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1. INTRODUCTION

Waves of extremely large size, which are alterna-
tively called freak, rogue, or giant waves, are a well-
documented hazard for mariners (see, for instance [1–
4]). These waves are responsible for the loss of many
ships and human lives. There are no doubts that freak
waves are essentially nonlinear objects. They are very
steep. In the last stage of their evolution, their steepness
becomes infinite, thus, forming a wall of water. Before
this moment, the steepness is higher than for the limit-
ing Stokes wave. Moreover, a typical freak wave is a
single event (see [5]). Before breaking, it has a crest
three to four (or even more) times higher than the crests
of neighboring waves. A freak wave is preceded by a
deep trough, or hole in the sea. The characteristic life
time of a freak wave is short—ten wave periods or so.
If the wave period is fifteen seconds, this is just a few
minutes. Freak waves appears almost instantly from a
relatively calm sea. Certainly, these peculiar features of
freak waves cannot be explained by a linear theory. The
focusing of ocean waves creates only the preconditions
for formation of freak waves, which are a strongly non-
linear effect.

It is natural to associate the appearance of freak
waves with the modulation instability of Stokes waves.
This instability is usually named after Benjamin and
Feir; however, it was first discovered by Lighthill in [6].
The theory of instability was developed independently
in [7] and in [8]. Feir (see [9]) was the first to observe
the instability experimentally in 1967.

A slowly modulated weakly nonlinear Stokes wave
is described by the nonlinear Shrodinger equation
(NLSE), which is derived in [10]. This equation is inte-
grable (see [11]) and is just the first term in the hierar-
chy of envelope equations describing packets of surface
gravity waves. The second term in this hierarchy was
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calculated by Dysthe in [12], and the next one was
found a few years ago in [13]. The Dysthe equation was
solved numerically by Ablovitz and his collaborates
(see [14]).

Since the first work of [1], many authors have tried
to explain freak wave formation in terms of NLSE and
its generalizations such as the Dysthe equation. A vast
amount scientific literature is devoted to this subject.
The list presented below is long but incomplete: [13–
23]. A survey of the different possible mechanisms of
freak wave formation is given in [24, 25].

One cannot deny some advantages achieved by the
use of the envelope equations. The results of many
authors agree on one important point: nonlinear devel-
opment of modulation instability leads to concentration
of wave energy in a small spatial region. This is a clue
about the possible formation of freak waves. On the
other hand, it is clear that the freak wave phenomenon
cannot be explained in terms of envelope equations.
Indeed, NLSE and its generalizations are derived by
expansion in series on powers of the parameter 
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, where

 

 k

 

 is the wave number and 

 

L

 

 is the length
of the modulation. For a real freak wave, 

 

λ

 

 ~ 1, and any
slow modulation expansion fails. However, the analysis
of the NLS-type equations gives some valuable infor-
mation about the formation of freak waves.

Modulation instability leads to the decomposition of
an initially homogeneous Stokes wave into a system of
envelope quasi-solitons [26, 27]. This state can be
called quasi-solitonic turbulence. In this model, soli-
tons can merge, thus, increasing the spatial intermit-
tency and leading to the establishment of chaotic
intense modulations of energy density. So far, this
model cannot explain the formation of freak waves with

 

λ

 

 ~ 1.
Freak wave phenomenon could be explained if the

envelope solutions of a certain critical amplitude are
unstable and can collapse. While, in the framework of
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1D focusing NLSE solitons are stable, the improved
model must have some threshold in amplitude for soli-
ton stability. The instability of a soliton of large ampli-
tude and its further collapse could be a proper theoreti-
cal explanation of the origin of freak waves.

This scenario was observed in a numerical experi-
ment using the heuristic one-dimensional Maida–
McLaughlin–Tabak (MMT) model (see [28]) of one-
dimensional wave turbulence [27]. In the experiments
described in the cited paper, the instability of a moder-
ate amplitude monochromatic wave leads first to the
creation of a chain of solitons, which merge due to
inelastic interaction into one soliton of large amplitude.
This soliton sucks energy from neighboring waves and
becomes unstable and collapses up to 

 

λ

 

 ~ 1, thus, pro-
ducing a freak wave.

In our experiments, a different scenario is observed.
Namely, a freak wave appears inside of a slightly mod-
ulated wave train. A freak wave looks like the develop-
ment of some defect on the periodic grid, which is a
Stokes wave train.

