’
which means that k; and k, are parallel and unidirected.

When many modes exist, there are three sets of dispersion laws {w(@v), (@),
w(@3)} degenerative with respect to decay processes, 100:

w;::l) = wit:z) + “’2:’)
k] = kz + kg . (2.3.25)

They are defined parametrically by the formulae
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n=b-&6, p=G-§&, m=E—-§

q =ai(f) —aAb), @=a(l)) —ai(l3), ¢=a3(fs) - axé2)
W@ = by(€1) — ba(E2) , W = by(&)) — ba(&), W = by(E3) — ba(£2) .
(2.3.26)
Now the solutions corresponding to (2.2.11b),

fl(::) - f:‘:’)+f,(,:‘) , 23.27)

have a parametric form in (2.3.26):

£V = a1l - (&)

o0 = (&) - a6 (23.28)

29 = aa(6s) — (&) .

We should recall the fact mentioned above with respect to the specific case of
the KP-1 equation. Namely, if in (2.3.15) we replace p — p, a(¢) — —a(=¢);
b(¢) — —b(=¢), such a dispersion law will be also degenerative with respect
to the process (2.3.13). In the case of KP-1 these two parametrizations together
cover the entire manifold I"''2. It is still an open question as to whether these

two parametrizations cover the whole degenerative piece of resonant manifold
in all cases.

In addition, all homogeneous dispersion laws of the weight 1 (2.3.24) are
degenerative to any decay processes 1 — n,

W=Ew+ ... +wy

k=ki+...+k,. (2:329)

The question naturally arises as to whether degenerative dispersion laws exist
which differ from (2.3.15). The following theorems are true.

Theorem 2.3.1 (Local Uniqueness Theorem) [6]. All dispersion laws of the
form

p=bi -6, ¢=alt) - alt) (2.3.308)
w =b(61) — b(&) + iE"wn(El &),

satisfying the dcgcncrac;' condition (2.3.14) with
f =) - cl€) + ie“fn(&,{z) : (2:3.30b)

e < 1, will belong to the class (2.3.15).
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This statement means that there are variables 7 (£1,£2) and n2(¢1, &) in which
terms the degenerative dispersion law (2.3.30a), with (2.3.30b) holds true, taking
the form (2.3.15).

Theorem 2.3.2. If w(p, ), degenerative with respect to the dispersion law (2.2.9),
is analytic in the neighborhood of p = ¢ = 0, then the corresponding function
f(p, q) cannot be analytic in the same domain,

Theorem 2.3.3. Let the dispersion law w(k) near the point ko admit the expansion
wiko + K) = w(ko) + (v, K) + Y AijKin; . 2331

Then in some domain near ky = k3 = k3 = kg = ko, the dispersion law (2.3.31)
is nondegenerative to the process

ky+ko=ki+ks 2.3.32)

Wiy T We, = Whey Wi, 5

i.e., the equation

fies * fiey = fieg + S (2.3.33)

does not have nontrivial solutions.

Theorem 2.3.4 (Global Theorem). If w(*¥)(p, ¢) is a system of dispersion laws,
degenerative with respect to the process (2.3.25), and if the equation (2.3.27)
has at least three independent nontrivial solutions, the system w(®(p, ¢) either
belongs to the class (2.3.26) or could be obtained from it by some limiting
process.

Now let w(0) = 0. From Theorem 2.3.3 it follows that the dispersion laws
admitting expansions (2.3.31) are nondegenerative to the process

Xn:k,‘ =§:k.‘, Z":w,'ﬁiwl, (2.3.34)
n>2, m2>22.

To see this, one can consider the neighbourhood of the manifold (2.3.32), putting
the “extra” wave vectors equal to zero. Thus, only homogeneous functions of
degree one dispersion laws can be degenerative and only to the processes (2.3.29).

From the above it follows that there is no unique dispersion law completely
degenerative with (2.3.32). It is very doubtful that w, exist which are degenerative
to (2.3.32) in particular.

Let a dispersion law wj be decaying. Then the manifold I'>? contains a
submanifold I‘Kf of codimension one given by the equations

ki+ky=ks+ks=gq

(2.3.35)
Wiy + Wy = Wiy T Wky = Wg «
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If the dispersion law is degenerative to a "1 e 2” process, then the correspon-
dent degenerative function f(k) obeys on I’ thc equation

f‘u +f’u = fka +f’u = fq . (2336)

This certainly does not mean that dispersion law w,, is even particulary degenera-
tive. For degeneracy to take place it is necessary that (2.3.33) be true on (2.3.32)
in the neighbourhood of at least one point of the manifold (2.3.35). Degeneration,
as we know;, is possible only at d = 2, and the corresponding dispersion laws are
given by (2.3.15).

Consider now the neighbourhood of any point on I‘if. It can be defined as

=h-&, p=L~-&G, m=b-&4, p=&—-§,
@ =alé) —al2), @=ala+n)—alés+mn)
@ =all +ra) —alle+r2), qu=alls+13)—alfs+ws)
wr =b(6) — b(&2) , w2 = b2 +11) — b(& + 1)

w3 = b1 +12) — s + 1), wa =€ +13) — B(E3 +13) .
The resonant conditions are

[a'(€2) — d'(&)]) v = [a'(&1) — a'(&)] w2 + [0'(€0) — a'(&3)] 14
(&) - B(&)] 11 = [BG6) — B(Es)] va + [CE0) — b6 35 .

The condition of degenerativeness gives another relation:
[¢'6) — )] 1 = [c'(&r) - ()] v+ [c'(6a) — (&) 13 .

If functions a, b, ¢ are linear independent, thls equation has only zero solutions.
It follows fmm this that the manifold I‘M cannot be locally extended with
preservation of degeneracy.

Consider now any process “n into m” given by the resonant conditions
(2.3.34), and let w;, be decaying and degenerative to “1 into 2" [see (2.3.15)].
In the corresponding manifold I'™™ one can point out a set of manifolds ry™
which we can call minimal. To describe these manifolds, we recall that the scat-
tering amplitude W™ ™ is given by a diagram of the tree type with a finite number
of vertices and inner lines.

Let us designate via p;, s; the outer wave vectors and their directions. Let
some vertex contain vectors p;, 8i, p;, ;. p;, 81. Then we have

8 pi+8;-p;+8-p=0. (2.337)
We require another condition to be fulfilled:

8iwp, + 8jwp, + 81wp, =0 (2.3.38)
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From (2.3.37,38), it follows naturally that (2.3.34) is true but (2.3.37, 38) deter-
mine the manifold of smaller dimensionality — one of the minimal ones, I'y;™.
If w, is degenerative, in each vertex the equation

8i fp; +31'ij +81fP| =0

will be true and, as a consequence, so will (2.2.11b), but it is impossible to
enlarge the dimensionality of I'y;™ under condition (2.2.11b).

2.3.3 Dimensionality d > 3. In higher dimensions the possibility of degeneracy
is strongly limited in comparison with d = 1, 2. Only the homogeneous functional
of degree one dispersion law

wlck) = cw(k) (2.3.39)

is degenerative to (2.3.29) only. Its degeneracy does not depend on the space
dimensionality: (2.3.29) is solvable only if all k;, i = 1,2, ... are collinear to
k. So the corresponding manifold has smaller dimensionality than for decaying
dispersion laws of general form; e.g., at d = 3, the dimensionality of (2.2.9)
equals five while that of (2.3.29) equals four. On the basis of the following local
theorem, it can be stipulated that no other degenerative laws exist.

Theorem 2.3.5. Let the dispersion law wy, k = (p, ¢,r) be parametrized in the
neighbourhood of r = 0 by

p=& —&, g=alé) - al) (2.3.40)
wip,g,1) = H&) — HE) +7 Y rwalér, &)
]

and the dimensionality of I"'? be equal to five. Then wp = const, w, =0, n > 0.
For the proof, see Appendix L

2.4 Properties of Singular Elements of a Classical
Scattering Matrix. Properties of Asymptotic States [6]

Let us examine the “n — m'’ process. We shall choose another notation for wave
vectors, and designate the nonlinear part of the amplitude via S’: m PR
We consider a diagram describing the process (2.3.34) in which the inner
line (Green function) with the wave vector g is replaced by a é-function. Let
vector g be directed from the “root” of the diagram and “to the right of it”; i.e.,

f~urther away from the root, there are external lines with vectors ky, ... , k,,,
ki,... ,km,, n1 < n, m < m. Now the following equations are added to
(2.3.34):

k1+...+k,.,=i'.|+...+l.cml+q (2.4.1)
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W, + ... 'f'(a);."l =wi, + ... +(4.)Lml — Wy
Moreover, it holds that
kn,+l+ +kn=Eml+l+ Ve +Em"q (242)

wkn‘+l+...+w,,,,= +...+w;m—wq.

w’-‘ml +1

Let us des1gnate via S i \E,..E,, the singular part of the amplitude of the
“n into m" process comspondmg to equations (2.4.1), (2.4.2).
We obtain the expression for $™™ as a result of summing of all diagrams of
the form

ke T'.“"
L ] — L ]
L Emlﬂ e Ii’m “re
Then we have the relation:

Su ym
wkn 1hl

1 n-ni+lm—m
=i Sﬂ|,m1+ S 1+, 1 d .
/ by ok, Ry my gk 41k 03 Emy 41 km q

The formula shows that the singular amplitude 5™™ is factorized through the
composition of the two nonsingular amplitudes of lower order. It is clear that the
analogous statement holds for the amplitude of any degree of singularity when
there are several additional equations of the structure (2.4.1). All of them are
factorized in the form of the composition of the finite number of the nonsingular
amplitudes of lower orders. In particular, the maximum singular elements of the
scattering matrix defined by the diagrams where all “Green functions” of the
internal lines are substituted for §-functions, are factorized in the form of the
composition of the simplest scattering amplitudes “one into two”.

These facts have a simple physical meaning. The substitution of one of the
internal “Green functions” of a §-function means that the corresponding wave is
the eigenoscillation of the system (a “real particle”), and the process with such
a wave occurs stage by stage, combined out of the process of the lowest order.

Now let the dynamical system under consideration possess the additional
motion integral, and let the dispersion law be nondegenerative relative to all
nonlinear processes. Then all nonsingular elements of the scattering matrix on
the resonance surfaces are vanishing. As mentioned above, all singular amplitudes
are vanishing too. Thus, in this case, the classical scattering matrix is trivial and
the asymptotic states coincide, i.e.,

+ -

Ce = Cp - (24.3)
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In particular, this holds for the Kadomtsev-Petviashvili equation with o? = —1,
or KP-2, as was first noted in [9].

We have seen in Sect.2.3 that in the two-dimensional case the situation in
which the dispersion law is degenerative relative to the lowest-order process “one
into two” and nondegenerative relative to all higher-order processes is typical.
All degenerative dispersion laws constructed in Sect. 2.3 possess this property. In
such a situation the classical scattering matrix S is nontrivial, but only its most
singular part is nonvanishing, factorizing into the composition of the three-wave
processes. This applies to the KP-1 equation, too.

It is very important in this case to find the scattering matrix in the explicit form
in some sense. Let us note that for the most singular part of the S-matrix, one
can cancel all inner Green functions and make a replacement in every vorticity:

_'"""6 (—spkp + sgkq + srk,)
—_— le_”""’é( —spky+3gkg + 8.k, ) 6 (—spwi, + Sqwk, + Sk, ) -

(2.4.4)

This modified vorticity will be denoted symbolically as V.
Now we must rememeber that the entire set of diagrams has the factor 2i.
So we can write symbolically

c’=c"+2{1:/[c",c']+...} . (24.5)

The expression in curly brackets is the whole set of diagrams. Formulae (2.4.5)
can be rewritten in the form:

= c—f‘/ [c“,c“} + ..., (2.4.6)

or

(24.7)

Finally, we have

ct—c z2lct+c ct+c”
7~V ;

or, more detailed:

& - =T [ S vamrsk - sk - sk

81937
"
x & (swi — s1wk, — S2wi,) (k' +cp,

x (c,,, +ep, ) dk1dks . 2.4.8)



208 V.E. Zakharov and E.I. Schulman

Formula (2.4.8) gives a direct connection between asymptotic states in the case
of the degenerative dispersion law.

