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Constructing efficient strategies for the process optimization by restart
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Optimization of the mean completion time of random processes by restart is a subject of active theoretical
research in statistical physics and has long found practical application in computer science. Meanwhile, one
of the key issues remains largely unsolved: how to construct a restart strategy for a process whose detailed
statistics are unknown to ensure that the expected completion time will reduce? Addressing this query here we
propose several constructive criteria for the effectiveness of various protocols of noninstantaneous restart in the
mean completion time problem and in the success probability problem. Being expressed in terms of a small
number of easily estimated statistical characteristics of the original process (MAD, median completion time,
low-order statistical moments of completion time), these criteria allow informed restart decision based on partial
information.
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I. INTRODUCTION

Restart as a method of accelerating randomized tasks was
first proposed in the early 1990s in computer science. Namely,
the authors of Refs. [1,2] showed that applying a restart to
a probabilistic algorithm whose completion time represents
a highly fluctuating random variable leads to smaller tail
probabilities and to smaller expected completion time. Be-
yond computer science, optimization via restart is the subject
of active research by the statistical physics community. The
starting point for these studies was the work of Evans and
Majumdar [3], who found that stochastic (Poisson) restart
reduces the mean first-passage time of Brownian motion.
Also, this area of research received an additional impetus for
development due to the works [4–6] devoted to the kinet-
ics of enzymatic reactions, where the restart corresponds to
dissociation of the intermediate enzyme-substrate complex.
Theoretical analysis presented in these studies demonstrated
that an increase in the dissociation rate constant could poten-
tially speed up enzymatic turnover.

Thus, essentially the same mathematical model arises in
different research fields. Regardless of the specific context,
one of the critical tasks is the following: how to find a restart
strategy that is guaranteed to reduce the expected completion
time of the stochastic process of interest. The general renewal
formalism developed by Pal and Reuveni [7] allows to predict
whether the implementation of a particular restart protocol
will be effective for a given stochastic process. Moreover,
as proved in Refs. [2,7,8] (see also Ref. [9]), a strictly reg-
ular (periodic) strategy, implying that the random process is
restarted every τ∗ units of time, is universally optimal. The
value of the optimal period τ∗ is problem-specific and can
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be determined once we know the probability density of the
random completion time of the original process.

In practice, however, the statistics of the optimized pro-
cess can be poorly specified or even completely unknown
[2,4,8,10–13]. In the recent paper [14], which addresses a
scenario of partially known statistics, Eliazar and Reuveni
formulated the constructive criteria for the effectiveness of
restarts, expressed through the simple statistical characteris-
tics of a randomized task. Unlike previously known existence
results [6,15], constructive criteria serve not just as indicators
of the restart effectiveness, but also offer a strategy that is
guaranteed to reduce the average completion time.

The results presented in Ref. [14], however, are obtained
under the assumption of instantaneous restart events, while
in real-life settings, a restart is accompanied by some time
delays. Say, in the context of single-molecule enzyme kinet-
ics, some time is required for the enzyme that unbinds from
the substrate to find a new one in the surrounding solution
[4,6,16]. Similarly, the restart of a computer program typically
involves a time overhead. Also, models with noninstantaneous
restarts provide more realistic pictures of colloidal particle
diffusion with resetting [17]. To the best of our knowledge,
the existing literature lacks constructive criteria of restart ef-
ficiency for models with nonmomentary restarts. In addition,
the criteria proposed in Ref. [14] refer only to the case of a
periodic restart. The constructive criteria, if any, for stochastic
restart strategies remain unknown.

Finally, let us note that the potential of the restart is not
limited to optimization of the mean completion time. In par-
ticular, the implementation of restart can also improve the
probability of getting a desired outcome when a process has
several alternative completion scenarios [18]. Constructive
criteria for the problem of optimizing the splitting probabil-
ities have not yet been formulated as far as we know.

In this paper, we fill the aforementioned gaps by construct-
ing a set of constructive efficiency criteria for (i) periodic
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noninstantaneous restarts and (ii) stochastic noninstantaneous
restarts. In addition to the mean completion time problem, we
analyze the success probability optimization. The resulting
criteria specify the range of effective values of the control
parameter of a periodic or stochastic restart strategy through
such characteristics as low-order statistical moments, median
value, and mean absolute deviation of the random completion
time in the absence of the restart.

II. OPTIMIZATION OF THE MEAN COMPLETION TIME

Consider a stochastic process whose random duration time
T has a probability density P(T ). The restart protocol R is
characterized by a (possibly infinite) sequence of interrestart
time intervals τ1, τ2, . . . . If the process is completed prior to
the first restart event, then the story ends there. Otherwise, the
current attempt is aborted, and the process starts from scratch.
Similarly, the next attempt may either complete prior to the
second restart or not, with the same rules. This procedure
repeats until the process finally reaches completion. We will
also assume that the initialization of the process and each
restart are accompanied by some random time delay t which
is independent of T .

In the absence of the restart, the random waiting time for
the process completion is given by the sum T + t . The restart
protocol is considered effective if 〈TR〉 < 〈T 〉 + 〈t〉, where
TR is a random waiting time for the process completion in
the presence of the protocol R, and angular brackets denote
averaging over the statistics of the original process and pos-
sibly over the statistics of the interrestart intervals (in the
case of a stochastic protocol). It is convenient to define the
dimensionless effectiveness of the restart as

ηR = 1 − 〈TR〉
〈T 〉 + 〈t〉 . (1)

Clearly, the effective protocols obey 0 < ηR � 1.
In the simplest case of a strictly regular schedule, implying

that the restart events are equally spaced in time, i.e., τk = τ

for all k = 1, 2, ..., the expected completion time can be ex-
pressed as (see Appendix A)

〈Tτ 〉 = 〈T 〉 + τ − 〈|T − τ |〉 + 2〈t〉
2Pr[T � τ ]

, (2)

where 〈|T − τ |〉 is the mean absolute deviation (MAD) of
the random variable T from the value of τ . Although, the
expression for the mean completion time under regular restart
has long been known [7,9], its particular representation (2)
in terms of MAD was first obtained relatively recently in
Ref. [14] for the particular case of zero time penalty t = 0.

Another important scenario is the Poisson restart, where
interrestart intervals are mutually independent and identically
distributed with exponential probability density ρ(τ ) = re−rτ .
Here r represents the restart rate. The average completion time
in the presence of a Poisson restart is given by (see Ref. [6])

〈Tr〉 = 1 − P̃(r) + r〈t〉
rP̃(r)

, (3)

where P̃(r) = ∫ ∞
0 dT P(T )e−rT denotes the Laplace trans-

form of the probability density function P(T ).

