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swered and many phenomena associated with wind-driven turbulence remain

puzzling.

We consider a “unidirectional” motion of weakly nonlinear gravity waves,

i.e. we assume that the spectrum of the free surface contains only nonnegative

wavenumbers. We use remarkably simple form of the water wave equation

that we named “the super compact equation”. This new equation includes

a nonlinear wave term (à la NLSE) together with an advection term, that

can describe the initial stage of wave-breaking. This equation has also very

important property. It allows to introduce exact envelope for waves without

assumption of narrowness bandwidth.

Keywords Wave breaking · Hamiltonian formalism · modulational instabil-

ity · envelope equation

PACS 47.15.Hg · 05.45.Yv

1 Introduction

A potential flow of an ideal incompressible fluid with free surface in a gravity

field is described [Zakharov (1968)] by the following Hamiltonian system:

∂ψ

∂t
= −δH

δη

∂η

∂t
=
δH

δψ
. (1)

Hereafter we study only the case of one horizontal direction, unidirectional

waves. Now

η = η(x, t) – shape of the surface,
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ψ = ψ(x, t) = φ(x, η(x, t), t) – potential on the surface,

φ(x, z, t) – potential inside the fluid. (2)

The Hamiltonian H is

H =
1

2

∫

dx

∫ η

−∞

|∇φ|2dz + g

2

∫

η2dx (3)

The potential φ(x, z, t) satisfies the Laplace equation:

∂2φ

∂x2
+
∂2φ

∂z2
= 0

with the asymptotic boundary conditions:

∂φ

∂z
→ 0, at z → −∞.

If the steepness of surface is small, |ηx| << 1, the Hamiltonian can be

presented by the infinite series

H = H2 +H3 +H4 + . . .

H2 =
1

2

∫

(gη2 + ψk̂ψ)dx,

H3 = −1

2

∫

{(k̂ψ)2 − (ψx)
2}ηdx,

H4 =
1

2

∫

{ψxxη
2k̂ψ + ψk̂(ηk̂(ηk̂ψ))}dx (4)

where k̂ψ means multiplication by |k| in k-space (k̂ =
√

− ∂2

∂x2 ).

Equations (1), although truncated according to (4), even for the full 3-

D case, can be efficiently used for numerical simulations of water wave dy-

namics (see, for instance [Korotkevich et al. (2008)]). However, they are not

convenient for analytic study because η(x, t) and ψ(x, t) are not“optimal”

canonical variables. One can choose better Hamiltonian variables by per-

forming a proper canonical transformation. This transformation is obtained
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in [Dyachenko et al. (2015)] and cancels nonresonant third and fourth order

terms and simplifies the only remaining resonant fourth-order term in the

Hamiltonian. This is possible due to an unexpected cancellation [Dyachenko and Zakharov (1994)]

of nontrivial four-wave interactions. What we obtain as a result of this transfor-

mation is the so called “compact equation” [Dyachenko and Zakharov (2011),

Dyachenko and Zakharov (2012)].

This equation was intensively used as a base for both numerical simulations

[Fedele and Dutykh (2012a),Fedele and Dutykh (2012b),Dyachenko et al. (2013a),

Dyachenko et al. (2014),Fedele (2014a),Fedele (2014b),Dyachenko et al. (2015),

Dyachenko et al. (2015),Dyachenko et al. (2016a)] and analytical proof on non-

integrability of Zakharov equation [Dyachenko et al. (2013b)].

However the most optimal (in our opinion) version of the compact equation

which we call “the super compact equation” for water waves was presented in

[Dyachenko et al. (2016b)].

Also the derivation of the spatial version of “the super compact equation”

becomes remarkably straight-forward [Dyachenko and Zakharov (2016)].

2 Super Compact Equation for normal complex variable

So, instead of Hamiltonian (4) with pair of classical physical hamiltonian vari-

ables η(x, t) and ψ(x, t) we will use normal complex variable c(x, t). Canonical

transformation

η(x, t), ψ(x, t) ⇒ c(x, t) (5)
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is describe in detail in [Dyachenko et al. (2015),Dyachenko et al. (2016b)]. The

canonical transformation (5) in k − space is power series of ck up the third

order for ηk and ψk:

ηk = η
(1)
k + η

(2)
k + η

(3)
k , ψk = ψ

(1)
k + ψ

(2)
k + ψ

(3)
k . (6)

Here we present only the linear and second order terms. All of these terms can

be written in k − space in a compact form.

