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Shedding and interaction of solitons in weakly disordered optical fibers
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The propagation of the soliton pattern through optical fiber with weakly disordered dispersion coefficient is
considered. Solitons perturbed by this disorder radiate and, as a consequence, decay. The average radiation
profile is found. Emergence of a long-range intrachannel interaction between the s@iitedisited by this
radiation is reported. We show that soliton in a multisoliton pattern experiences a random jitter: intersoliton
separation is zero mean Gaussian random field. Fluctuations of this separation are estimalgd by
~DZ%u, where D measures the disorder strengthjs the propagation distance, and stands for the
transmission raténumber of solitons per unit length of the fipeDirect numerical simulations are used to
validate theoretical predictions for single soliton decay and two-soliton interaction. Relevance of these results
to fiber optics communication technology is discussed.
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I. INTRODUCTION were briefly described in Ref7].
A soliton, propagating through a fiber, emits radiation due

Fibers are not ideal, i.e., inability of production to achieveto disorder and, consequently, loses its energy. However, in
100% guaranteed control of fiber parameters in the procedbe case of weak disordéweakness of disorder is actually
of fiber pulling and preform manufacturing results in irregu-required for successful fiber performantee destruction of
larities of the fiber structure. Structural disorder is built in thethe soliton is slow, thus making an adiabatic description of
fiber. The effect of this disorder on the propagation and inthis problem possible. The adiabaticity implies separation of
teraction of pulses accumulates with propagation, i.e., théynamical degrees of freedom into slow and fast modes.
longer some pulsépattern of pulsestravels along the fiber, [See Refs[8-1( for the general description of the adiabatic
the more strongly disorder affects it. Even weak disordeiperturbation approach to partial differential equations and
may cause essential damage to pulse integrity. A strong effe€tefs.[11,12 for applications of the general method to vari-
of weak disorder in the fiber dispersion coefficient on theous regular perturbation expansions about the soliton solu-
shedding and interaction of pulses, a problem which is crution of the one-dimensiondllD) NLSE.] Slow modes de-
cial for progress in modern nonlinear fiber optics and relategcribe evolution of the soliton itself while the fast modes
communication technology, is described in this paper. correspond to the radiation. The soliton keeps its shape

In fiber optics communication a pulse is used as a bit othat, at each instant, the soliton is close to a stationary solu-
information. For an ideal fiber, working in the regime of tion of the noiseless NLSEwith the soliton parametergo-
nonlinear transmission, a pulse of the electric field is desition, width, phase, and phase velogigvolving slowly.
scribed by a stationary solutidsoliton) of the self-focusing Waves shed by a soliton are moving away from it. The av-
nonlinear Shrdinger equatioNLSE) with constant coeffi- erage intensity of the radiatiof@t 1<t<z) is estimated as
cients[1-3]. Stationarity, in particular, means that soliton D% In(zt). Here, 7 is the soliton amplitudel measures the
propagates through the fiber with a constant spéedr a  intensity of the disordetwhich is assumed to be weak,
detailed derivation of the NLSE from Maxwell’'s equations in <1), z stands for position along the fiber, ahds the re-
a very general fiber optics setup see, e.g., Réf) The tarded time, i.e., time counted from the moment when the
stationary solution is a result of a fine balance between thgoliton passes through a given positior{All the quantities
fiber dispersion and nonlinearifg—4]. are measured in the respective soliton units: the time unit is

A sequence of pulses launched in the fiber forms a patthe soliton width, and the length unit corresponds to the dis-
tern, which codes the transmitted message. Ideally, this patance passed by soliton during one turn an @f the soliton
tern is a sequence of solitons, each positioned in the center phase). In the domain wherét|>z the radiation decays ex-
a slot allocated for the respective information bit, where theponentially witht/z. Thus, one can say, that the radiation
soliton is a stationary single-pulse solution of NLSE. Statepropagates away from the solit¢im t) with velocity, which
‘1" is assigned to a slot if the soliton is present there, ands O(1). Amplitude of the front forerunnegi.e., the domain
the state of the slot is *‘Dif the slot contains no soliton. The of t where|t|>Zz) decays exponentially witt/z. One finds
disorder, built in this fiber, breaks this ideal pictuf€ome that at anyz, however large, the radiation in an immediate
other potentially important corrections to NLSE are dis-vicinity of the soliton is much less intense than the soliton
cussed in Refd5,6].) In the present manuscript we describe itself, i.e., the soliton is always distinguishable from the ra-
dynamics of single- and multi-soliton patterns in the pres-diation. Since the soliton losses its energy into radiation, its
ence of weak disorder in the dispersion coefficient. Somemplituder decays withe. The degradation law is determin-
preliminary results of this study, detailed and corrected herestic in spite of the original setting stochasticity. This is due
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to the fact that the variation of is determined by an integral VI. Direct numerical simulations for single-soliton and two-
overz, which is a self-averaged quantity at largélhe soli-  soliton cases, confirming the theoretical analysis, are dis-
ton degradation lavjvalid at anyz>1) is cussed in Sec. V. Section VIII is reserved for conclusions.
Some calculation details are described in appendixes.
n=(1+32D2z/15) ¥4 (1.0

o L L e . II. BASIC RELATIONS
(Quantitative definition of the noise intensify is given in

the next section.Notice, that the degradation of the soliton This section is devoted to general introduction into the
amplitude in the presence of disorder in the dispersion coef- . : . . .

ficie?nt was previoFl)Jst considered in REL3] Wherg estima- problem .Of optlcaI.S|gnaI n_onlmear propagation thro_ugh m-
tions consistent with the analytic expreséi@nl) were de- perfect fiber. Basic equations governing propagation of a

. ) . pulse through such a fiber are introduced in Sec. | A. Section
g\slggﬁﬁak,aggglﬁg shows that the soliton starts to degradel B is devoted to discussion of real fibers parameters used in

Next. we examine interaction of solitons at<¥<1/D communication technology. Section I C introduces the for-
’ . . . : . malism of a signal separation into localized moéssliton
(when the soliton amplitude decrease is still negligible 9 P 9

. . - nd delocalized modgsadiation. General consequences of
emerging under_the influence of the radiation. We show th e weakness of disorder for the separation formalism are
the interaction is extremely long range, due to the one-

dimensional(1D) nature of the system and also because o iscussed in Sec. ID.
the reflectionless feature of the radiation. At arafl solitons
separated from a given one hy=<z act on this soliton with
a force, which is zero on average. Fluctuations of the force Optical fibers are waveguides relying on the effect of
result in a Gaussian jitter of the soliton position. We find thatcomplete internal reflection. A typical fiber consists of core
in the two soliton casé.e., for the pattern consisting of two with higher refractive index and of a cladding with lower

solitons only, so that no other solitons are present anywheneefractive index. The diameter of the fiber core corresponds
in the [t| =z vicinity of the paip fluctuations in their relative to the first transverse mode at the carrier frequency of a

A. NLS with frozen disorder

position 8y are determined by signal. Therefore, light pulses can be described in terms of a
single mode electromagnetic field, propagating along the fi-
((8y)?=0.371+cog2a)|D?Z?, (1.2 ber. Then, the field can be treated as one dimensional. Im-

perfections of the fibefdisorder, built in the fibgris mainly
wherea is the intersoliton phase mismatch. Angular brackets;oming from variations in its diameter and chemical com-
in Eqg. (1.2 stand for averaging over many realizations of posite. Since the signal propagating through the fiber decays,
disorder (i.e., over different fibess In the general multi-  amplifiers should be inserted in the fiber line to maintain the
soliton case fluctuations in thié¢h soliton pOSition are esti- Signa|’s amp“tude_ BelOW, we discuss equations averaged
mated as over the inter-amplifier distance, thus assuming that attenua-
2 2.3 tion is compensated by amplification.
((oy1)%)~ND*Z, (1.3 The universal description of the signal envelope dynamics

. . . in the reference frame moving with the wave packet group
where N is the number of solitons in the same channelVelocity is given by the NLSHsee, e.g., Ref4])

(propagating on a given frequency, i.e., with a given group
velocity) in the |t|=<z vicinity of the pair.(To avoid confu- —i19,V =d(2) 52V + 2| ¥ |2V, 2.1)
sion, note, that effects of multichannel interaction are not
discussed hergAt z~N~3D 23 the effect of interaction explaining dynamics of electromagnetic wave packet with
on the soliton displacement becomes dangerous,Q@l).  envelope¥ (z,t). This signal propagates in(which is posi-
This interaction lengttN =D 2" is shorter than the degra- tion along the fiberbeing a subject to dispersion in retarded
dation lengthD ~1. Thus our approximation is justified: soli- time t (i.e., time counted from the moment when soliton
tons acquire significant shifts in their positions well beforepasses through a given positiar), and to the Kerr nonlin-
any essential decrease of the soliton amplittaegenerally, earity. Equation(2.1) assumes that fluctuations in the chro-
essential distortion of its shapis observed. Notice, that Eq. matic dispersion coefficierd(z) characterizing irregularity
(1.3) also applies to the case of an infinite pattern, corresponef the fiber, have a greater effect on propagation of pulses
dent to the continuous flow of information. In this cade, than fluctuations of any other coefficients in the equation,
=z, wherepu is the information rate, i.e., number of soli- say of the Kerr nonlinearitywhich is, therefore, constant,
tons per unit length of the fiber. rescaled to 2 in this equatipnEquation(2.1) is a result of
The material in the paper is organized as follows. Generaaveraging of Maxwell's equations. This averaging accounts
fiber optics relations relevant to our analysis are presented ifor geometrical features of the fiber core and cladding. Ad-
Sec. Il. The single soliton results are detailed in Sec. lll.ditional averaging, also accounted for in EQ.1), is per-
Section IV is devoted to the two-soliton interaction analysis.formed over the amplifier spacing. Real-world problems in
Generalization of the two-soliton picture for the multisoliton fiber-optics communication may require an account for cor-
case is discussed in Sec. V. Effect of the recently proposerkctions to Eq(2.1), e.qg., for subleading corrections coming
pinning of disorder in dispersiofil4—17 on single pulse from averaging over amplifier spacihy8]. We argue in Sec.
degradation and intersoliton interaction is addressed in SetB that such extra terms produce only small, irrelevant cor-
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rections to the soliton interaction discussed in this paper. and derivations. It explains why we treatas more of a

Only recently has the chromatic dispersion profilez) spatial variable rather than a temporal one, marking oscilla-
became experimentally accessible. High-precision measuréions int by “wave vectors,” which would be natural to call
ments demonstrated significance of the dispersion randontfrequencies” in a pure optical contextTo avoid misunder-
ness[19,20. Chromatic dispersion in optical fibers comes standing, let us stress, that the frequencies have no relation to
from two sources. The first source is the medium itself. Ma-the carrier frequency of the original electromagnetic wave.
terial dispersion in modern fibers is a relatively stable param- Another remark is about relevance of the physics de-
eter, uniformly distributed along the fiber. That is why we scribed by Eq(2.1) for the phenomenon of localization of
assume here, that the dispersion does not fluctuate in timéght in disordered mediuni21]. As was mentioned above,
The second source is due to specific geometry of the wavedhe disorder terng originates from fluctuations of the wave-
guide profile. Existing technology does not provide accurateyuide dispersion, and it is not related to the material compo-
control of the wave-guide geometry in fibers, so that thenent of the dispersion. Therefore, fluctuations of the material
actual dependence of the dispersion coefficient on the wavelisorder were not accounted for in E@.1). Nevertheless,
length is complicated. As a result, the typical magnitdge  we find it useful to briefly discuss here its effect on propa-
of random variations of fiber chromatic dispersifz), can  gation of light. Material disorder is associated with irregu-
achieve, or in some cases even become greater than, thatlefities of the fiber core and claddingmpurities on very
the mean dispersion. The typical scale of the disorder variashort, atomic scales. Light scattering on the impurities leads
tionsz,,, is much less than all relevant scales in the problemto the well known phenomenon of localization of light, tak-
(See Sec. I B for discussion of real-world numbers and estiing place at some larger scale, usually called the localization
mations) length[21]. The localization length is inversely proportional

