Theory of Freak Waves and Possible Integrability of the Hydrodynamics with Free Surface

V.E. Zakharov (with A.I.Dyachenko)

Landau Institute for Theoretical Physics RAS

New Year wave and Black Sea wave

Рис. 1.9. «Новогодняя волна», зарегистрированная в Северном море 1 января 1995 г. [106]

Puc. 1.10. Anoma has some super waves and Possible Integrability of the Hydrodynamics with Free Surface - p.

Satellite View

NLSE approximation

From the equation for potential flow

(1)
$$\frac{\partial \phi}{\partial t} + \frac{1}{2}\phi_x^2 + g\eta = -\frac{P}{\rho} \quad \text{at } z = \eta,$$
$$\frac{\partial \eta}{\partial t} + \eta_x \phi_x = \phi_z \quad \text{at } z = \eta.$$

one can derive nonlinear Shredinger equation:

(2)
$$i(\frac{\partial A}{\partial t} + C_g A_x) - \frac{\omega_0}{8k_0^2} A_{xx} - \frac{1}{2}\omega_0 k_0^2 |A|^2 A = 0.$$

A is the envelope of the surface elevation $\eta(x, t)$, so that

(3)
$$\eta(x,t) = \frac{1}{2} (A(x,t)e^{i(\omega_0 t - k_0 x)} + c.c.)$$

NLSE Soliton

Soliton solution for A(x,t) is

(4)
$$A(x,t) = e^{-i\Lambda^2 t} \frac{\lambda}{\sqrt{2}k_0^2} \frac{\cos(k_0(x - V_{phase}t))}{\cosh(\lambda(x - C_g t))}$$
$$\Lambda^2 = \frac{\omega_0 \lambda^2}{8k_0^2}.$$

Wavetrain of the amplitude a with wavenumber k_0 is unstable with respect to large scale modulation δk . Growth rate of the instability γ is

(5)
$$\gamma = \frac{\omega_0}{2} \left(\left(\frac{\delta k}{k_0} \right)^2 (ak_0)^2 - \frac{1}{4} \left(\frac{\delta k}{k_0} \right)^4 \right)^{\frac{1}{2}}$$

Here $\omega_0 = \sqrt{gk_0}$.

From Physical to Conformal Equations...

Conformal mapping

Domain on Z-plane Z = x + iy,

$$-\infty < x < \infty, \quad -\infty < y \le \eta(x, t),$$

to the lower half-plane,

$$-\infty < u < \infty, \quad -\infty < v \le 0,$$

Equations for Z and Φ

If *conformal mapping* has been applied then it is naturally introduce complex analytic functions

 $Z = x + iy, \text{ and complex velocity potential } \Phi = \Psi + i\hat{H}\Psi.$ $Z_t = iUZ_u,$ $\Phi_t = iU\Phi_u - \hat{P}(\frac{|\Phi_u|^2}{|Z_u|^2}) + ig(Z - u).$

U is a complex transport velocity:

$$U = \hat{P}\left(\frac{-\hat{H}\Psi_u}{|Z_u|^2}\right). \qquad \qquad u \to w$$

Projector operator $\hat{P}(f) = \frac{1}{2}(1+i\hat{H})(f)$.

Cubic equations for R and V

Surface dynamics (and the fluid bulk!) is described by two analytic functions, R(w,t) and V(w,t). They are related to conformal mapping Z and complex velocity potential:

$$R = \frac{1}{Z_w}, \qquad \qquad \Phi_w = -iVZ_w.$$

For R and V dynamic equations have the simplest form:

$$R_t = i [UR' - U'R], V_t = i [UV' - B'R] + g(R - 1).$$

Complex transport velocity U is defined as

$$U = \hat{P}(V\bar{R} + \bar{V}R),$$
 and $B = \hat{P}(V\bar{V}).$

Theory of Freak Waves and Possible Integrability of the Hydrodynamics with Free Surface – p. 1

Energy dissipation

NLSE Solition

(6)
$$\eta(x) = \frac{\lambda}{\sqrt{2k_0^2}} \frac{\cos(k_0 x)}{\cosh(\lambda x)}$$
$$\eta(x,t) = \frac{1}{2} (A(x,t)e^{i(\omega_0 t - k_0 x)} + c.c.)$$

A is the envelope of the surface elevation $\eta(x, t)$.

Example - soliton with local steepness $\mu \simeq \frac{\lambda}{k_0} \simeq 0.1$

Giant Breather

(7)
$$\eta(x) = \frac{\lambda}{\sqrt{2}k_0^2} \frac{\cos(k_0 x)}{\cosh(\lambda x)}$$

Initial condition - soliton with local steepness $\mu \simeq \frac{\lambda}{k_0} \simeq 0.6$ Breather is clerly observed after radiation goes away. k- ω spectrum

Figure 1. Negative frequency is absent!.

X'-1 and Ψ

X'-1, Psi'