In addition, we will consider the case of a γ protocol for
which the random intervals between restarts are independently
sampled from the � distribution ρ(τ ) = βk

�(k)τ
k−1e−βτ with

rate parameter β and shape parameter k. The expected com-
pletion time of a process under γ restart with k = 2 is given
by (see Appendix B)

〈Tβ〉 = β〈t〉 + 2 − 2P̃(β ) + β∂β P̃(β )

βP̃(β ) − β2∂β P̃(β )
. (4)

Let us stress that r entering Eq. (3) can be interpreted both
as the parameter of exponential distribution and as the con-
stant rate of restart events. On the contrary, since γ -distributed
variables are not memoryless, β in Eq. (4) represents just a pa-
rameter of γ distribution, while the rate of restart events in this
case is time-dependent β̄(t ) = βκτ κ−1e−βτ

�(κ,βτ ) ; see, e.g., Ref. [7]. At
the same time, β determines the mean period between restart
events, which is equal to 2β−1 when k = 2.

Once full statistics of the original process encoded into the
probability density P(T ) are known, one can use Eqs. (2)–(4)
to determine the values (if any) of the control parameter (τ ,
r or β) for which the corresponding strategy is advantageous.
Moreover, the most efficient strategy is always periodic, and
the optimal period can be found by minimizing the right-hand
side of Eq. (2) with respect to τ . Our goal is to formulate
constructive criteria of restart efficiency, allowing to choose
a guaranteed beneficial restart protocol without knowledge of
the full process statistics. Several such criteria were proposed
in Ref. [14] for the particular case of the periodic restart with
zero penalty t = 0.

Let us outline the idea underlying our derivation of the
desired criteria. First of all, using various probabilistic in-
equalities, we obtain an upper bound for the mean completion
time 〈TR〉 � T of the process under restart protocol R, where
the time scale T is expressed through the control param-
eter, which determines the mean restart period (τ , r or β

depending on the protocol), and some simple statistical char-
acteristics of the original process (e.g., statistical moments,
median value, MADs, etc.). Then the solution of the inequality
T � 〈T 〉 + 〈t〉 with respect to the mean period defines a set
(possibly empty) of efficient values for period. Further, by
minimizing T on this set, one can find the mean restart period
that provides the maximum guaranteed efficiency among the
specified effective values of the control parameter. Next, we
demonstrate concrete implementations of this simple idea.

A. Periodic restart

For any random variable T one has 〈|T − τ |〉 � 〈|T − m|〉,
where m is the median value of T . Moreover, equality is
achieved for τ = m. So, using Eq. (2), we get the following
estimate:

〈Tτ 〉 � 〈T 〉 + τ − 〈|T − m|〉 + 2〈t〉
2Pr[T � τ ]

. (5)

It follows from Eq. (5) that if the condition

m + 〈t〉 < 〈|T − m|〉 (6)

is satisfied, then for any τ belonging to the interval

m � τ < 〈|T − m|〉 − 〈t〉, (7)
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the inequality 〈Tτ 〉 � 〈T 〉 + τ − 〈|T − m|〉 + 2〈t〉 < 〈T 〉 +
〈t〉 holds. Thus, Eq. (6) represents the sufficient condition
for the existence of the effective periodic restart strategy, and
Eq. (7) gives a recommendation regarding the particular val-
ues of the restart period. It is easy to see that the choice τ0 = m
is optimal in the sense that regular restart with period τ0

provides the highest guaranteed efficiency among the values
specified by Eq. (7), which is given by

η1 = 〈|T − m|〉 − m − 〈t〉
〈T 〉 + 〈t〉 . (8)

The described criterion generalizes the result presented [14]
to the case of a nonzero duration of restart events.

Further, as shown in Ref. [15] for the particular case t = 0,
the inequality 2m < 〈T 〉 represents a sufficient condition for
the existence of an effective periodic protocol. Here we turn
this existence result into a constructive criterion that holds
in the presence of a restart penalty. By virtue of Jensen’s in-
equality, one has 〈|T − τ |〉 � 〈T 〉 − τ , and, therefore, Eq. (2)
allows to write the following estimate:

〈Tτ 〉 � τ + 〈t〉
Pr[T � τ ]

. (9)

From Eq. (9) we see that if the condition

m < 1
2 〈T 〉 − 1

2 〈t〉 (10)

is met, then regular restart with the period belonging to the
interval

m � τ < 1
2 〈T 〉 − 1

2 〈t〉 (11)

reduces the average completion time since in this case one
gets 〈Tτ 〉 � 2τ + 2〈t〉 < 〈T 〉 + 〈t〉. The guaranteed efficiency
is maximal at τ0 = m and is estimated as

η2 � 1 − 2(m + 〈t〉)

〈T 〉 + 〈t〉 . (12)

B. Poisson restart

Periodic strategy is important due to its optimal property
[2,7,8], which has already been discussed above. Namely,
if you found a value τ∗ � 0 (probably τ∗ = +∞) such that
〈Tτ∗ 〉 � 〈Tτ 〉 for any τ � 0, then 〈Tτ∗ 〉 � 〈TR〉 for all R. How-
ever, as previous studies have shown [6], a periodic protocol
with a nonoptimal period τ �= τ∗ may be inferior to other
restart strategies. Since the optimal period τ∗ of a regular
restart does not have to be equal to the median completion
time of the initial process m, the periodic strategies con-
structed above are generally not optimal. In addition, the
conditions of their applicability [see Eqs. (6) and (10)] are not
necessary for the existence of an effective protocol. In other
words, violation of the conditions m + 〈t〉 < 〈|T − m|〉 and
m < 1

2 〈T 〉 − 1
2 〈t〉 for a given stochastic process does not mean

that an effective restart protocol cannot be constructed.
Given above arguments, it is interesting to develop efficient

policies of nonperiodic restarts. Particularly attractive in this
respect is the Poisson strategy, which has been widely studied
before; see, e.g., Refs. [3–6,19,20]. A simple sufficient condi-
tion for the efficiency of the Poisson restart [19] reads

〈T 2〉 > 2〈T 〉(〈T 〉 + 〈t〉). (13)

Note, however, that the latter inequality represents the exis-
tence result: It serves as an indicator of the existence of an
effective Poisson strategy without presenting it. Moreover,
the logic underlying the derivation of the sufficient condition
determined by Eq. (13) suggests that knowing the first two
statistical moments of the random completion time is not
enough to choose an effective restart rate. Namely, the pair 〈T 〉
and 〈T 2〉 determines only the slope of 〈Tr〉 in its dependence
on r at the point r = 0, saying nothing about its behavior for
nonzero values of r.

