
θ RENORMALIZATION, SUPERUNIVERSALITY,

AND ELECTRON-ELECTRON INTERACTIONS

IN THE THEORY OF THE QUANTUM HALL EFFECT



Promotiecommissie
Promotor prof. dr. A. M. M. Pruisken
Overige leden dr. M. A. Baranov

prof. dr. E. Brezin
prof. dr. H. W.Capel
prof. dr. A. M.Finkelstein
prof. dr. K. Schoutens
prof. dr. J. Smit

The research described in this thesis was carried out at the Institute for Theoretical
Physics of the University of Amsterdam, Valckeneirstraat 65, 1018 XE Amsterdam,
The Netherlands.

Printed by PrintPartners Ipskamp, Enschede

ISBN 90-5776-154-8



θ RENORMALIZATION, SUPERUNIVERSALITY,

AND ELECTRON-ELECTRON INTERACTIONS

IN THE THEORY OF THE QUANTUM HALL EFFECT

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus,

prof. mr. P. F. van der Heijden,
ten overstaan van een door het college voor promoties ingestelde

commissie in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 24 mei 2006, te 10:00 uur.

door

Igor Burmistrov
geboren te Moskou, Rusland



Prof. dr. A. M. M.Pruisken (promotor)

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



Contents

1 Introduction 9
1.1 A bit of history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Old paradigm: Anderson de-localization . . . . . . . . . . . . . 10
1.1.2 Grand unification . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 New paradigm: Super universality . . . . . . . . . . . . . . . . 11

1.2 What is the quantum Hall effect? . . . . . . . . . . . . . . . . . . . . 14
1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 θ renormalization in generalized CPN−1 models 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Super universality . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 The background field methodology . . . . . . . . . . . . . . . . 20
2.1.3 The strong coupling problem . . . . . . . . . . . . . . . . . . . 21
2.1.4 The large N expansion . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.5 Quantum phase transitions . . . . . . . . . . . . . . . . . . . . 26

2.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Non-linear sigma model . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Effective action for the edge . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Constrained instantons . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Quantum theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Spatially varying masses . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3 Action for the quantum fluctuations . . . . . . . . . . . . . . . 53

2.5 Pauli-Villars regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.1 Explicit computations . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.2 Regularized expressions . . . . . . . . . . . . . . . . . . . . . . 58
2.5.3 Observable theory in Pauli-Villars regularization . . . . . . . . 60

2.6 Instanton manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.1 Zero frequency modes . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.2 The U(m + n)/U(m) × U(n) zero modes . . . . . . . . . . . . . 62

5



2.7 Transformation from curved space to flat space . . . . . . . . . . . . . 66
2.7.1 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.2 Transformation µ2(r)M → µ0 . . . . . . . . . . . . . . . . . . 67
2.7.3 The β functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.4 Negative anomalous dimension . . . . . . . . . . . . . . . . . . 69
2.7.5 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.6 Positive anomalous dimension . . . . . . . . . . . . . . . . . . . 73

2.8 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8.1 m,n � 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8.2 0 � m,n � 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.3 Comparison with numerical work . . . . . . . . . . . . . . . . . 82
2.8.4 Continuously varying exponents and a conjecture . . . . . . . . 85

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.A Computation of the matrix elements . . . . . . . . . . . . . . . . . . . 89
2.B Renormalization around the trivial vacuum with the help of Pauli-

Villars procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Non-Fermi liquid theory for disordered metals near two dimensions 93
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 A historical problem . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.2 F invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.3 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Effective parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.1 The action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.2 F invariance and F algebra . . . . . . . . . . . . . . . . . . . . 97
3.2.3 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.4 The h0 field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3 Linear response versus background field procedure . . . . . . . . . . . 100
3.3.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.2 F invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.3 Background field formalism . . . . . . . . . . . . . . . . . . . . 102
3.3.4 The quantities z′ and c′ . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Computation of conductivity in D = 2 + ε dimensions . . . . . . . . . 104
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.4.2 The two-loop theory . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.3 Computation of contractions in Eq. (3.4.16) . . . . . . . . . . . 106
3.4.4 Results of the computations . . . . . . . . . . . . . . . . . . . . 109
3.4.5 β and γ functions . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5 Dynamical scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.5.1 Relation between h

′
and ωs . . . . . . . . . . . . . . . . . . . . 113

3.5.2 The Goldstone phase . . . . . . . . . . . . . . . . . . . . . . . . 114
3.6 Renormalization group flows in D = 2 + ε dimensions . . . . . . . . . 117
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.A Computation of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.A.1 The A - integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.A.2 The B - integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6



3.A.3 The C - integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.A.4 The D-integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.A.5 The H - integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.A.6 The S - integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.A.7 The T-integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.A.8 List of symbols and abbreviations . . . . . . . . . . . . . . . . 126

3.B Example of calculation for a typical integral . . . . . . . . . . . . . . . 126

4 θ renormalization and electron-electron interactions 129
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.1 The action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.2 Quantization of the Hall conductance . . . . . . . . . . . . . . 133
4.2.3 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.4 Sensitivity to boundary conditions . . . . . . . . . . . . . . . . 140

4.3 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3.2 Quantum fluctuations . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.3 Spatially varying masses . . . . . . . . . . . . . . . . . . . . . . 152
4.3.4 Action for the quantum fluctuations . . . . . . . . . . . . . . . 152

4.4 Details of computations . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.4.1 Pauli-Villars regulators . . . . . . . . . . . . . . . . . . . . . . 156
4.4.2 Regularized expressions . . . . . . . . . . . . . . . . . . . . . . 160
4.4.3 Observable theory in Pauli-Villars regularization . . . . . . . . 164

4.5 Transformation from curved space to flat space . . . . . . . . . . . . . 166
4.5.1 Instanton manifold . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.5.2 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.3 Transformation µ2(r)M → µ0 . . . . . . . . . . . . . . . . . . 170
4.5.4 The quantities σxx and σ′

xx in flat space . . . . . . . . . . . . . 171
4.5.5 The quantities z, zc and z′, z′c′ in flat space . . . . . . . . . . 172

4.6 The β′ and γ′ functions . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.6.1 Observable and renormalized theories . . . . . . . . . . . . . . 177
4.6.2 The β′ and γ′ functions . . . . . . . . . . . . . . . . . . . . . . 178