It is convenient to separate the constant part ¢fvhich ~ to the strength of the material disorder. Material used for
we rescale to unifyand its fluctuating parg: d=1+¢, manufacturing modern fibers are usually very clean, so that
where £ is a random function of, correlated on the scale the localization length essentially exceeds the distance be-
Z,or- We examine statistical properties of the fibers, whichtween filters, which, in the typical fiber lines, are placed at
represent averaging over many realizations of the disordghe amplifier stations. Filters cut the back scattering of light
£(2) (over many fibers Those objects allow establishment thus destroying coherence, required for emergence of the lo-
of both typical fluctuations and probability of large devia- calization phenomenon. As a result, presencévefy low
tions from the typical value for different quantities. Being intensity material disorder does not play any significant role
interested in phenomena occurring on scalekarger than  in fiber optics communications. Notice, also, that the scale of
Z,ar» ONE can treat the disordéras a short- §-) correlated the waveguide disorder variatiomg, essentially exceeds the

one. Then the first two cumulants éfare wavelength of light, thus allowing us not to take into account
the back-scattering of light due to waveguide disorfido-
(6)=0, (&(z1)é(2,))=D (21— 12y), (2.2  tice, that it is this separation of scales which allows us to

reduce the hyperbolic Maxwell equations to the parabolic
where(- - -) marks averaging over many realizations of dis-€quation(2.1) in the envelope approximatidnrherefore, no
order (i.e., over many different fibeysThe coefficienD (to  localization phenomena due to material disorder is possible.
be called noise intensityis estimated a ~z,,d2,. High- ~ For the sake of generality, let us also note, that the role of
order cumulants of¢ are negligible as containing higher disorder in the context of the localization-delocalization tran-
powers ofz,,. In other words, statistics of is Gaussian. Sition was investigated for the nonlinear Safirger equa-
The smallness ok, (in comparison with other relevaat ~ tion (see, e.g., Refl22]). However, in solid state physics
scales is due to the fact that the disorder is we@k<1. frozen disorder means that noise zsndependent(in our

This weakness of disorder is, actually, a necessary conditiofotations. The t-dependent noise is very different from the
for successful fiber performance. z-dependent one, studied here, and to the best of our knowl-

Note that in describing propagation of a signal, we adopf_edge, th_e fo_rmer case does not cor_respond to any situation of
mixed optical-quantum mechanical notations and terminolinterest in fiber optics communications.
ogy. Indeed, the traditional optical notatioms reserved for
retarded time, since, experimentally, the envelope of the
electromagnetic field is measured as a function of time, and
also becausein Eq. (2.1) is a “descendant” of the real time Equation(2.1) is written in dimensionless units, which are
in the original Maxwell’s equations, Eq2.1) was derived related to the real-world fiber units through the following
from. From the other side, the retarded time is proportionarules. The envelope of the electric field is in the fofn
to real time minus position along the fiberdivided to the =Rq \/P_O‘Pe"“ot], wherePy is the peak pulse power ang
velocity of light) and, thereforet is also carrying a certain is the carrier frequency of the signal. The propagation vari-
spatial sense. In addition to E€R.1) which is called the able isz=Z(axPy/2), whereZis the distance along the fiber
nonlinear Schidinger equation in direct analogy with the anday is the Kerr nonlinearity coefficient. The Kerr coeffi-
famous linear Shdinger equation, is a parabolic equation cient can be expressed in terms of other fiber parameters
with second order derivative over tinteand not over the ayx=2mn,/(ASs), Wheren, is the nonlinear component of
coordinate along the fibex The analogy with quantum me- the fiber refractive indexy is the operating wavelength, and
chanics is extremely helpful and is used in later discussionS. is an effective area of the fiber core. The other coordinate

B. Real-world transmission parameters
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ist=(T—2Z/c)/ 9, whereT is time, c is the velocity of light i.e., of Eq.(2.1) with d=1. The disorder terng disturbs the
in the medium(i.e., T—Z/c is just the retarded timeandr, idealN-soliton pattern. Our task here is to describe evolution
is the pulse width. The dispersion coefficient &  Of ¥ under action of this disorder. The weakness of disorder

:2[32/(6“307-3)' Whereﬁz is the second order dispersion ¢ and localized nature of the |n|t|a| soliton profIHa‘(O,t)
parameter. To give an example, a typical set of parametesiggest the following decomposition

for dispersion shifted fiber is as followg,=0.1 pg/km, _

a=2 WL km™%, \=1550 nm, 7y=7 ps, Py=2 mW. V=" ot Weon, (2.3

The typical scale of the disorder variationg,,, can be whereW ¢, is the localizedsoliton) part of the envelope and

xtracted from experimental measuremdii$,20 showin o . .
° ed b ° 408,20 9 W .n Stands for the radiatiofdelocalized paijt If there is no

thatz,,, is shorter than-1—2 km. Notice, that this number z : ) r X
actually comes from experimental resolution, while one ex-disorder €=0) W is a solution of th&=0 version of Eg.

pects that the typical scale of the variations is at least one t&2-) andWeo,=0. Therefore W o, is O(¢).

two orders of magnitude shorter,10— 100 m, i.e., the scale In the single-soliton case one has

is fixed by the size of the production facilifiber pulling

device. In any casez,, appears to be essentially shorter Vo= 7 exdio+iB(t— 2.4
than any other, relevant for long-haul transmission, scales. It o™ cost p(t—y)] Hietipt=y)l, 24

was also reported in Reff19] that fluctuations of the disper-
sion coefficient in a sample of “dispersion shifted” fiber are Where 5, y, ¢, and 8 are amplitude, position, phase, and
of the order of its average value, i.@58,~0.5 pg/km. phase velocity of the soliton. The disordgiis a reason for
Therefore, for a pulse width of 7 ps(which would corre- complicatedz dependence of the soliton parametgrsp, 3,
spond to a single-channel transmission rate of 28 Xaigl  and y, whereas in the absence of disordge., when ¢
for a nonlinear length ofz, = (aPy) “1~250 km, the noise =0) % and 8 are z independent, ang and ¢ are linear
intensityD=zvard\2,ar is estimated by 10°— 10 2. Then, the functions ofz It is convenient to change from the soliton
soliton interaction is seen &= 1/\/D~2500-7500 km. phasep(Zz) to the auxiliary ¢ independent in the absence of
Notice, also that the decrease of the pulse width by a fartor disordel object «,
(correspondent to a factor @f increase of the transmission
rate) leads tog? decrease irz;y. Z s,

Let us now discuss applicability criteria of the approxima- p=at fo dz'%(2"). (2.9
tions leading to Eq(2.1) for the real-world situation in fiber-
optics communication technology. An important additionalt js also convenient to change from the radiation fidg,,

scale in optical communication systems is imposed by fibegy 5 new fieldv, which differs from W, by the single-
lossesy. Compensation of energy losses require use of ingg)iton phase factor

line optical amplifiers separated &y,;~ y~ L. The value of
Zampis usually 40—-70 km. Soliton based optical communica- v=exd —ie—iB(t—y)]¥ . (2.6)
tions is possible if the dispersion lengty;s,= 7(2)/,82, the

length of nonlinearity and amplification spacing are related By analogy with expansion over plane waves in the ho-
to each other agjsp~ z,> Z,mp. Averaging over the shortest mogeneous case, one can presethtere in the form of the
scalez,,we arrive at Eq(2.1). Subleading corrections, not following decomposition:

accounted for in Eq(2.1), are O((Zamy/Zdisp?) [18]. This

small parameter Z,n,/Zgisp?, is ~10 2 in the aforemen- ( v
tioned example of the dispersion-shifted fiber. Therefore, ex- v*
clusion of the correction term from E¢R.1), as well as the

validity of the averaging procedure oveér both require — ; ;
someyadditional justhgi]ca%io%. The correggtion term SrovidesWhere"D’ ¢ are eigenfunctions
deterministic and stochastic contributions to optical pulse. - n— —
Deterministic contribution does not produce ang)/ addir:-[)ional Lye= (Kt ne Lyo= =+ n)er, (28
continuous radiation and it results only in a weak deforma-

tion of the optical soliton shape. The second, stochastic, cono—f the operator

+=dk .
=f_wz[ak<pk(x)+a§ er(X) ], (2.7

tribution is (zdisp/zamp)2 times smaller than the main stochas- 2,2
tic contribution considered in the paper. Therefore, averaging L,=(#—n)os+ —77(2{73+ io,), (2.9
over the amplifier spacing does not change the valub,of 7 cost[ 7(t—y)]

only affecting the value of the effective noise correlation

length @, Zamp- This latter scale is still much smaller de;cribing gvolution of a Iinegr perturbation abou@ the single
than all other relevant scales. One concludes that(Eq)  soliton profile(2.4) of the no-disorder NLSE. The eigenfunc-
does explain situation of practical interest for fiber opticstions can be presented ag=fy,(x) and ¢y =f;,(X),

communications. wherex=p(t—y), andf,, f, are the eigenfunctions df,
at n=1, defined in Appendix A. This complete system of the
C. Separation into localized-delocalized modes eigenfunctions was found by Kaup in R¢L1]. The coeffi-

One assumes that at the fiber entraned, the signalv cientsa, anday in Eq. (2.8) are functions ofz. The eigen-
is close to anN-soliton solution of the no-disorder NLSE, functions ¢, and ¢, depend orz via 7(z) andy(z). The
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functions ¢, ¢, are orthogonal to the four localized than a single soliton widdh ¥, can be approximate@with
modes, corresponding to variations of the four soliton paraman exponential accuracy over the intersoliton separatioyns
eters in Eq.(2.4) (see Appendix A and the orthogonality a sum of the single-soliton contributions

conditions can be written as

N
i
o V. = - -
ﬁ dt cosh }(x)(v+v*)=0, sol Zl cosh 7 (t—y;)]
e xexp{iaﬁrifzdz’ninri,Bi(t—yi) . (219
f dttanh(x)cosh *(x) (v —v*)=0, 0

labeled by index, i=1,... N. Herew, v;, a;, and B,
+o0 are real parameters, standing for amplitudes, positions,
fﬁw dtxcosh *(x)(v+v*)=0, phases and phase velocities of the solitons. In the absence of
disorder, the soliton parameters aréndependent with the
o same exponential accuracy. The disorder drivesdepen-
j dt[x tanh(x) —1]cosh (x)(v—v*)=0. (2.10  dence of the parameters. Th&l parameters of’ ¢, are de-

- termined for a givenV through 4N conditions generalizing
the relations(2.10. The conditions manifest orthogonality
between the continuous spectrum and localized modes of
differential operator defined for linear perturbation of the no-
disorder version of Eq(2.1) about itsN-soliton solution.