A constructive condition for the effectiveness of the Pois-
son restart can be formulated if we add information about the
third-order moment. Based on the knowledge of 〈T 〉, 〈T 2〉,
and 〈T 3〉, one can estimate the Laplace transform of P(T ) as
(see Ref. [21] and Appendix C)

P̃(r) � 1 − r〈T 〉 + r2〈T 2〉2

r〈T 3〉 + 2〈T 2〉 . (14)

Next, assuming that the expression on the right-hand side
of Eq. (14) is positive, from Eqs. (3) and (14) we get the
following estimate:

〈Tr〉 � (〈t〉 + 〈T 〉)(r〈T 3〉 + 2〈T 2〉) − r〈T 2〉2

(1 − r〈T 〉)(r〈T 3〉 + 2〈T 2〉) + r2〈T 2〉2 . (15)

Therefore, if r satisfies the set of inequalities

(〈t〉 + 〈T 〉)(r〈T 3〉 + 2〈T 2〉) − r〈T 2〉2

(1 − r〈T 〉)(r〈T 3〉 + 2〈T 2〉) + r2〈T 2〉2 < 〈t〉 + 〈T 〉,

1 − r〈T 〉 + r2〈T 2〉2

r〈T 3〉 + 2〈T 2〉 > 0,

r > 0, (16)

then the Poisson restart at rate r reduces the mean completion
time. Solving this system under the assumption that a suffi-
cient condition defined by Eq. (13) is met, we find an interval
of effective rates

0 < r <
〈T 2〉(〈T 2〉 − 2〈T 〉(〈T 〉 + 〈t〉))

(〈T 〉 + 〈t〉)(〈T 〉〈T 3〉 − 〈T 2〉2)
. (17)

Further, within the interval given by Eq. (17), the ex-
pression on the right-hand side of inequality (15) attains its
minimum value at the point r3 given by Eq. (E1) in Ap-
pendix E. As can be found from Eqs. (17), (14), and (15), the
resulting efficiency is given by Eq. (E2); see Appendix E.

In the limit of negligible restart duration t = 0, we obtain
fairly compact expressions for the optimal point

r0 =
√

2〈T 2〉3/2 − 2〈T 〉〈T 2〉
〈T 〉〈T 3〉 − 〈T 2〉2

, (18)

while the corresponding estimate for dimensionless effective-
ness reads

η3 � 2〈T 2〉〈T 〉2 + 〈T 2〉2 − 2
√

2〈T 〉
√

〈T 2〉3

〈T 〉(2〈T 〉〈T 2〉 + 〈T 3〉 − 2
√

2
√

〈T 2〉3)
. (19)

Note that the proposed method of constructing an effective
Poisson strategy is one of many possible. Alternatively, the
Laplace transform of the probability density P(T ) can be

054117-3



ILIA NIKITIN AND SERGEY BELAN PHYSICAL REVIEW E 109, 054117 (2024)

estimated as [21]

P̃(r) �
2l−1∑
k=0

(−1)k rk〈T k〉
k!

, (20)

where l = 1, 2, .... Let us evaluate the term P̃(r) in the numer-
ator of the right-hand side of the formula (3) using Eq. (20)
with l = 2, i.e., P̃(r) � 1 − r〈T 〉 + r2

2 〈T 2〉 − r3

6 〈T 3〉. Next, to
estimate the Laplace transform P̃(r) entering the denominator
in the same expression, we use Eq. (20) with l = 1: P̃(r) �
1 − r〈T 〉. Then, exploiting these estimates and assuming that
r < 1/〈T 〉 we get from Eq. (3)

〈Tr〉 � 6〈t〉 + 6〈T 〉 − 3r〈T 2〉 + r2〈T 3〉
6 − 6r〈T 〉 , (21)

and, thus, the interval of effective rates is determined by the
following set of inequalities:

6〈t〉 + 6〈T 〉 − 3r〈T 2〉 + r2〈T 3〉
6 − 6r〈T 〉 < 〈t〉 + 〈T 〉,

r <
1

〈T 〉 , (22)

r > 0.

Assuming that the condition (13) is fulfilled, we readily find a
solution

0 < r <
3(〈T 2〉 − 2〈T 〉(〈T 〉 + 〈t〉))

〈T 3〉 , (23)

which obviously differs from that given by Eq. (17) since its
derivation is based on a different estimate of P̃(r). Rate r4 de-
termined by Eq. (E3) in Appendix E minimizes the right-hand
side of inequality (21) on the interval (23), thus providing the
highest guaranteed efficiency whose estimate from below is
given by Eq. (E4).

Finally, using Eq. (14) to estimate the Laplace transform
in the numerator of the right-hand side of formula (3) and
the weaker inequality P̃(r) � 1 − r〈T 〉, which follows from
Eq. (14), to estimate the denominator, we get a third way to
build an effective Poisson protocol. Assuming r < 1/〈T 〉, for
the average completion time with this approach, we have

〈Tr〉 <
2(〈t〉 + 〈T 〉)〈T 2〉 + r[(〈t〉 + 〈T 〉)〈T 3〉 − 〈T 2〉2]

(1 − r〈T 〉)(r〈T 3〉 + 2〈T 2〉)
.

(24)
A set of guaranteed effective rates is determined by the

solution of the system of inequalities

2(〈t〉 + 〈T 〉)〈T 2〉 + r[(〈t〉 + 〈T 〉)〈T 3〉−〈T 2〉2]

(1 − r〈T 〉)(r〈T 3〉 + 2〈T 2〉)
< 〈t〉+〈T 〉,

r <
1

〈T 〉 ,

r > 0, (25)

solving which we get

0 < r <
〈T 2〉[〈T 2〉 − 2〈T 〉(〈t〉 + 〈T 〉)]

(〈t〉 + 〈T 〉)〈T 〉〈T 3〉 . (26)

The optimal rate and the corresponding efficiency are de-
termined by Eqs. (E5) and (E6) in Appendix E.

More generally, using inequality (20) for l > 2, as well as
combining it with Eq. (14), it is possible, in principle, to obtain
an unlimited number of other guaranteed effective Poisson
strategies. Here we have given only the simplest protocols
that require knowledge of a minimum number of statistical
moments for their application.

C. � strategy

Let us now analyze the stochastic γ protocol. From Eq. (4),
we find that if the condition

〈T 3〉 � 3(〈T 〉 + 〈t〉)〈T 2〉 (27)

is met, then ∂β〈Tβ〉 < 0 at β = 0. So, inequality (27) repre-
sents a sufficient condition for the existence of an effective γ

strategy. However, the knowledge of the first three moments,
〈T 〉, 〈T 2〉, and 〈T 3〉, does not allow us to choose a value of the
parameter β that reduces the mean completion time for sure.
A desired constructive criterion for the effectiveness of the γ

strategy can be formulated by adding information about the
fourth-order statistical moment 〈T 4〉.