η
(1)
k =

1√
2ωk

[ck + c∗
−k], ψ

(1)
k = −i

√

g

2kωk

[ck − c∗
−k]. (7)

η
(2)
k =

|k|
4
√
2gπ

[
∫

k
−

1
4

1 ck1
k
−

1
4

2 ck2
δk−k1−k2

dk1dk2

+

∫

k
−

1
4

1 c∗k1
k
−

1
4

2 c∗k2
δk+k1+k2dk1dk2 − 2

∫

k
−

1
4

1 c∗k1
k
−

1
4

2 ck2δk+k1−k2dk1dk2

]

,

ψ
(2)
k = − i

4
√
2π

[
∫

(
√

k1 +
√

k2)k
−

1
4

1 ck1
k
−

1
4

2 ck2
δk−k1−k2

dk1dk2 −

−
∫

(
√

k1 +
√

k2)k
−

1
4

1 c∗k1
k
−

1
4

2 c∗k2
δk+k1+k2

dk1dk2

− 2sign(k)

∫

(
√

k1 +
√

k2)k
−

1
4

1 c∗k1
k
−

1
4

2 ck2
δk+k1−k2

dk1dk2

]

. (8)

This is an important property that allows one to recover physical values with-

out multidimensional integrals.

η(1)(x) =
1√
2g

1
4

(k̂−
1
4 c(x)+k̂−

1
4 c(x)∗), ψ(1)(x) = −i g

1
4

√
2
(k̂−

3
4 c(x)−k̂− 3

4 c(x)∗).

(9)

The operators k̂α act in the Fourier space as multiplication by |k|α.

η(2)(x) =
k̂

4
√
g

[

k̂−
1
4 c(x)− k̂−

1
4 c(x)∗

]2
,

ψ(2)(x) =
i

2

[

k̂−
1
4 c(x)∗k̂

1
4 c(x)∗ − k̂−

1
4 c(x)k̂

1
4 c(x)

]

+

+
1

2
Ĥ
[

k̂−
1
4 c(x)k̂

1
4 c(x)∗ + k̂−

1
4 c(x)∗k̂

1
4 c(x)

]

, (10)
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Here, Ĥ is the Hilbert transformation with eigenvalue isign(k). This accuracy

(second-order power series) is sufficient to compare numerical data with the

data in a flume.

As a result of the transformation two equations (1) with Hamiltonian (4)

turn into one complex equation [Dyachenko et al. (2017)]

∂c

∂t
+ iω̂kc− i∂+x

(

|c|2 ∂c
∂x

)

= ∂+x (Uc). (11)

Here

ω̂k →
√

gk in k-space,

U = k̂|c|2 advection velocity,

k̂ → |k| in k-space,

∂+x → ikθ(k) in k-space, here θ(k) is the step function.

Operator ∂+x is the manifestation of unidirectional waves. Thus c(x, t) is an-

alytic function in the upper half-plane (x + iy). Its Fourier series does not

have negative harmonics. Equation (11) is dimensional one, |c|2 has dimen-

sion of potential. The equation is equivalent to equations (1-4) with the same

accuracy (due to truncation).

The Hamiltonian of the equation be written in x-space:

H =

∫

c∗V̂kc dx+
1

2

∫
[

i

4
(c2

∂

∂x
c∗

2 − c∗
2 ∂

∂x
c2)− |c|2k̂(|c|2)

]

dx (12)

Here the operator V̂k acts in k-space, so that Vk = ωk

k
. Motion equation then

is the following:

∂c

∂t
+ ∂+x

δH

δc∗
= 0. (13)
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3 Envelope equation for water waves

Let us suppose that Fourier spectrum of waves has a maximum at k = k0.