We assume that a sequence of ident{cdlthe same unit
amplitude and zero initial phase velogitigeal solitons are
launched into the fiber a=0. Thus the initial conditions
for ¥ are

The relations(2.10 fix uniquely (even though inexplicitly
the soliton parameters, introduced by Eg.4), for a given
function ¥(z,t) in the decompositior(2.3) where ¥, is
related tov through Eq.(2.6).

Let us rewrite Eq.(2.1) in terms of the new variables.
Substitution of expression.3)—(2.6) into Eq.(2.1) (where
d has to be replaced by+1¢), and subsequent expansion
over ¢ andv results in

. . (0)=1, Bi(0)=0, W, (0}t)=0. 2.1
93,08 o(X) = 3,7 a(X) + 729y~ 2B) F1(0) +i 93BT o(%) m(O)=1, A(©) co O1) 13
v (v The initial positions of the solitong (0) are parameters cod-
+4d, *) —iL,,( LT ing the transmitted information. Solitons phaseg0) are
v v particular initial data.
R . 2 1
=167 Sosx cosfn || =1/ (211 D. Weakness of disorder

The separatiol2.3) of the entire solution of Eq2.1) into
wherex= 7(t—y). The ellipses in Eq(2.11) stand for high- the localized and delocalized parts is natural in the case of
order terms irv and 8. Then, the equations for the soliton weak disorder. The weakness of disord&r<1) has two
parameters and the continuous spectrum amplitégesan  important consequences: first, the radiation emitted by soli-
be found by projecting Eq2.11) onto respective eigenfunc- ton is also weak, i.e¥..,,=O(£), and second, parameters
tions of L, (2.9). Let us present an expansion of the right- Of the soliton vary slowly ire, while dynamics of the radia-

hand side of Eq(2.11) into a series over the eigenfunctions: tion field ¥, is relatively fast. The weakness of the radia-
tion intensity, |¥.,{<1, suggests a linear description for

1 2 1 ) V¥ .on- Let us, however, stress, that, generally, the decompo-

coshx  coshx

[ 1 sition (2.3), determined by Eqg2.4)—(2.9) for a single soli-

ton (and by analogous relations for the multisoliton gase

Kk o does not require any smallnesswf,,. The generality of the
= nflf E(bk/n(pk'i- b’,:,,,gok)—ifo(x), approach will help us to construct a consistent perturbation
theory(which, as we demonstrate below, requires an account
(2.12  for some higher order terms
An important part of our further analysis will be focused

_mi (q+i)? on derivation and solution of a linedes the radiation is
a o cosi{7q/2)’ (2.13 weak equation forV’ ... The equation gets a rather complex
structure, which, generally, requires an accurate, case spe-
where Egs(Al11), (A12) from Appendix A were used. cific, analysis. However, the asymptotic behaviorf,,,

In the multisoliton case a localized part¥f, ¥, can away from all the solitons, is simple and general, and it is
be approximated as ax-soliton solution of the no-disorder certainly worth discussing it here. Far from solitons the ra-

NLSE with 4N parameters, varying ie. If individual soli-  diation field ¥ ., is described by the linear wave equation
tons in theN-soliton pattern are well-separated from each ) 5
other (i.e., if the intersoliton separations are all much larger =10,V con= 9y ¥ con. (2.16
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Thus, in the asymptotic domain the fiel.,, can be ex- disorder ¢=0) case. One finds thatderivatives of the slow

panded over the set of plain waveexp(—ik’z+ikt). In the  yariables areD(¢) or smaller. The radiation is alsoO(£),

reference frame, moving with the speed of light through thq_e_, it is small due to the smallness &f According to the

fiber, a wave packet with the wave vectopropagates along  conservation law3.1), 7=1+0(v?), i.e., it can be simply

the z axis with the group velocity B Therefore, the group repjaced by unity in the approximation. The observations

velocity decays as the wavelengti ! increases. This make it simple to linearize Eq2.11) with respect tot.

means, in particular, that short waves arrive first at some Qnce the linearized equation is found, one can derive

remote point. equations for the soliton parameters and the expansion coef-
ficientsa,, introduced by Eq(2.7) by projecting this equa-

Il. SHEDDING OF RADIATION BY A SINGLE SOLITON tion on the respective eigenfunctions of the operatdsee

The symmetry of the single-soliton allows reduction in APPendix A\. Projection on the eigenfunctions of the discrete
the number of essential degrees of freedom. Since both tHgPectrum gives the following equations for the soliton pa-
Eq. (2.1) and the single-soliton version of the initial condi- "@meters:
tion (2.15 are invariant under time inversida- —t neither _ _ _ -~
soliton positiony nor its phase velocity are varying withz. dpa==¢& =0, 0,6=0, 0y=2p, (32
The integral quantite= [dt|¥|? (which is also natural to
call energy, since it corresponds to the energy of the origin
electromagnetic fieldis conserved. This conservation law is
due to the gauge symmetry of E@.1). The single-soliton
version of the conservation law is

a\fvhere we used the expansit12). In agreement with what
was already discussed, E@.2) shows that neithey nor 8
depend onz. Below we putB=0 in accordance with the
initial conditions, and assume=0 (without any loss of gen-
erality). Equation(3.2) confirms an already mentioned obser-
vation thatn does not have dependence in the first order in
277+f dtjv]?=2. 3.1 &. The equation for the continuous spectrum coefficients of
the radiation expansion,a,, derived from Eqgs.
Equation(3.1) gives an instantaneous relation between soli<2.11,(2.12,(2.13), is
ton amplitude and the integral oveof the radiation inten-
sity. The soliton phasey, although evolving under the ac- d,a,—1(k?+1)a,=byé, (3.3
tion of disorder, does not enter E(.1). Notice that the
relation (3.1) is valid generally, regardless of the relative whereb, is defined by Eq(2.13. The solution of Eq(3.3) is
strength of the two terms on the left-hand side of E21). written as
The weakness of disordeD 1) is essential for the next
two steps. z o, ) ,
(1) Linear approximation, reducing calculations directly alz)= fodz €z bexdi(k®+1)(z-2)]. (3.9
to account for the leading order in the radiatiérierms in
the basic dynamical equation. We will show below that theSubstituting Eq(3.4) into Eq. (2.7) and considering the ra-

direct perturbation expansion is valid 2&1/D, where de-  giation far away from the solitotthat impliest>1) one gets
viations of » from unity are small.

(2) Quasilinear approximation, explaining generalization iz
of the pure linear approximation to the case of moderate- v~ — —f dz' &(z')exd —i(z—2")]J(t,z—2"), (3.5
(z~1/D) and long- ¢=1/D) haul transmissions. For sueh 4Jo
a cumulative change of the soliton amplitudg, becomes
essential, while the radiation shed is stifls in the linear (q—i)? . o,
case weak at any given position. j(t,s)=f dqmexq—mtﬂq s).
Equations forz dependence of the parametersg, «, V,
ay, anday are presented and discussed below separately fgx stationary phase calculation of the integral on the right-

(3.6

. (3.7

the linear ¢<1/D) and quasilinear4=1/D) cases. An es- hand side of Eq(3.6) gives

sential part of this analysigspecially complex in the quasi-

nonlinear caseis the proof of the following asymptotic mlt 2 t2 t

statement: the higher-order terfalipses in(2.11)] do not J(t,5)~ \[—S 2_s+i) eXF<i4—S) COSh—1(4—S

contribute to the leading asymptotic description of the radia-

tion profilev at anyt,z>1. Notice, however, that some of The asymptotic expression given by B&.7) is valid ats

the higher-order terms have to be taken into account in thg1 ymp P 9 y HG-

asymptotic equations for the soliton parameters. To describe the space-time dependence of the radiation,

we examine the radiation intensity|?, averaged over real-

izations of the disorde, in the asymptotic domain of large
The linear (first order in &) approximation is examined z andt, z,t>1. Multiplying together two replicas of Eg.

here. Recalling that the parametersg, and» (and, alsoy, (3.5 and averaging the result over disorder, in accordance

if the soliton is not movinyg are z independent in the no- with Eq. (2.2), one finds

A. Linear approximation
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D [z radiation shifts towards the radiation. However, the differen-
(Jv|®= 1_EJ dz'|J(t,z—2")|%. (3.8 tial (per unitz) release of energy into the radiation remains
0 small and, actually, continues to decrease witfihe radia-

At t>1 one can replacg/ in Eq. (3.9 by its asymptotics tion emif[ted by the _soliton moves out of the solitqn with a
(3.7 speed, fixed by the mstanta.nepus value of .the soliton qmpll—
First, let us consider relatively short timegz. Forz' in  tude at the moment of emissian Once emitted the radia-
Eq. (3.9, restricted byz—z'>t, one gets |j|2~7r/(z tion never returns back to the ;ohton, ie. it dpes not a_ffye_ct
—2'), resulting in the logarithmic divergence of the integral later (at largerz). Thgrefore, since the density of radla_tlon

in Eq. (3.8) at small values of—z'. The divergence is cutat Was small at the relatively shazt z<1/D (a fact proved in

z—7'~t, leading to the following radiation intensity profile: the previous subsectipiit cannot increase at larger quite
the opposite, it may only decrease, ije/<1 at anyt andz

T z This feature of the linear approximation will be, therefore,

1_6D Inf. 3.9 carried over largez. The only new ingredientnot consid-
ered at shorter) is accounting for slow degradation of the

Within the domain of the radiation forerunner, definedtby soliton amplitude withe. Physically, the quasilinear approxi-

>z, cosh in Eq.(3.7) can be replaced by its exponential mation works because the waves shed by soliton leave it,

asymptotics. Then, the integral in E@.9) is formed in the  while the soliton travels a distanéz~ 1/%?, and the soliton

region of the shortest’ allowed in the domain. Calculating amplitude » does not get any essential change duriim

the integral explicitly, one derives the following asymptotics (SinceD<1).

for the radiation forerunner profile: Our first task here is, assuming some given dependence of

7 on z, to study the radiation profile. One derives from

t<z<1/D, (Jv|®)=~

Dt? t Egs.(2.1)—(2.1
z<1D, z<t, (|v|2)~—3exr{—g— . (3.10 gs-(210-(213
3z z da— i (K24 7%)a = by, £. (3.1)
The two asymptotic expressiof8.9) and(3.10 match az  gome terms, originating from the dependence o were
~t. omitted in Eq.(3.11). This step will be justified below. The

It is instructive to present a qualitative explanation for thegg|tion of Eq.(3.1D is
logarithmic profile(3.9). At small k the source of the radia-
tion (localized at the solitoncan be treated as a pointlike z )
one. Therefore waves with the wave vectkrs1 are excited a(z)= fo dz'&(2") 7(2) b (1)
by the disorder with approximately equal probability. Never-
theless, they have different group velocities. Among all the . N
waves shed by the solitofat t~1 andz’'<z) only those Xexpiki(z—z )+|f,dz’ 7°(Z")
special with the wave vectdgroup velocity k=t/z contrib- ‘
ute to (Ju(t)|?) at the givenz andt. On the other hand, gubstituting Eq.(3.12 into Eq. (2.7 and considering the
emission of waves witlk>1 is suppressed. Thus, the main (adiation away from the solitonst>1) one gets
contribution to (|v(t)|?) is proportional to [},dk/k
=In(z/t), where the N factor originates from the group ve- ifzo, 3
locity. U*‘zfodz &) n(2')

We conclude this subsection by establishing the region of

. (312

validity for the linear approximation explained above. The (2 ) , 0, ,

first, and immediate, consequence of the linear approxima- xexg —I LdZﬂ (O | T (n(2')t,n(2")(z=2")),
tion is the smallness of the soliton amplitude degradation.