To work out an upper estimate for the average completion
time 〈Tβ〉 given by Eq. (4), it is useful to note that the deriva-
tive of the Laplace transform ∂β P̃(β ) can be represented as

∂β P̃(β ) = ∂β

∫ ∞

0
dT P(T )e−βT (28)

= −
∫ ∞

0
dT P(T )Te−βT = −〈T 〉Q̃(β ), (29)

where Q(T ) = T
〈T 〉P(T ). Being nonnegative and normalized

by unity, Q(T ) can be treated as a probability density of some
random variable, and, therefore, its Laplace transform Q̃(r)
can be evaluated from below using inequality (20),

Q̃(β ) �
2l−1∑
k=0

(−1)k βk〈T k〉Q

k!
, (30)

where 〈T n〉Q ≡ ∫ ∞
0 T nQ(T )dT = 〈T n+1〉

〈T 〉 . From Eqs. (28) and
(30) we then find

∂β P̃(β ) �
2l−1∑
k=0

(−1)k+1

k!
βk〈T k+1〉. (31)

Now let us estimate the term P̃(β ) in the numerator of
Eq. (4) via inequality (20) at l = 2. Also, let us use Eq. (20) at
l = 2 to estimate the term P̃(β ) in the denominator. The term
∂β P̃(β ) = −〈T 〉Q̃(β ) in the denominator of Eq. (4) can be
evaluated using Eq. (30) with l = 1. Finally, in the numerator
of Eq. (4), we use Eq. (30) with l = 2 for ∂β P̃(β ). Combining
all these estimates, we obtain

〈Tβ〉 � 6〈t〉 + 6〈T 〉 − β2〈T 3〉 + β3〈T 4〉
6 − 3β2〈T 2〉 − β3〈T 3〉 , (32)

which implies that 1 − β2

2 〈T 2〉 − β3

6 〈T 3〉 > 0. Then the effec-
tive parameters β can be found from the requirement that the
right-hand side of Eq. (32) is less than the mean comple-
tion time in the absence of restart 〈T 〉 + 〈t〉. This yields the
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following interval

0 < β <
〈T 3〉 − 3(〈T 〉 + 〈t〉)〈T 2〉
(〈T 〉 + 〈t〉)〈T 3〉 + 〈T 4〉 . (33)

As expected, this interval (33) is not empty if the existence
conditions (27) are met. The best rate parameter providing
maximum guaranteed efficiency among the values specified
by Eq. (33) can be found by solving an algebraic equation of
the third degree.

Following the same logic, one can derive the effec-
tive γ strategy with an arbitrary natural shape parameter
k of the probability density of interrestart intervals ρ(τ ) =
βk

�(k)τ
k−1e−βτ . Note, however, that the larger k is, the greater

the number of statistical moments is required to determine the
range of effective values of the rate parameter β.

III. OPTIMIZATION OF THE SUCCESS PROBABILITY

So far, we have been talking about optimizing the average
completion time of a stochastic process. Meanwhile, restart
can also be used to increase the probability of observing a
desired outcome of a random process with several alterna-
tive completion scenarios [18]. Examples of such processes
include random search with multiple targets [22–32], ran-
dom search with mortality [33–41], chemical reactions with
competing paths [42–44], folding of biopolymer into one of
several native states [45–50]. In this section, we provide con-
structive criteria of when restart increases the chances that a
random process ends in the desired way.

As a model consider a random process with two com-
pletion scenarios—“success” and “failure.” The process is
characterized by a random completion time T having a prob-
ability density of P(T ). The latter can be represented as
the superposition P(T ) = Ps(T ) + P f (T ), where Ps(T ) and
P f (T ) denote the contribution of successful and unsuccessful
trials, respectively. Note that the normalization of the function
Ps(T ) determines the ‘undisturbed’ probability of success of
p: p = ∫ ∞

0 Ps(T )dT .
As previously, the restart protocol R is determined by

a sequence of time intervals τ1, τ2, . . . which specifies the
restart moments. We will say that the protocol is effective if
its implementation increases the probability of success, i.e.,
pR > p. The corresponding restart efficiency is defined as

χ = pR − p

1 − p
. (34)

For useful protocols, we have 0 < χ � 1.
If the process is restarted in strictly regular fashion with pe-

riod τ , then the resulting probability of observing a successful
outcome is equal to [18]

pτ =
∫ τ

0 Ps(T )dT∫ τ

0 P(T )dT
. (35)

The probability of success pr for the process under Poisson
restart at rate r has the following form [18]

pr = P̃s(r)

P̃(r)
, (36)

where P̃s(r) and P̃(r) denote the Laplace transforms of, re-
spectively, Ps(T ) and P(T ) evaluated at r.

Finally, for the γ protocol with rate parameter β and shape
parameter k = 1, the resulting success probability is given by
the following expression (see Appendix D):

pβ = β∂β P̃s(β ) − P̃s(β )

β∂β P̃(β ) − P̃(β )
. (37)

Note that Eqs. (35)–(37) are valid in the presence of an
arbitrarily distributed random penalty for restart as long as the
penalty is uncorrelated with the outcome [18].

A. Regular strategy

Suppose the condition

ms < m (38)

is met, where ms is the median completion time of success-
ful attempts and m is the unconditional median completion
time of the stochastic process of interest. These metrics
are defined by the relations p

∫ ms

0 dT Ps(T ) = 1/2 and (1 −
p)

∫ m f

0 dT P f (T ) = 1/2. Then, from Eq. (35) it is easy to see
that the restart with a period τ belongs to the interval

ms < τ < m, (39)

is effective for sure, since in this case the following estimate
is valid:

pτ = p + 2
∫ τ

ms
dT Ps(T )

1 − 2
∫ m
τ

dT P(T )
> p. (40)

Unfortunately, the optimal period providing the greatest
guaranteed efficiency χ on the interval (39) cannot be ex-
pressed in terms of ms and m but depends on the fine details
of the probability density P(T ).

B. Poisson strategy

A simple sufficient condition for the existence of an effec-
tive Poisson restart protocol found in Ref. [18] reads

〈Ts〉 < 〈T 〉, (41)

where 〈Ts〉 = p−1
∫ ∞

0 dT Ps(T )T is the average completion
time of successful trials, while 〈T 〉 is the unconditional mean
completion time. This criterion, however, does not say any-
thing about how to choose an efficient restart rate since
knowledge of linear statistical moments 〈Ts〉 and 〈T 〉 alone
is not enough for these purposes. Below, we show that adding
information about the second moment of the random comple-
tion time 〈T 2〉 allows us to formulate a constructive criterion
for the effectiveness of a Poisson restart.

The probability of success given by Eq. (36) can be esti-
mated from below as

pr � (1 − r〈Ts〉)(〈T 2〉r + 〈T 〉)

(〈T 2〉 − 〈T 〉2)r + 〈T 〉 p, (42)

where we used the bound Ps(r) � p(1 − r〈Ts〉), which di-
rectly follows from Eq. (14), and the inequality [21] (also see
Appendix C)

P(r) � 1 − r〈T 〉2

r〈T 2〉 + 〈T 〉 . (43)
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We see from Eq. (42) that if the existence condition (41)
is met, then a Poisson restart with a rate enclosed inside the
interval

0 < r <
〈T 〉(〈T 〉 − 〈Ts〉)

〈T 2〉〈Ts〉 , (44)

increases the chances of success, i.e., pr > p. As can be found
by examining the right-hand side of inequality (46) for an
extremum, the point r0 given by Eq. (E7) in Appendix E
provides the maximum guaranteed gain for the given values of
〈Ts〉, 〈T 〉, and 〈T 2〉 provided the use of the estimates described
above. The resulting efficiency is estimated from below, as
shown in Eq. (E8).