The most direct way to prove the validity of the sce-
nario outlined above for freak wave formation is a
straight numerical solution of the Euler equation
describing the potential oscillations of an ideal fluid
with a free surface in a gravitational field. This solution
can be found using the method published in several arti-
cles [29–31]. This method is applicable in 2 + 1 geom-
etry; it includes conformal mapping of a fluid bounded
by the surface to the lower half-plane together with an
optimal choice of variables, which guarantees the well-
posedness of the equations [32].

In the present article, we perform experiments for
wave trains of steepness 

 

µ
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 0.15. This experiment can
be considered as a simulation of a realistic situation. If
the typical steepness of a swell is 

 

µ

 

 

 

�

 

 0.06–0.07, in a
caustic area, it could easily be two to three times more.
In the experiments, we start with the Stokes wave train
perturbed by a long wave with twenty times less ampli-
tude. We observe the development of modulation insta-
bility and, finally, the explosive formation of a freak
wave that is pretty similar to the waves observed in
nature.

2. BASIC EQUATIONS

Suppose that an incompressible fluid covers a two-
dimensional domain

(1)
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) is the shape of the surface. The flow is
potential; hence,
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 be the potential at the surface and 

 

H

 

 =

 

�

 

 + 

 

U

 

 be the total energy. The terms

(3)

are, correspondingly, the kinetic and potential parts of
the energy, where 

 

g

 

 is the gravity acceleration and 

 

φ

 

n

 

 is
the normal velocity at the surface. The variables 

 

ψ

 

 and

 

η

 

 are canonically conjugated; in these variables, the
Euler equation of the hydrodynamics reads

(4)

One can perform a conformal transformation to map
the domain that is filled with fluid

in the 

 

Z

 

 plane to the lower half-plane

in the 

 

w

 

 plane. After the conformal mapping, it is con-
venient to introduce, along with the conformal mapping

 

Z
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w
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), the complex velocity potential 
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). Next, in
[33], equations (4) were transformed into a simple
form, which is convenient both for the numerical simu-
lation and analytical study. Namely, by introducing the
new variables

(5)

one can transform system (4) into the following one:

(6)

Now, the complex transport velocity 

 

U

 

 and 

 

B

 

(7)

In (7), 

 

P

 

 is the projector operator generating a function
that is analytical in a lower half-plane. Here, we have
omitted all the details, which can be found in [29, 33].

3. NUMERICAL APPROACH
Many numerical schemes have been developed for

the solution of Euler equations describing the potential
flow of a free-surface fluid in a gravity field. Most of
them use integral equations that solve the boundary-
value problem for a Laplace equation [34–36]. A sur-
vey of the method can be found in [37].

In this article, we study the modulation instability of
Stokes waves. As the initial condition, we use a slightly
modulated stationary nonlinear wave train. This train is
unstable with respect to growing long-scale modula-
tion. This remarkable fact was first established in [6],
where the authors calculated the growth-rate of insta-
bility in the limit of long-wave perturbation. As far as
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Lighthill’s growth-rate coefficient was proportional to
the wave number of the perturbation length, the result
was in principle incomplete: somewhere at short scales,
the instability must be arrested. The complete form of
the growth-rate coefficient was found independently in
[7, 8, 10].

We apply the spectral code to solve equations (6).
We should mention that conformal mapping is a routine
approach for studying a stationary Stokes wave. The
equations for the Fourier coefficients were solved
numerically by many authors (see, for instance [38]).
The idea to implement conformal mapping for simula-
tion of essentially nonstationary wave dynamics
emerged in the beginning of the eighties (see [39]).
Since equations (6) were not derived at that time, the
authors used the quasi-Lagrangian approach to fluid
dynamics. After some experiments and discussion of
their results, the idea to use the conformal mapping was
abandoned for the following reason: conformal map-
ping is not good for resolution of wedge-type singular-
ities naturally appearing on the free surface of a fluid.
This reason is important if the spatial mesh is sparse.
However, modern computers make it possible to use
very fine meshes consisting of more than a million
points or spectral modes. Thus, this argument is not
pertinent any more.

Our recent experiments are sufficiently accurate: we
use 105 to 2 × 106 harmonics. We solve equations (6) in
the periodic domain 0 < x < 2π, putting g = 1. The initial
data are chosen as a combination of the exact Stokes
wave (wave number k = 10; steepness ka = µ = 0.15)
and a long monochromatic wave with the wave number
k = 1 and a moderate amplitude 5 × 10–2. This relatively
high level of perturbation is deliberately chosen to
make the period of exponential instability growth that
is not interesting for us shorter. At given conditions, the
maximum growth-rate is

and  � 28.6. The period of the initial wave is T0 =

2π/ . The simulation is continued until T �
458.842, that is, until more than sixteen inverse growth-
rates have been completed. We performed the computa-
tions with double precision with the number of modes
doubled as far as the amplitude of the last mode reached
10–15. The maximum number of modes was two mil-
lions.