This means that the amount of energy shed by the soliton (3.13

into radiation is negligible in comparison with the energy i , )
stil left in the soliton E.~2. According to Egs. ‘Where the function7is defined by Eq(3.6.

(3.9,(3.10, the average energy shed into the radiation is Equation(3.13 is fundamental for further pa!culgtion c_Jf
E..i=(/dtjv|?). One finds, that the radiation energy is both 's dependence on and the average radiation intensity

mainly stored in the region separating the logarithmic andProfile dependence onandz (The following two subsec-
the exponential profiles, i.eE,.~Dz. Since, according to 10N are devoted specifically to the two aforementioned sub-
Eq. (3.1), the overall energy is conserved, one finds that thd®Cts) However, it is very important to justify beforehand the
linear approximation is justified, i.eEq> E g, if Z is es- validity of those few but crucial assumptions made in the

sentially shorter than the degradation scajg,~1/D. course of derivation of Eq“?"la. from Eq. (2'1D: The rest
y g ' part of the present subsection is devoted to this task.

The key question here is could some small terms in Eq.
(2.12), neglected in the course of derivation of £§.13), be

Let us first draw a qualitative picture of what is happeningaccumulated at large? The major result here will be a nega-
at scales larger than the degradation scale. Gneeceeds tive answer to the question. To prove this general validity of
Z4eg=1/D, the balance of energy between the soliton and théeg. (3.13 one divides the entire domain into two distinct

B. Quasilinear approximation
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regions, of ar-wide soliton vicinity, 7>1/5, and the rest This equation describes dynamics of the energy density
(remote region oft). The two regions will be considered |¥|?, and leads to the conservation I§8v1). Integrating Eq.
separately. First, the validity of E¢3.13 should be proved (3.16 over ther-wide box, introduced in the previous sub-
for t from the box[ —7,7]. Then, in the second step, one section, one obtains a relation between the amount of energy
should take into account a term, omitted in the derivation ofshed by soliton and the flux of energy coming through the
Eq. (3.13, originating from az dependencévia n) of the  boundaries of the box. We chooseto be large enough so

eigenfunctionsp, and;k, in Eq. (2.7). that thet-integral of | ¥|2 gets the major contribution from
The generalized version of E¢3.11) accounting for the the soliton itself, and is equal toz2 The integral of the
dangerous term, is right-hand side of Eq(3.16 is reduced to two boundary

terms att= = 7. At the boundaries one can replade by
0,8, — i (K2+ p?)a + Aa,= ﬂzbk/nfv W .on and also replacg by zero. The result is
d,m(2)=iw*(z,7)d,v(z,7)~v(z,7)dv*(z,7)).

(3.17
We show below that the dependence mfon z can be
established from Eq3.17) with its right-hand side replaced
by its average value. Performing this averagiioyer the
statistics of disordérone arrives at

where A is a linear nonlocal ovek nonsingular operator,

estimated byA~ d,7/ 7. Assuming that the\ correction is
small, one arrives at the following modification of E§.13

v~— l—lfzdz’ §(z’)1;3(z’)exp{ —i ledz”nz(z”)

0

iD (z
z A d,m=—| dZ' 85(z")T* 9 } 3.1
x| 1+ J‘Z/dz”A Tzt (2" )(z—2")]. (3.19 =3 fo 2 7%(2')T*9,T (3.18

where Z(z,t)=J n(z') 7,7*(z')(z—2')], and the function
For |t|< 7 integration over’ from the right-hand side of Eq. J is defined by Eq(3.6). In Eq. (3.18 the function can be
(3.13 is formed atz— z' ~ 7/ 7. Therefore, correction to the approximated by its asymptotic expressi@i), resulting in
integrand of Eq.(3.13 due to theA term in Eq.(3.14 is ,
estimated by 7D Zd tpX(Z') (P+1)?

178 )oY 221 cosRmti2)”

(z—2")A~ %ﬁzn~Drn3, (3.159  where{=1/[5(z")(z—2')]. The integral over’ in the ex-
7 pression is formed a—z’' ~ 7/ 5. The size of the box can
be chosen to be much smaller tham (if z>1). Then, for
where one substitutes the laid.1), announced in the Intro- relevantz’, z—z'<z, and 7(z) can be substituted for
duction and derived in the next subsection. The correction,(z'). Passing fromz’ to the integration variabl¢ and

(3.19 is small providedr<D 7 3. The later inequality is  extending the integration region ovérdown to O (this is

obviously compatible with the only restriction we have im- possible since/z<1) one gets

posed so far on the size of the bex 7 1.

Next, we discuss the region of remdtge |t|> 7, where @D (-, (#+1* 8D |
the soliton part of the solutio® is negligible, whileWw ., 92M== g7 R ~ T 157
. . . . 0 cosh(m{l2)
satisfies the linear wave equati@h16. One can find¥ ., (3.19

outside the box by solving Eq2.16) with proper boundary
conditions, whereb ., ( = 7) was determined in the previous Integration of the differential equatiof3.19 gives the final
step, and it is also assumed that the radiation only escapessult for the degradation lawl.1) announced in the Intro-
the 7 box but never reenters. Fortunately, the result of thisduction.
procedure coincides with E¢3.13. Indeed, it is straightfor- The law of the soliton decay given by E(..1) is deter-
ward to check that .., related tov via the phase factor ministic in spite of the randomness of the initial setup de-
changeg2.6), satisfies the linear equati@®.16), if v is given  scribed by Eq(2.1). This remarkable fact is due to the self-
by Eq.(3.13. It is also seen from Eq3.7), thatv contains  averaged feature aj. The rest part of this section is devoted
only waves leaving the box. All this proves that there are to the proof of this statement: we demonstrate below that
no essential corrections to E@.13 originating from the deviation ofy (for a given realization of the disordéj from
domain of the remoté its average value is small.

To establish statistical properties gfwe turn to the aux-

C. Degradation law for soliton amplitude iliary quantity,

The energy balance between the soliton and the radiation V(2)=i(*(z,7)d,v(z,7)—v(z,7)d,v*(Z,7)),
controls the law of the soliton amplitude decay wattFrom (3.20

the basic equatiof2.1) one gets ] ) ]
extracted from the right-hand side of E.17). The irreduc-

3|V ?=id(2)o(V* 9, ¥ — W5, ¥*). (3.16 ible pair correlation functioicumulani of V),

036615-8



SHEDDING AND INTERACTION OF SOLITONS IN . .. PHYSICAL REVIEW B7, 036615 (2003

K(z1,2)=(M(z)W(2,))—(M(21)){W(2,)), (3.2 Analysis of this expression shows that there are three differ-
ent asymptotic domains dffor any givenz
is presented, according to Ed2.2),(3.13, as a double inte-

gral overz;,. One examines E¢3.21) at large values of (a) t<[z*/D]¥* and zD>1,
2,>7,,17,21 5,771, and also assumes that the two in- 314
equalities z,— z,> 27 and (z,—2,)d,7<1 are valid. (b) [z7/D]7"<t<z and zD>1,

Then, using Eq(3.7), one finds

9 Eq@3.9 (c) t>z and zD>1.
7.5

|K|<D?n® —-

5 (3.22 In domain (a) two different asymptotic regions of’, 1/D
(21—27)

<7'<z, andt/p<z—Zz' <z, give the major contribution to
. the integral on the right hand side of E@ 25. Collecting
account for the phase would decrease the value of the right-

hand side in Eq(3.22), thus turning the inequality3.22) ,._ 15m D¥%Z™
into equality] Integrating Eq.(3.22 over somezo-wide vi- @ ([v[9)= s T (3.26
cinity of z=z,;, one derives

In domain(b) the major contribution is coming from the 1

fz dz'|K(z,2')|<D%7°r (3.23 <Dz'<(z/t)* region of thez' integration in Eq.(3.25,
z-2, ’ ’ leading to

wherez,> 7/ 5. Evaluating the inequality3.23 further, one 157
gets (b (Jof)= T5g @) (3.2

|

The integraIAnEfﬁ,zodz’V(z’) determines variations of .

n(z'") for z' from the interval bounded by—z, andz. We o) (|v]?)= 13t F{— lt) (3.29
established that fluctuations dfn are weak. On the other 25624 2z

hand, we are free to choose sughthat A n<#. To con-

clude, evolution ofy can be described in terms of the deter- Now that all the asymptotic§or relatively shortz in the

JZ dz’'V(z')

z-2g

2 7 -2 r . S . . .
j 4z V(2 e <1 An(,JI finally, att>z the integral in Eq.(3.25 is formed at _
1Zg Dz'=<z/t, where cosh can be replaced by its exponential
asymptotics. This leads to

ministic equation(3.19. previous subsection, and for lorghere have been pre-
sented, let us describe a general picture of the radiation dis-
D. Average radiation tribution. The radiation front runs out of the soliton with

constant speed/z~1. A logarithmic profile is formed be-
%hind the front, while the radiation forerunner decays expo-
nentially with t/z=>1. The energy of the radiation is con-
tained mainly in the boundary region between the
logarithmic and the exponential profiles. &< 1/D, the
logarithmic profile (3.9) is simple, and the preexponential
D (z factor depends oD, as it seen from Eq(3.10. At larger
(|lv]?)= 1_6J dz' 78| A nt, 74(z—2)]|%  (3.24  z, z>1/D, when the soliton has already shed almost all its
0 energy into the radiation, the logarithmic profile splits into
two parts described by Eq63.26) and (3.27), respectively,
and the exponential asymptotics is modified to E3}28).
Regime(a) is formed by the waves witk< 7 emitted con-
tinuously at differentz’, whereas regimegb) and (c) are
formed by the “fast” waves, emitted a’' far from the ob-
servation poinz. The boundary between regimé&s and(b)
is determined by the conditiar- %z (that is the “distance”
passed by waves withk~ 7). The profile in regime(a)

This subsection is devoted to derivation of the averag
radiation intensity profile from Eqs(1.1),(2.2),(3.13. We
examine it in the asymptotic domain of largeandt, z,t
>1. Averaging the radiation intensity|? in accordance
with Eq. (2.2) one finds

where n=7(z'), and 7 is defined by Eq(3.6).

