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Decay of the monochromatic capillary wave
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It was demonstrated by the direct numerical simulation that in the case of weakly nonlinear capillary waves
one can get resonant waves interaction on the discrete grid when resonant conditions never fulfilled exactly.
The waves decay pattern was obtained. The influence of the mismatch of resonant condition was studied as

well.
PACS: 47.20.—k, 47.35.+i

The nonlinear waves on the surface of fluid are one of
the most well known and complex phenomena in nature.
Mature ocean waves and ripples on the surface of the tea
in the pot, for example, can be described by very sim-
ilar equations. Both these phenomena are substantially
nonlinear, but the wave amplitude usually significantly
less than the wave length. At this condition waves are
weakly nonlinear.

To describe the processes of this kind the weak tur-
bulence theory was proposed [1,2]. It results to Kol-
mogorov spectra as an exact solution of the Hasselman-
Zakharov kinetic equation [3]. Many experimental result
are in great accordance with this theory. In the case of
gravity surface waves the first confirmation was obtained
by Toba [4], the most recent data by Hwang [5] have been
received as a result of lidar scanning of ocean surface.
Recent experiments with capillary waves on the surface
of liquid hydrogen [6, 7] are also in good agreement with
this theory. From the other hand some numerical calcu-
lations have been made to check the validity of the weak
turbulent theory [8-10].

In this Letter we study the one of the keystones of
the weak turbulent theory, the resonant interaction of
weakly nonlinear waves. The question under study is
the following:

e How discrete grid for wavenumbers in numerical
simulations affects the resonant interaction?

e Can nonlinear frequency shift broad resonant
manifold to make discreteness unimportant?

We study this problem for nonlinear capillary waves
on the surface of the infinitely depth incompressible ideal
fluid. Direct numerical simulation can make the situa-
tion clear.
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Let us consider the irrotational flow of an ideal in-
compressible fluid of infinite depth. For the sake of sim-
plicity let us suppose fluid density p = 1. The velocity
potential ¢ satisfies Laplas equation

A$p=0 (1)

in the fluid region, bounded by

—o0 <z <n(r), r=(z,y), (2)
with the boundary conditions for the velocity potential
on , 060n  060n _ 34
ot Oxdx Oydy 0Oz .
09 |\ 1ige2 (3)
(5 +3tv9) 7

+o(v1+(Vn)? -1) =0,
on z =1, and
¢z|z:—oo = 0, (4)

on z — —oo. Here n = n(z,y,t) is the surface displace-
ment. In the case of capillary waves the Hamiltonian
has the form

H=T+U,
) n
T= E/dzr /(V¢)2dz, (5)

U= 0'/(\/1 +(Vn)2 — 1)d?r, (6)

where o — is the surface tension coefficient. In [11], it
was shown that this system is Hamiltonian one. The
Hamiltonian variables are the displacement of the sur-
face n(z,y,t) and velocity potential on the surface of
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the fluid ¥(z,y;t) = ¢(z,y,n(x,y;t);t). Hamiltonian
equations are the following

0 0H oy SH

=30 B ™

ot &y’ ot on
Using the weak nonlinearity assumption [3] one can ex-
pand the Hamiltonian in the powers of surface displace-
ment

H= %/ (0|V7]|2 +1/)l::1/1) d’r+

+5 [ [Ivef - doy?]

The third order is enough for three-wave interactions.
Here k is the linear operator corresponding to multiply-
ing of Fourier harmonics by modulus of the wavenum-
ber k. Using (7) one can get the following system of
dynamical equations

(8)

klnky],
— (ky)’]

ﬁ=k¢—dwmvw

b=otn— [(Ve) ©)

The properties of k—operator suggest to exploit the equa-
tions in Fourier space for Fourier components of n and

Y
1 . 1 .
— _/d)rezkrer’ M = _/nrezkrdZ,r.
m 2w

Let us introduce the canonical variables ay as shown

below
Wk . k
= —_— _— 1
ax \/2kﬂk+l\/2wk¢k, (10)

W = oks. (11)

where

With these variables the Hamiltonian (8) acquires the
following form

H:/wk|ak|2dk—|—

R
6 27w

) k1 + ks + ko)dkldkzdko +

ko * k%
Ey, (ax, ax, a1, + ay, ay, ay ) X

* * %
+ P / klkz akl ak2 a’ko + akl ak2 akO) X

X 5(1(1 + ko — ko)dkldkzdko. (12)
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Here

k0 — ko k1 k2
Ek1k2 - Vklkg + Vkokg + Vkokl’

ko _ yko _ vk _ k2
Mkl k2 Vklkz V—kOkZ V_kOkl ’

k wklwkzko
Vil = ——— L.k
kaks 8k1k2wk0 e

Ly,x, = (kika) + [ky ||kl

(13)

The dynamic equations in this variables can be easily
obtained by variation of Hamiltonian

0H

e = —ir
day,

B 5% /Mk1k2a’k1a'k26(k1 + k2 - )dkldk2 -

= —iwkak -

27r / M. ay,a1,0(k + ko — ko)dkadko —

2 o B, an, 0k, 6(ki + ko + k)dkidks.  (14)

Each term in this equation has their own clear physical
meaning. Linear term gives a periodic evolution of the
initial wave. The first nonlinear term describes a merg-
ing of two waves k; and k; in k. The second-decay of
the wave kg to the waves k and k. And the last term
corresponds to the second harmonic generation process.
It is useful to eliminate the linear term by the following
substitution

ax = Akeiw"t. (15)