We observed a short period of exponential growth of
perturbation, then, some intermediate regime of inten-
sive modulation, which ends up with explosive forma-
tion of one single freak wave. Pictures of the surface
shape before breaking at the times T = 442 and T =
458.56 are presented in Fig. 1 and Fig. 2.

The time interval from T = 442 to T = 458.56 con-
tains seven periods of the initial wave only. One can see

γmax � 
10
2

---------- 0.152⋅  � 0.035

γmax
1–

10

fast, nonmonotonic formation of the freak wave. At this
moment, the freak wave is more steep than the Stokes
wave of limiting amplitude. The amplitudes of the
waves preceding the freak wave are relatively small
(three times less). One can see a trough just ahead of the
freak wave. This is the so-called hole in the water
(marine folklore) that precedes a freak wave. Figure 3
demonstrates the fine structure of the surface shape
near the wave crest.

Fig. 1. The shape of the surface at T = 422

Fig. 2. The shape of the surface at T = 458.56

Fig. 3. The shape of the surface near the wave crest at T =
458.61
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We managed to continue our simulation until the
moment T = 458.842. The zoomed shape of the surface
at that time is presented in Fig. 4.

One can see that, near the crest, the front face of the
wave is very steep. This is really a wall of water. In
some regions, the steepness is even negative. The cur-
vature of the shape is plotted in Fig. 5.

This is actually a breaking wave. Moreover, in all
our experiments, at the moment of breaking, we
observed that the ratio of the wave height to the wave-
length is practically the same and close to that of the
limiting Stokes wave, 0.141.

Note that the maximum value of the freak wave
height is three times higher than the height of the initial
wave. The growing of the wave height up to this level
from the level of insignificant wave height takes less
than ten wave periods. This is a really fast process; it is
three times faster than the development of modulation
instability.

Figure 6 displays the evolution of the spatial density
of the kinetic energy (in the domain [5.5–9.5]) where
the breaking takes place.

One can see that this evolution is nonmonotonous.
The density oscillates in time and finally condensates in
one very narrow wave crest. In general, the whole pro-
cess of freak wave formation is nonmonotonous. We
can say that the freak wave runs over wave crests until
it reaches an extremely high amplitude. This behavior
can be easily explained by the difference of the phase
and group velocities: the energy propagates with a
group velocity that is twice less than the phase velocity.
Figure 7 demonstrates the distribution of the horizontal
momentum before and after breaking at T = 455 and
T = 456. One can see that the process of momentum
concentration in a moving but localized area is monot-
onous. Definitely, this behavior can be explained by the
fact that momentum is a conserved quantity.

4. CONCLUSIONS

Let us summarize our numerical experiments. Cer-
tainly, they reproduce the most apparent features of
freak waves: single wave crests of very high amplitude,
exceeding of the significant wave height by more than
three times, appearing from nowhere and reaching full
height in a very short time, less than ten periods of sur-

Fig. 4. The shape of the surface near the wave crest at T =
458.842 Fig. 5. Curvature (k) of the surface at T = 458.842

Fig. 6. The density of the kinetic energy just before break-
ing at T = 456 (dashed line) and at the moment of breaking
at T = 458.5 (solid line)

Fig. 7. Distribution of momentum (M) before (dashed line)
and after (solid line) breaking
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rounding waves. A singular freak wave is proceeded by
an area of diminished wave amplitudes. The final fate
of a freak wave is breaking. The ratio of the freak wave
height to its wavelength is practically the same, being
close to the limiting Stokes wave, 0.141. A freak wave
moves with the group velocity.

In our experiments, the freak wave appears as a
result of the development of modulation instability (if
the threshold of the instability is not exceeded, no freak
waves appear at all). Then, it takes a long time for the
onset of instability to create a freak wave. Meanwhile,
a freak wave appears only after the fifteenth inverse
growth rate of instability. What happens after the devel-
opment of instability but before the formation of a freak
wave? This stage could be considered as the develop-
ment of some defect on the periodic grid. This grid is
just the initial Stokes wave train. A similar picture was
observed in [40], where the breaking of a wave in the
group was studied.
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