4.7 Effective action for the edge . . . . . . . . . . . . . . . . . . . . . . . 181
4.7.1 Thermodynamic potential . . . . . . . . . . . . . . . . . . . . 181
4.7.2 Expansion in T . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.7.3 Background field q0 . . . . . . . . . . . . . . . . . . . . . . . . 185
4.7.4 Effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.A Quantum corrections of trivial vacuum in Pauli-Villars regularization 190

5 Non-Fermi liquid criticality and super universality 193
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.2 Robust quantization of Hall conductance . . . . . . . . . . . . . . . . . 193
5.3 Scaling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.1 Scaling equations for the observables . . . . . . . . . . . . . . . 195

7



5.3.2 Scaling results in weak coupling regime, σxx � 1 . . . . . . . . 196
5.3.3 Plateau transitions in the quantum Hall regime. Short-ranged

interaction (c′ < 1) . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.4 Plateau transitions in the quantum Hall regime. Coulomb in-

teraction (c′ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

References 205

Summary 213

Samenvatting 215

Acknowledgement 217

List of publications 219

8



Chapter 1

Introduction

1.1 A bit of history

The integral and fractional quantum Hall effects [1, 2] are remarkable and richly
complex phenomena of nature with a level of significance that is comparable to that of
superconductivity and superfluidity. The robust quantization of the Hall conductance
is observed in experiments on two dimensional electron systems at low temperatures
(50mK - 4K) and strong perpendicular magnetic fields (1− 20T ). This quantization
phenomenon originally came as a complete surprise in Physics and appeared to be
in fundamental conflict with the prevailing ideas on electron transport in metals,
especially the semi classical theory that explains the ordinary Hall effect. [3, 4, 5]
Although discovered relatively recently [6, 7] the quantum Hall effect has already
led to two Nobel prizes in Physics, one in 1985 for the discovery of the integral
quantum Hall effect [8] and one in 1998 for the discovery of the fractional quantum
Hall effect. [9, 10, 11]

In spite of the huge number of theoretical and experimental papers that have ap-
peared over the years, and the dramatic progress that has been made, our microscopic
understanding of the quantum Hall effect is still far from being complete. From the
experimental side, the list of observed but unexplained transport phenomena is still
growing and the subject matter, as it now stands, goes well beyond any of the theo-
retical scenario’s that were originally proposed to explain the quantum Hall plateaus.
The main reason why a microscopic theory of the quantum Hall effect is complicated
is the fact the problem generally lacks a “small parameter”. Any attempt to force
the phenomenon in the mold of “mean-field” theory is doomed to fail. A satisfactory
theory of the quantum Hall effect must treat the various different microscopic factors
on an equal footing. These factors are i) strong magnetic fields, ii) a random impurity
potential and iii) the effects of electron-electron interactions. Besides all these factors
the theory should also be designed to deal with such phenomena as the linear response
in electromagnetic potentials.

Traditionally, the integral and fractional quantum Hall effect have been studied
largely separately. The reason for this otherwise artificial distinction is as follows.
The integral quantum Hall effect can be understood, at least qualitatively, in terms

9



10 Chapter 1

of localized and extended single electron states of the random impurity problem in
strong magnetic fields. On the other hand, the electron-electron interaction is known
to be one of the prerequisites for the existence of the fractional quantum Hall effect.

1.1.1 Old paradigm: Anderson de-localization

The random impurity problem, otherwise known as the theory of Anderson localiza-
tion, has already had a very long history even before the quantum Hall effects had
been observed. A dramatic breakthrough took place at about the same time as von
Klitzing’s discovery. It was then understood, by various different schools of thought,
that the noninteracting two dimensional electron gas in the presence of a random
potential fluctuations is always an insulator, at least for sample sizes that are large
enough. [12, 13, 14, 15, 16, 17] These famous results of what is called the “scaling
theory” of Anderson localization were in spectacular conflict with the existence of the
quantum Hall effect, however. In order for the quantum Hall effect to exist one had
to assume that the strong magnetic field adds something very dramatic to the theory
of Anderson localization that was previously unknown. This something turned out
to be a peculiar topological feature of replica field theory [18, 19] that is invisible in
the standard diagrammatic techniques of Anderson localization. The glorious idea
proposed in Ref. [19] provides the mechanism by which “extended” states appear
in the problem and, hence, the true reason why the quantum Hall effect actually
exists. [20, 21] Moreover, these topological concepts led directly to the prediction
of quantum criticality of the quantum Hall plateau transitions with interesting scal-
ing behavior of the magneto resistance data with varying temperature and magnetic
field. [22, 23] Soon after the first laboratory experiments on quantum criticality had
been conducted various different schemes for numerical simulation on the disordered
free electron gas were developed. At present there is an impressive stock of numerical
exponent values obtained by many different authors and this includes the multi-fractal
singularity spectrum of density fluctuations. [24, 25]

1.1.2 Grand unification

Contrary to the integral quantum Hall effect, electron-electron interactions have al-
ways been the main objective in the studies of the fractional quantum Hall effect.
The physics of random potential fluctuations is completely excluded from the tradi-
tional considerations which are phenomenological in nature. Within this paradigm
a number of approaches have emerged over the years and only four of them have
survived. These are the Laughlin wave function, [26] Jain’s composite fermion pic-
ture, [27] the Chern-Simons statistical gauge field approach [28] and effective theories
for the quantum Hall edge. [29]

The most ambitious program would be to incorporate all the advances made in
both the integral and fractional quantum Hall effect in a single microscopic formalism
that would lead to a grand unified theory of the quantum Hall effect. For this purpose
it is important to know that amongst the various different approaches that presently
exist, there is only one theory that deals successfully with localization and interac-
tion effects in metals, namely the one originally developed by Finkelstein. [30] The



Introduction 11

Finkelstein theory is notorious for its mathematical complexity, however, and much of
the original structure of the theory was previously not at all understood. It therefore
did not occur to anyone to use the Finkelstein theory in order lay the foundation
for a unified theory of the quantum Hall effect. Opposite to all expectations in the
field, however, it was argued [31] that by incorporating the aforementioned topologi-
cal features in the Finkelstein theory one would have the very same non-perturbative
mechanism for electron “de-localization” as the one that had previously been discov-
ered, in the theory of free electrons. Moreover, several very basic advances have been
made that facilitate the study of the Finkelstein approach as a field theory. I men-
tion, in particular, the discovery of a new interaction symmetry that had previously
remained concealed, namely F-invariance. This symmetry is intimately related to
the usual electrodynamic U(1) gauge invariance of the interacting electron gas and,
among many other things, it permits the coupling of the Finkelstein action to exter-
nal electromagnetic potentials. [32, 33] The foundations for a unified theory of the
quantum Hall effect were finally laid in Refs [34, 35]. In this theory the fractional
quantum Hall regime emerges from exactly same formalism as the one was used for
the integral regime.