The radiation profile ar>1/D gets a more complicated
structure than in the domain of shart z<1/D, studied
above in Sec. Il A. Using the asymptotic expresdi8ry) for
the auxiliary function7 and substituting Eq(1.1) into Eq.
(3.24) one derives

(|v]?)=—n 15m dz' knows about the current amplitudgof the soliton, whereas
512Jo (z—2')[z' +(15/32D 1] in regimes(b) and(c) the radiati_on is insen_sitive to the cur-
) rent value ofy. Note that the universal profile, formed in the
t? 72 at regions(b) and (c), does not depend on the intensity of the
X —47]2(2_2,)2 +1| cosh —47](2_2,) : disorderD and the only information stored in the asymptot-

ics is about the initial soliton profile. The universal profile
(3.29  (b), (c) is self-similar:(|v?|) =z~ 1®(t/2). At first sight, this
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type of self-similarity t~z seems to contradict the same general notationg,, ¢y for the continuous spectrum
asymptotic equation2.16. This confusion has a simple eigenfunctions ofZ, i.e., Zow=(kK2+1)ep, Lop=— (K2

resolution. The main dependencevobnt is associated with +1)o.. The eigenfunci fixed by thei ot
its phase, which, as it is seen from H8.7), has a normal )90'6' € €igeniunclions are fixed by heir asymptotic
behavior at large negative

kind of self-similarityz~t2. However, the phase drops from
the absolute valufy |?, so that the self-similarity of the latter
object is determined by the subleadirgl/z terms in the t— —cop—
eikonal approximation. Notice, that the phaserma) self-
similarity will be seen in the two soliton interaction dis-
cussed in the next section.

k—i\2 . 0
m) exp(lkt—|kyl)(l). (4.2

Then, with exponential accuracy,=f,(t—y,) if t<y, and

S A
IV. INTERACTION OF TWO SOLITONS o) = (k_i)zeXp('ky+'“)favk(t_VZ)

Propagation of a two-soliton pattern at moderate 1 ft> ;
y1. Herey=y,—y; and the functions,, f, are de-
EZED IS dISfCUSSGd Im th'? sech?hn Atiwas show? in Slecfmed by the expression§A6),(A7),(Al14). In the transient
ynamics of a single pulse within the range o Scaesregion l<t—y,, y,—t>1, the two asymptotics ofs,,
bounded from above by the degradation s@l€" is trivial: o —
presented above, coincide. One should also @agd o, ¢y

y and 8 do not evolve, while the change of the soliton am- : . :
plitude 7 is O(zD), i.e., negligible. The major observation to the set of eigenfunctions to make it complete. The or-

following from our analysis here is that the intersoliton sepa-thogonality properties ofp,, ¢, are identical to the ones
rationy,—y; coupled to the phase velocitigh , of the two ~ given by Eqs(A1l).

solitons, gets a nontrivial dynamics at scales much shorter The linear equation fas follows from direct expansion of
than the single soliton degradation scBle®. We show that the basic equatiof2.1),

the intersoliton interaction mediated by disorder is essential
at shorter scales. The soliton parametgis are O(\Ifﬁon), 02( v )—iﬁ( v*
while ¥, itself is O(&). Therefore, we divide our analysis

into the following sub-steps. First, the radiatitdh,,, will be
related to& in the linear approximation. Secong; ,, and
theny, ,, will be presented as a second order formHig,,.
Finally, we calculate statistics of the forces acting on the
solitons and, therefore, explain soliton jitter.

+...=0¢¢, (4.3

2 - 1 ( 1 )
cosh(t—y,) coshit—y;) |\ -1

eia
(%) e
A. Radiation generated by two solitons
We consider theN=2 case of the general setting Here ellipses stand for terms corresponding to the localized

(2.3),(2.14 when the solitons are well separated, thayis modes, and’ was already introduced above. Substituting the
=y,—y;>1 (y,>y; is assumed At z<D ! one can sub- decomposition(2.7) into Eq. (4.3 and expanding its right-
stitute », = 7,=1, and the localized part oF (2.14 is re- hand side over the eigen-functions of the operaiprone

N 2 1
I —
coshi(t—y,) coshit—ys)

duced to gets
eia1+iz+iﬁl(t—yl) eia2+iz+ib’2(t—y2) L2 _
cosht—y,) cosht—y,)
Bemby 1+ ST grityia 4.6
The delocalized par¥ ., of the complete solutioni2.3) of k™ k (k+i)2 ' '

Eqg. (2.1 is built according to the general scheme outlined in
Sec. Il whereb, are defined by Eq2.13. [In the derivation we did
As in Eq.(2.6), one introduces an auxiliary radiation field not account for & dependence oy, sinced,e,=0(£).]

v, v="Y,exp(—ia;—iz), accounting for the phase shift of The solution of Eq(4.5) is

the soliton, positioned at;. The fieldv can be written in the
form of the expansior(2.7) over the continuous spectrum
eigenfunctions of an auxiliary perturbation problem. The

auxiliary problem is fixed by the operatat, which is a

two-soliton generalization of the single-soliton operatoranalogously to Eq(3.4).

(2.9). With exponential(with respect to the separation In the linear approximation ovef, the soliton’s param-
—y,—v,) accuracy, the differential operatdt is =L (t eters can be examined in the framework of the same Egs.

—y;) at t<(y;+y,)/2 and L=L,(t—y,) at t>(y1 (4.3),(4.4). The resulting equations for the soliton parameters

are
+Y5)/2. Herea= a,— a4 is the phase mismatch, andL
are defined in Appendix A by Eq§A3),(A13). We adopt the dy01 ==&, 9,812=0, 9,¥1,=2P12, (4.8

a(z)= fozdz’ &z)exdi(k®+1)(z—2")]B, (4.7
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similarly to Eq. (3.2). Note, that according to Eq$4.8),
d(ar—a1)=0, i.e., the phase mismateh= a,— a4 is in-
dependent of.

B. Evolution of soliton parameters

As follows from Egs.(4.8), the soliton parameterg, ,
and 3, , do not get any dependence in the first order in
One expects that in the second order, ghequations acquire
some nonzero contribution, so thatB; ,~|v|?. Then, ac-
cording to they equationgthe last ones in Eq4.8)] fluc-
tuations of the separation=y,—y; are estimated by?|v|?,
and can be significant in the interesting range of scales
<DL, The estimations also show that higher or@w %)
corrections to the equations 8 , are not essential. Further,
it is easy to check that the equations 8y, contain phases
a1, only in the combinationg= a,— a;. According to the
first equation in Eq(4.8), « does not evolve in the first order
in &, while second order correction to the equation dois
inessential in the range @ z<1/D. To conclude, the only
thing left to be studied is the second ordewiicontributions
to the equations fop; ,.

PHYSICAL REVIEW B7, 036615 (2003

a mechanical analogy, one can ¢glmomentum of the soli-
ton. ThenF is the force acting on the soliton, ar®} is an
additional impulse.

One is interested describing fluctuatiofssatistics of y,
as a function ofz, assuming that the intersoliton separation
y=Y,—Y; is much larger than unity, but much less than
Integrating Eqs(4.10,(4.14), we obtain

0y1= fodz’(2,31+731), B1= fodz’f(zz)- (4.16

According to the central limit theorefi23] at largez, B ,,
andy;,, asz integrals of random functions, are Gaussian
random processes. This Gaussianity allows us to estimate
fluctuations of various quantitie@bout respective average
values for particular realization of the disordedy,| fluc-
tuates about ((8y;)®)? with the same amplitude
((8yD**=

The main contribution t®y; is related to the forcé . As
it is shown in Appendix B, the average value Bfis negli-
gible [more accurately it is exponentially small iy,
~exp(-y) and vanishes algebraically with—oc]. This fact

To find the contribution, one expands the basic equatiormack of a~D contribution into the average value of the

(2.1) up to the second order i,

N4 .o \I}con
Oal | = - HTER| g

con

2|\I,cor12 \P(Z:on )(\Psol)
_(\I’::ron)2 _2|\I’cor42 '

+2i

*
sol

4.9

force F) is a consequence of the reflectionless feature of the
soliton radiation. Thus, fluctuations ¢f; are controlled by
the pair correlation function ofF (calculated in detail in
Appendix B. The main contribution to the correlation func-
tion is

(F(z)F(z'))=D?Gd(z—2'), (4.17

whereG is given by the integralB27), G~0.14. One there-
fore obtains from Eqs4.16),(4.17)

where ellipses stand for the first-order terms. Extracting

terms, proportional t@,8,, d,y, from the left-hand side of

4
Eq. (4.9 and making the respective projections one arrives at (Bi(2))=D?Gz, ((dy1)%= 3G D?z°.  (4.18

(?ZBIZT(Z)ZFUU(Z)+I§U(Z)+F§a(z)1 (41©

tanhx 5 5 )
fuu=f dx [4|v]*+ve+(v*)7], (4.11
coshfx
_ q tanhx )

Fe=ERe f Xosix XV (4.12
_ re| d tanhx 41
Fira=—d,a1Re va, (4.13

0Y1=2B1+P1, (4.14
) dxx
7>1=|f (02— (v*)?], (4.15
costx

where x=t—y,;. For completeness, we -calculated the

second-order term in the equation fgr, which in Eq.(4.14

One concludes, that the typical shift of the soliton position
(counted from its initial value at=0) is estimated agy;
~DZ%2 The soliton leaves its sldin the soliton pattem
i.e., 8y becomes(1), atz~D %3 SinceD<1, this hap-
pens well before the soliton amplitude acquires any signifi-
cant reduction, therefore justifying our approximation.

Note that the average of the impuls¢d®zF+ P, is equal
to 2D/3 (see Appendix B This implies a systematic drift
2Dz/3 iny,. This drift is negligible in comparison with the
fluctuating part ofy,, oy;~Dz%? atz>1.

It is also of interest to examine the relative motion of the
solitons. One finds that the cross correlation term of the
forces is dependent on the solitons phase mismatclit
results in the following expression for the fluctuations of the
relative positiony=y,—y; (see Appendix B for details of
the derivation:

<(&/)2>=—8[1+C§$2a)]ozez3. (4.19

is added to the first-order one. Expressions for the solitorSubstituting the approximate value Gffound in Appendix

positioned at=y,, can be obtained in a similar way. Using

A, G=~0.14, one arrives at Eq1.2). Equation(4.19 shows
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that fluctuations of the intersoliton separation are sensitive tpensate it to zero by inserting a small peace of a fiber with a
the phase mismatcte.g., the fluctuations are strongly sup- very well controlled integral dispersion. If the pinning pe-
pressed atv= 7/2). riod, | is short(i.e., if it is the shortest scale in the problem
I<1), the coarse-grained dynamicsWfat the larger scales
z>1 is described by Ed2.1) with the noise tern# replaced
by Z described by
Let us discuss the effect of soliton interaction in a multi-
soliton pattern. The reflectionless feature of the radiation ~ "
guarantees lack of radiation screening. In other words, all (£(2)8(2)) =~ =5 8"(21- 7).
solitons positioned on distancesz from a given soliton are
affected by the radiation shed by the soliton. Therefore, th¢Z actually corresponds to the “distributed pinning” case,
radiationv in a vicinity of a soliton is determined by a su- while in the case of the “point pinning” the replacement
perposition of single-soliton radiative contributions, which gpoyid beg— 2%.)
differ only by shifted phases from the two-soliton case. Each  Recalculation of all the major results of the paper for the

of the contributions is weakly dependent on the intersolitonyinned noise6.1) is straightforward. First of all, one gets
separation, provided the separation between the solitons Is

less thanz (then the analysis, similar to one explained in DI? [z D4

Appendix B, is applicable To conclude, the force acting on 5’z77:%f0d2 7'(2")

a single soliton should grow with the number of solitdxs

affecting the given soliton through emitted radiation. (al p+)2(q?+ %) a2y
To obtain quantitative conclusions, one has to extend the X f q costi7q/(27) gldrtias(z=z)

: ; e 7)]

analysis of Appendix B to the multisoliton case. Average

force, applied to a soliton, vanishg3his is valid at largez  instead of Eq(3.18. Calculating the integrals ovérandq

and if the exponential, iy, corrections,~exp(-y), are not in Eq. (3.18 and integrating the resulting equation one ar-

taken into accounfFluctuations ofy; , 3; are Gaussian again rives at

(due to the central limit theoremOne finds that the pair

correlation function of the force acting on a solit@nd also _ 2'%D1%z| ~ 18

the pair correlation function of the given soliton position n=|1+ 315

shift) is «N. Notice also, that as in the two-soliton case,

forces acting on the solitons, and, consequently, their mutualhis expression, contrasted against E1), shows an es-

shifts, are sensitive to the relative phases of all kheoli-  sential suppression in the soliton decay law at lazgez

tons. However, unlike in the two-soliton case, it is impos->1/D. At moderatez, z<1/D, Eq.(6.1) and Eq.(6.3 show

sible simply adjusting phases to suppress fluctuations of athe samglinear with z) law of the soliton amplitude decay,

the intersoliton separations. so that the difference is only in the decay rate. One finds,
One concludes that in the multisoliton case Hgsl8 for ~ however, that at this smatlthe major effect of pinning is in

the velocity and the soliton position get an extra fadtosn  the soliton jitter due to intersoliton interaction. We derive

their right hand sides. If the information rate in a fiber isthat the pinned case version of H¢.17) is

fixed, N grows linearly withz i.e., éy is estimated by _

~ JuDZ?%, whereu is the number of solitons per unit length (F(2)F(z'))=D%Gd"(z—7), (6.4)

of the fiber.