Specific type of cubic nonlinearity in the super compact equation (11) allows

to introduce envelope for waves, capital C(x, t):

c(x, t) = C(x, t)ei(k0x−ωk0
t) (14)

Actually it is canonical transformation. All nonlinear terms in the equation

(11) contain |c|2 only, then

|c|2 = |C|2

Fourier harmonics ck and Ck are related as follows

Ck = ck0+k − k0 < k <∞

For the envelope (14) one can easily derive the exact equation without assump-

tion of narrow bandwidth for C:

∂C

∂t
+ i

[

ω̂k0+k − ωk0 −
∂ωk0

∂k0
k̂

]

C − i
∂k0

∂x

(

|C|2 ∂
k0

∂x
C

)

=
∂k0

∂x
(UC) (15)

∂k0

∂x
= (ik0 +

∂

∂x
)θ̂k0+k ⇒ i(k0 + k)θ(k0 + k) in k-space

This equation is written in the framework that moves with group velocity

∂ωk0

∂k0
. This is why the last term in square brackets has appeared. One can use

special notation for it:

D̂(2)
k =

[

ω̂k0+k − ωk0 −
∂ωk0

∂k0
k̂

]

(16)
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D

(2)

k

ωk0
(purple curve) versus − k

2

8k2
0

(green curve) dependence on dimensionless

wavenumber k/k0

Being expanded in a Taylor series it is

D̂(2)
k = −ωk0

8k20
k̂2 + . . .

This D̂(2)
k coincides with the corresponding term in the limit of Nonlinear

Schrodinger Equation. The difference between the NLSE and (16) is shown in

the Figure 1. The equation for envelope (15) is Hamiltonian, and the Hamil-

tonian is:

H =

∫

C∗V̂kC dx+
1

2

∫

|C|2
[

k0|C|2 +
i

2
(CC ′∗ − C∗C ′)− k̂|C|2

]

dx

Vk =
D(2)

k

k0 + k
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Corresponding equation of motion is the following

∂C

∂t
+
∂k0

∂x

δH
δC∗

= 0

δH
δC∗

= V̂ C + k0|C|2C − i|C|2C ′ − UC U = k̂|C|2.

This is exact equation for envelope of water waves. Along with the Hamiltonian

it conserves number of waves and momentum. One can extract the NLSE and

the Dysthe [Dysthe (1979)] equations from (15). Indeed let us write it the

following way:

∂C

∂t
+ iD̂(2)

k C + ik20 θ̂k0+k

[

|C|2C
]

+ NLSE

+ k0θ̂k0+k

[

C
∂

∂x
|C|2 + 2|C|2 ∂C

∂x
− iUC

]

− Dysthe

− ∂

∂x

[

UC + i|C|2 ∂C
∂x

]

= 0 exact (17)

Equation (15) or (17) describes two phenomena – nonlinear waves and

advection. Advection velocity is equal to

V =
[

3k0|C|2 − U
]

(this is the coefficient for C ′) (18)

Not being a constant this velocity may result in wave breaking.

We want to stress that equation (17) although is the envelope equation, is

valid without usual narrow-banded spectrum approximation.

In addition to the Hamiltonian equation (17) conserves two quantities

N =

∫

∞

−k0

|Ck|2
k0 + k

dk number of waves

P =

∫

∞

−k0

|Ck|2dk which has dimension of momentum.
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4 Numerical studying of pre-breaking wave

In this section we study in detail initial stage of wave-breaking in the frame-

work of equation (17). The initial conditions were the following:

– 10km of periodic domain

– uniform wave train with wavelength 100m (slightly perturbed)

– steepness of waves µ ∼ 0.1

– group velocity - 6.24 m/sec.

Fourier spectrum Ck has a sharp maximum at k = 0.

Modulational instability results in appearing of extreme (pre-breaking)

wave.

Fourier spectrum of this wave is shown in the Figure 2. One can see expo-

nential behavior at large k. Slope of the exponent corresponds to the distance

from real axis x to the nearest singularity in the lower half-plane x+ iy. This

singularity moves closer and closer to the axis during pre-breaking stage. At

this moment

Ck ∼ e−ak a ≃ 3m.

Breaking of wave is defined by advection velocity (18). Being non constant

it results in crossing of characteristics in pure advection equation. Although

equation (17) is more complicated, it has advection part. So, that sharp gra-

dient of advection velocity V indicates on pre-breaking stage. Breaking crite-

ria based on advection velocity has been used in [Bjorkavas et al. (2011)] for
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Fig. 2 Fourier spectrum of pre-breaking wave.

Boussinesq models and shown good qualitative agreement with the experi-

ments.

Nonlocal advection velocity U and 3k0|C|2 are shown in the Figure 3.

Maximal value of U becomes large than half of group velocity.

Fourier spectrum |Ck| is show in the Figure 4. One can see that right

satellite (grown up due to modulational instability) is almost absent. It is this

satellite has produced exponential ”tail” in the Figure 2. During pre-breaking

stage part of low k component of energy (or approaching singularity) is trans-

ferred to high wave numbers. And later it dissipates. It dissipates indirectly.