The equation similar to (2.4.8) applies in the one-dimensional case if one
type of wave is involved. In the one-dimensional case, any dispersion law is
degenerative to the process of two-particle scattering. For simplicity we consider
the Hamiltonian (2.1.11); we have

. -
GGy / Tikskaks§ k + y — k2 — k3)

ety cl” c +cf
x 6§ (Wi + W, —wh,—wn)( C 2 ki ) ( hz h)

.
x (ﬂ'-e-?;-fﬁ> dkeydkyds 2.49)

It follows from (2.4.9) that the squared module of the classical S-matrix is equal
to unity:

2 -2
fekl” = |Ch| ’
but in general, arg ¢} # arg c;. Actually, it is well known that in such one-
dimensional systems, the interaction is reduced to a phase shift only.
Now let us return to the two-dimensional case with the decaying degenerative

dispersion law, and consider the amplitude of the “two into two” process with
the resonant conditions

ki+ky=ks+kg (2.4.10)

Wi, +w,,, = Wiy +wk‘ .
This amplitude is described by three diagrams:

N 7
1. q \ qg=ki+ka
/z' kq

ky /kz

2. —aq q=ks—~k
‘L/g \kl
ky /kz

3. >‘T—“ g=kqi—k;
ks \h
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As we have stated above, the nonsingular part of the amplitude localized on the
whole manifold (2.4.7) must be identically zero. On the other hand, this amplitude
becomes infinity near resonant manifolds corresponding to an interaction via real
waves. (The singular part of the amplitude is localized on these very manifolds).
These manifolds are different for the three diagrams above. They are defined by
the formulae:

Wheytky = Wi, + Wiy = Wiy + Wi, (2.4.11a)
for diagram 1;
Wiy —ky = Wk, — Why = Wk, — Wk, (2.4.11b)

for diagram 2; and
Whg k) = Wiy — Wk, = Wk, — Wik, (2.4.11(:)

for the diagram 3. Since the amplitude of the process (2.4.7) becomes zero,
the singularities localized near manifolds (2.4.11) must cancel each other. This
cancellation can only occur if the manifolds coincide, at least partially,

The resonant surface “one into two” for KP-1 consists of two connected parts
[see (2.3.21-22)]. A simple analysis shows that each of the two parts described by
one of the equations (2.4.11a—c) coincides with some parts described by another
of these three equations. This results in the number of connected manifolds,
defined by (2.4.11a—c), being equal to three, but not six. The statement about
pair compatibility of (2.4.11a—) is a general one for the degenerative dispersion
laws and could be used for enumeration of such laws. It is worth noticing that
the coincidence of manifolds (2.4.11a—c) (in the above-mentioned sense) is only
a necessary but not sufficient condition for the singularities in (2.4.7) to cancel
each other. Rather rigid conditions imposed on the coefficient functions V%2
of the three-wave Hamiltonian (2.1.11) should be satisfied. We have checked
these conditions for KP-1 equations. We should also note that checking for the
cancellation of singularities is a useful and simple way to analyse the existence
of the additional motion invariants for the particular systems.

2.5 The Integrals of Motion [5]

One of the important statements in the present paper is that the existence of an
infinite set of additional integrals follows from the existence of one such integral
of system (2.1.1). Let us prove this fact and find the integral of motion in the
form of a formal integropower series:

G=/g,. |ax[? dk

+>N /G;j_z;"a,.s...a;;a(P,)dk... dk, . 2.5.1)
qg s.84
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Here,
Py=sk+siki+ ... +s.k,,

and g; is some function of wave numbers. Substituting (2.5.1) into (2.1.1), it is
clear that the functions G, " ,,' are expressed from the recurrent formulae

23185 _ S9k t 3191 + 8292

kkika E:;lzz Vh.k‘::: (252)
1%2
Pa a,
Gulk ”‘——“E’: o 2.5.3)
e

In these formulae,
a..8
E." ky = W F S1wiy + ..+ S,

and the function P, " :' is linearly expressed via G} " " ', It is not necessary

for us to write out this dcpendencc
It follows from (2.5.2, 3) that the coefficient functions in the integrals possess
singularities on all possible resonance manifolds of the form

E, E' =0, P,=0. 2.54)

We may continue as follows: Let the wave field a(r) in a physical space be a
rapidly decreasing function. Then its Fourier transformation ~ the field a ~ is
a smooth function. This makes it possible to peform the regularization in the
expression (2.5.1), but not in a unique way. For example, in all denominators
one can perform the substitution:

5.8 e .
B = EI...:.,' =E, :" +i0, (2.55)

or the substitution
Eyluy = BlL =Bl -0, 2.5.6)

Generally speaking, in this case we obtain different integrals of motion; let us
designate them as G*. Any linear combination of these integrals may be the
integral of motion; particularly, the difference (1 /21r1)G° G*—G~. The integral

G® does not have a quadratic part; its expansion in powers of aj starts from the
term:

G°= Z / (9K + 519k, + 529,) 6 (swie + S0k, + S2Wk, )

X 8(sk + s1ky + syk2) Vk‘,:l‘,:;a,,ah a::dk dkydk; . (2.5.7)

The integral G° can be called an essentially nonlinear one. It is one of a large
number of such integrals, The linear equation
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ag +isweag =0

allows an essentially nonlinear integral of the form:

/qs‘ w6 (Ei)6(Po)al ... ajrdk ... dky. (2.5.8)

Here, q is an arbitrary integer; 45,‘ " is an arbitrary function. In the nonlinear
system (2.1.1), one can search for the integral in the form of the integropower
series in aj, the first term of which is the expression (2.5.8). In this case the
regularization problem of the denominators of the form E; ", r > ¢ again
exists, and cannot be solved umquely The different integrals obtained will differ
by the essentially nonlinear mtegrals of higher orders.

One can attach a simple physical sense to the integrals G* occurring as a

result of the regularizations (2.5.5) and (2.5.6). It is easy to see that

Gt= /g,. |a£|* dk . (2.5.9)

Here, i are asymptotic states of the wave field at ¢ — oo. Formula (2.5.9)
shows that an arbitrary system (2.1.1) in the rapidly decreasing case is completely
integrable. Actually, the change aj(t) in time is a canonical transformation, so
the variables a,,*(t) = c,, exp (—iswyt) are canonical. It is now evident that the
variables

= |af| and of =arg af

are the action-angle variables for the system (2.1.1), irrespective of the form of
its Hamiltonian. This rather impressive statement is based on a rapid decrease of
the function a(r) and, respectively, on the smoothness of the function a(k). In
the periodic case, when the function a(k) represents a set of §-functions,

a(k) =Y aué (k — nko) (2.5.10)

(ko being the vector of the reverse lattice and n a2 multiindex); integrals (2.5.1)
in a general position make no sense (become infinite) and as a rule, integrability
vanishes. In the periodic case only those integrals still make sense, the coefficient
functions of which remain finite on all resonance manifolds, i.e., where reduction
of singularities occurs, For further discussion of the periodic case, see Sect. 2.6.
To observe the singularities, let us introduce the operators R*, inverse with
respect to the operator of the transition (2.1.6), taken for simplicity at ¢t < 0

= R¥ [ak] (2.5.11)

‘= al +z z /Rfkk:qh'na a,:"é(Pq) dk; ... dk, .
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The coefficients R’ ¢ at & = 0 do not depend on time. They have singularities
on all possible resonance surfaces E, = 0. Let us put

R:!: 881 .. 34
. tasy.ag _ _kky kg (2.5.12)
!1_% Rk, ke, E, 10 °

Expression Rfk:“ 4.t is regular on the resonance manifold E, =0, P, =0, but
it can possess singularities on various “junior” resonance manifolds. '

Let us consider the operator R* and lett — —oo in (2.5.11?. In this case,
ax — ag, and operator R* is to be transformed into a classical scattering
matrix. That means that on the resonance surface E, = 0, P, = 0, the numerator
in (2.5.12) coincides with the corresponding element in the scattering matrix,

R =i @313

Now let us represent the integral of the motion G* in the form
G* =/ggaka:dk+ /g.a,‘, (af — ai) dk
+ /g,,a,, (ap* — a}) dk + /gg (af — ai) (a}* —at)dk, (25.14)

and substitute (2.5.11) into (2.5.14). We collect the terms in (2.5.14) having the
singularity on the whole resonant manifold (2.5.14) and having gcomplctc power
g; such terms are only contained in the second and third terms in (2.5.14). After
symmetrization they are reduced to the form

L‘m" ~0...8 a
“11\7/—"‘"’::'.‘:, R ey ah - 8 (Pg)dk ... dkg . @25.15)
Eyk,

N is some integer,
Ly 3 =sgu+ ... + 30k, - (2.5.16)

Comparing (2.5.14) with (2.5.3), it is clear that P, :::,:" can be represented as
follows:

1 me.. 8.8 8.8
Peley = w Dl B+ A B @2.5.17)
where A, ;" is regular on E, = 0, although it probably has singularities on the
“junior” resonant surfaces.

Let the dispersion law w(k) be nondegenerative and the system (2.1.1) have
an additional integral of motion with continuous coefficients. As we have already
seen, this leads to the triviality of the scattering matrix and the coincidence (_)f
asymptotic states a,f. Now on the resonance manifold Eg = 0, P, = 0 the matrix
element R, }* =0. This means that on the resonance surface Eq =0, P, =0,
the s'mgularity'in the motion integral is cancelled. It can be seen directly from
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(2.5.2) that the singularity is cancelled in the junior term of expansion (2.5.1) as
well.

Now applying induction, we observe that generally all the singularities are
cancelled. Thus, in the case under consideration, one can use an arbitrary function
gk in order to construct the motion invariants of the system (2.1.1). Roughly
speaking, in this case there are as many integrals with continuous coefficients
having a quadratic part as there are in the linear problem, All these integrals are
conserved in the periodic case as well; i.e., the periodic system (2.1.1) is quite
integrable. In particular, the periodic equation KP-2 is integrable. Krichever has
recently come to this conclusion on the basis of his algebrogeometric approach
[13]. We should keep in mind that our results have been obtained on the level
of a formal series, the convergency of which we still do not know:.

Now let the dispersion law be degenerative. We restrict ourselves to a case in
the form of (2.3.15) at d = 2. Now the scattering matrix is different from unity,
S, ::,:" # 0. However, the nonvanishing scattering matrix is concentrated on the
minimal manifold I'y;™, when all the scattering occurs with the participation of
real intermediate waves only. _

Now in the expression (2.5.17), R;”}! # O and, generally speaking, the
integral of the form (2.5.1) is singular. The only way out of this situation is to
require the vanishing of the expression L, }*. It is possible to do this on the
manifold I'y;™ by requiring g(k) = f(k); i.e., the function itself should represent
the degenerative dispersion law, permitting parametrization:

p=6& — &2, q =a(é1) — a(é)
w=b(&) - &), g=cll) - &) .

Here, the function c(¢) is arbitrary.

Thus, in the given case, system (2.1.1) also has an infinite set of integrals of
motion with continuous coefficients, but this set is sufficiently narrower than in
the previous case. Instead of an arbitrary function of two variables at our disposal,
we have only an arbitrary function of one variable. This is not quite enough for the
integrability in the periodic case. So the systems with a degenerative dispersion
law under periodic boundary conditions are nonintegrable [14], although they
might possess an infinite set of integrals of motion. In the following, we study
the periodic boundary conditions and search for the action-angle variables.

2.6 The Integrability Problem in the Periodic Case.
Action-Angle Variables [5,7]

2.6.1 Canonical Transformations The formulation of the problem of integra-
bility in the periodic case differs from its analogue discussed above, because of
the discreteness of all wave vectors and the absence of asymptotic states and a
scattering matrix. Therefore we have to find the appropriate language with which
to study it. This language does exist and is the infinite-dimensional analogue of
the Birkhoff method of finding canonical transformations to the normal form.
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We shall see that the Hamiltonian wave system with an additional integral and
nondegenerate dispersion law can be reduced by such a transformation to the
form of the infinite-dimensional Birkhoff chain.