V. MULTISOLITON CASE

2
6.9

2

(6.2

6.3

whereG is defined by the right-hand side of E@26) with
an additional factor (& k?)?(1+q?)? introduced in the in-
tegral, so that the pinned version of E@27) [with (1

A new method of periodical “pinning” of disorder was +k?)* in the integrand replaced by @1k?)®] gives G
suggested recent[{16,17]. This method comes in two modi- ~21.03. Thus, an analog of EQ(4.18 becomes
fications of “distributed” and “point” pinning. “Distributed (3, (2)8,(z'))=D?G8(z—z') and ((dy;)?)=D?Gz. This
pinning” applies to new fiber linegnot yet installed in the  shows that the jitter of the soliton position is essentially sup-
ground. The method requires controlling the integral disper-pressed if pinning is applied.
sion (its fluctuating paitof a fiber piece prior to its connec-
tion to the line. A profile of the integral of the fluctuating part
of the dispersion coefficient should be found, first, and then
the suggestion is to cut this fiber at a zero point for the We discuss here direct numerical simulations of the one-
fluctuating part of the integral dispersi¢closest to the end and two-soliton patterns. The major numerical problem here
of the fiber piecg The other type of pinning, “point” pin- is due to the long haullarge z) nature of the transmission.
ning, was suggested for implementation in already installed’he radiation moves away from the soliton pattern and even-
fiber optics lines. At the points of access to the fiber opticgually hits the boundaries of the computational domain,
line (at amplifier stations, placed periodically, or quasiperi-which, in reality, cannot be infinite. Therefore, it is important
odically along the fiberit is suggested to measure the inte- to design a numerical method which allows the radiation not
gral of the fluctuating part of dispersion, and then to com-to retract from the boundaries, but instead to evolve like it

VI. PERIODICALLY PINNED NOISE

VIl. DIRECT NUMERICAL SIMULATION
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would not feel the artificial boundaries. The problem of nu-
merically absorbing boundary conditions design is one of the
typical computational problems in wave-type equations, and
numerous efforts have been made to overcome these numer
cal artifacts[24—27. A common approach, widely used to
overcome the numerical problem, is to apply an artificial 8
damping at the vicinity of edges to suppress the radiation ing.
the far region. However, during evolution of the soliton, the E
transmission and reflection of waves takes place simulta-
neously. In other words, damping, inevitably creates a para- °¢
site back refraction of waves.

We solve this problem in another way. Namely, we intro-
duce boundary conditions that the reflectionless feature of
the artificial boundaries is controlled analytically. The only,
but crucial, assumptions of the approach is that the intensity ; 5
of the signal at the boundaries of the computational domain ©2; e 500 0

1

ude,

is low enough, so that one can linearize the basic (Bd) z
there. Let us consider regiofig>1 where one should ob- FIG. 1. Dependence of the soliton amplitude, measured in units
serve the radiation going away from the solitons. In this re-of ts initial value, on the dimensionless coordinate along the fiber
gion one can use the equation is shown for disorder strength=0.0225. Solid and dashed curves
_ ) represent theory, resulted in E4.1), and numerics for a represen-
(id,+a7)¥=0, (7.1 tative realization of the disorder, respectively.

which is just the linear Schdinger equatiorfwithout poten-  the asymptotic theory, valid ab<1.) Solid and dashed
tial). The radiative boundary conditions, imposed on a solucurves represent theory, resulted in Ef.1), and numerics
tion of Eq.(7.1) at the boundaries of the computational do-for a representative realization of the disorder respectively.

maint=*+T can be written as Good quantitative agreement between the theory and numer-
ics is reported over an extremely long rangezof
—i10,¥(z,T)=\io,¥(2,T), We also perform a numerical study of two-soliton inter-
action. Notice that the two-soliton case requires an accurate
—i10¥(z,—T)=—\i9,¥(z,~T), (7.2 numerical definition of the soliton position at any given
Since the soliton amplitude only weakly deviates from unity,
where\/id, is a nonlocalintegra) operator the position of a soliton was found by minimizing

Si[|W(t;,2)| — 1/cosht—y)T?, wherei numbers the temporal
_ i [z dz grid points in a vicinity of a special point, whet® (t;,z)|
Jig, = ;j \/:192‘1’(21)- reaches its maximum. Figure 2 shows dependence of the
T4 dispersion in the intersoliton separation fluctuatio(sy)?)
on z at the phase mismatches=0,7/4,7/2. Our averaging
is done over 15 realization$or eacha). Numerical curves

- ; - - ; ; lid, dashed curves correspond to theoretical predictions
with a potential bounded in a finite domain was suggested e sold, ; .

Ref. [27]. Furthermore, for the one-dimensional NLSE, theOf Eﬂ' (1'2)|i Thhe strer?gth.of ;c]he (_:Ilscl)rderllls chosenﬁtg be
transparent boundary conditions have been discussed and i'ﬂ‘-lécmgga er here t 3\? In t ed single so |ton_ g;JDme ds
troduced in several articles from various application fields_ O-O+23 On purpose. We aimed to separafg,~1/D an
(see Ref[28,29). the interaction scale;;~D ™, as much as we can to be

Implementing this transparent boundary condition with gable to study the intersoliton dynamics of the solitons with

symplectic scheme for NLSE, we examined, first, degradaP@'® (nonperturbeyi shape ¢=1) at z~zy. The initial
tion of single soliton, and then, interaction of two solitons SéParationy(0) was chosen to be large enoug(0)=20
caused by fluctuations of the dispersion coefficients. We usf?r the data shown in Fig. J2to avoid interference of the
a standard random number generator to produce a Gaussighects driven by disorder in the dispersion coefficient with
zero-mean random process correlated, gtwith amplitude 1€ direct interaction of solitonsThe direct effect gives a
dyo. Choosing smalk,,, (z,. is 0.05 in our numerical ex- subleading, exponentially small yn correction[30,31].) The

periments we guarantee that the numerical random procesf9uré shows good agreement between our theory and the

approximates the zero mearcorrelated uniform noise faf nur‘:?eric;s. To fillu;tregg tgéyFstatistics we Shor‘l"’ 154=0)

The results of this numerical simulation are shown in the>d4ar¢ displacement is also shown in the figure.

(The conditionT>1 should also be satisfigd\otice, that a
similar scheme for the transient linear Sairmer equation

figures.
Figure 1 shows dependence of the soliton amplitude, on Vill. CONCLUSION AND DISCUSSION
with the strength of disorddd equal to 0.0225.[) is chosen Let us recall the different stages and scales characterizing

to be a small number to allow a quantitative comparison withevolution of soliton patterns in the weak disorder regime

036615-13



CHERTKOV et al. PHYSICAL REVIEW E 67, 036615 (2003

Two solitons tween solitons, mediated by their mutual radiation. A frozen
? (t-independent disorder (which produces a multiplicative
noise in the NLSE stimulates the shedding of radiation by
solitons, which, in turn, mediates the intersoliton interaction.
The interaction causes the soliton to jitter randomly. The
soliton displacemen®y is a zero mean Gaussian random
variable, with the typical value estimated byy
~Dz%2NY2. If N does not grow wittz (e.g., there are only
finite number of solitons propagating in the chanrk z
dependence of the jitter is the same as the one given by the
Elgin-Gordon-Haus jittef32—35 developed under the ac-
tion of random additive noiséshort-correlated both ihand
z noise of amplifiers in the fiber systgnHowever, if the
flow of information is continuous, i.e., if the front of radia-
: tion shed by the given soliton sweeps more and more soli-
0 100 200 tons with increasing, Noz, the efficiency of the interac-
tion grows with z in a faster, syxz?, pace, thus
FIG. 2. Dependence of the mean square value of the intersolitoRverwhelming the Elgin-Gordon-Haus jitter in long-haul
separatior{( 8y)%) measured in units of the soliton width square, on transmission. Notice, however, that as was shown above in
the dimensionless position along the filzeis shown. The disorder Sec. V, the destructive effect of the disorder term in the dis-
strength isD=0.0123. Three different sets of curves for the three persion coefficient can be essentially suppressed by pinning
different values of the intersoliton phase mismate0,7/4,m/2  [16,17], so that the radiation mediated jitter estimated by
are presented. Dashed curves represent the analytical result giv@y~ \/N_z, becomes less important asymptotically than the
by Eq.(1.2). Solid curves represent results of numeri&ach curve  E|gin-Gordon-Hauss jitter.
is the result of averaging over 15 different realizations of disorder.  The intersoliton interaction discussed in this manuscript is
zero on average. This cancellatiGn the mean value of the
<1. The distance passed by a soliton during one full turnoveforce) is due to reflectionless feature of radiation scattering
of its phase is unity in our notations. Soliton starts to de-pn solitons. However, the scattering becomes reflective in
grade, i.e., its amplitude change becomes of the order of itsome cases, described by nonintegrable generalizations of
initial value, atZdegr: 1/D. An important observation of this the NLS equation that are of physica| importance’ e.g., pat-
paper is that an interesting physics is also taking place aern dynamics in some fibers with essential birefringence
much shorterz when the intersoliton interaction caused by [36] can be of this kind. The reflectivity leads to essential
radiation leads to an essential shift of the solitonszat changes in the properties of the radiation and the intersoliton
~Zint, Zin=N""*D7?" whereN is the number of solitons  interaction, e.g., the force exerted on a soliton acquires a

in the channel. nonzero mean.
The major effect reported in the paper is the emergence of

the separation independent, fluctuatingzimnteraction be-

(8y%)
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, APPENDIX A: KAUP PERTURBATION TECHNIQUE

Recall some properties of the perturbations near an ideal
soliton described by the nonlinear Schimger equation

FIG. 3. Dependence oby (measured in the units of pulse (11,17

width) on the dimensionless separatipiis shown for 15 different
realizations of disorder, all fax=0. The bold curves correspond to

the root-mean-square expectatian/{(dy)?). —i0,¥ =W +2|W|*P. (A1)
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Substituting the expression Next, f, o3 and f, o3 (where the upper index stands for
transposition and complex conjugatjoare the left eigen-

W =[cosh 1(t)+v Jexpiz+i .
[ )+ Jex @) functions ofL, which satisfy

into Eq. (A1) and expanding the result overone finds

% ~[ U s T AR
ig,| . |+L| ,|=0, (A2) dtf osfq=— dtf, osfq=2mo(k—q),
v v —® — o0
(A11)
where the operatdr is
N - 2 A - AR T et
L:(ﬁtz_l)()'g‘f' (20’3+i0'2), (AS) dtfz O'3fl=2, dtfo O'3f3=—2. (A].Z)
cosH[t] o o

and the standard notations for the Pauli matrixgs ; are

- o ) ) Let us now modify the definition of:
used.L satisfies the following set of relations:

o,Lo;=—L*, L'=o03lo;. (A4) ¥ =[e'“cosh *(t)+v]expiz).