Let us demonstrate another road to the range of efficient
rates. Alternatively, using the results of Ref. [51], we can
evaluate the Laplace transform from above as

P̃(r) � 1 − 〈T 〉2

〈T 2〉 + 〈T 〉2

〈T 2〉e− 〈T 2〉
〈T 〉 r

, (45)

and then from Eq. (36) one gets

pr � 〈T 2〉(1 − r〈Ts〉)

〈T 2〉 − 〈T 〉2 + 〈T 〉2e− 〈T 2〉
〈T 〉 r

p. (46)

By requiring the expression on the right-hand side of the last
inequality to exceed the undisturbed probability of success p,
we find that if the condition 〈Ts〉 < 〈T 〉 is satisfied, then all
rates belonging to the interval 0 < r < rc, where rc represents
the solution of the transcendental equation 1 − 〈T 2〉〈Ts〉

〈T 〉2 r −
e− 〈T 2〉

〈T 〉 r = 0, increase the chances of success. Interestingly, at
〈T 〉 − 〈Ts〉 	 〈T 〉, one obtains the boundary rc ≈ 2 〈T 〉−〈Ts〉

〈T 2〉 ,
which twice exceeds the corresponding value dictated by
Eq. (44).

C. � strategy

Finally, let us analyze the case of the γ protocol. From
Eq. (4), we see that if the condition

〈T 2〉 �
〈
T 2

s

〉
(47)

is met, then ∂β pβ > 0 at β = 0 and, therefore, inequality
(47) represents a sufficient condition for the existence of an
efficient γ strategy. Note, however, that the fixed pair 〈T 2〉 and
〈T 2

s 〉 determines only the slope of pβ in its dependence of β

at the point β = 0, without saying anything about its behavior
for nonzero β. Let us show that efficient rates can be specified
if the third-order moment 〈T 3〉 is additionally known.

The success probability dictated by Eq. (37) can be es-
timated from below in several different ways. Namely, first
let us exploit inequality (20) at l = 1 and l = 2 for β∂β P̃(β )
and P̃(β ), respectively. Next, let us estimate both terms in the
denominator of Eq. (37) via the inequality [21]

P̃(β ) �
2l∑

k=0

(−1)k βk〈T k〉
k!

, (48)

at l = 1. This yields

pβ � 6 − 3
〈
T 2

s

〉
β2 − 〈

T 3
s

〉
β3

3(2 − 〈T 2〉β2 + 〈T 3〉β3)
p, (49)

where we assumed 1 − β2

2 〈T 2〉 + β3

2 〈T 3〉 � 0. Then, re-
quiring that the corresponding bound is greater than the
undisturbed probability of success p, we obtain the interval

0 < β <
3
(〈T 2〉 − 〈

T 2
s

〉)
3〈T 3〉 + 〈

T 3
s

〉 , (50)

for rates that guarantee to increase the chances of success. The
interval is nonempty as long as condition (47) is met.

Alternatively, one can use Eq. (20) with l = 1 to bound
P̃(β ) in the numerator of Eq. (37), while leaving other esti-
mates unchanged. This gives

pβ � 2 − 2β2
〈
T 2

s

〉
2 − β2〈T 2〉 + β3〈T 3〉 p. (51)

The same line of reasoning as described above gives the fol-
lowing interval of efficient rates:

0 < β <
〈T 2〉 − 2

〈
T 2

s

〉
〈T 3〉 . (52)

In contrast to the previous case, here we face a stronger appli-
cability condition 〈T 2〉 � 2〈T 2

s 〉.
A similar result can be obtained if we estimate both

terms entering the numerator of expression for pβ using
Eq. (20) with l = 1 and exploit Eq. (43) to estimate the term
−∂β P̃(β ) = 〈T 〉Q̃(β ) in the denominator. For the probability
of success we then find

pβ �
(
2 − 2β2

〈
T 2

s

〉)
(〈T 2〉 + β〈T 3〉)

2〈T 2〉 − β2〈T 2〉2 + β3〈T 3〉〈T 2〉 + 2β〈T 3〉 p. (53)

This estimate yields a narrower interval of effective rates

0 < β <
〈T 2〉(〈T 2〉 − 2

〈
T 2

s

〉)
〈T 3〉(〈T 2〉 + 2〈T 2

s 〉) , (54)

with the previous condition of applicability 〈T 2〉 > 2〈T 2
s 〉.

To determine the best rates that provide the maximum guar-
anteed efficiency of γ restart at the intervals described above
and to calculate the resulting efficiencies, one needs to solve
high-order algebraic equations, which is more convenient to
do by numerical methods.

IV. DISCUSSION AND CONCLUSION

As explained in the Introduction, the evaluation of the
optimal restart period τ∗ requires the knowledge of the exact
completion time probability density P(T ). Trying to address
this issue, the authors of [2] have developed a restart protocol,
nowadays known as the Luby strategy, which has the follow-
ing remarkable property: Regardless of the statistical details
of the original process, the average completion time of this
process subject to the Luby strategy exceeds the expectation
of completion time provided by the optimal periodic protocol
by no more than a logarithmic factor.

While ingenious and elegant, Luby’s strategy suffers from
two serious drawbacks. First, it only applies to processes with
discrete completion times. In the case of continuous time, as
was recently shown by Lorentz [8], such a universal strategy
simply does not exist. Second, and more importantly, even for
discrete-time processes, by applying the Luby strategy, we can
only be sure that the resulting mean completion time will not
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TABLE I. The table contains various restart protocols that are guaranteed to reduce the average completion time of the process. For each
strategy, the table’s columns specify the following: the condition under which the corresponding strategy is applicable; the resulting range for
an effective period (for periodic protocols) or rate parameter (for Poisson or � protocols); the optimal period or rate parameter providing the
maximum guaranteed effectiveness for the corresponding protocol; an estimate for the resulting maximum guaranteed efficiency.