1.1.3 New paradigm: Super universality

In spite of enormous progress achieved in Refs [32, 33, 34, 35], the unification of
the integral and fractional quantum Hall effects with the theory disordered metals
was still far from being complete at the time this PhD project had started. For
one thing, detailed computations had to be performed that would demonstrate the
renormalizability of the unified action both on a perturbative and non-perturbative
level. For another, some of the most important new insights in the field, in particular
that of super universality of topological principles in quantum field theory, was only
beginning to see daylight at that time. The statement of super universality essentially
says that the fundamental aspects of the quantum Hall effect are all quite generally
displayed by the instanton vacuum in asymptotically free field theory, independent of
the specific application that one is interested in such as the number of field components
in the theory.

The super universality concept fundamentally upsets the prevailing ideas and ex-
pectations in the field, in particular the many conflicting claims on the θ dependence
as well as topological excitations (instantons and instanton gases) that have resulted
from the historical studies [36, 37, 38] of the large N expansion of the CPN−1 model.
These claims [39, 40, 41] have promoted, for a very long time, the wrong physical ideas
and incorrect mathematical objectives in the literature, for example the longstanding
belief which says that quantum Hall physics is merely a feature of the theory in the
replica limit. This, in turn, has motivated a never ending series of utterly incorrect
mathematical papers advocating the “failure of the replica trick”, the “superiority
of supersymmetry” etc. etc. The complete lack of physical insight in the literature
is in sharp contrast to the general idea with which the θ parameter originally was
introduced in the theory of the quantum Hall effect. Following the original papers
one takes the experiment on the quantum Hall regime as an important laboratory
where the strong coupling problems previously encountered in QCD can be explored
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and investigated in great detail.

ε expansion

The first open problem, to be addressed in this thesis, is that of the renormalizability
of the unified theory beyond one loop order. This issue, which has important conse-
quences for the field of localization and interaction effects as a whole, was partially
addressed in Ref. [33] where the scheme of dimensional regularization [42] was intro-
duced in the problem containing the so-called singlet interaction amplitude. However,
a detailed understanding of the problem in 2 + ε dimensions goes well beyond the
pioneering work of Ref. [33]. A complete theory to order ε2 is important, especially
since it is the only place where one can get explicit information on longstanding is-
sues such as dynamical scaling of the interacting electron gas. Moreover, following
up on the seminal work [43] by E. Brezin and J. Zinn-Justin in the seventies, the
ε expansion generally facilitates the extraction of explicit scaling functions for the
physical observables of the theory, in particular the equation of state for the macro-
scopic conductances. For the first time, explicit scaling results are being obtained and
the “mobility edge problem” in 2 + ε dimensions in the presence of electron-electron
interactions is solved completely.

θ renormalization

The second major topic, studied in this thesis, is the peculiar mechanism that is
responsible for generating “extended states” or “massless excitations” at θ = π in
the interacting electron gas in the presence of strong magnetic fields. Notice that
the highly nontrivial idea which says that this mechanism should be identically the
same for both free electrons and interacting systems is firmly supported by the results
obtained from numerical simulations [24, 25] and those taken in the laboratory. [23] To
obtain a quantitative assessment of this mechanism I develop, in this thesis, a theory of
topological excitations (instantons) for both interacting and non-interacting systems.
This theory is based, to a large extend, on the methodology originally developed for
QCD by ’tHooft. [44] However, there are several very basic advances as compared to
the traditional theories and views on instantons and instanton effects.

First of all, unlike the usual free energy computations which do not teach us any-
thing about the singularity structure of the theory with varying θ, our main interest
is in the non-perturbative consequences for the renormalization group, in particular
the concept of θ renormalization by instantons. This concept is important since it
demonstrates that instantons are the fundamental topological objects of the theory
that establish the cross-over between the weak coupling Goldstone phase at short dis-
tances and the strong coupling quantum Hall phase that generally appears at much
larger distances only. This scenario of quantum Hall physics which, by the way, one
can quite generally associate with the θ parameter in asymptotically free field theory,
is based on several basic principles that have remarkably emerged in recent years only.
I mention in particular the massless chiral edge excitations that are quite generally
displayed by an instanton vacuum, [34, 35] as well as the intimately related theory of
physical observables (in the context of Gross) that generally defines the renormaliza-
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tion of the system. This thesis is largely devoted to a study of the consequences of
these new principles.

Spatially varying masses

As a second technical advancement I extend the theory of instantons to generally in-
clude mass terms. Mass terms play an extremely important role in condensed matter
applications, especially since it is well known that they determine to a major extend
the physics of the problem. It is also well known that mass terms dramatically com-
plicate the subject of topological excitations and the matter usually goes by the name
of “constrained instantons”. Even though the construction of a constrained instan-
ton formally solves the semiclassical problem, [45] to our knowledge there has been
nobody until to date who has been able to solve the full quantum theory, for other-
wise very good reasons. It has already been noticed previously that the fundamental
problem with mass terms is that they generally spoil the geometrical features of the
harmonic oscillator problem or instanton determinant. [31] This clearly indicates that
the very idea of constrained instantons is rather unnatural and it does not facilitate
an analysis of the renormalization behavior of the theory. A different way of saying
this is that many of the difficulties encountered in quantum field theory have actually
been borne out of pursuing the wrong physical objectives.