At this moment we simulate dissipation due to wave breaking in the fol-

lowing way:



12 A.I. Dyachenko et al.

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

6.40 6.42 6.44 6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60

x[km]

U(x,t=5709.0)
(2k0|C|

2
)(x,t=5709.0)

Fig. 3 Nonlocal advection velocity and envelope before breaking. y-axis shows velocity

(m/sec)

– Evolution of Fourier spectrum obeys the equation ∂
∂τ
Ck + γkCk = 0

– γk ≃ vk at large k and close to zero at small k

Such choice of dissipation provides damping of high Fourier harmonics of Ck

Ck ∼ e−ak ⇒∼ e−(a+vτ)k

In the Figure 5 one can see result of such damping for vτ = 40m. Detailed

view of this spectra in the energy containing region (small k) is shown in the

Figure 6. As a result peak of the spectrum is shifted to the smaller wavenum-

bers. Proposed model for damping ”remove” only pre-breaking wave leaving

unchanged other part of the surface. It is seen in the Figure 7 and Figure 8,

where real physical surface η is shown before and after damping.
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Fig. 6 Fourier spectra before (violet) and after damping (green). Energy containing domain.

We want to emphasize again that energy from low wave numbers was al-

ready transferred to high k. And at this moment model damping is ”switched

on”. This damping provides regularization of the envelope equation. It elimi-

nates breaking wave (or singularity at the surface). No other dissipative terms

were used in the equation.

5 Numerical simulation of soliton turbulence

Using equation (17) we perform numerical simulation of long time evolution

with the initial conditions given in the beginning of the Section 4. Initially

almost homogeneous wave train after ∼ 3.5 hours splits into few dozens of

solitons. All of them have approximately the same width, see Figure 9. Each
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Fig. 9 Wave train splits into set of solitons. Nonlocal advection velocity is also shown.y-axis

shows velocity (m/sec)

soliton has about 3 real waves under the envelope ( 30 solitons and 100 waves).

It corresponds well-known phenomenon 3 sisters.

Solitons have different velocities, they collide exchanging the energy. After a

long time,∼ 1.5 days, picture of turbulence looks different. One can observed in

the Figure 10 four large solitons which obviously took energy from the weaker

ones. One of this soliton, near point 3.3 km, is shown in the Figure 11. Here

real physical surface η(x) is shown. Obviously this soliton consist of 3 waves,

and the highest crest is about 5m. During this time, 1.5 days, a dozen of wave

breaking took place. The time evolution of integrals of motion demonstrates

this. In the Figure 12 one can see evolution of ”wave action” or ”number of par-
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Fig. 11 Three large waves in the soliton - 3 sisters.
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Fig. 12 Evolution of ”wave action” in soliton turbulence.

ticles”. It is seen sharp drops of it when wave breaking takes place. Full movie

of the soliton turbulence is available at http://alexd.itp.ac.ru/2k0C2U.avi

6 Conclusion

In this work we have attempted to improve the understanding of the water

waves on the surface of ideal fluid.

First we derived exact new equation for envelope without narrow band

assumption. This is the main difference between envelope equation for water

waves derived in [Craig et al (2010)] where Hamiltonian approach was also

used. It can describe very narrow solitons or breathers along with pre-breaking

stage. At the same time numerical simulations in the framework of this equa-
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tion is so simple as for Nonlinear Schrodinger or Dysthe equations. Another

words, computational efficiency of envelope equation (17) is the same for equa-

tions mentioned above. Using this equation we studied initial stage of wave

breaking in detail.

Being unavoidable phenomenon on the surface of the ocean, wave breaking

is very difficult to describe or simulate. Wave breaking change the topology

of the surface of the ocean. Here, in this article, we propose simple model of

dissipation of such waves. This dissipation acts only in the point of breaking

and does not affect other part of water surface. Numerical simulation shows

reasonable behavior of integrals of motion, they drop by fixed value. After each

event of this model breaking the surface again becomes smooth.

Numerical simulation of soliton turbulence have shown decay of homoge-

neous wave train into set of solitons. These solitons are very narrow, there

are about three waves under the envelope (three sisters). Probably it is the

limiting size of soliton on the deep water, when the solitary wave solution does

not exist.
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