Protocol Applicability condition Range for effective τ , r, or β Recommended period/rate Efficiency

Regular1 m + 〈t〉 < 〈|T − m|〉 m � τ < 〈|T − m|〉 − 〈t〉 τ0 = m η1 = 〈|T −m|〉−m−〈t〉
〈T 〉+〈t〉

Regular2 m < 1
2 〈T 〉 − 1

2 〈t〉 m � τ < 1
2 〈T 〉 − 1

2 〈t〉 τ0 = m η2 � 1 − 2(m+〈t〉)
〈T 〉+〈t〉

Poisson1 〈T 2〉 � 2〈T 〉(〈T 〉 + 〈t〉) 0 < r < 〈T 2〉(〈T 2〉−2〈T 〉(〈T 〉+〈t〉))
(〈T 〉+〈t〉)(〈T 〉〈T 3〉−〈T 2〉2 )

See Eq. (E1) See Eq. (E2)

Poisson2 〈T 2〉 � 2〈T 〉(〈T 〉 + 〈t〉) 0 < r < 3(〈T 2〉−2〈T 〉(〈T 〉+〈t〉))
〈T 3〉 See Eq. (E3) See Eq. (E4)

Poisson3 〈T 2〉 � 2〈T 〉(〈T 〉 + 〈t〉) 0 < r < 〈T 2〉[〈T 2〉−2〈T 〉(〈t〉+〈T 〉)]
(〈t〉+〈T 〉)〈T 〉〈T 3〉 See Eq. (E5) See Eq. (E6)

� 〈T 3〉 � 3(〈T 〉 + 〈t〉)〈T 2〉 0 < β < 〈T 3〉−3(〈T 〉+〈t〉)〈T 2〉
(〈T 〉+〈t〉)〈T 3〉+〈T 4〉 Numerically available Numerically available

be too bad compared to the optimal value achieved by the best
periodic strategy. In other words, there is no guarantee that
the Luby strategy will not degrade performance as compared
to the restart-free case [8]. Thus, in the complete absence of
information about the statistical properties of the process, the
only way to ensure from decrease of performance is not to
restart the process at all.

Significant progress in solving the problem of choosing
an effective restart policy was achieved in Ref. [14], whose
authors formulated relatively simple constructive criteria for
the effectiveness of periodic restarts for random processes
with partially specified statistical information. Overcoming
the limitations of the previously known existence results
[6,15], these criteria offer a specific restart period that is guar-
anteed to reduce the average completion time of the random
process. Motivated by this progress, in this paper, we general-
ized one of the criteria proposed in Ref. [14] to the case of a
nonzero time penalty for restart and also constructed several
new criteria, some of which concern the case of stochastic
restart. In addition, we have offered the first examples of the
constructive criterion of restart efficiency in the context of
success probability optimization. The results of the analysis
are summarized in Tables I and II.

For the sake of illustration, we analyzed the efficiency
of various constructive criteria using the weighted sum of
two δ-functions P(T ) = pδ(T − T1) + (1 − p)δ(T − T2) as a

model distribution. Figure 1 represents the diagrams obtained
by analyzing the applicability conditions given by Eqs. (6),
(10), (13), and (27) in terms of the dimensionless parameters
p and T1/T2 for different values of time penalty 〈t〉. The Blue
area corresponds to the case when no restart strategy can
be beneficial. For the region with the orange boundary the
regular strategies described above are applicable. The area
above the green line corresponds to the scenario when Poisson
strategies work. Next, our γ strategies work in the region of
the diagram bounded by the red line. Finally, in the white parts
of the diagram, restart is potentially beneficial, but our criteria
fail to capture that. Similarly, we analyzed the Weibull com-
pletion time distribution P(T ) = k

λ
( T

λ
)k−1e−( T

λ
)k

and discrete

power-law distribution P(T ) = 1
ζ (α)

∑∞
k=1

δ( T
T0

−k)

( T
T0

)α
; see Figs. 2

and 3, respectively. These examples demonstrate that all the
criteria formulated here represent sufficient but not necessary
conditions. Indeed, as illustrated by the white areas in Figs. 1
and 3, there exist random processes for which none of the
applicability conditions given by Eqs. (6), (10), (13), and (27)
are fulfilled, but an effective strategy still exists. Note also that
there are regions where only stochastic protocols work. This
justifies our motivation to construct effective Poisson and �

strategies.
Also, we used the toy model P(T ) = Ps(T ) + P f (T ) with

Ps(T ) = pδ(T − T1) and P f (T ) = (1 − p)δ(T − T2) to illus-

TABLE II. A table summarizes various restart protocols guaranteed to increase the probability of success. For each strategy, the tables
columns specify the following: the condition when the corresponding strategy works; the resulting range for an effective period (for periodic
protocols) or rate (for Poisson or � protocols); the optimal period or rate providing the maximum guaranteed effectiveness; an estimate for the
resulting maximum guaranteed efficiency.

Protocol Applicability condition Range for effective period/rate Recommended period/rate Efficiency

Regular ms < m ms < τ < m — —

Poisson 1 〈Ts〉 < 〈T 〉 0 < r < 〈T 〉(〈T 〉−〈Ts〉)
〈T 2〉〈Ts〉 See Eq. (E7) See Eq. (E8)

Poisson 2 〈Ts〉 < 〈T 〉 Numerically available Numerically available Numerically available

� 1
〈
T 2

s

〉
< 〈T 2〉 0 < β <

3
(
〈T 2〉−

〈
T 2

s

〉)
3〈T 3〉+

〈
T 3

s

〉 Numerically available Numerically available

� 2 2
〈
T 2

s

〉
< 〈T 2〉 0 < β <

〈T 2〉−2
〈
T 2

s

〉
〈T 3〉 Numerically available Numerically available

� 3 2
〈
T 2

s

〉
< 〈T 2〉 0 < β <

〈T 2〉
(
〈T 2〉−2

〈
T 2

s

〉)
〈T 3〉

(
〈T 2〉+2

〈
T 2

s

〉) Numerically available Numerically available
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FIG. 1. A diagram in the plane of dimensionless parameters p and T2/T1 representing applicability regions of the restart protocols listed
in Table I for the random process with completion time probability density P(T ) = pδ(T − T1) + (1 − p)δ(T − T2). Different subplots
correspond to different values of the time penalty 〈t〉.

trate the efficiency of different restart protocols in the context
of success probability optimization. The diagrams represented
in Fig. 4 show the regions where conditions (38), (41), and
(47) are satisfied.

As discussed above, one can construct an infinite number
of criteria for Poisson and � protocols by adding statistical
moments of larger order into estimates defined by Eqs. (20),
(31), and (48). Here we restricted ourselves to the simplest
possible criteria involving the minimal number of low-order
moments required to specify the effective values of rate pa-
rameters. In particular, we showed that one needs to know at
least three moments 〈T 〉, 〈T 2〉, and 〈T 3〉 in the case of the
Poisson restart. At the same time, as discussed in Sec. II, even
for fixed values of 〈T 〉, 〈T 2〉, and 〈T 3〉, the interval of effective

rates is not unique: Using different estimates for the Laplace
transform of the completion time probability density P(T )
one can construct a range of efficient strategies with different
recommended control parameters (see Table I).

Since the knowledge of all statistical moments would allow
to recover the probability density P(T ), and thus to find the
best possible control parameter (r∗ or β∗), one may expect
that the recommended rate r0 (β0) tends to the true optimal
value r∗ (β∗) with the growth of the number of moments l
used in estimates (20), (31), and (48). If this is so, then the
next question naturally arises: how quickly does convergence
occur? Although the answer may be nonuniversal [i.e., P(T )-
dependent], we believe that this issue represents an interesting
avenue for future research.