The problem can be avoided all together by following up on the procedure of spa-
tially varying masses which essentially transforms the mass terms defined in flat space
into those defined in curved space. [31] This procedure permits a complete solution of
the harmonic oscillator problem while retaining the ultraviolet singularity structure
of the theory. Moreover, it is possible to return back to the problem of mass terms in
flat space all the way in the end, by employing the various tricks in evaluating instan-
ton determinants as introduced first by ’tHooft. [44] The methodology of spatially
varying masses ultimately provides the most important piece of information that - to
our knowledge - cannot be obtained in any different manner, namely non-perturbative
(instanton) contributions the anomalous dimension or γ function associated with mass
terms.

Experimental predictions

Having established a complete understanding of the various distinctly different aspects
of the renormalization group it is next important to move on to the third major
topic of this thesis which is to translate the results into clear predictions for the
experiment. As a first test I revisit the renormalization theory of the free electron
gas which has created this field of research in the first place. Even though this theory
has original set the stage for the experiments on quantum criticality in the quantum
Hall regime, the results were previously not understood well enough to provide serious
numerical estimates for the critical exponents. At present I shall greatly benefit from
the numerical exponent values that are known from an extensive series of computer
simulations on the free electron gas by many others. [24, 25] In fact, the predictions
of this thesis that are based on instantons agree remarkably well with the numerical
estimates obtained from the experiments on the free electron gas taken from the
computer. This includes not only the correlation (or localization) length exponent but
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also the entire multi fractal singularity spectrum of the plateau transitions. For the
first time, therefore, a complete microscopic theory of the quantum Hall effect has been
established and, as an integral part of this thesis, I shall outline the various different
reasons why instanton calculus works so well, at least as far as the free electron gas is
concerned. Starting from the surprising results obtained for free electrons it becomes
easier to understand the fundamentally different physics of the Coulomb interaction
problem and, in particular, the reasons why Fermi liquid principles are fundamentally
wrong.

The results of this thesis, along with their physical objectives, may in general be
regarded as some of the basic advancements which have led to the aforementioned
concept of super universality of quantum Hall physics. At the time of writing of
this thesis this concept has been investigated in a variety of completely different
physical contexts. These include, besides the interacting and non-interacting electron
gas, also the exactly solvable θ dependence of the large N expansion of the CPN−1

model, [46, 47] the theory of quantum spin chains [48] as well as the Ambegaokar-
Eckern-Schön model [49] for the Coulomb blockade problem. [50] Each of these cases
stands for a distinctly different realization of the θ parameter in a scale invariant
theory. The basic features are nevertheless identically the same as those described
in this thesis. These include the existence of robust topological quantum numbers
that explain the precision and stability of the quantum Hall plateaus, as well as
gapless excitations at θ = π that generally facilitate a transition to take place between
adjacent quantum Hall plateaus.

1.2 What is the quantum Hall effect?

Two dimensional electron gas is realized on interface between two semiconductors,
e.g. Si and SiO2, GaAs and AlxGa1−xAs, or InxGa1−xAs and InP. [5] The samples
used in experiments on scaling typically have a low mobility µ ∼ 104 − 105cm2/V · s
in the absence of magnetic field. The transport measurements are performed with the
help of the AC lock-in technique as sketched in Fig. 1.1. When a current I is applied
to the electron system a voltage V0 is measured (see Fig. 1.1). In the presence of a
perpendicular magnetic field B a voltage drop, usually referred to as the Hall voltage,
appears in the direction perpendicular to the current flow. According to the classical
theory of metals, [4] the Hall resistance RH = VH/I is related to filling factor of
the Landau levels νf = nch/eB where n denotes the electron density, c the speed of
light, h the Plank constant and e the electron charge. The following simple relation
is obtained

R−1
H =

e2

h
νf (1.2.1)

which means that the Hall resistance increases linearly with the magnetic field B.
What has been remarkably observed in the original experiments by von Klitzing,

Dorda and Pepper, [6] however, is that Eq. (1.2.1), although true at room temperature,
transforms at very low temperatures in the range 0 − 4K into a series of quantum
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Figure 1.1: Schematic diagram of Hall bar.

Hall plateaus that can be represented as follows

R−1
H =

e2

h

∞∑
n=0

ϑ(νf − n − 1/2). (1.2.2)

Here, ϑ(x) stands for the Heaviside step function. For magnetic field strengths in the
range n − 1/2 � νf � n + 1/2 the Hall resistance is accurately quantized accord-
ing to R−1

H [h/e2] = n. When the temperature approaches absolute zero, the steps
between adjacent quantum Hall plateaus become infinitely sharp whereas at finite
temperatures the steps are smoothed out. The quantization phenomenon of the Hall
resistance is now referred to as the integral quantum Hall effect.

In better quality, higher mobility samples and at high magnetic field strengths
(usually more than 10T ) it has been discovered experimentally by Tsui, Störmer and
Gossard [7] that the Hall resistance is fractionally quantized around filling factors
νf = p/q according to R−1

H h/e2 = p/q with p an arbitrary integer and q an odd
integer. This quantization is usually termed the fractional quantum Hall effect. The
quantum Hall effects, both integral and fractional, can be observed in a single sample
at low temperatures by varying the applied magnetic field [51] as shown in Fig. 1.2.
An important general feature of the quantum Hall effect is that the longitudinal
resistance R0 = V0/I vanishes when the Hall resistance is in the plateau regime.

At a later stage it was theoretically predicted [22] and experimentally verified by
measurements taken from low mobility InxGa1−xAs/InP heterostructures [23] that
both the longitudinal resistance R0 and the Hall RH resistance, with varying tem-
perature and magnetic field, display the following scaling behavior at the transition
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(νf ≈ n + 1/2) between adjacent quantum Hall plateaus

R0,H = f0,H

(
T−κ(νf − n − 1/2)

)
. (1.2.3)

Here, f0(X) and fH(X) are regular functions of their argument. The critical exponent
κ is universal which means that its numerical value is the same for all Landau levels
n and sample independent. The first measurements [23] resulted in an experimental
value κ = 0.42 ± 0.04.

However, during the period of almost two decades that followed experimentalists
were mainly struggling with the conceptual difficulties associated with quantum phase
transitions in disordered systems. Some of the more difficult aspects of the theory
relating to the observability of quantum criticality were generally discarded and/or
overlooked. Nevertheless, it was already understood from the very first beginning
that scaling results like Eq. (1.2.3) are valid only when the temperature approaches
absolute zero. The characteristic temperature or length scale where scaling occurs first
depends strongly on the details such as the type of random potential fluctuations in
the sample, [22] the presence of macroscopic inhomogeneities etc. [52] As has already
been stated at many different places elsewhere, these complications generally impose
serious constraints on the experimental design and the technology of growing samples.