In spite of all these differences we can get some useful information from
the case of smooth a,. Consider system (2.1.1) with one type of wave and then
equations (2.1.14-17). We have used them to represent the “current” fields b
via asymptotic fields ¢, and to find the transition matrix operator.

Now we go from interaction representation to the usual fields a, = bre—lwst
and a = cye~i“s'. We see that as ¢ — 0, the explicit dependence on time
variable ¢ in (2.1.14,17) disappears and the transformation between ax(t) and
ay, (t) becomes a time-independent formal canonical transformation. (The formal
scattering marix defines the formal transformation from a;” to aj.)

Certainly, these transformations are generally divergent, due to the classical
problem of resonances. In each order the corresponding terms in this transfor-
mation have the structure (2.1.24). If our system has an additional integral of
motion (and we shall take this for granted in what follows), Theorem 2.2.1 holds.
So, if the dispersion law is degenerative with respect to decays, our canonical
transformation has unequivocally the resonance in the first order and does not
exist. Naturally, it does not exist in the periodic case either.

If the dispersion law is nondegenerative, all resonances vanish and the canoni-
cal transformations ax —+ ag and a; — a; exist; the first of them map equation
(2.1.1) to its linear part. '

2.6.2 Small Denominators. Let us try to find a periodic analogue to the above-
mentioned canonical transformations in the nondegenerative case. All wave vec-
tors belong to the lattice

k= k,. = (21I’V1/11, vee ,27”/,{/1,1) ) (2.6.1)

where v;, i = 1, ... ,d are integrals, I; are space periods, and n = (1, ... ,vq)
is an integer-valued vector. Sometimes we shall write n for k., to simplify the
formulae. In our notation (Sect. 2.2) the Hamiltonian of (2.2.1) takes the form

1
H® = 3 E 01,2,3ala2a3 . (2.6.2)
‘123

Consider the canonical transformation ax — a;:

Gg®=a®+Y Y Foi..0 ... 0 (2.6.3)

p2201,..,p

with all fields defined on the lattice (2.6.1). Coefficients ¥_g ,, .. , are coefficients
of the inverse of (2.1.8), rewritten via ax(t), ay (). This transformation, as we
have seen, generates a motion invariant I = Y, fulay; |?, which is the same
integral as in Sect. 2.5, restricted on the lattice (2.6.1).

If we now consider lattice values of ki, ... , k, in (2.6.3) obeying
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81k1 + ...+ s,k, =0 s (2.6.43)
they generally do not belong to the resonant surface:

S|Why * e FSpWE, = 0. (2.6.4b)
However there are special values which always belong to (2.6.4) and correspond
to trivial billiard scattering with p = 2g, 81, ... ,8¢ = 1, 8g41, ... , 824 = =1
where the set (k1,...,kg) is a transposition of the set (kge1, --. ,k2g). We

shall see that these billiard scattering processes play an important role in the
construction of the normal form.

Regardless of the special valués of periods l;, i = 1,... ,d, at large |k},
i=1,...,p, the corresponding set (ki, ..., k;) can satisfy (2.6.4) with great
accuracy, and we come to the problem of small denominators. However, in our
case, Theorem 2.2.1 guarantees that coefficients of (2.6.3) are finite at these
points; thus we only have to deal with trivial scattering.

2.6.3 Trivial Scattering and the Normal Form

Theorem 2.6.1. Let the space dimensionality be d > 2 and let Hiy be defined
by the formulae (2.6.2); furthermore, let the corresponding system (2.6.3) have
one more motion invariant (in addition to H and P) of the form

L= gnlanl+3. > *Ior..p0001 ... ap (2.6.5)
n

p220..p

where g,, # const, and all coefficient functions ¢Iy; ..., {referred to in the follow-
ing simply as “coefficients”) are finite [7]. Then:

1) If the dispersion law w; is degenerative with respect to decays (2.3.1)
(so that d = 2), then for any f; satisfying (2.3.14) on (2.3.1) an integral of the
motion Iy for the system (2.6.3) exists. The I can be obtained by substituting
f for g in all terms of the series I, (2.6.4), and all coefficients IIo..p of Iy are
finite. [We have learned that such f; should have the form of (2.3.15)]. However
the action-angle variables analytic in a,, aj do not exist in the periodic case.

2) If w;, is nondegenerative and has a zero limit as |k| — 0, then there exist
integrals I, with any continuous fi — 0 as [k| — 0. If in addition —l=0
is true, then there exists a canonical transformation,

o = and + Z Z Fo wpll oo Gp (2.6.6a)

p22l.p

mapping the system (2.6.1) to the form
isvs = Quvh, 2u= 2 (1) (2.6.6b)
and its Hamiltonian to the normal form

H= Zhn [|'7|2] = zwnhnlz +.., (2.6.7)
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and £2,, = 0H /0|y, |*. The quantities I'_q; .., can be obtained by recurrence or
with the aid of the diagram technique and are finite at any p so that the zero
denominators are absent in the canonic transformation (2.6.6).

3) If w; has a singularity near |k| — 0, then the results are the same when
imposing additional constraints. For example, for the KP-2 equation (1.1.3) with
o = —i, it is necessary to impose a condition a, = 0 at n = (0,); this
constraint is compartible with the equation,

4) Let Hyy = H®,

H® =4l 3 i mazaia; 2.68)

1234

then the system (2.1.1) having an additional motion invariant I, analytic in
a, a* also has the additional integrals Iy with any continuous fi, under the
assumption that there exist limits of wy as |[k| — O and of Tjzs4 as k; — ks
or ky — k4. Under these conditions there exists a canonical transformation
mapping this system to the form (2.6.6) and its Hamiltonian to the normal form
(2.6.7). The canonical transformation can be constructed in full analogy with
(2.6.6).

5) If Tizz4 does not have such a limit (as an example one can think of the
Davey-Stewartson equation (1.1.4) [15]), then these singularities are to be anal-
ysed separately; for the Davey-Stewartson equation, all the results of statement
4) are true [7).

Proof. Statement 1) is actually proved in Sect.2.6a; therefore let us go to the
nondegenerative case and suppose for convenience that w,, is nondecaying, non-
singular at [k| = 0 and w(0) = 0. Then Theorem 2.2.1 does not imply any
restriction in the first order on th quantity U; j;. Actually, in the space (k;, k2),
the surface

w (k1 + k2) = w (k1) +w (k2) (2.6.9)

consists of two planes kq = 0, k; = 0, and each function fi with f(0) =0 is
degenerative on them,

We shall seek coefficients of the transformation (2.6.9) immediately from
(2.6.6,7). We see that ~,[a] differs from ay [a], given by (2.6.3), only due to the
nonlinear frequency shift;

2 = wy +5ﬂh [l‘ylz]

69&0 = anoh hh |2 + Z Z n P '71 '2 [ '7]2 .
1

p221..p
This means that in the first order, (2.6.3) and (2.6.6) coincide, i.e.,

o - —380
Eo12ln12 = Egia¥orz = —ZEUmz . (2.6.10)
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So, we see that for (2.6.6) to exist, we have to require that

Ulat =0, © (26112

and (2.6.2) becomes

'
H® = §1-|- Z 0123010203 R (2.6.2a)
"123

where the prime indicates that terms with zero n1 or n or n3 are absent. If this
is true, one can choose

ri-1# g (2.6.11b)

nnl

and (2.6.6) does not have small denominators in the first order. In the second
order we have

Eotyy "' o = S6is ™ = Znoni 6(T) 2.6.12)
where T; is a surface of trivial scattering of the second order:

T 0D o :1"_*1:2 (2.6.13)
1= N2 = .

§(T3) = 1if (ng ... n3) € T, and 6(T2) = 0 otherwise, and (& is the symmetriza-
tion operator)

1 ’ A4t

-1 - -1 =111 7, ~1 =111 a s'sz83

Sotn ™M = Egl MM = —3002 E P20 Uninans. -
an’

We see that Ii23 equals ¥p;23 outside 73 and differs from it on 72, where Y123
does not exist. Outside 73, Wo23 exists, due to Theorem 2.2.1. From (2.6.12) we
find 2,,,,, as

Dnoms = Sorzs g, - (2.6.14)

Now on T; the Iy 15, '!" is undetermined and should be obtained from the canon-
icity conditions

{7pa7g} =0= {7;1'7;} ) {7;17;} = igpq ) (2.6.15)

where

This gives, for example,

—1 = 1 ~1-11]2 )
I qlpqm =3 |Tyamva | (2.6.16)
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We shall consider the higher orders by induction. It is more convenient to do
this for the inverse of (2.6.6),

afs = A [y] =7 + 2; 12 Aorpm - (2.6.17)
P2

The recurrence condition for coefficients of A can be written down in more
compact form if we introduce the notation

Oo.,=109, 0=0, 20 = Quor.p
and
o9« X9 = Z oz ... g1 n X;’qﬂ gty
n's’
for any functions. Then we have

-2
E@P) 40P o _ 4 {_30[}' * A%P-D _ Z U * A9 5 A@Gr—9

g=2
2p-2g
+ 2 A@r-29 Z 5o 9205 (7;)} (2.6.18a)
g=1 a=1
2p-1
E@rD oY) - _ 5 {_300 * A®P) _ .‘_;2 Z U % AD 4 4@r—g¢*D
g=2

2p—2¢+1
+006 (Tpn1) ZA""”*" Y el b(Ty) }

g=2 aml
(2.6.18b)
AW =1, and outside the resonant surface Eiji =0, one has
R . i Uij
AD = Ay =Ty = % E_:; , (2.6.18¢)

On the resonant surface, if E;;; = 0, we put (as above for I'®)
After this, the right-hand side of (2.6.18b) for A® up to the sign coincides with

the right-hand side of (2.6.12), and we obtain {2y, in the 612 of the form (2.6.14).
On the resonant surface

En23 =0, Pnn=0.

Let us define A®) ~ §(T3); the coefficient of proportionality must be obtained
from canonicity conditions (2.6.15).
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When going to higher orders p > 4, we suppose that A%9; 2¢ < p equals
zero on the resonant surfaces

E@D =0 , P2 =0 , (2.6.19a)
while A?9*D), 2¢+ 1 < p, on the manifold
EG#D _ g paeh _ g (2.6.19b)

may be nonzero only on the trivial scattering submanifolds 7, of (2.6.19b) indi-
cated above. Their values on 7, should be defined from (2.6.15).

Now consider the inversion procedure used to obtain (2.6.17) from (2.6.6).
If we write (2.6.6) symbolically as

Yy=a+ I‘(z)aa +I'®aa+ I'%aaa+ ... , (2.6.20)

then
a=y-— F(2)17 - I"(3)777 +2ID I“a)'ry'y - [F *)
+309 % 1@ 4 2rAr® . 1@ 4 1@, 1@
—6IAr@ I‘(z)] TYYY+ oen - (2.6.21)

So we see that
AP = ) 4 zaqp(q) « [P L ,
and that

E®P4® _, _ g@re
E(#)—0
in points of a gencral position on (2.6.19). Therefore we can apply the consider-
ations in Sect. 2.62 based on Theorem 2.2.1, and prove the solvability of (2.6.18)
in points of a general position on (2.6.19). According to the induction hypothesis,
in other points (of a special position) on (2.6.19), the terms which do not contain
2 can be nonzero only on a submanifold 7, of (2.6.19b) with ¢ = p, where
f2-containing terms are nonzero only.

We consider the term U * A9 « A on the resonant surface E¢*” = 0 in
special points. This means that E©@ =0 and E = 0. According to the induction
hypothesis, A" # 0 only on the trivial scattering submanifold if r is odd. As
for U + A? on E9 = 0, we have already scen that due to Theorem 2.2.1, it
can be nonzero only in special points of E‘9 =0, i.c., on the trivial scattering
submanifold of £ =0 only (if at all). The 29 with ¢ < p are already known
from junior orders, while £2® in (2.6.18b) is not known and should be chosen
so as to eliminate the right-hand side of (2.6.18b) on 7.