The eigenset of the operatbris defined by
Then, the operator describing the linearized dynamias isf

Lf=\f, (A5)
wheref is the eigenfunction correspondent to the eigenvalue R . 0 g2ia
\. The general solution of EGA5) is L,=(sf—1)oz+ . 203%| _ 20 o ||
cos -

ot 1 ke (o) (A13)
= exilikt] (k+i)2cosht)| |1

. The operatol_, satisfies the same identiti¢a4) asL does.
( ) No=k2+1 (A6) The eigenfunctions of the operatoh13) can be obtained
1) K ' from Egs.(A6),(A7) by an obvious phase shift. One gets

explikt)
(k+i)? cost(t)

wherek runs from — to +o. According to Eq.(A4), f, _
=0, f¥ are the other eigenfunctions bf ¢ k(t)=exmkt)[1— 2ik exp(—t) ]( 0 )

(k+i)2costit) | e '
2ik exp(—t) ](1)

fr=exp(—ik
K= exp( It){l+(k—i)ZCOS|'[t] 0

explikt) ( e‘“)

(k+1)2cosi(t) \ e '™

exp(—ikt) 1 3 )
—(k—i)zcosﬁ(t) 1), Me=—(k"+1). (A7)

i — _ 2ikexp(—t) | [€'“
The eigenset oL also contains the following marginally Fax(t)=exp(—ikt)) 1+ (k—i)2cosht)| | O
stable modes:

1
1

tanh’t) +
Wr:(t)’ (A8) (k—i)?cost(t)

exp —ikt) (e ) (AL

e*ia '

1 1
fO:cosr(t) -1)’ f1=

whereho=\,;=0. The existence of double poleslat +i . . .
means that two more functions must be added to the eigens-elz—pe eigenfunctiondA14) possess the same orthogonality

for completeness properties(A11) asf,, f, do.

t 1 R
fz=cosm) ( _ 1) , Lfp=—214, (A9) APPENDIX B: INTERACTION OF TWO SOLITONS

Here we examine statistics of the force from the right-
hand side of Eq(4.10. One starts analyzing,, given by
Eq. (4.1]). Substitutingyy, and ¢, into Egs.(2.7) one derives

_ttanf(t)—l

1 -

1
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dqdk e**'%ga¥

(2m)? (k+i)%(q—i)? { costtx

vz+(v*)2+4|v|2=J’

PHYSICAL REVIEW E 67, 036615 (2003

[(q—i tanhx)?+ (k+i tanhx)?]+ 4 cosh *x+4(q—i tanhx)?

) dqdk eik><+iq><akaq ei)( 1
X (k+i tanhx)? +j _ : +| (k+i)2—2ik
(2m)? (k+i)%(q+i)? costx | coShX | costix
X ( +)2 2 e7X 1 + ( + )2 2 eix 1
i)2—2i i i
| coshx " costix|  cosix| 9 Coshx " cosfix
+j dadk e ™ Waiag | 1 +| (k—i)2+2ik S
(2m)% (k—=i)*(q—i)? | cosHx coshx ' cosix
(@it zia o+ |+ Q-0+ 2ig =+ — (B1)
| qCOShX costtx| cosltx qcoshx cosix | |-

Substituting Eq(B1) into Eqg.(4.11) and taking integrals over one finds

dkdgiagag(k+q)*(1+k*+qg*—ka)(2+k>+q?)

f dkdgiaeal (k2—g?)2(1+k2+kq+g?)
) 24w (k+i)2(q—i)2 sin m(k—q)/2]

2m 24(k+i)%(q+i)? sint 7(k+q)/2]

j dkdgiagag (k+0)*(1+k*+qg*~kag)(2+k*+g?)
sinH 7(k+q)/2]

2m 24k-i)%(q—i)?

From Eq.(2.13,(4.6),(4.7) and Eq.(B2) one derivesF,,

=F+®+®* where the new quantities and®d are defined

as

e wij dkdq k?—g?)%(1+k?+g?+kq)
~ 3.25) coshiwk/2]cosh wq/2]sinH 7(k—q)/2]

. f 42402,6(23)£(29) 026 D7)
0

—ij\2
k— q+| |(q k)y+ k—i e—iky—ia
k+| g—i K+i
+i\2
+ g_l glaytie , (B3)

mi [ dkdgk+q)2(1+k>+g?>—kq)(2+k>+q?)
a 3.26j cosh wk/2)cosh 7q/2)sini m(k+q)/2]

> fzd Zldzzg(zl)g(zz)ei(k2+ 1)(z—2) +i(g?+1)(z—2p)
0

—i\2

k—i\?(g—i\? k L
_ 7|(q+k)y 2ia —iky—ia
* (k+i q+i ki) ©
o iy (84)
g+i '

(B2)
|
dkk(k?+1)(16+9k?)
Fe= g(Z)J' dz'¢(?! )f cost(7k/2)
¥R |(k2+1)(z )0 k—i Ze—ia—iky (B5)
k+i '

The third term, originating from the phaag dependence on
z[in the leading first order ovef, see Eq(4.8)] in the force
(4.13 is given by

(z)f e{f dxtanhxr:1 (z)(f(k1)+f(k2))}

z dxe**tanhx
:%jdkm[ak(z) [ o

coshx
X(l_ 2ike ™% . 2 )
(k+i)2coshx (k+i)? costx
5(2)f a2 (k=)
cosf(quIZ)'\ (k+1)
dk,k(k?+1)
§(z)f 74 )f cosﬁ(wklz
XR% |(k2+1)(z z') :z+: e —ia— |ky' (86)

The expression$B3),(B4),(B5),(B6) will be used below to

The second term in the fordd.12) can be analogously pre- examine statistics of the overall fordg , + 7, + F¢, acting

sented as

on the soliton.
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The overall force can also be presented as

Foot Feot Fea=(P+P+P*)+A, (B7)

J

xf dz,d2,&(2) €(z,) € ¥ DE-2)~i(@+ 1)(@-2)
0

dkdq k®—g?)(1+k2+qg%+kQq)
cosh wk/2]cosh q/2]sinH 7(k—Qq)/2]

w

B
3.2°

k—i\2(q+i\2 . k—i\2
R DL i(g—k)y _ —iky—ia
ki q—i) en k+i) e
q+i\?

4| 2| glaytie ' (B8)
g—i
T dkdgk+q)2(1+k?>+qg%—kq)

~ 3.26) coshwk/2)cosh 7q/2)sinH 7(k+q)/2]

J

XJ dZldzzg(zl)g(zz)ei(kz-%—l)(z—zl)+i(q2+1)(z—zz)
0

k—i\2(g=i\2 k=i
- —i(qtk)y—2ia - —iky—ia
ki q+i) € i) ©
-\
+(3Ti e-iav-ia|, (B9)
2\2
Az Wf(Z)Ref dkk(1+k?) fzdz,g(z,)ei(kzﬂ)(z—z’)
8 cost(wk/2) Jo
k—i\2 =
m e ia—iky ’ (B10)

where exponentially small ip terms are omitted.The terms
are produced by integrals, say, ovkr with oscillating,
~exp(—iky) and zindependent integrands. Then, the inte-

gration contour can be shifted to surround a pole, nearest to
the real axis, and a residue at the pole gives the main contri-

bution, exponentially small over.]

Straightforward calculations show that for the force acting
use EgQs.

on the second soliton one can, actually,
(B3),(B4),(B5),(B6),(B10) with the expressions under square

brackets on the right-hand side of each of those formulas

replaced by their complex conjugates.

1. Average impulse

Here we calculate the average over statisticg af the
overall force 7, + F, given by (B7). Notice that the aver-
age ofA, calculated in accordance with Ed&.2),(B10), is
exponentially small £exd —consty], wherey=y,—Yy,)
and thus it will be neglected below.

It follows from Eg. (B8) that

PHYSICAL REVIEW B7, 036615 (2003

<”F'>>:7g—6Df dkdof1—exdi(k*~q?)z]}

1+k*+g%+kq
x cosh wk/2)cosh mq/2)sinH w(k—q)/2]
k—i\2/q+i\? k—i\2
_ - i(g—k)y . —iky—ia
ki q—i) en T k+i) €
q+i\?
+ =i glaytial (B11)

Let us change the integration variables fréngg to k.. =k
+q. The first contribution to the average impulse originates
from the first term inside the brackets in Eg11)

f dk dk_

sinh(wk_/2
1+k?+g%+kq  (k—i)? (q+i)?
><cosr(7rk/2)cosr(7rq/2) (k+1)2 (g—i)?

3 miD
17 192

(P)

) {1_ eik+k,2}e—ik,y

The integral is formed at the smalldst . One gets

P —WDdek
®n=Tg |

where terms exponentially small yrare omitted. The second
contribution to the average impulse coming from the last two
terms inside the square brackets in E§11) is formed at
smallk. and can be written as

dk_dk,

J =

X [@ (ke yi2tkyl2+a) 4 gi(k,yl2—k_yi2+a)]

1+3k%/4 D

L = (B12
cosf(mwk,/4) 6 (B12

~  iD
<P>2:%

{1-exdik k_z]}

7D
_E

One finds that at largg the contribution given by EqB12)
is dominant.
Let us now consider the average

J

[1— ei(k2+ 1)z+i(q+ 1)2]

(2+ K%+ qg?)sini 7(k+q)/2]

sin(a+Yy?/4z).

wiD
3.26

dkdgk+q)?(1+k?>+qg%—kaq)
cosh wk/2)cosh q/2)

|

g—i

g+i

2

k—i —iky—ia

K+i

2
e—iqy—ia+

k—i\?