In experimental samples the random potential is created by the dopants that
can be situated at some distance d from two dimensional electron system. If the
distance d is large compared to the magnetic field length lH =

√
c�/eB, d � lH

then the dopants cause long-ranged potential fluctuations. This is what happens in
GaAs/AlxGa1−xAs heterostructures that generally do not display scaling (1.2.3) in
the range of experimental temperatures. On the other hand, in InxGa1−xAs/InP
samples the dopants are known to be located near the interface such that d � lH
and is the main reason why these samples were chosen in the original experiments on
quantum criticality.

Macroscopic inhomogeneities such as gradients in the electron density, misalign-
ments of the Hall bar contacts etc. generally prevent an accurate measurement of the
critical exponent κ taken from the plateau-plateau transitions. [52] It so turned out
that only the measurements on the plateau-insulator provide a reasonable accuracy
and latest results on InxGa1−xAs/InP samples [53] indicate that the critical exponent
equals κ = 0.57 ± 0.02 rather than 0.42 ± 0.04.

Only very recently detailed studies have begun on a series of state of the art
samples with a well defined disorder by the group of D.C. Tsui in Princeton. [54] The
results seem to be in favor of the value κ = 0.42 as originally reported by H.P. Wei
et al. [23] Unfortunately, however, the new data were presented using the old Fermi
liquid ideas that were introduced at the time of the original experiments. [22] In this
thesis I will show that our microscopic understanding of the Coulomb interaction
problem [32, 33] has dramatically advanced in recent years and phenomenological
ideas based on Fermi liquid principles are no longer satisfactory, by any standard.

To specify the effects of the electron-electron interaction on the plateau transitions
we consider the Fourier transform of the pair potential U(q). If U(q) → ∞ as q →
0 we name the electron-electron interaction long-ranged. When U(q) → const as
q → 0 the electron-electron interaction is short-ranged. In Ref. [32] it has been
established that the system with long-ranged electron-electron interaction possesses
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Figure 1.2: Hall resistance RH and resistance R0 as functions of an applied magnetic
field. Figure is taken from Ref. [51]

F-invariance. This symmetry is absent or broken for short-ranged interactions as
well as free electrons. This remarkable result implies that the critical exponent κ is
different depending on the range of the interaction potential. In realistic samples the
electrons interact through the Coulomb potential which is long-ranged. Therefore, it
is an experimental challenge to design a metallic gate close to the two dimensional
electron gas which renders the effective electron-electron interaction short-ranged. [31]
A different value of κ will then observed and this value can be compared with the
analytical results reported in this thesis.

In summary I can say that the quantum Hall regime is an outstanding laboratory
for investigating quantum phase transitions and interaction effects, some of the leading
topics of current interest.

1.3 Outline of this thesis

Chapter 2 is devoted to the Grassmannian U(m + n)/U(m)×U(n) non-linear sigma
model in the presence of the θ term. This theory in the limit m = n = 0 is known
to describe the disordered free electron gas in a strong magnetic field. [19] I start
out elaborating on the general consequences of the massless chiral edge excitations in
the theory with arbitrary values of m and n. [46] This new ingredient of the theory
can be employed to define the general renormalization behavior of the system in an
unambiguous manner. In the second part of this chapter I first revisit the instanton
methodology developed in Refs [20, 21] and introduce the methodology of spatially
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varying masses. Based on the non-perturbative results for the renormalization group
β and γ I discuss the quantum critical behavior of the theory at θ = π. In the range
0 � m,n � 1 I find a second order transition with exponents that vary continuously
with varying values of m and n. The predictions of the theory with m = n = 0 are
being compared with correlation length and multi fractal exponents that are known
from numerical simulations on the free electron gas.

In Chapter 3 I embark on the spin polarized (or spinless) disordered electron gas in
2+ ε dimensions in the presence of the Coulomb interaction. I present the results of a
computation to second order in an expansion in ε which is one order higher than what
was known previously. The complete scaling behavior is obtained for quantities like
the conductivity and the specific heat near the metal-insulator transition or mobility
edge. Finally, we employ the results in the construction of a generalized scaling
diagram for the interacting electron gas in the conductance versus c plain where the
parameter 0 ≤ c ≤ 1 denotes the range of the electron-electron interaction.

Chapter 4 is devoted to instanton computations in the theory of interacting elec-
trons in two dimensions and in strong magnetic fields. In the first part I introduce
the theory of physical observables and formulate the general topological principles
by which the Hall conductance is robustly quantized. In the second and main part
of this Chapter I generalize the theory of instantons to include the interacting elec-
tron gas and derive the non-perturbative contributions to the renormalization group
β and γ functions. The results can be represented in terms of a three dimensional
renormalization group diagram spanned by the conductances σxx and σxy and the
aforementioned parameter c.

Finally, in Chapter 5 I derive the various different aspects of scaling in the weak and
strong coupling regimes of the interacting electron gas. In the weak coupling regime I
explain the “topological oscillations” of the magnetoresistance components that have
recently been observed experimentally [55] and predict that similar oscillations occur
the specific heat of the electron gas. In the strong coupling regime I derive general
scaling results for the quantum Hall plateau transitions and discuss the fundamental
consequences of the Fermi-liquid and non-Fermi liquid critical fixed points for the
experiments on the quantum Hall regime.