FIG. 2. A diagram in the plane of dimensionless parameters p and T2/T1 representing applicability regions of the restart protocols listed
in Table I for the random process with Weibull probability density P(T ) = k

λ
( T

λ
)k−1e−( T

λ )k
of completion time. Different subplots correspond

to different values of the time penalty 〈t〉. The data were generated via numerical analysis of Eq. (2) and applicability conditions presented in
Table I.
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FIG. 3. A diagram in the plane of parameters α and 〈t〉 represent-
ing applicability regions of the restart protocols listed in Table I for

the discrete power-law probability density P(T ) = 1
ζ (α)

∑∞
k=1

δ( T
T0

−k)

( T
T0

)α

of completion time, where ζ (α) is the Riemann ζ function. Differ-
ent subplots correspond to different values of the time penalty 〈t〉.
The data were generated via numerical analysis of Eq. (2) and the
applicability conditions presented in Table I.
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APPENDIX A: DERIVATION OF EQ. (2)

Here we generalize the derivation proposed in Ref. [14] to
the case of the nonzero time penalty 〈Ton〉.

The mean completion time 〈Tτ 〉 in the presence of periodic
restart with period τ is given by

〈Tτ 〉 = 〈Ton〉 + 〈min(T, τ )〉 + 〈T ′
τ I (T � τ )〉, (A1)

where T ′
τ is the statistically independent copy of Tτ and I (...)

denotes the indicator random variable. The last term in the
left-hand side can be transformed using that T ′

τ is statistically
independent on Tτ :

〈T ′
τ I (T � τ )〉 = 〈T ′

τ 〉〈I (T � τ )〉 = 〈T ′
τ 〉

∫ ∞

τ

P(T )dT

= 〈Tτ 〉
(

1 −
∫ τ

0
P(T )dT

)
. (A2)

Next, the term 〈min(T, τ )〉 can be rewritten based on the
identity

2 min(T, τ ) = T + τ − |T − τ |. (A3)

FIG. 4. A diagram in the plane of dimensionless parameters p
and T2/T1 representing applicability regions of the restart protocols
listed in Table II for the random process with completion time proba-
bility density P(T ) = Ps(T ) + P f (T ) with Ps(T ) = pδ(T − T1) and
P f (T ) = (1 − p)δ(T − T2).

Therefore,

〈min(T, τ )〉 = 1
2 (〈T 〉 + τ − 〈|T − τ |〉). (A4)

Substituting Eqs. (A2) and (A4) into Eq. (A1), we find Eq. (2).

APPENDIX B: DERIVATION OF EQ. (4)

Assume that a stochastic process is subject to the stochas-
tic restart protocol, where random intervals between restarts
are independently sampled from the � distribution ρ(τ ) =
βk

�(β )τ
k−1e−βτ with rate parameter β and natural shape pa-

rameter k. Then the random completion time Tβ obeys the
following renewal equation:

Tβ = Ton + T I (T < τ ) + (τ + T ′
β )I (T � τ ), (B1)

where T ′
β is a statistically independent replica of Tβ . Let us

average this relation over the statistics of the original process
and of the interrestart intervals. This gives

〈Tβ〉 = 〈Ton〉 + 〈T I (T < τ )〉 + 〈τ I (T � τ )〉
+ 〈T ′

βI (T � τ )〉. (B2)

Since 〈T I (T <τ )〉= ∫ ∞
0 dT P(T )T

∫ ∞
T dτρ(τ ), 〈τ I (T �τ )〉 =∫ ∞

0 dT P(T )
∫ T

0 dτρ(τ )τ , 〈T ′
βI (T � τ )〉 = 〈T ′

β〉〈I (T � τ )〉,
1 − 〈I (T � τ )〉 = ∫ ∞

0 dT P(T )
∫ ∞

T dτρ(τ ), and 〈T ′
β〉 = 〈Tβ〉,

we find the closed-form expression for the expected
completion time

〈Tβ〉 = 〈Ton〉 + ∫ ∞
0 dT P(T )T

∫ ∞
T dτρ(τ ) + ∫ ∞

0 dT P(T )
∫ T

0 dτρ(τ )τ∫ ∞
0 dT P(T )

∫ ∞
T dτρ(τ )

. (B3)

Next we obtain∫ ∞

0
dT P(T )T

∫ ∞

T
dτρ(τ ) = (−1)k−1〈T 〉βk

�(k)

dk−1

dβk−1

∫ ∞

0
dT Q(T )

∫ ∞

T
dτe−βτ = (−1)k−1〈T 〉βk

�(k)

dk−1

dβk−1

Q̃(β )

β
(B4)

= (−1)kβk

�(k)

dk−1

dβk−1

[
1

β

dP̃(β )

dβ

]
, (B5)
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∫ ∞

0
dT P(T )

∫ T

0
dτρ(τ )τ = (−1)k−1βk

�(k)

dk−1

dβk−1

∫ ∞

0
dT P(T )

∫ T

0
dτe−βτ τ (B6)

= (−1)k−1βk

�(k)

dk−1

dβk−1

[
1

β

(
1

β
− 1

β
P̃(β ) + dP̃(β )

dβ

)]
, (B7)

∫ ∞

0
dT P(T )

∫ ∞

T
dτρ(τ ) = (−1)k−1βk

�(k)

dk−1

dβk−1

∫ ∞

0
dT P(T )

∫ ∞

T
dτe−βτ = (−1)k−1βk

�(k)

dk−1

dβk−1

P̃(β )

β
, (B8)

where we introduced the auxiliary probability density Q(T ) =
T

〈T 〉P(T ).
For k = 1, we find immediately Eq. (3), whereas for k = 2,

one gets Eq. (4).

APPENDIX C: DERIVATION OF EQS. (14) AND (43)

Here we provide a derivation of inequalities from Ref. [21].
The Laplace transform of the probability distribution function
P(T ) of a nonnegative random variable T is defined by

P̃(r) =
∫ ∞

0
e−rT P(T )dT . (C1)

Let ν be a number of events in a Poisson process with rate
r that occurred during a time interval of random duration T .
Then p(ν) is defined by

p(ν) =
∫ ∞

0

(rT )ν

ν!
e−rT P(T )dT . (C2)

Let us compute 〈νn〉. It can be easily done with the definition
of a Stirling number of the second kind S(n, k),

νn =
n∑

k=0

S(n, k)ν[k], (C3)

where ν[n] = ν(ν − 1)(ν − 2) . . . (ν − n + 1). Note that

〈ν[n]〉 = dn〈sν〉
dsn

∣∣∣∣
s=1

. (C4)

Using Eq. (C2), one can find

〈sν〉 =
∞∑

ν=0

p(ν)sν

=
∫ ∞

0

∞∑
ν=0

(rT s)ν

ν!
e−rT P(T )dT

=
∫ ∞

0
e−(1−s)rT P(T )dT = P̃(r(1 − s)). (C5)