Now (2.6.18) are solvable, but A@?P*)) are undetermmed on corresponding
resonant surfaces. We set A®P| g,y = 0 while A®P*) ~ §(7;), and the coef-
ficient of proportionality is to be found from (2.6.15). We can come to the next
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order and Theorem 2.6.1 is proven. (For the self-contained proof of this theorem,
which does not apply to the rapidly decreasing case, see [7].)

Consider now the singular dispersion laws. The typical example is the
Kadomtsev-Petviashvili equation (1.1.3) with we = P + a?Q?*/P, k = (P, Q).
This equation is known to have an infinite number of motion invariants both at
‘a? = 1 (KP-1), when the dispersion law is degencrative, and at o = —1 (KP-2),
when it is nonziecaying and nondegenerative. In the Hamiltonian description it
corresponds to the equation with Hiw = H ®, and

Vil =0, Vig" = VARPO(P)IP)HP) , (2.6.22)

where 0 is a Heaviside function. From this form of Hin it follows that
(d/dt)laoql? = 0. But wy — oo as P — 0,Q # 0 so that the KP-1 equation is
senseless with resepct to apq. The complete determination of this equation for
apq in the case of rapidly decreasing initial conditions leads to infinite numbers
of constraints [16] except in the periodic case, where there is only one constraint,
which can be easily obtained from the description of the KP equation in the form
of a system,

U + Ul + Uzzz + 3awy =0 2.623)

w, = QlUy
Let us consider the Fourier-image of (2.6.23) with boundary conditions periodic
in z and y, and particularly the dynamics of components with P = 0. One can see
that for the solvability of the second equation with respect to w, it is necessary
to impose a constraint u,, =0 at n = (0, @), and the requirement of its invariance
means that woq. The latter is equivalent to introducing an integration constant,

1 1 z
—/ dz uyyda’
) [}

when reducing (2.6.23) to a single equation (1 is a period in z). This additional
term was obtained in [17] from a consideration of the Hamiltonian structure of
the KP equation as generated by the Lie-Berezin-Kirillov bracket on orbits of
a coadjoint action of the gauge group. In the form of (2.6.3) this leads to the
correct form of the periodic KP-1 equation [n; = (P;, @;)]:

iq =0

[
o . (2.6.24)
ispap = wn,a0 + Z U_ozara2, Po #0,
12

where the prime near the summation sign indicates the absence of terms with
P1 = 0, Pz = 0

Starting from (2.6.24) and imposing the constraint apq = 0, one can perform
all the above procedures and see that if a? = —1, the canonical transformation
(2.6.6) exists and thus the nondegenerative KP equation is completely integrable.
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If o2 = 1, the canonical transformation (2.6.6) does not exist and actions analytic
in field variables are absent.

It should be noted that if we consider the case of rapidly decreasing boundary
conditions, the distinctions between degenerative and nondegenerative equations
disappear (we have pointed out this fact in Sect.2.5 already). This is the rea-
son for thinking of both KP equations as completely integrable systems [18].
The analogical distinction between two KP equations was recently obtained by
Krichever, using his algebrogeometric appraoch [13].

Consider now the singular four-particle interaction when Ti234 in (2.6.8) has
a singularity on T; [(2.6.20) and above]. The important example for physical
:[afg]lications is the Davey-Stewartson equation (1.1.4) having Ti23 of the form

(Py — P3? —(Q1 — Q3)*
(P — Py +(Q1 — @3)?
(P — P)? — (@ — Qo _  w}n} —pdud
(B - P2+ Q- Qa (& +pdXed+pd)’

where &1, k2, u1, p2 and Py, Qo are the coordinates parametrizing the resonant
surface:

T4
(2.6.25)

Pi=Py+L(ri+r), Po=Po—}(m1+r)
Py=Po+3 (k1 —K2) , Py=P ~ 1 (r1 — K2)

2.6.26
Q1=Qo+ 3+, Q2=Qo—5(m—m) ( )
Q=Qo+5(m—p2), Qa=Qo+73(um+p),
where the resonance condition E)z34 = 0 takes the form
Kiky — 2 =0, (2.6.27)

In points of a general position we see that Ti234 = 0, in accordance with Theorem
2.6.1. Those points are singular where

K1 =u = 0 or Ky =2 = 0 (2628)

In points of a general position for the transformation (2.6.6), we have
K1K2 + g1 p2
RGN

In the periodic case we see from (1.4) that on the manifolds (2.6.28), say, k2 =
w2 =0, one has to put

N =

= ————d % if K%+ p? #0 =y =
K 0
K% % 11T 4 y K2 2
T=0 if &) =K2 =y =p2=0.
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As a result we come to the nonsingular vertex Tjz4; furthermore, we may
construct the transformation (2.6.6) and prove the absence of zero denominators
in it (using the existence of an additional integral) via the scheme outlined above.

3. Applications to Particular Systems

3.1 The Derivation of Universal Models

The present volume contains a paper by F. Calogero devoted to the derivation
of universal models for nonlinear wave interactions from rather general types of
differential equations. Many of these models appear to be exactly solvable; in
fact even the more interesting situations hold true.

Let us take as a starting point some particular physical wave system, any-
where from solid state physics to astrophysics; sometimes this model can be
stated in terms of differential equations. Then let us perform the asymptotic ex-
pansion procedure on it. In doing so we single out the essential kernel of the
physical phenomenon under consideration. The resulting model will prove uni-
versal and applicable to many physical problems at once. It is very likely that
it will appear to be exactly solvable. In that case the model itself represents an
important mathematical object. In order to study it, we may have to use advanced
mathematics, like Lie group theory or algebraic geometry.

The occurrence of such wonderful things seems incomprehensible and an
explanation may lie in the field of philosophy rather than in science. Here it is
worth recalling the well-known paper by E. Wiggner, “On the Incomprehensible
Effectivity of Mathematics in Natural Science” [20]. All of the above concerns
both conservative and dissipative systems. We do not have a sufficiently gen-
eral language for describing dissipative systems, but for conservative ones, we
do: it is the language of Hamiltonian mechanics. This language takes its most
simple form in the case of translationally invariant systems; i.¢., when consider-
ing phenomena occurring in homogeneous space. Then it is possible to introduce
canonical variables (amplitudes of progressive waves) a; and take a Hamiltonian
of the system in the form of a functional power series in ax, aj as a starting
point.

We have considered the form of 2 Hamiltonian in the beginning of the present
paper; dealing-with such a Hamiltonian, it is easy to construct different universal
models. A detailed description of the procedure may be found in papers [21-23];
we now consider several particular examples.

Let the Hamiltonian of the system have the form (our notation is the same is
in Chap.2)

H= / Wi Jau? dk + % Vor2a0a1azdkodkrdks . G.11)
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Let the oscillations in the medium with the wave vectors lying near three values
&, & and &, be excited; then the resonance conditions are fulfilled:

=& +&, wg, =wg Twg, . (3.1.2)

Suppose that the domains in k-space occupied by these three packets do not
overlap. Then one can introduce three fields, ao(k), ai(k), az(k), to describe
the behaviour of the system at times shorter than the time of the next order
interaction (when one can neglect the higher nonlinear processes). Thus

ai, = ao(k) + a1 (k) + az(k) ,
and in the Hamiltonian (3.1.1), one can make a substitution:

Vorzaoaraz = Ve"a"g';g;’—“aa"(ko)a,_'“(kl)az_"’(kz)

HxY / [we, + (o3, = &)] laseh)”

j=0
where v; = Viw(k = §;). Now coming to the envelope fields,

exp (iwe, 1)

Aj(r,t)= il

aj(k)e*"dk ,

we obtain the well-known three-wave system, g is a constant:
Ao + (0V) Ao = g A1 4,
Al + (v1 V) A] = q"'AoA; (3 1 3)
Az + (12V) Az = ¢" Ao AT

Now we show how the Hamiltonian (3.1.3) arises in physics, using the ex-
ample of waves in media with weak dispersion [23] in which

wi =k (1+2k2) . (3.14)

Such a dispersion law is characteristic for waves on the surface of shallow water
or for ion-acoustic waves in plasma. Media with a weak dispersion are described
by the hydrodynamiclike equations with an additional term [22]:

2 1 aivov4=0 (3.1.5)
9 A9 _ E(. 3 62
E+ 7 " <6g+2 ng 2)Aébp ) .

Here, ¢ is a hydrodynamic potential, ép is a quantity canonically conjugated
to it, which can be called the “denstiy”’; g is a constant. Introducing new variables
a; by formulae (d = 3)
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1 g(l)/2 k2

= —— 1 * ik r
be= @2 | Jaan (ar +aly)e*Tdk (3.1.6)

Vé = = / k ——Cl/z (ak — a*,) e*"dk
= 32 | 112 172 \%k ~ G-k ’
@2 | B2 gl
we obtain an interaction Hamiltonian (3.1.1) with
. V!o—ln—do =)/ e %080 o cl/z (kO * kl)k;ﬂ
kokiky T Vkokiks — 16(n3 og)1/2 k(‘,/zk:ﬂ
(k1 - k2)ky?  (ka - ko)ky 2 12
+ + +3g(hokik)'2Y . (3.17)
k;/Zk;ﬂ k;/zkéﬂ
The corresponding equations are
6a,. . 6H . . . «
W" =— 1?}:0 = —jwgk,ak, ——1{2 /[zvkuhhalazsio'*h-h
+ Vieok k20102080 —key —k,
+ Va:,,klk,afaiﬁow,u,]dkl dkz} . (3.1.8)

They describe weakly nonlinear waves which are close to sinusoidal if the non-
linear correction to the frequency is much less than the dispersion correction. In
essence this is a validity condition for the approximation (3.1.7-8).

Now let us convince ourselves that weakly nonlinear and weakly dispersive
waves in the system (3.1.7-8) are described by the KP equation. Remember
that in the original equations (3.1.5) we supposed the long wave approximation.
Because the nonlinearity and dependence of a transverse coordinate are small, in
the interaction Hamiltonian this transverse coordinate can be omitted. It should

be taken into account only in the linear part of (3.1.8). As a result we obtained
from (3.1.6)

—sesiss  C2(3g+3) 12
Vkokﬁ; '= 16(7{390)1/2 (POPIP?-) / 3
where k; = (p;,¢;), 1=0,1,2 and ¢; < p;. In the linear term one has to expand
wy in a power series of the. small ¢ at finite p to obtain (Ap? < 1, ¢ < p?):

we =V P+ @ + AP+ ¢2)% ~ cpy/1 +q2[p? + Ap?
As &
~ +op +— .
¢ (P 2P 2p
Up to some coefficients which can be removed by scaling transformations and
the term c¢p in wg, which can be removed by transformation to the movable

reference system, we obtain the KP Hamiltonian in normal coordinates a(t),
related with the original variable u(z,y, ) via a formula like (3.1.6a).
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Now consider the general case of an interaction of high-frequency (short) and
low-frequency (long) waves [23] in the conservative medium with the Hamilto-
nian H. We introduce normal coordinates a; for short waves and b, for long
waves. In these coordinates the quadratic part of the Hamiltonian has the form

Hp = /w,,a,.a:dk+/()kbkb;dk , 3.19)

where wy, and 2, are the dispersion laws of high-frequency and low-frequency
waves. The interaction Hamiltonian can be represented in the form

Hyy=Hy+ Hy+ Hs

where H; describes the mutual interaction of the short waves, H describes their

interaction with the long waves and Hj describes the mutual interaction of long

waves. The motion equations have the standard form
, 6H 6H

ap = —1—— b,, = —I'J—b-i .