Chapter 2

θ renormalization in
generalized CPN−1 models

2.1 Introduction

2.1.1 Super universality

The quantum Hall effect has remained one of the most beautiful and outstanding
experimental realizations of the instanton vacuum concept in non-linear sigma mod-
els. [1, 22] Although originally introduced in the context of Anderson (de-)localization
in strong magnetic fields, [18, 19] the topological ideas in quantum field theory have
mainly been extended in recent years to include a range of physical phenomena and
applications that are much richer and broader than what was previously anticipated.
What remarkably emerges is that the aforementioned topological concepts retain their
significance also when the Coulomb interaction between the disordered electrons is
taken into account. [31] A detailed understanding of interaction effects is vitally im-
portant not only for conducting experiments on quantum criticality of the plateau
transitions, [23, 63, 64, 65] but also for the long standing quest for a unified action
that incorporates the low energy dynamics of both the integral and fractional quantum
Hall states. [32, 33, 34, 35]

Perhaps the most profound advancement in the field has been the idea which says
that the instanton vacuum generally displays massless chiral edge excitations. [34, 66]
These provide the resolution of the many strong coupling problems that historically
have been associated with the instanton vacuum concept in scale invariant theo-
ries. [37, 38, 67] The physical significance of the edge is most clearly demonstrated by
the fact that the instanton vacuum theory, unlike the phenomenological approaches
to the fractional quantum Hall effect based on Chern Simons gauge theory, [68] can
be used to derive from first principles the complete Luttinger liquid theory of edge
excitations in disordered abelian quantum Hall systems. [34] Along with the physics
of the edge came the important general statement which says that the fundamental
features of the quantum Hall effect should all be regarded as super universal features
of the topological concept of an instanton vacuum, i.e. independent of the number of
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field components in the theory. [66]

Super universality includes not only the appearance of massless chiral edge exci-
tations but also the existence of gapless bulk excitations at θ = π in general as well
as the dynamic generation of robust topological quantum numbers that explain the
precision and observability of the quantum Hall effect. [66] Moreover, the previously
unrecognized concept of super universality provides the basic answer to the historical
controversies on such fundamental issues as the quantization of topological charge,
the exact significance of having discrete topological sectors in the theory, the precise
meaning of instantons and instanton gases, [37, 38] the validity of the replica method
etc. etc. One can now state that many of these historical problems arose because of
a complete lack of any physical assessment of the theory, both in general and in more
specific cases such as the exactly solvable large N expansion of the CPN−1 model.

2.1.2 The background field methodology

In 1987, Pruisken introduced a renormalization group scheme in replica field theory
(non-linear sigma model) that was specifically designed for the purpose of extracting
the non-perturbative features of the quantum Hall regime from the instanton angle
θ. [20, 21] This procedure was motivated, to a large extend, by the Kubo formalism
for the conductances which, in turn, has a natural translation in quantum field theory,
namely the background field methodology.

Generally speaking, the background field procedure expresses the renormalization
of the theory in terms of the response of the system to a change in the boundary
conditions. It has turned out that this procedure has a quite general significance in
asymptotically free field theory that is not limited to replica limits and condensed
matter applications alone. It actually provides a general, conceptual framework for
the understanding of the strong coupling aspects of the theory that otherwise remain
inaccessible. For example, such non-perturbative features like dynamic mass genera-
tion are in one-to-one correspondence with the renormalized parameters of the theory
since they are, by construction, a probe for the sensitivity of the system to a change
in the boundary conditions.

The background field procedure has been particularly illuminating as far as the
perturbative aspects of the renormalization group is concerned. First of all, it is the
appropriate generalization of Thouless’ ideas on localization, [69] indicating that the
physical objectives in condensed matter theory and those in asymptotically free field
theory are in many ways the same. Secondly, it provides certain technical advantages
in actual computations and yields more relevant results. For example as we show in
next chapter, it will lead to an exact solution (in the context of an ε expansion) of
the the AC conductivity in the mobility edge problem or metal-insulator problem in
2 + ε dimensions. The physical significance of these results is not limited, once more,
to the theory in the replica limit alone. They teach us something quite general about
the statistical mechanics of the Goldstone phase in low dimensions.
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2.1.3 The strong coupling problem

With hindsight one can say that the background field procedure, [21] as it stood for a
very long time, did not provide the complete conceptual framework that is necessary
for general understanding of the quantum Hall effect or, for that matter, the instanton
vacuum concept in quantum field theory. Unlike the conventional theory where the
precise details of the “edge” do not play any significant role, in the presence of the
instanton parameter θ the choice in the boundary conditions suddenly becomes an all
important conceptual issue that is directly related to the definition of a fundamental
quantity in the theory, the Hall conductance.

The physical significance of boundary conditions in this problem has been an an-
noying and long standing puzzle that has fundamentally complicated the development
of a microscopic theory of the quantum Hall effect. [1] In most places in the literature
this problem has been ignored altogether. [37, 38, 67] In several other cases, however,
it has led to a mishandling of the theory. [70]

The discovery of super universality in non-linear sigma models [46] has provided
the physical clarity that previously was lacking. The existence of massless chiral edge
excitations, well known in studies of quantum Hall systems, implies that the instanton
vacuum concept generally supports distinctly different modes of excitation, those
describing the bulk of the system and those associated with the edge. It has turned
out that each of these modes has a fundamentally different topological significance,
and a completely different behavior under the action of the renormalization group.

The existence of massless chiral edge excitations forces one to develop a general
understanding of the instanton vacuum concept that is in many ways very different
from the conventional ideas and expectations in the field. It turns out that most of
the physics of the problem emerges by asking how the two dimensional bulk modes
and one dimensional edge modes can be separated and studied individually. At the
same time, a distinction ought to be made between the physical observables that are
defined by the bulk of the system and those that are associated with the edge.

Effective action for the edge modes

The remarkable thing about the problem with edge modes is that it automatically
provides all the fundamental quantities and topological concepts that are necessary
to describe and understand the low energy dynamics of the system. Much of the
resolution to the problem resides in the fact that the theory can generally be written
in terms of bulk field variables that are embedded in a background of the topologi-
cally different edge field configurations. This permits one to formulate an effective
action for the edge modes, obtained by formally eliminating all the bulk degrees of
freedom from the theory. [66, 46] It now turns out that the effective action procedure
for the edge field variables proceeds along exactly the same lines as the background
field methodology [21] that was previously introduced for entirely different physical
reasons! This remarkable coincidence has a deep physical significance and far reaching
physical consequences. In fact, the many different aspects of the problem (Kubo for-
mulae, renormalization, edge currents etc.) as well as the various disconnected pieces
of the puzzle (boundary conditions, quantization of topological charge, quantum Hall
effect etc.) now become simultaneously important. They all come together as funda-
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mental and distinctly different aspects of a single new concept in the problem that
has emerged from the instanton vacuum itself, the effective action for the massless
chiral edge excitations. [66, 46]

The quantum Hall effect

The effective action for massless edge excitations has direct consequences for the
strong coupling behavior of the theory that previously remained concealed. It essen-
tially tells us how the instanton vacuum dynamically generates the aforementioned
super universal features of the quantum Hall effect, in the limit of large distances.