In this variables the dynamical equations take the form

Ay = —-— /MklszklAk et x
X 5(k1 + ko — k)dk,dky —
- 2;r / M Ap, Axge™ Uyt 50
x 0(k + ko — ko)dkadko, (16)
where
Qﬁ‘l’kz = Wk, + Wy — Wk amn

Here we do not consider the harmonic generation term.
The remaining terms give us the following conditions of
resonance
Qllzlkg =wp, +wg, —wr =0, k;i+ko—k=0. (18)
All this theory is well known in the literature [3].
Now let us turn to the discrete grid. Also, from this
point we assume periodic boundary conditions in z and
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y with lengths L, and L,. One can easily obtain the
equations similar to (16)

¢

A = 2L L 3 M, Ar Aryeoimat x
Y ki1ko
X A(1(14-k2)
127 N
T I.L Mll:ﬂzA A€ ks A(k-i—kz) —ko» (19)
Y koko

where Ay, x, is the Kronecker delta — the discrete ana-
logue of Dirac delta function.

Consider the decay of a monochromatic capillary
wave Ak, on two waves

i

. . ~ko
A%::‘ELL-MthAhAka%ﬂﬂ,

z--Y
. . 27T ko t
Akl = L L Mll:loszk2Ak0 klkz ) (20)
. p 271'
Ak2 = L L Mll:szAklAko k1k2t'

Let Ay,, Ak, be small (|Ax,| > max(|Ay,|,|Axk,|) at
t = 0). In this case the equations can be linearized.
The solution of linearized (20) has the following form
(Ax, ~ const)

Akl,2 (t) = Ak1,2 (0)6)\“" (21)

where

k
A= __ngk2+

2 2 (1o )
+ ‘L I, My, Ao | — <§Qk1k2> .

In the case of a continuous media resonant condi-
tions (18) can be satisfied exactly. But on the grid there
is always frequency mismatch Qz‘l’ %, 7 0. Though if the
amplitude of initial wave is high enough there are res-
onances even on a discrete grid. But the width of this
resonance is very important.

System of equations (9) can be solved numerically.
This system is nonlocal in coordinate space due to the
presence of the I?:—operator. The origin of this opera-
tor gives us a hint to solve (9) in wavenumbers space
(K-space). In this case we can effectively use fast
Fourier transform algorithm. Omitting the details of
this numerical scheme, we reproduce only the final re-
sults of calculations.

We have solved system of equations (9) numerically
in the dimensionless periodic domain 27 x 27 (the wave-
numbers k; and k, are integer numbers in this case).
Correspondantly, all other variables also become dimen-
sionless. It is convenient to use surfaceteusion o = 1.

(22)

The size of the grid was chosen 512 x 512 points. We
have also included damping for waves with large wave
numbers. In K-space damping terms for i, and )y re-

spectively were the following: yxnm and yx. Where
vk was of the following form
e = 0, K] < [kimasl
k — o max
1 2 (23)

e = ~20(K| ~ | 5kmax])?, ] > 7 [Kmasl,
where 7y is some constant.

As an initial conditions we used one monochromatic
wave of sufficiently large amplitude with wave-numbers
ko (koz = 0,koy = 68). Along with that there was a
small random noise in all other harmonics.

Resonant manifold (18) for decaying waves

. 0 . (24)
ki=[  ° |, ky= i
(ko—ky) (k0+ky>

is given at Fig.1. Since the wave numbers are integers,
the resonant curve never coincides with grid points ex-
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Fig.1. The resonant manifold for ko = 68

actly. The detail picture is given on Fig.2. It is clear,
that some points are closer to the resonant manifold that
the other. It is the difference might be important in nu-
merics.

In the beginning one can observe exponential growth
of resonant harmonics in accordance with (21) and (22).
This is shown in Fig.3 and Fig.4. Here one can clearly
see some harmonics are in resonance and others are not.

Than almost all harmonics in the resonant manifold
become involved in decay process Fig.5. Later on the
harmonics which are the closest to the resonant manifold
(compare with Fig.2) reach the maximum level while the
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Fig.2. Different mismatch is seen at different grid points
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Fig.3. Evolution of various harmonics for decaying wave
ko = (0,68)

secondary decay process develops. Waves amplitudes
became significantly different. The largest amplitudes
are for those waves with the maximal growth rate. One
can see regular structure generated by that ko wave in
Fig.6. After a while the whole k-space is filled by de-
caying waves, as shown in Fig.7.

Direct numerical simulation has demonstrated that
finite width of the resonance makes discrete grid very

2
lay

10

-14 |
10

Fig.4. Resonant harmonics starting to grow. At the base-
ment there is contour line for level |ax|”> = 107?*. Time
t=14
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2
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Fig.5. Secondary decays start. At the basement there is
contour line for level |ax|? = 10722, Time ¢t = 11
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Fig.6. The contour lines for |ax|*> = 107?". Secondary de-
cays are clearly seen. Time ¢t = 14

similar to continuous. Of course, it is true only if the
amplitude of the wave is large enough, so that according
to (22)

2T

o

LzLy kiko Ako

. (25)

1 k
> ‘ gﬂkgkz

As regards numerical simulation of the turbulence,
namely weak turbulence; the condition (25) is very im-
portant. Ay, has to be treated as level of turbulence.

Fig.7. Wave numbers spectrum at time ¢t = 57
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