3.1.10
Sar ( )

In what follows we shall suppose that the b-amplitudes are small (b < ag),
and neglect the Hj. In the H3 we keep only terms linear in b and of the lowest
order in a; which do not disappear when averaging over the long-wave period.
These requirements enable us to find the Hamiltonian

Hz = / [h,,ohk,bkoahak, + (')] 5,:0_;,1_52 dkodkldkz .
Here, (*) indicates the complex conjugated expression. The theory is valid when
H> /w,, (b [ dk

and the low-frequency waves are strongly rearranged by the action of the high-
frequency waves. We choose the Hamiltonian H; as

Hi=} /Whuk,kzk.aaal'GZG:)akwh—h,—h,dko o dks .

This structure of H; is characteristic for a medium with cubic nonlinearity and
in some cases, for a medium with quadratic nonlinearity and in some cases, for
a medium with quadratic nonlinearity when cubic terms in the Hamiltonian may
be removed by canonical transformation [22].

The interaction Hamiltonian is greatly simplified when the high-frequency
waves form a narrow packet in the k-space near k = ko. Then one can put

Wkklk;ka ~ Wkokokoko =q (3.1113,)
hik ks & Bkikoko = f(K, ko) (3.1.11b)
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Ow Pw
Wi = Wk + ak&k 2 0%, kedks (3.1.11¢)

If the low-frequency waves are acoustic waves, {2 = ck, it is possible to
calculate f(k, ko) and the Hamiltonian of the system explicitly. To do so, let us
replace a; by the new variable (envelope field),

Pir, 1) = / ai exp {iw(ko)t +iCk — ko) - 7} dk , 3.112)

_1
emr

and b by two scalar functions: the density variation §p and the medium velocity
v defined by formula (3.1.6) (with by, standing for a). The energy of the narrow
packet in the k-space is w(ko)|¥(r,t)[%. In the presence of the sound wave the
quantity w(ke) acquires a variation,

6w(ko) 3w(ko)
v )
ov

and the com:spondmg variation of the high-frequency wave energy is

fe = /l!l'l’ (g—:ﬁg+ ‘;—:v) dr . (3.1.13)

The quantity ée obviusly coincides with H». In the isotropic medium,
dulke) _ ko
v - ko ‘
Let us introduce the notation

Aw(ko)
T o0

where & is the hydrodynamic potential. As one can see from (3.1.12), the quantity
¥ is a canonical transformation of a; and therefore

bw(ko) =

_,Ba _V¢:

1% cioy 2t ZE A asw v (gof + B
ag) ﬂﬂ;ﬁﬂ (3.1.14)
The variables ¢ and §p are canonically conjugated and obey the equations
% = —opAS — a—-]!l'/|2 555 (3.1.15)
61! = ,;2 ﬂ|;p|2 = _.J_I:_ (3.1.16)

Inserting (3.1.12) and formulae like (3.1.16) (expressing §p and v in terms
of b;) into (3.1.13), we find for f(k, ko) the expression
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ko (k, ko)
f(k,ko)=(m) (ﬂeo+ac—-k~,~c;-)-

Equations (3.1.14-16) describe the interaction of high-frequency waves of any
nature with waves of the acoustic type. In many physical problems the depen-
dence of a high-frequency wave dispersion law on the medium velocity may be
neglected, and one may put a = 0. Then (3.1.15, 16) may be reduced to one
equation:

* '
- 1.1
( e A) b0=+Boo Al . (3.1.17)

Let vy # c and the amplitude of high-frequency waves be sufficiently small.
Then one may consider the low-frequency waves as purely forced and replace
0/0t by v30/0z. System (3.1.14-16) is reduced now to the form

. . 1 v
i) = ivg®; — 50" P, — ﬁalw u¥
Lyu = L@ (3.1.18)

u=q|¥f + Bbo + ab, ,

where L; and L, are second-order homogeneous partial differential operators:

&
(n)
Ln= C" OkiOk;

(3.1.19)

The system (3.1.18) is universal for the description of small-amplitude, high-
frequency waves with acoustic-type waves.

3.2 Kadomtsev-Petviashvili and Veselov-Novikov Equations

Let us apply the results obtained in the Chap. 2 to the KP equation. Let us begin
with KP-2, The dispersion law of this equation,

2
w = p3 - Si )
p

is nondecaying. Therefore, from the results of Chap.2 it follows that states
asymptotic as ¢ — oo coincide for KP-2 with rapidly decreasing boundary
conditions [see (2.4.3) and (5], [6], [9] also]. It also follows that amplitudes
of the classical scattering matrix become zero on the corresponding resonant
surfaces in points of general position. In the first order this fact is trivial: the dis-
persion law for KP-2 is nondecaying, Vo2 = (pop1p2)'/2, and (2.6.9) has in this
case solutions ky = 0 or k2 = 0 only. The analogous identity for second-order,
amplitudes was verified in [4].
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The phenomenon of coincidence of asymptotic states for KP-2 was obtained
independently in [18] via the inverse scattering technique. With periodic bound-
ary conditions the KP-2 may be transformed to the normal form (2.6.6) and is
completely integrable {7]. The hypothesis of complete integrability of periodic
KP-2 was proposed for the first time in [5].

We have already mentioned in Chap.2 that the dispersion law of the KP-1
equation is degenerative:

p=bi-6, g=6-8, w=4(6-8) .
On the resonant surface the coefficient function in the Hamiltonian is

Vios = VPPITE = [(61 ~ )& — )& — )" #0.

Therefore the KP-1 equation describes a nontrivial scattering. The states asymp-
totic as ¢ — oo do not coincide and are related by the formula

. _ i 3
L =m ‘/62 [ — &) (& = &) (& — '
X (ngfa + Cf_nfs) (C?afz + Ce_;.e;) dés

3%
N / 61 — ) (61 — &) (6 — )]V

X ( E;fﬂ + C;:_fa) (Czlfs + Cf—lfa) dés,

where Ce,¢; = C(p, g), p =& — €, ¢ = €7 — €2. In the periodic case (and in any
case in which boundary conditions are vanishing the KP-1 equation proves to be
a nonintegrable system.

Recently, the Veselov-Novikov equation [24]

v, = o+ &v + uv) + d(aw) (3.2.1)

Su=-30v, v=p

has been considered. Here, 8 = 8, = 8, —i,, z = z +1iy, and the bar indicates
complex conjugation. The solutions independent of y for this equation are reduced
to the solution of the Korteveg-de Vries equation. The Equation (3.2.1) can be
solved via the inverse scattering transform method [24] and allows a L- A-B triad
representation,

oL
Bt

where

+[L,A+A]=fL,

L=—A+v(z,3), A=8+ud and f=08u+0u.
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The properties of (3.2.1) depend strongly on conditions asymptotic as z —
oo.If v —» 0as z — oo, then the Veselov-Novikov equation has a dispersion
law,

Wi = 2 (P3 - 3q2) ) k= (P: 4) 3 (322)

which is nondegenerative (because it is analytic in p and ¢), like the KP-2
(a? = —1) dispersion law. Hence (3.2.2) must possess all the properties of the
KP-2 equation. Since the dispersion law (3.2.2) is nondecaying, we have to verify
that the first-order scattering amplitude becomes zero on the resonant surface.
The resonant manifold is determined in the space (p1, p2, 1, ¢2) by the equation

@12 — q@2)(@ + @) + ((1@2 + P21 )1 + p2) (3.23)
=pip(pr +p2) + P13} + 1@ + g} =0

Now let us calculate the first-order scattering amplitude. For this we make
the Fourier transformation in (3.2.1) via z and y :

v(z,y,t) = % / (vie +v%,) Pz dy .
Now the relation between v and v takes the form of (k = (p, ¢)):
U = —3"7 (v +v%) , &=p+iq. (3.2.4)

Substituting (3.2.4) into (3.2.1), we obtain in the nonlinear term the expression
(up to the coefficients unessential for us)

/ [x (fi + ﬂ) +K" (fl + %)] Ok, Vi 6k — Ky — k)dkrdks  (3.2.5)

K1 K2 Ky

and other terms containing v*v, which we need not write down because we
know beforehand that the (3.2.1) is a Hamiltonian equation. The squared bracket
in (3.2.5), after making the substitution x = p + ig, taking into account the §-
function and making some algebraic transformations, becomes

[p1p2 + 1 2)lp1p2(py + p2) + p1g2 + p2g?)
@+ D P2+ )

Now making the replacement

(3.2.6)

v = a(p? + A2,

and rewriting (3.2.1) in terms of a;, we have the interaction Hamiltonian
Hin = /Vk1+k:,k1kz (9% 4k Ok, Gy + () dirdy

where



230  V.E. Zakharov and EI Schulman

Vet e r = const 12+ @) Eipaa + @) + ;g + pagd)
by 4lea ker k2 ([(p1 + p2)* +(q1 +q2)2](p%+q%)(}g+q%)]l/2

Comparing this expression with (3.2.3), we see that Vi .k, k&, contains the
energy denominator E = wg, 4k, — Wk, — Wk, as a factor and becomes zero simul-
taneously with it, in agreement with Theorem 2.2.1. For the Veselov-Novikov
equation, other statements conceming K P — 2 are also true, namely the coinci-
dence of asymptotics as ¢ — o0, the triviality of scattering and the existence
of a transformation to the normal form in the periodic case.

3.3 Davey-Stewartson-Type Equations.
The Universality of the Davey-Stewartson Equation
in the Scope of Solvable Models

As we have seen in Sect. 3.1, the problem of the interaction of small-amplitude,
quasimonochromatic wave packets with acoustic waves leads in an natural way
to equations which we shall call Davey-Stewartson-type equations:

W+ Li¥+u¥P =0

Lou = La|OP . -(3.3.1)
Here, u(r, t) is a real function indicating a mean field while ¥(r, t) is a complex
function representing the envelope, r = (z1, ... ,z4), d=2,3 and

- &
L”=Zc§;"m, n=12.3. (332)

6

The Davey-Stewartson equation itself is written via operators (3.3.2) of the form

8 &
hi=l=ga* o

& _ &
L=~i(w*‘a';i)-

It arises when applying the multiscale expansion technique to the KP equation
[25, 26] and in the theory of two-dimensional long waves over finite depth liquids
[15].

To study the system (3.3.1) it is convenient to rewrite it in the explicitly
Hamiltonian form

Wk, + L1 (ko) T, + / Tor23 %, Y, iy dkrdkadks = 0, (3.33)

where L(k) are symbols of the operators (3.3.2). The vertex Toizs = To12a6(Po1z3)
has the form
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Ty = L(ko — k) L Iatko - k3)
92 " La(ko — k3)  La(ko — k3)

and is defined on the surface Poi23 = ko + k1 — k2 — k3. The Hamiltonian of the
equation (3.3.1) has the form

(3.3.4)

H=/L1(k)|sF|2dk
+} / Torzs 0y, U5, VesFicsdko ... dks . (3.3.5)

The quadratic form L, (k) may be transformed to the diagonal form via the non-
degenerative map. After doing so, the new coefficients C’g’, C’S) arise; we shall
designate a;j, Bij, correspondingly. The dispersion law w = L;(k) is degen-
erative only when Li(k) = kf, k = (ki, ... ,kq); we shall not take this case
into account. In all other cases the system (3.3.1) may have additional motion
invariants only if T' becomes zero on the resonant surface (2.3.32). One should
note that if T becomes zero at some L,, L, then it also becomes zero upon
interchanging L, and Lj. To distinguish between these systems, one has to anal-
yse the second-order vertex [19], This analysis leads to the following results at
d =2, when

we=k3+okd, o=%1,
Let o = 1. Then the solvable system is

P2=0, fu=pn=p, an=-an=a,
W+ AV +u¥ =0 (3.3.6)

[a (83 - 63) + 2(1126:6”] u= ﬂAlWIz .
By a change of variables the last equation could be transformed to the form
i )
(373 v
If o = —1, we have the counterpart of (3.3.6): 81y = 22 = 8, a1 = —an = a,
ajz =0. As in (3.3.6), in diagonal form we obtain:

W+ (B2 -2)F+ul =0
) , (3.3.7)
adu = § (82 - 32) |¥|
and also the system
N(8:%8,) [(0: £8,)u+(9: 78,) |#] =0

i+ (2 -2)P+u¥l=0.