From Eqs. (C5) and (C4) follows

〈ν[n]〉 = dnP̃(r(1 − s))

dsn

∣∣∣∣
s=1

= (−r)n dnP̃(x)

dxn

∣∣∣∣
x=0

= rn〈T n〉.
(C6)

Then Eqs. (C2) and (C6) give us the following identity:

〈νn〉 =
n∑

k=0

S(n, k)〈ν[k]〉 =
n∑

k=0

S(n, k)rk〈T k〉. (C7)

Assume that 〈ν3〉 < ∞, which is equivalent to 〈T 3〉 < ∞ [see
Eq. (C7)]. Consider a nonnegative definite quadratic form

〈I (ν > 0)(ν − 1)(z0 + z1ν)2〉 =
1∑

i, j=0

ziz j (mi+ j+1 − mi+ j ),

(C8)
where mk = 〈νkI (ν > 0)〉. Its matrix is defined by

M =
(

m1 − Pr[ν � 1] m2 − m1

m2 − m1 m3 − m2

)
. (C9)

Since quadratic form is nonnegative, det(M ) � 0

Pr[ν � 1] � m1 − (m2 − m1)2

m3 − m2
. (C10)

Using that Pr[ν � 1] = 1 − p(0) and mk = 〈νkI (ν > 0)〉 =
〈νk〉 at k > 0, we get

p(0) � 1 − 〈ν〉 + (〈ν2〉 − 〈ν〉)2

〈ν3〉 − 〈ν2〉 . (C11)

From Eqs. (C7) and (C11) and the identity p(0) = P̃(r),
one can obtain the following inequality [Eq. (14) from the
main text]:

P̃(r) � 1 − r〈T 〉 + r2〈T 2〉
r〈T 3〉 + 2〈T 2〉 . (C12)

Similarly, assuming 〈ν2〉 < ∞, which is equivalent to
〈T 2〉 < ∞ by Eq. (C7), we can get the Eq. (43) from the main
text. Analogously to Eq. (C8), let us consider a nonnegative
definite quadratic form

〈I (ν > 0)(z0 + z1ν)2〉 =
1∑

i, j=0

ziz jmi+ j . (C13)

Then its matrix is defined by

M =
(

Pr[ν > 0] m1
m1 m2

)
. (C14)

From the condition of nonnegativity of the det(M ), one can
find

Pr[ν > 0] � m2
1

m2
. (C15)

Using Pr[ν > 0] = 1 − p(0) and mk = 〈νkI (ν > 0)〉 = 〈νk〉
at k > 0, we get

p(0) � 1 − 〈ν〉2

〈ν2〉 . (C16)
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From Eqs. (C7) and (C16) and the identity p(0) = P̃(r), one
can obtain Eq. (43) from the main text:

P̃(r) � 1 − r〈T 〉2

r〈T 2〉 + 〈T 〉 . (C17)

APPENDIX D: DERIVATION OF EQ. (37)

As shown in Ref. [18], the success probability in the pres-
ence of the restart is given by

pR =
∫ ∞

0 dτρ(τ )
∫ τ

0 dT Ps(T )∫ ∞
0 dτρ(τ )

∫ τ

0 dT P(T )
, (D1)

where ρ(τ ) denotes the probability density of time intervals
between restart events.

For � distribution ρ(τ ) = βk

�(β )τ
k−1e−βτ , we find from

Eq. (D1)

pβ =
∫ ∞

0 dττ k−1e−βτ
∫ τ

0 dT Ps(T )∫ ∞
0 dττ k−1e−βτ

∫ τ

0 dT P(T )

= ∂k−1
β

∫ ∞
0 dτe−βτ

∫ τ

0 dT Ps(T )

∂k−1
β

∫ ∞
0 dτe−βτ

∫ τ

0 dT P(T )

=
∂k−1
β

(
P̃s (β )

β

)

∂k−1
β

(
P̃(β )

β

) . (D2)

For k = 2 this yields Eq. (37).

APPENDIX E: POISSON PROTOCOLS

1. Optimization of the mean completion time

It is easy to show that within the interval given by Eq. (17), the expression on the right-hand side of inequality (15) reaches
its minimum value at the point

r3 =
−2〈T 2〉Ton +

√
2〈T 2〉3[Ton〈T 3〉 − 〈T 2〉2 − 2Ton〈T 2〉〈t〉][〈T 3〉〈T 〉 − 〈T 2〉2]−1

Ton〈T 3〉 − 〈T 2〉2
, (E1)

where Ton = 〈T 〉 + 〈t〉.
As can be easily shown from Eqs. (17), (14), and (15), the resulting efficiency is defined as

η3 � 1 − Ton〈T 3〉 − 〈T 2〉2

Ton[〈T 3〉 − 2〈T 〉〈T 2〉] − 2Tonr3[〈T 〉〈T 3〉 − 〈T 2〉2]
. (E2)

Rate r4 minimizes the right-hand side of inequality (21) on the interval (23), thus providing the greatest guaranteed efficiency
at the given values of the first three points of the initial completion time

r4 = 1

〈T 〉 −
√

〈T 3〉(〈T 3〉 − 3〈T 2〉〈T 〉 + 6〈T 〉2Ton)

〈T 〉〈T 3〉 . (E3)

Efficiency can be estimated from below as

η4 � 1 − 3〈T 2〉 − 2〈T 3〉r4

6〈T 〉(〈t〉 + 〈T 〉)
. (E4)

The optimal rate is given by

r5 =
−2Ton〈T 2〉 + √

2
√

(2Ton〈T 〉〈T 2〉 + Ton〈T 3〉 − 〈T 2〉2)〈T 2〉3[〈T 〉〈T 3〉]−1

Ton〈T 3〉 − 〈T 2〉2
. (E5)

Efficiency can be estimated from below as

η5 � 1 − 〈T 3〉(〈t〉 + 〈T 〉) − 〈T 2〉2

(〈t〉 + 〈T 〉)(〈T 3〉 − 2〈T 〉(r5〈T 3〉 + 〈T 2〉))
. (E6)

2. Optimization of the success probability

It is easy to show by examining the right-hand side of inequality (46) at the extremum, the point belonging to the specified
interval

r0 = −〈Ts〉〈T 〉〈T 2〉 +
√

〈T 〉3〈T 2〉〈Ts〉(〈T 〉〈Ts〉 + σ 2)

σ 2〈T 2〉〈Ts〉 , (E7)

where σ 2 = 〈T 2〉 − 〈T 〉2 provides the maximum guaranteed gain for the given values of 〈Ts〉, 〈T 〉, and 〈T 2〉. The resulting
efficiency is estimated from below as

χ2 >
p

1 − p

〈T 〉
σ 4

[((〈T 〉2 + 〈T 2〉)〈Ts〉 − 〈T 〉σ 2) − 2
√

〈T 〉〈T 2〉〈Ts〉(〈T 〉〈Ts〉 + σ 2)]. (E8)
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