The large N expansion of the CPN−1 model can be used as an illuminating and
exactly solvable example that sets the stage for the super universality concept in
asymptotically free field theory. [46] The most significant quantities of the theory are
the renormalization group β functions for the response parameters σxx and σxy that
appear in the effective action for massless chiral edge excitations, (see also Fig. 2.1)

dσxx

d ln µ
= βσ(σxx, σxy), (2.1.1)

dσxy

d ln µ
= βθ(σxx, σxy). (2.1.2)

Here, the parameters σxx and σxy are precisely analogous to the Kubo formulae for
longitudinal conductance and Hall conductance in quantum Hall systems. They stand
for the (inverse) coupling constant and θ/2π respectively, both of which appear as
running parameters in quantum field theory.

The infrared stable fixed points in Fig. 2.1, located at integer values of σxy, indicate
that the Hall conductance is robustly quantized with corrections that are exponentially
small in the size of the system. [46] The unstable fixed points at half-integer values
of σxy or θ = π indicate that the large N system develops a gapless phase or a
continuously divergent correlation length ξ with a critical exponent ν equal to 1/2, [46]

ξ ∝ |θ − π|−1/2. (2.1.3)

2.1.4 The large N expansion

One of the most impressive features of the large N expansion is that it is exactly solv-
able for all values of θ. This is unlike the O(3) non-linear sigma model, for example,
which is known to be integrable for θ = 0 and π only and the exact information that
can be extracted is rather limited. [71] Nevertheless, both cases appear as outstanding
limiting examples in the more general context of replica field theory or, equivalently,
the Grassmannian U(m + n)/U(m)×U(n) non-linear sigma model. This Grassman-
nian manifold is a generalization of the CPN−1 manifold that describes, as is well
known, the Anderson localization problem in strong magnetic fields. [19]

It is extremely important to know, however, that none of the super universal
features of the instanton vacuum where previously known to exist, neither in the
historical papers on the large N expansion [37, 38, 67, 36] nor in the intensively
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Figure 2.1: Large N renormalization group flow diagram for σxx/N and the Hall
conductance σxy = θ/2π. The arrows indicate the direction toward the infrared.

studied O(3) case. [71] In fact, the large N expansion, as it now stands, is in many
ways an onslaught on the many incorrect ideas and expectations in the field that are
based on the historical papers on the subject. [37, 38, 36] These historical papers are
not only in conflict with the basic features of the quantum Hall effect, but also present
a fundamentally incorrect albeit misleading picture of the instanton vacuum concept
as a whole.

Gapless excitations regained

One of the most important results of the large N expansion, the aforementioned
diverging correlation length at θ = π, has historically been overlooked. This is one
of the main reasons why it is often assumed incorrectly that the excitations of the
Grassmannian U(m + n)/U(m)×U(n) non-linear sigma model with m,n � 1 always
display a gap, also at θ = π.

Notice that general arguments, based on ’t Hooft’s duality idea, [72] have already
indicated that the theory at θ = π is likely to be different. The matter has important
physical consequences because the lack of any gapless excitations in the problem (or,
for that matter, the lack of super universality in non-linear sigma models) would seri-
ously complicate the possibility of establishing a microscopic theory of the quantum
Hall effect that is based on general topological principles.

It now has turned out that the large N expansion is one of the very rare examples
where ’t Hooft’s idea of using twisted boundary conditions [72] can be worked out
in great detail, thus providing an explicit demonstration of the existence of gapless
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excitations at θ = π. [46] Besides all this, the large N expansion can also be used
to demonstrate the general nature of the transition at θ = π which is otherwise is
much harder to establish. For example, complete scaling functions have been obtained
that set the stage for the transitions between adjacent quantum Hall plateaus. [46] In
addition to this, exact expressions have been derived for the distribution functions of
the mesoscopic conductance fluctuations in the problem. [66] These fluctuations render
anomalously large (broadly distributed) as θ approaches π, a well known phenomenon
in the theory of disordered metals. These results clearly indicate that the instanton
vacuum generally displays richly complex physics that cannot be tapped if one is
merely interested in the numerical value of the critical exponents alone.

The large N expansion is itself a good example of this latter statement. For
example, the historical results on the large N expansion already indicated that the
vacuum free energy with varying θ displays a cusp at θ = π, i.e. a first order phase
transition. This by itself is sufficient to establish the existence of a scaling exponent
ν = 1/d with d = 2 denoting dimension of the system. [42] However, super universality
as a whole remains invisible as long as one is satisfied with the merely heuristic
arguments that historically have spanned the subject. [37, 38, 67] The discovery of a
new aspect of the theory, the massless chiral edge excitations, was clearly necessary
before the appropriate questions could be asked and super universality be finally
established.

Given the new results on the large N expansion of the CPN−1 model, it may
no longer be a complete surprise to know that the instanton vacuum at θ = π is
generically gapless, independent of the number of field components in the theory.
Since all members of the Grassmannian U(m + n)/U(m) × U(n) manifold are topo-
logically equivalent, have important features in common such as asymptotic freedom,
instantons, massless chiral edge excitations etc., it is imperative that the same basic
phenomena are being displayed, independent of m and n. This includes of course the
theory of actual interest, obtained by putting m = n = 0 (replica limit).

Unlike super universality, the details of the critical singularities at θ = π (critical
indices) may in principle be different for different values of m and n. The situation
is in this respect analogous to what happens to the classical Heisenberg ferromagnet
in 2 + ε spatial dimensions. Like in two dimensions, the basic physics is essentially
the same for any value of m and n. The quantum critical behavior, however, strongly
varies with a varying number of field components in the theory, each value of m and
n representing a different universality class.