The latter in coordinates z; — z; = £, z1 + 23 = ) becomes



232  V.E. Zakharov and EI. Schulman
W+ Ty +ul =0, ug=|P}. (3.3.8)

The system (3.3.8) and its L-A pair has been presented in [9]. Equations (3.3.6,7)
are also integrable via the inverse scattering; more detailed information can be
found in [19]. At d = 3, analogous but much more extensive analysis shows that
the system (3.3.1) does not have any additional invariants.

It is useful to keep in mind the following fact. If one takes some two-
dimensional, exactly solvable model and considers the initial conditions, like
rapidly oscillating waves with slowly varying amplitude, then after the averag-
ing procedure (or multiple scale expansion), one obtains the envelope equation
in the form of one of the Davey-Stewartson equations (with one of the two
admissible combinations of L and L3), the so-called DS-1 and DS-2. Specific
examples can be found in [26].

3.4 Applications to One-Dimensional Equations

The ideas developed above can be explored in the one-dimensional case using the
results contained in Sect. 3.3a). We present here the results for: a) the two coupled
nonlinear Schrédinger equation system [12]; b) the systems describing the long-
acoustic and short-wave interaction (first neglecting [11] and then taking into
account [27] the effects of eigen nonlinearity and the dispersion of long waves);
and c) the system describing the interaction of two counter-directed wave packets
in the cubic medium [28].

The system of two coupled nonlinear Schrodinger equations arises in nonlin-
ear optics [29] and has the form

W = C1¥hes +20 |01 P O + 28 |0 1

: 3.4.1
iWgy = CaWa, + 27 ‘Wilz ¥, +28 |W1 |2 v, . ¢ )
It is a Hamiltonian system:
H =/ {10 + o | + s
2810 Bl + 71l (342)

The exact solvability of (3.4.1) with Cy = Cz, a = 8 = 7 has been shown in
[30]. To study the system (3.4.1) in the general case we have to first determine
whether the set of dispersion laws

wi(k) = C1k? , wak) = C2k? (3.4.3)

is degenerative to the process (2.3.8). As we have already seen, at ¢ = C1/Cy #
+1 the set (3.4.3) is nondegenerative to the process (2.3.8). Because the ampli-
tude of the process (2.3.8) is a constant in all k-space and equal to 23 # O, the
system (3.4.1) cannot have an additional integral at ¢ # 1. At g =1, one has
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to calculate the second-order amplitude corresponding to the next nonlinear pro-
cess. One may calculate, for example, the amplitude of the process (2.3.10). The
corresponding manifold in the space (ki, ... , ko) is quadratic and has a rational
parametrization [12]. Using it, one may show that the set (3.4.3) is nondegener-
ative to (2.3.10). The amplitude of the process (2.3.10) is rather complicated; it
is important that this amplitude become zero in two cases:

Q=13’ a=ﬂand 9="ls a—":"'ﬂ' (344)

Analogously one may obtain § =y at ¢ = land f = —yat g=~1. Therefore
except for the “vector Schrodinger equation” g = 1, the equations (3.4.1) with

o=-1, a=-f=7 345

may be integrable also. The system (3.4.1) with coefficients (3.4.5) is indeed
integrable. In fact, in [31] it has been shown that the inverse scattering method
is applicable to the system

W =V, + WXV

—iX =X+ XVUX, (3.4.6)

Where X and ¥ are matrices. We choose

X1
U=, ..., %), X=( : )
Xa

and consider the reduction X = AW*, where A is a Hermitean matrix. Then we
have

Wt = Vmzz + U¥m m=1,...,n, 3.47)

where u = W AP* is a real function. By a unitary transformation, the matrix A
may be transformed to the diagonal form A — «;bi;. Therefore if n = 2, there
are only two possibilities, namely the vector Schrodinger case [30] and the system
with coefficients (3.4.5). This integrable system was obtained independently in
[12] and [32].

The nonintegrability of the system describing the resonant interaction of long
acoustic waves and short waves derived in [33] may be proved in an analogous
way [11]:

i+ Wep +u¥ =0

up + Fuze =2 (1R, 5 (3.4.8)

as well as the nonintegrability of the system [27]
ue + (W + ol @ +uss), =0 (3.49)

i+, +u¥ =0,
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generalizing the system (3.4.8). In nonlinear optics a system also arises [34]:

~aa—5;=s*xzs-+s+xr*s+
as* (3.4.10)
a—é'=s xIST+S8S™  xI™S s

where

and I, I*, I~ are diagonal matrices. If I* = I~ = 0, the system (3,4.10) coincides
with the assymetric chiral field equations [35] and is integrable. In [28] it is
shown that this case exhausts all the possibilities of integrability of (3.4.10). The
proof uses Theorem 2.3.1 and the lemma from paper [36] concerning the system
(3.4.10) with 8/8z = 0. Let us discuss this point in more detail.

Lemma. For a reduced system (3.4.9) with 8/9z = 0 to be integrable, it is
necessary that the system

as*

—=8*xTrst
a%t_ (3.4.11)
-'-a-t—=5 x IS

possess an additional integral to I = (S*J*S*) linear in S~ and of the degree 1
in §*, [ is an integer.

From this lemma it follows that if matrices
J* =diag (Jf,J;,J;) ’ JT # J; #J;
are nondegenerative, then the equality
(B = ) (3 + (3 = 2) (3 + (- 3t) (93
+E (I - B) (B =-71)(J-J) =0, keN, k#0

is a necessary condition for the system (3.4.11) to be integrable. Even if at
0/9¢ = 8/0n = 8/t this condition is fulfilled, under other reductions,

S 8 8 20
3¢ oo  "H

it is not fulfilled. This means that for (3.4.10) to be integrable, it is necessary
that two entries J}, j = 1,2,3 coincide. Becuase we may add to J* any diagonal
matrix, one can set J; = J3 =0, J; #0. Then the first equation in (3.4.11) can
be solved easily and
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M, cos (J3 Mot + o)
St=| —Msin (J;Mot + 500) .
M,
Here Mo, My, o are arbitrary constants. Further, let an integral exist,
Z=Y S7P (5", (3.4.12)

where P(S*) are polynomials of S* of degree {, i = 1,2, 3. As has been shown in
[36], from the existence of an additional integral of the reduced system (3.4.11),
it follows that J; = J,.

Because all the aforesaid also applies to J~, we conclude that there are only
two possibilities for the system (3.4.10) to be integrable:

J = diag (J1, 1, J3) , J* =diag (0,0, J3})
and
J =diag (), /1, J1) , J*=diag (0,3,0) , J~ =diag (0,0,J3) .

Now one has to use the Holdstein-Primakov variables,

St +iS; =a\/2M* —|a|2, M*=|S"|,
Sy +iSy =b\/2M~ — b2, M~ =|S7|,

by which the system (3.4.10) acquires the standard form (2.1.1) with o = 2,
a® = g, a® = b and dispersion laws

ws),m =w,‘f =c+aVeaki+l, ¢ =const.

¢i = const .

The set {w"} is nondegenerative to the six-particle processes. By calculating the
second-order vertex and checking that it is nonzero on the resonant surface at
J* #0, we obtain the required statement.

The system generalizing (3.4.1) with the Hamiltonian has also been studied
[37]

" =/{q 2 + 3 W+ o[04 [* +28 |01 122 + v | Bl
+5 (BP0 + 722  dz .

Quite analogously to (3.4.2), when 8 # 0, one obtains ¢; = +c;. At § #0, only
the possibility ¢; = ¢; remains (one has to consider the process ¥ + ¥ + ¥, —
¥, + ¥, + ¥,). The result is that the integrable cases are already known and can
be found in [38].
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Appendix I [6]

Proofs of the Local Theorems
(of Uniqueness and Others from Sect.2.3)

We are seeking the functions w(p, g) and f(p, q) determined parametrically in the
form
p=b—& g=all) - al2)
w=b(E1) - b(&) + Y " walt, €2)

ne=l

f=c) - &)+ ) e fallr, 6.

n=1

(A.1l)

Here, ¢ is a small denominator. It is convenient to set the three-dimensional
resonance manifold parametrically in the form

n=b—-6, aq=all+n)—alé2+n)

(A.12)
m=G-6, e=ab+v)—alfa+v),
requiring additionally that
g=q+q=a&) - al2) (A.13)

=a(1+n)—al@+n)+a(l+v)—a(fa+v).

Now conditions (2.3.13, 14) together with (A.1.3) will impose three equations
upon five parameters &5, &2, €3, 7, v. This system of equations must define  and
v in the form of a series in ¢:

n=d el 6,&), v=Y e"vall,&,6) .

n=1 n=1

We have a linear overdetermined system in the first order in ¢ :

[a'(6) = a'(&)] m + [a'(&3) — d' ()] 1 =0

[6'60) — b'(&3)] m + [b'(&a) — b'(€2)] v = 424 (A.1.4)
(&) = @) m+ (&) - (&) m=F.
Here

2 = w6, &) —wib, &) —wils, &)

(A.1.5)
R = fith, &) - fith, &) - filés, &) .
The consistency condition of the system (A.1.4) has the form
2 B=FA, (A.1.6)
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where
A(f], 521 63) = Anb = 0(51,62) + a(flv 63) + a(fﬁh 6!) (A1)
B(&1,62,6) = Aac = B, &) + B(E2, &) + B(&3, &) o
a6y, &) = b (¢)a'(¢2) — b (&)a' (&) (AL8)

B, &) = (&)’ (€2) - d(&a'(&) .

Functions A(&, &2,£3) and B(¢y, €2, £3) are antisymmeltric relative to all argu-
ment permutations. By interchanging ¢; and £3 in (A.1.6) and summing up the
results, we can convince ourselves that functions wi(¢y,€) and fi(fy, f2) are
antisymmetric:

wiléy, &) = ~wi(é2, &) file, &) = —fi(&, &) .

Thus, we may put

= wily, ) +wi(éa, &) +wi(83,61)
Fi = fith, &) + ik, &) + (&, 6) .

So our problem is to solve the functional equation (A.1.6). It is easy to check
that (A.1.6) has the following solution:

b' (&) — b'(&)

(A.1.9)

wi(é1,62) = m &) — L&) (A.1.10)
filer, &) = ﬁlﬂ% 1) - 1) - ALID)

a'(6) —d'(&
Here, I({) is any function. This solution does not result in a new dispersion law,
but represents the result of reparametrization in (A.1.1).

Let us put
GLi—b=m-m
a(é1) — a(€2) = a(m) — a(m) + e [I(m) — I(n2)] (A.1.12)

b(&1) — b(€2) = b(m) ~ bln2) + ew(m, m2) .

The w(m, n2) represents in itself a series in powers of ¢, the first term of which
is given by formulae (A.1.10, 11). One more trivial solution of (A.1.12) is

w1 =p(61) = p(€2) , fi =ql&) — ql&2) ;

(p(€) and ¢(£) are any functions, representing variations of b(¢) and c(¢)).
It is important to note that (A.1.6) possesses one more solution as well. Let
us assume

wi(€1,€2) = alér, £)5(6, &2)

fier, &) = Bler, £S5, 62) . (4.1.13)
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After substitution of (A.1.13) into (A.1.6) we can be convinced that S(¢1,¢£2)
satisfies the surprisingly simple equation,

S(é1, &) [d'(61) = d'(&2)] + S(éa, &) [a'(&D)

—d'(3)] + 5(63,6) [a'(63) — d'(€)] =0

_ (&) —r&)

R TS EPTAR
Here, r(¢) is an arbitrary function again. The solution (A.1.15) is also a trivial
one and results from reparametrization of a dispersion law of the form

p=b —b+elr(&) -r],

g=a(f) ~ alé2) , w=b&)—b&),

which is to the first order in € equivalent to (2.3.15) with a modified function
a(¢). To obtain given a(£), one needs to make a change of variables of the form

(A.1.14)

(A.1.15)

bi=m+ ea'(m)% ;
r(m) = ()

— ’
b= +ea (m)a,(m) e |
Substituting new variables into the expression for w, and expanding in ¢, we go
to expression (A.1.1) with the term linear in ¢ being of the form (A.1.13, 15).
We shall consider (A.1.6) as a system of linear algebraic equations relative to
the unknown functions w({;, £2) and f(&,&2). Let variable 3 take two arbitrary
values £3 = 0y and & = 0. Let us write:

A = A12(6,8) = Alg, .o, ,
Bia =B 2(6,6) = Blg, oo, ,

fl€ i) =gi€), w,a)=hi(f), i=12. (A.1.17)

We can see from (A.1.17) that in the most general case, the solution of (A.1.6)
may depend on not more than four functions of one variable g 2(€) and h; 2(§).