K+i

g—i

+ -
q-+I

2
e—i(q+k)y—2ia}_

The term in the expression which does not contain de-
pendence produces an exponentially subleading dontri-
bution to (P). The zdependent contribution is formed at
q,k~1/\/z, and it is, therefore>y/z2. (Notice also, that the
term rapidly oscillates witlz.) Therefore, the averagé®)
and (P*) are negligible at large in comparison with the
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contribution given by Eq(B12). To conclude, at large the {Fyo(2) Fo(22))) =( F1 o) —(FAN Foy = ((F1F>))
average force is zero and the main contribution to the im-
pulse of the forceF is D/6. +{(D1D3))+{((PTD,)), (B13)

2. Fluctuations of the force

One considers here the irreducible part of the pair corre‘-"lhere(]:"”> Is neglected and only nonoscillating terms are

lation of %, , which can be written as kept. The first contribution to EqB13) is

dksdk,dayda,(kE—a)*(k3—a3)°
cosh mky/2]cosh g, /2] cosh mk,/2]cosh 7q,/2]

m?D?
(i = () = |

2, 2 2, 2 02
x(1.+k1+CI1+k1Q1)(.1+k2+Q2+k2Q2)ei(ki,qi){ kl_! o—iawy—ia
sinH 7r(ky —q4)/2]sinH m(ky,—Q2)/2] kq+i
i\ 2 i\ 2 i\ 2 i\ 2 i\ 2 i\ 2
Al R kS Y ]
q—i kKi+i) \gq—i Ko+i) \gp—i Ky +i
q2+i>2 N . : o
+ i e|k2y+|a e|k+k,z_1 gld+d-2_17e ik_y |q,y’ B14
(q2—l k+k7Q+q7[ I ] (B19

wherek. =k, *0,, g+ =k,*q;, andz=min{z,,z,}, {=|z;—2,|. The simultaneous correlation function, corresponding to
=0, is the first object to study here. One finds that the dominant contribution, proportional to the logarithiraadi,
originates from thev-independent terms in the integrand(BfL4). (The a-dependent contribution is 1/y.) There are actually
two kinds of such contributions. The first one comes from the product of two differéntiependent terms, each from an
expression bounded by the square brackets in the integrand @E4). Terms of the second kind come from products of two
terms cancelling theier dependence in the result. In the contribution of the first kind, the integralskovandq_ are formed

at bothk_ ,q_~1/. Thus, replacink_ ,q_ in all nonoscillatory terms by zero, one derives

WADZF dk.da. (ki —g3)*  (1+K3/4+0%/4+k.q,/4)2

2y _
(Fn=giom),, cos[ k.. /4]cosi 7q., /4] K.q.sintP{m(k, —q.)/4]

(B15

In the remaining twqidentica) contributions of the second type, the andq_ integration are not equivalent. One of the
wave vectors, sak_ is still O(1/ly). Integrating ovek_ one gets

<<F2>>2:

7*D? (= dq. dk,dk_ _ [(ket+ko)?=ad P2 (ky —k_)?=q?]?
f J - [exp(ik (k_z)—1]
9x2%)y1z q, cost(maq, /4)) 2mik k- cosh m(k, +k_)/4]cosi m(k, —k_)/4]
[4+(Ky +k)?+a% +q, (ks +k)Ik-——k_]
xsinf[w(k++k,—q+)/4]sint[7-r(k+—k,—q+)/4]'

(B16)

The major contribution in the integral originates fram Z,#2,. It is obvious from the analysis of the simultaneous
~1>k. . Replacing the integrand in EqB16) by its correlation function that EqB17) is formed at values of the
asymptotic value ak.—0, one finds that integration over four wave vectork., (-, that only one of the wave vec-
k. is ~In[z]. Finally, collecting the two major contribution tors isO(1), while the other three are much smaller. Equa-

into the simultaneous correlation function one finds tion (B17) takes the following form:
m'D? = dqq(1+q2/4) 7D’
F2))= In(z/y)+Inz f _—— ((F(z)F(z2))) = In(z?/y)
=0.006D2In[Z%/y]. (B1 = dqq’(1+q2/4)2
[z°y] 7) Xf qqﬁg q )Coing],
The result(B17) is asymptotic in the sense that it is valid at 0 sinfr(ma/2)
z>vy only. Let us now account faf# 0 in Eq.(B14), i.e., for (B18)
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i.e., at{>1, the correlations decay algebraicallydn ((F(z,)F(z,)))~D?In[Z/y)/{3. It also follows from Eq.(B18) that
Jd¢((F(z+§)F(2)))=0.
Let us calculate thé and®d* in Eg. (B13). One finds

2D2  dkyday(k;+00)2(1+K;+05—kqqq)(2+ki+ 03
(D(2+ £12)D* (2— {12)) = — — f 10y (Ky+09)°(1+ ki +03—keqy)(2+ki+q7)

gx 211 cosh wky/2)cosi{q,/2)sinH 7 (k,+q1)/2]

[ei(kffkg)wz

J dko0ap(Ko+ ) 2(1+ K2+ 02— Ky0p) (2+ K2+ g2) e (<12 k5/2+ 1)
cosh{mky/2)cosh 7 q,/2)sini 7w(k,+05)/2] k2— K2

i(q3/2+q3/2+1)¢ i\ 2(y _\2
_ei(kf—kg)z]e ' [ei(q§7q§)|§|/2_ei(qifqg)z] ky ' a1 ' e—iar+kyy=2ia
qi—q% k1+| q,+1
2 _i2 2 2

+ Ky~ e ikyy—iay Q1! e iay-ia Ko +1)( G2t el (@2tk)y+2ia

kqy+i gq+i kKo—i| \qgp—i

2 2

T koti ikoytiay QZ_”L' gldaytial (B19

ky,—i oI

The first logarithmic contribution to the avera@19) originates from terms, containing:2 The integrals are formed at small
values ofk; —k, andq; —q,. The result of integration is

7T4D2f°°dk+dq+ (1+K2 14+ Q2 14— K, . 18)2(2+ K2 14+ 0% 14)?

o} 12)D* (z— £12)),=
(D22 P™ (2= Ll2)), 9x288)y;z KiQ+  cosH( k. /4)cosi(mq. /4)sint?[ w(k,. +q.)/4]

X (ky +g.)*exdi(k3 /4+q2 /4+2) ], (B20)
|
whereq, =q;+0, andk, =k;+k,. If {=0 then the inte- ((b(z)CD*(z)>~0.01DZIn(zzly), (B23)
gral (B20) is reduced to
(P (2)D*(2))4 J dzd(z+ /12)®d* (z—¢/2))=0. (B24)
42 - 3 2 1 1\2 2 1 1\2
_T D |n(z/y)f dk. KAtk 2/ The pair correlation function corresponding to thecon-
9.2%2 0 sink[ 7k, /2] tribution (B10) is
~0.01D?In(z/y). (B21) (AN(2)A(Z))= D2G(z—2'), (B25)

The integral of the expressidiB20) over { is clearly zero. 5 i(K-q?)z_ 202 22
We now turn to calculation of the second logarithmic cor- g= Tr_f dkdqe 1 _kq(1+k)*(1+97%)
rection originating from the terms which contain The con- 27 i(k*—q?) cosH(mk/2)cost(mwq/2)

tribution is

X E)Z q_+| 2ei(q—k)y (B26)
(P(z+LI12)D* (2 £/2)), k+i) \g—i ’
D2 [ da.q®(1+q./4)2(2+q>14)? The majory- andz-independent contribution i is coming
:gleJ sint?[ 7q. /2] from small va!ues ok—q. Taking the integral over this vari-
able, one derives
(R 1 2)e dk, dk_ ik k z

e B ! 7 (= dkk(1+K?)*
+ == —=~0.14. (B27)

(B22) 2" Jo cosH(mk/2)

wherek.<q,, as in Eq.(B16). The integral oveik, and The correlation function correspondent to the change in

k_ in Eq. (B22) produces I Therefore, the term the relative position of the two solitons is defined By
(P(z)P*(2)), is given by an expression similar to Eq. =A;—A,, where the indexes (1) and (2) stand for the first
(B21), with the replacement of lafy) by Inz. Finally, and second solitons, i.e\,; is given by Eq.(B10), while A,
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is given by Eq.(B10) with the expression on the right-hand
side of it replaced by its complex conjugate. One gets

(A(2)A(2"))=2[1+coq2a)|D?Gs(z—2'). (B29

3. Fluctuations of the impulse

As in the calculations of the previous subsection one can

analyze fluctuations of the impulse=P+ P+ P*. We ob-
tain instead of Eq(B17)

7*D?

gx 211

dqo’(1+q%/4)?
sink(wq/2)

((P?))= [In(z/y)+Inz] J:

~0.003®2 In(Z?/y). (B29)

An analog of Eq(B2)) is

D2
(P(2)P (Z))=9x—212[|n(2/y)

K3 (1+k2/4)2

+Inz fmdk —-
1, " sink?[ k, /2]

~0.00182In(Z?y). (B30)

Finally, one gets the following answer for the pair simulta-

neous correlation function of the impulse:

PHYSICAL REVIEW E 67, 036615 (2003

(P(z+ ) A(2))
2D2

= 5xz7Re| dkdad p&i-a9¢

k(k—q)(1+k?+q2+kq)
" Cost wki2]cosh #q/2]sint m(k—q)/2]

2

q+i|?p(1+p®)(5+3p?) (p—i
q-i cos(mp/2) \Pti
el(P*-az_1
X — - el(q—p)y, (B33)
i(p==q°)

which is nonzero at>0 only. The integralB33) is formed
at small values op—q, thus one finds

(P(z+{)A(z2))

3D2

- ReJ kowd d(-a’)¢
9x 27 0 9

Xk(k—q)(1+ k?+ 9%+ kq)(1+9?)(5+39?)
cosh wk/2]cosH[ wq/2]sinH w(k—q)/2]
(B34)

which becomes the following expressionéat:0:

P2(2))~0.007D2In(Z?ly). (B31
(P(2)) (z°ly) ) (P(2+0)A(2))
The major contribution to the overall impulse of the force is
coming from theA term - m3D? foo q(1+9?)?(5+39%)(7+309?)
, 9x5x27)o cosH[ wq/2]
z
< f dz'A(z') >~0.265Dzz. (B32 ~0.06D?2 (B35)
0 . .
The cross correlations are given by We also find from Eq(B34)
z 3p? = @021 (k) (1+k2+ g2+ ka)(1+02)(5+ 392
P(z)f 42 A(2') . Refdkkf do (k—=a)( q Q)(- q)(5+3q°)
0 9x 2’ 0 i(k2—qg? cosh wk/2]cosh[ wq/2]sinH m(k—q)/2]
7°D? Fd (1+39°)(1+9*)(5+39%) de q(1+9*)?%(5+3q9%)
= —1aT
9x27| Jo g cosH(7q/2) 0 qCOSHl(ﬂTC]/Z)Sinl’(ﬂTC])
~—0.05D2. (B36)

Therefore, this cross correlation is negligible.
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4. Additional impulse D dkqu—q)z(k-l-q) 1
An additional impulseP;, the last one left to be calcu- (Pu(2))= 192) cosh wk/2)cosh 7q/2) i(k2—q?)
lated, is due to the direct noise contributifn in Eq. (4.14).

Expressingy, v* in Eqg. (4.19 via ¢ and performing aver-

i 2
[

aging over the statistics @fin accordance with Eq2.2) one X K+i
finds
Lo +i\2 Jexdi(k*—g?)z]-1
D dxx dkdgekxiax X 1+(—3_i) glayria F[I”; kq ) ]/2
(Pu(z))==ZIm f costix costimki2)cosh 7q/2) sinff{ r(k=a)/2]
| m(k—q) 5
exfi(k®—g?)z]—1 2ige X1 —4(k—q)sin — + m(4+k"—2kq
X—— (q—i)*+
i(k2—q?) coshx m(k—q)
i) 2 +q2)cosV{T ] (B37)
e e e]
cosltx ki The main contribution to the integral comes frdnelose to
q+i)2 g. Simplifying the expression and keeping only the main
% 1+(__) glay+ia| terms ink—q, one can then take the integrals okeandaq,
qa-! thus deriving (P,(z))=D/3. This contribution should be
taken into account on an equal footing with EB12). That
Integrating the resulting expression overone derives gives a systematic drift2z/3 for y;.
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