Our solution depends upon these very four functions, I(£), p(£), ¢(€) and
r(£). Solving (A.1.6) at & = o012 and making an clementary analysis of the
solution, we can be convinced that we have constructed a general solution of the
functional equation (A.1.6). The result obtained can be considered as the local
uniqueness theorem for degenerative dispersion laws. This theorem without a
complete proof was presented in [9]. The global uniqueness theorem appears in
Appendix II

Let w(p, ) be a differentiable function, and w(0,0) = 0. Let w(p, ¢) satisfy
one more condition,

(A.1.16)

|lw(p, 9)|

2 _ 2(1/2
7 0 R=|p=¢". (A.1.18)
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Then the dispersion law w(p, g) is decaying. There is a manifold I''2, because it
contains a two-dimensional plane p; = g = 0 and a vicinity of this plane, given
by the following equation

7] o
'é%(?h‘h)m+a—:(m,m)qz=0 (A.1.19)

Putting p; = g2 = 0 in (2.3.14), we get £(0,0) = 0; moreover,

}ziln.o [I—%ﬁ—)] = fo(6) < co atall 8.
Here, 9 = arctg (¢2/p2).

Thus, in the vicinity of zero, f(p, ¢) may tend asymptotically to the homoge-
neous function of the first order. But we assumed that this function is analytic.
Thus, fo(9) = 0 and function f also submit to condition (A.1.19). Now in the
vicinity of p; = g2 = 0 we have, from (2.3.13):

d a
5);‘(}’1,(11)?2 + 55‘(%?1)92 =0.

This means that the Jacobian between functions f and w is equal to zero, and
the latter are functionally dependent,

fp,9) = Flw(p,9)] .
Now we have from (2.3.13, 14):

Flw(pr, q1) +w(p2, @2)] = F[w(p1,q)] + Flw(p2, )] ,

from which we conclude F(£) = A¢, A is a constant. The important consequence
of this result is Theorem 2.3.3.

Let us designate a wave number corresponding to a new space dimension
via “r”, and consider the dispersion law, which becomes (2.3.15) at r = 0. The
proof of the theorem 2.3.5 [6]:

Let the degenerative law w(p, ¢, r) be parametrized in the vicinity of r = 0
as follows:

p=6& —& q=a)—al)

v 1.2
w(p,0,7) = BE) — KED +1 3 r a6, ) (4120

n=0

and let manifold I''* have dimensionality 5. Then wpy = const, w, = 0, n > 0.
Then the resonance manifold I'':2 for the dispersion law (A.1.20) may be given
in the form

atf) —a(€2) = alr +n) — al&s — )+ a(é3 +v) ~ alé2 +v)
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Z(Tl +r) (b, &) = —b(&) + b&2) + b& + 1)

k=0
+b0(&+ )+ W& +v) = b(la+v)+ Z [r{‘”w,.(& +n,6
n=0
) + il w6 + v, 6 +0)] (A.1.21)

Let us choose &1, &2, €3, ry and r; as independent variables and then consider v
and 7 as their functions, analytical in ry and ry.
The degeneracy condition can be written in its usual form,

flpyg,ri+7r2) = f(pr,q1,m1) + f(p2,q2,72) . (A.1.22)

The solution of (A.1.22) may be found in the form

f.q,m) = &) — ) +1 Y r" fally, £2)

=0
" (A.1.23)
o0 (< <)
n= Z Nmal{ 17 , V= Z Vmall 77 -
men=1 min=1

Considering terms linear in vy and r; in (A.1.21,22), and marking ng = niory +
no172, Yo = viory + Yo r2, We obtain
m [a'(61) — a'(63)] + w0 [a'(&) — a'(&2)] =0
(r1 + rdwo(&r, &2) = riwolén, €3) + rawo(és, £2)
+10 [B'(61) — V' (&)] + o [6' (&) — b'(£&2)] (A.1.24)
(r1 +r2) folr, &2) = r1 folkr, £3) + r2 fo(&3, &2)
+no [(€) — '(63)] + o [d (&) — c'(&)] .

Setting coefficients equal in (A.1.24) at ry, r, separately, we obtain overde-
termined the system of equations for 70, v19, no1 and vgy. Their consistency
conditions are

[wo(é1,€2) — woléy, &)1 B

= [fo(&r, &) — fo(br, &) A ' (A.1.25)
[wolé1, £2) — wo(é2, &)1 B
= [fo(ér, &2) — foés, 2] A . (A.1.26)

Here, A and B are given by formulae (A.1.7, 8).

In contrast to (A.1.6), (A.1.25,26) do not possess nontrivial solutions. To
convince ourselves of this, let us differentiate (A.1.25) in & and then apply
operator 0°/0¢; — 8° /93¢, for the same equation, further putting & = &.
We obtain the system of the two homogeneous equations for dw/8¢2, 8f/0¢a,
having a nonzero determinant. So, 8w/8¢2 = 0, 8f/0¢2 = 0. Similarly, we get
Ow /3¢ =0, 3f/8& =0 from (A.1.26). Thus, the unique solution of (A.1.25) is
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wp = const, fo =const, 1y = no = 0. We can further prove this fact via induction.

Let vg, &, be the sums of the sequence terms in (A.1.23), for which m+n =k,

Let v, = n, =0 at ¢ < k. Collecting in (A.1.21,22) terms of degree k, we have
(r1 + r)fwe—1(&, &) = rfwe_1(&, &) + rwi_1(6, &)

+ i [B'(60) = H'(6)] + v [H'(&) ~ '(&2)] =0 (A.127)

nk [a'(6) — a'(6)] + vk [d'(63) — d'(€2)] =0,

and an analogous equation for f. Taking the mixed derivative in r;, 5 of the
k-th order 8% /drf ' Ory, we get

k
Hln(6r, 6 = (4160 - ¥ @) 50
1
k
+[916) - Fee] 5o
1
k
A6, 6 = 16~ 6] 7t
1
k
+ [c'(6) — ¢'(&2)] E%%; .
1

Consistency of these equations with (A.1.27) results in the equation of the form
(A.1.6),

wi(€r,€2)Aac = frllr, E2)Apa

whihe is not fulfilled, as A,./Ay, is a function of ¢, &, &.

Actually, A, and A,, are totally antisymmetric functions, so their ratio is
a totally symmetric function of ¢, £, and &, and is not equal to the constant, as
b and c are different functions. The theorem is proven,

On the basis of this theorem, one may suggest the hypothesis that at d > 2
and under the condition of maximal dimensionality of I''2, no dispersion laws
exist which are degenerate with respect to the process 1 « 2. Requirement of
maximum dimensionality of I''? is essential, indeed, at any d > 2, the linear
dispersion law w = |k|p(k/|k|) is degenerative. However, manifold I''? is given
by the parallelism condition on ki, k2 and k and so has dimensionality 4, less
than maximum,

Let us now consider the scattering process of two interacting waves. The
manifold I'2? is given by the equations (2.3.32). The dispersion law w(k) is
nondegenerative relative to this process, if in some region of the manifold 2?2,
functional equation (2.3.33) has a nontrivial solution, Apparently, manifold I'22
includes two hypersurfaces, set by conditions

k=ky, ki =k; or k=k3, kl=k2,
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crossing cach other via k = ky = k2 = k3. On this submanifold, the [
equation is fulfilled at any f(k). Atd =1, I'?? = ['*2, and any dispersion law
is denenerative.

Theorem 2.3.4 is the evident consequence of the following lemma:

Lemma 1. The quadratic dispersion law with any signature is nondegenerative
with respect to (2.3.32) at d > 2.

Proof. Let us reduce the quadratic form (2.3.31) to a diagonal form via coordinate
system rotation; then (k = (kV, ... , kD))
w(k) = O 4 azkm’ + ...+ adk(‘)’

oi=x1, i=2,...,d. (A.1.28)
All signs in (A.1.28) are independent. With the dispersion law (A.1.28) the man-
ifold I'*? has a rational parametrization,

K=P+iui-Q K’=P-jul-Q

K =P - 3u1+Q) k=P +iu1+Q)

KD = Pt du(ri+s) k=P = duri+s)

KD = Pt dp(ri—s) K =P - iu(ri - ) (A.1.29)
i=2,....,d,
where
d
Q = Zan"'nsn )
n=2
and Py, ...,Ps pu, 7, s; are independent coordinates on resonance surface

(2.3.32). Let us put parametrization (A.1.29) into the functional equation

F(A+in1-Q), R+ipn-9),...)
+f(A-3u1-Q), B—juln+s),...)
=f(A-3p1+Q), B+ }u(n —s),...)
+f(P+3u(1+Q), P -ju(n—s2),...) . (A.1.30)

Differentiating (A.1.30) in 7;, s;, supposing 7; = s;, subtracting one from the
other, differentiating in 7 and supposing x = 0, we find

&#f(R,...,P)/0P8P;=0, i=2,...,d,
from which
f=F () +6 (kP ... k9) . (A.1.31)
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Substituting (A.1.31) into (A.1.30), writing down the equations obtained via
differentiation in 7;, 7;, s, s; and supposing all 7, s to be equal to zero, after
simple transformations, we obtain that 8*®/8P;8P; =0 or

F=FR (K + ... +F (K9) . (A.1.32)
Let us substitute (A.1.32) into (A.1.30) and differentiate in P;. We obtain

F (A +3u(l-Q)+F (P -iu1-Q)
=K (A -1p1+Q)+F (P+ip1-Q) .

Differentiating in Q and p, we get two equations on F}', whose consistency
condition is written in the form of the equation (at Q = 0)

F' (A -p/2)=F'(A+u/2) .

On account of the arbitrariness of P, and p we obtain that F'' = const, Exactly
in the same way, differentiating (A.1.30) in P; and then in 7;, s;, subtracting one
from the other and supposing 7; = —s;, we obtain

F{'"(P; + pry) = F!'(P; — p1y) ,

from which, on account of the arbitrariness of P;, 4, 7, we conclude that F!' =
const.

Thus, F; = ¢;k®” + B;k® + D;. It is easy to see that ¢; = o;c from (A.1.30)
that proves nondegeneracy. It follows from this that dispersion laws which are
completely degenerative relative to process (2.3.32) do not exist. Besides theorem
2.3.4, the statement which follows suggests that it is doubtful that even partially
degenerative dispersion laws exist relative to process (2.3.32).

Let the dispersion law w(k) be decaying. Then manifold I'*? of codimen-
sionality one is given by the system of equations

k+k1=k2+k3=q

1.
w(k) + w(ky) = wlka) +w(ks) = w(g) . (A.1.33)

If the dxspcrsmn law is degenerative relative to the process “one into two”, then
on manifold FM , function f(k) is sure to sansfy the following equation:

f(k) + f(k1) = f(k2) + f(k3) = f(q) (A.1.34)

which, of course, does not mean even partial degeneracy of the dispersion law
w(k). For degeneracy to occur, it is necessary to fulfill (2.3.33) on I'%? in the
vicinity of just one point of manifold (2.3.32).

Let us study this possibility in the simplest case d = 2, when the dlspersmn
law belongs to the class (2.3.15) we are considering. Now mamfold I’M (A.1.33)
is parametrized as follows (at d = 2 its dimensionality is equal to four):
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p=6-&, pn=L—-&G, m=L-, p=b—&
g =a(é1) — a(é2), a = a(§2) — a() , (A.1.35)
@ = al&) — a(és), @ = a(és) —a(és) .

Let us consider the vicinity of a point on I'*2, given on I'2 via coordinates ¢,
&, €3, &. We may set it, having retained expression (A.1.35) for p; and defined

g =a(é) —a(t2), q=alla+n)—al+u),
e=abi+n)—alst+rr), @=alls+z)—ally+n).

Similarly we can define w;. Resonance conditions impose two conditions upon
Vi

[a'(&2) — d'(&)] v = [d'(61) - d'(&3)] 2
+ [d' () — d'(&3)] »»
[b'(&2) = b'(&)] v = [b'(61) — V'(63)] 2
+[b'(6e) — V()] 13 .
Degeneracy condition yields one more equation:
[¢'(&2) = <€) w1 = [ (&) — ¢'(&3)] 2
+[d(€) = (&) v .

If functions a, b, c are linearly independent, these equations possess zero solu-
tions only. Thus, submanifold 1",2';2 cannot be locally enlarged while retaining
degeneracy.

Appendix II

Proof of the Global Theorem
for Degenerative Dispersion Laws [40]

Consider the d = 2 case. Our goal is to find the resonant manifold I" itself instead
of the dispersion law w(p, ¢). the latter is defined by

w(p1 +p2,q1 + @) = w(pr, @) + w(pz, @3) - (A2.1)

Due to the degeneracy of w(p, ¢), functions fi(p, g) (i = 1,2,3) exist, satisfying
the same equation on I :

fipr + ;2,1 + @) = filpr, @1) + filp2, @)

Consider the function
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3
B(p, ) =w(p,q) +ap+bg+ ) cifip,a) .

i=1

Here a, b, c; are some constants. The function & satisfies the same equation
(A.2.1) on I, and we shall think of w in (A.2.1) as containing five arbitrary
constants.

Let &1, &3, &, be the coordinates on I' described by functions p1(£:), p2(€:),
q1(€), @2(&:). Let us fix a point € on I'" and differentiate (A.2.1) via ¢;. In what
follows we designate

_ bw _ Bw _ b 3 _ e wo_c’iz_w
wl“apywz_aqswzo 6?2, 11 q 2

We have

o i)
(:-’I(Phlll)g_}z + &a(pr,s m)% +5:1(pz,qz)51§-

+522(P2,Q2)Z—? =Fi=op+p,q+q) (A.2.2)
8 7] . 7] 7]
X ('6_‘2—1 + 5’;—?) +a(p +p2, @1+ @2) (a—g + 5%?—) .

We also adopt the following notation for the Jacobi determinant of three functions

A(©), B(), C(©):

24 9B 9C
86 96 0&
= 3
{A4,B,C}= %4 S 221,
84 BB oC
8¢ € 06
and also set

wr = {p,p2,q1}; w2={p1,p2, 02}

v ={a,02,mn}: v={qn,amn}.
From (A.2.2) we obtain

wiwi(p2, ¢2) +viwa(m, @) = R, (A.2.3)

where

¥
i

R
B
B

|
™
-

f
o
-

=]

1}
2
e

DD
m
©
D
i
w

Differentiating (A.2.3) in £; one obtains
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8 8
w,a—mwzo(pz, @)+ (wlgg + Ula_lg> wi(p2, @)

0&;
7] 7,
+; a—gwm(pz, q)+ "a%:wl(pz, @) (A24)
on 8R

+ a&wz(PzaQZ)= "a"'f_' .
From (A.2.4) we have

{mianu“ }wl(m’m) + {p23q2g v }“)2(1’2342) = {PI,Q2,R} .

Now by choosing special values of a, b, ¢; let us achieve that, in the given
point £,

wi@Pr+pa+@) =0, w(Pr+p,a+@)=0, wij@+p,a+a)=0

so that R = 0, and also {pz, g2, R} = 0. From the compartibility condition of
(A.2.3) (R = 0) and the latter equality

{p2, @2, w1}wilp2, @) + {P2, @2, v1}w2(p2, @2) = 0

we obtain

vi{p, @ w1} =wi{p,@,n}. (A.2.5a)

Because all of the expression is symmetric with respect to the permutation of
indices 1 and 2, we also have

va{p1, @1, w2} = wa{p1,q1,v2} . (A.2.5b)

Analogously choosing the constants a, 4, ¢ in another way, it is easy to obtain
the relations

(v1 + 02){p2, g2, w1 + wa } = (w1 + wy){p2, q2,v1 + v2}

v2{p1 +p2, @1 + @2, w2} = wa{p1 + p2, @1 + g2, v2} (A.2.6)
(v1 + v2){p1,q1, w1 + w2} = (w1 + w2){p1, q1,11 + v2}

v{p+p, @ + @, )} =wi{p1 +p2, 0 +2,m1}

Now we consider new functions a, 8, v such that
vy =aow , vz =Pw, v+vy=7y(w +w).
From (A.2.5,6) we have
{P2,02,0} =0; {p1,01,8}=0;

{r2,22,7} =05 {p,@1,7}=0;
P+ @+@),B}=0, {p+p,(n+q)a}=0. _(A27)
It follows from (A.2.7) that
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m= Pz(a,‘Y) y 2= Qz(av‘y) y itp = A(aaﬂ)
n=PRB,7), a1 =618,7, a+q=DB/p).
Then we obviously obtain
P(B,7)+ Paa,y) = Aa, B)
Ql(ﬂ1 7) + QZ(a, 7) = B(aa ﬂ) .
Functional equations (A.2.8) can be solved easily, leading to

B =ai(f) — ax(y), P =az(y)— asla)

A=a(f) - as(a), Qi =b(B)-by)
Q2 =b(y) - bs(a), B=b(B) - bs(a).

Here, a;, b, 1 = 1,2,3 are arbitrary functions of one variable. The result ob-
tained leads to dispersion laws of the form (2.3.15, 26). In the above it has been
supposed that functions «, J, v are functionally independent. This is really true
in the general case. Special cases should be obtained by some limiting proce-
dure. Obviously the unique possibility is to obtain the homogeneous functional
of degree one.

(A.2.8)

Conclusion

Let us summarize. In the present paper we have aimed at showing that a method
like Poincaré’s analysis of the integrability of dynamical systems, based on the
study of the perturbation theory series, proves to be very effective. Earlier, an
analgous method proved the nonexistence of a strong recursive operator for mul-
tidimensional systems [41]; we can only hope that this does not exhaust its ca-
pacities. However, it has recently been shown [42,43] that, by generalizing the
recursion operator concept, it is possible 1o construct both recursion operators
and bi-Hamiltonian structures for multidimensional solvable equations. Interest-
ing examples include the KP and DS systems. One can not exclude a priori the
possibility that only essentially nonlinear integrals exist for some systems (2.1,1).

With regard to the systems considered in this paper, i.c., those containing inte-
grals which are quadratic in the main part, certain questions have been answered
since our paper [6] was published in 1987: namely, the question of action-angle
variables in nondegenerative systems with periodic boundary conditions ([7];
Sect. 2.6) and that of a global description of the degenerative dispersion laws
([40]; Appendix II).

Nevertheless some questions remain unanswered; for example: Can the reso-
nant manifold for decays 1 — 2 always be described via only one parametriza-
tion (i.e. consisting of two parts) corresponding to the replacements ¢; — &;,
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a(€) = —a(=&), b&) — —b(—¢;), as in the KP-1 equation? KP-1-like equa-
tions with degenerative dispersion laws are especially interesting. Although they
are exactly solvable by the inverse scattering technique, current methods still
cannot provide solutions which are not rapidly decreasing and are in general
position. In contrast to soliton and finite gap solutions which in the space of
_ all solutions of such equations are not dense, these types of solutions of a gen-
eral position possess stochastic properties and must be studied statistically. The
study of these solutions (which are generally not weakly nonlinear) is rather im-
portant from the viewpoint of understanding the turbulent nature of dynamical
systems. A weakly nonlinear solution of these equations may be studied by the
kinetic equation technique (see [20]), which is particularly interesting and was
first considered in [14]. :

Finally, we wish to point out that the integrals of the two-dimensional systems
we have considered do not exhaust the algebra of integrals; and it is only its
commutative subalgebra. It corresponds to commutative symmetries. Symmetries
and integrals, explicitly dependent of space-time variables exist, which comprise
a noncommutative algebra, Corresponding equations are also solvable; see, for
example [44,45].

Note added in proof. The existence condition for the three additional functions
fi in Theorem 2.3.4 cannot be relaxed. Let us consider the equations

w(p, q) +w(p1, q1) +w(p2,q2) =0

p+p+p=0
q+q +q2=0 .
They are satisfied on the manifold

2ppa(qr + @) + Pl + piqr =0 @A)
for three linearly independent functions

3
wi(p,g) = ¢p’ wz(p,q)=?; wa(p,q)=-;1;- (B)

This fact, which is easily directly verified, is important for the weakly turbulent
theory of drift waves in plasmas and Rossby waves in geophysics. It was estab-
lished by Balk, Nazarenko and Zakharov [46] who also found that the number of
functions w;(p, ¢) can not be increased. The two functions wip, g) and w2(p, q)
are odd and also satisfy the relations

w(PyQ) =w(Pla<Il)+w(m,<12)
p=p+p ©
g=q+q.

Integrability of Nonlinear Systems and Perturbation Theory 249

The function w(p, ¢) is analytic. In accordance with Theorem 2.3.2, the function
wa(p, ¢) is not analytic, but it is unique. This fact is generic for any analytic
dispersion law (Schulman, Tsakaya, [47]). It is interesting that the function

3
w(p,q) = gp* + ‘f; = wi(p,g) +w2(p, Q)

is a degenerative dispersion law belonging to the class (2.3.15). In this case one
has

a(€) =€ beE) =3¢,

This is nothing but the dispersion law in the “KP-hierarchy” which follows after
KP-1, In this case the resonant manifold C is a sum of three disconnected parts.
One of them is given by (A), the two others by (2.3.20).
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What Is an Integrable Mapping?

A.P. Veselov

Introduction

Rational mappings of CP! and dynamic properties of their iterations once again
attract the attention of mathematicians. The dynamic theory of such mappings
has been developed in the classical works of G. Julia and P. Fatou. The recent
investigations of Sullivan, Thurston, Douady and Hubbard throw new light upon
this problem and uncover deep connections with the theory of Kleinian groups
and Teichmiiller space [1]. It is a very surprising fact that the notion of the
integrability for such mappings is not discussed in these papers.

The first part of the present paper is devoted to such discussion. As the basis of
the definition of the integrability, we place the existence of commuting mapping
with suitable properties. Such a definition is motivated by the classical results
of Julia, Fatou and Ritt [2-4] and by modem soliton theory, more precisely,
the theory of finite-gap operators [5] and the theory of symmetries of the partial
differential equations (PDE) [6] (see also the paper by Mikhailov, Shabat and
Sokolov in this book). The most interesting result which we propose is the
intriguing connection of such integrable polynomial mappings of C* with the
theory of Lie algebras. The construction, discovered in [7], allows us to match
every simple complex Lie algebra of rank n to the family of the integrable
polynomial (rational) mappings of C"(CP™). We discuss also the analogous
construction for the correspondences in €™ x C* (or CP™ x CP™) and its relation
with the Yang-Baxter equation. A separate section is devoted to the polynomial
Cremona mappings of C*.

In the second part we consider the discrete analogs of the integrable systems
of classical mechanics, following in the main the author’s paper [8]. The cor-
responding class of mappings contains the following Lagrangean systems with
discrete time.

Let M™ be any smooth manifold, £ be the function on M™ x M™, Let us
consider the problem of the extremum of the functional S(g), ¢ = (g:), ¢i € M™,
ieZ:

S(g)=Y Ligr,qun) - M
kez
In a coordinate system (z',3") on Q = M™ x M™, which is induced by the
coordinates u‘ on M™, we have

ac ac
§5=0 < gz—,.(qhqm) + a—y7(qk-1,qn) =0. )