Instantons regained

Besides the strong coupling aspects of the instanton vacuum, the effective action for
massless chiral edge excitations also provides a fundamentally new outlook on the
weak coupling features of the theory that cannot be obtained in any different way.
Topological excitations (instantons) have made a spectacularly novel entree, in the
renormalization behavior of theory, especially after they have been totally mishandled
and abused in the historical papers on the large N expansion. [37, 38, 67]

Within the recently established renormalization theory [46] of the CPN−1 model
with large N (see Fig. 2.1), instantons emerge as non-perturbative topological objects
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Figure 2.2: Renormalization group flow diagram for the conductances. The arrows
indicate the scaling toward the infrared.

that facilitate the cross-over between the Goldstone phase at weak coupling or short
distances (σxx � 1), and the super universal strong coupling phase of the instanton
vacuum (σxx � 1) that generally appears in the limit of much larger distances only.
A detailed knowledge of instanton effects is generally important since it provides a
fundamentally new concept that the theory of ordinary perturbative expansions could
never give, namely θ renormalization or, equivalently, the renormalization of the Hall
conductance σxy.

The concept of θ renormalization originally arose in a series of detailed papers on
instantons, based on the background field methodology, that were primarily aimed at
a microscopic understanding of the quantum Hall effect. [20, 21] Until to date these
pioneering papers have provided most of our insights into the singularity structure of
the Grassmannian U(m+n)/U(m)×U(n) theory at θ = π, in particular the case where
the number of field components is ‘small’, 0 � m,n � 1. Under these circumstances
the instanton vacuum at half-integer values of σxy (or θ = π) develops a critical
fixed point with a finite value of σxx of order unity (see Fig. 2.2). This indicates
that transition at θ = π becomes a true second order quantum phase transition with
a non-trivial critical index ν that changes continuously with varying values of m
and n in the range 0 � m,n � 1. This situation is distinctly different from the
overwhelming majority of Grassmannian non-linear sigma models with m,n � 1 for
which the scaling diagram is likely to be the same as the one found in the large N
expansion (see Fig. 2.1). In that case one expects a first order phase transition but
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Figure 2.3: Nature of the transition at θ = π for different values of m and n.

with a diverging correlation length and a fixed exponent ν = 1/2.
The instanton vacuum with m = n = 1 (the SU(2)/U(1) or O(3) model) is in

many ways special. This case is likely to be on the interface between a large N -like
scaling diagram (see Fig. 2.1) with a first order transition at θ = π, and an instanton
driven scaling diagram (see Fig. 2.2) where the transition is of second order. The
expected m and n dependence of quantum criticality is illustrated in Fig. 2.3 which
is the main topic of the present chapter.

2.1.5 Quantum phase transitions

As is well known, the instanton angle θ in replica field theory was originally discovered
in an attempt to resolve the fundamental difficulties of the scaling theory of Anderson
localization in dealing with the quantum Hall effect. [18] However, it was not until
the first experiments [23] on the plateau transitions had been conducted that the
prediction of quantum criticality in the quantum Hall systems [22] became a well
recognized and extensively pursued research objective in physics.

Quantum phase transitions in disordered systems are in many respects quite un-
usual, from ordinary critical phenomena point of view. For example, such unconven-
tional phenomena like multifractality of the density fluctuations are known to appear
as a peculiar aspect of the theory in the replica limit m = n = 0. [73] These subtle
aspects of disordered systems primarily arose from the non-linear sigma model ap-
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proach to the Anderson localization problem (mobility edge problem) in 2 + ε spatial
dimensions. [74, 75]

The instanton vacuum theory of the quantum Hall effect essentially predicts that
the plateau transitions in the two dimensional electron gas behave in all respects like
the metal-insulator transition in 2 + ε dimensions. The reduced dimensionality of
the quantum Hall system offers a rare opportunity to perform numerical work on
the mobility edge problem and extract accurate results on quantum critical behavior.
By now there exists an impressive stock of numerical data on the critical indices
of the plateau transitions, including the correlation or localization length exponent
(ν), [76, 77, 78, 79, 80, 81] the multifractal f(α) spectrum [82, 83, 84, 85, 86, 87] and
even the leading irrelevant exponent (yσ) in the problem. [88, 89]

Quantitative assessments

It is important to know that the laboratory experiments and later the numerical
simulations on the plateau transitions in the quantum Hall regime have primarily
been guided and motivated by the renormalization group ideas that were originally
obtained on the basis of the θ parameter replica field theory as well as instanton
calculus. [22, 20, 21] In addition to this, the more recent discovery of super universality
in non-linear sigma models, along with the completely revised insights in the large
N expansion, has elucidated the much sought after strong coupling features of the
instanton vacuum, notably the quantum Hall effect itself, that previously remained
concealed. [46] Both these strong coupling features and the renormalization group
results based on instantons have put the theory of an instanton vacuum in a novel
physical perspective. Together they provide the complete conceptual framework that
is necessary for a detailed understanding of the quantum Hall effect as well as the θ
dependence in the Grassmannian U(m+n)/U(m)×U(n) non-linear sigma model, for
all non-negative values of m and n.

In Ref. [46] it has been already presented rough outlines on how the theory manages
to interpolate between a large N -like scaling diagram for large values of m,n (Fig. 2.1)
and an instanton - driven renormalization behavior for small m,n as indicated in
Fig. 2.2. At present we take the theory several steps further and extend the instanton
methodology in several ways. Our main objective is to make detailed predictions on
the quantum critical behavior of the theory at θ = π with varying values of m and
n. We benefit from the fact that this quantum critical behavior is bounded by the
theory in the replica limit (m = n = 0) for which the aforementioned numerical data
are available, and the distinctly different O(3) non-linear sigma model (m = n = 1)
for which the critical indices are known exactly. A detailed comparison between
our general results and those known for specific examples should therefore provide
a stringent and interesting test of the fundamental significance of instantons in the
problem.

Our most important results are listed in Table 2.3 where we compare the crit-
ical exponents of the theory with m = n = 0 with those obtained from numerical
simulations on the electron gas. These results clearly demonstrate the validity of a
general statement made in Ref. [66, 46] which says that the fundamental significance
of the instanton gas is primarily found in the renormalization behavior of the theory
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or, equivalently, the effective action for chiral edge excitations. This leads to a con-
ceptual understanding of the non-perturbative aspects of the theory that cannot be
obtained in any different manner.

Outline of this chapter

We start out in Section 2.2 with an introduction to the formalism, a brief summary
of the effective action procedure for massless chiral edge excitations as well as a few
comments explaining the super universal features of the instanton vacuum.

The bulk of this chapter mainly follows the formalism that was introduced in
the original papers on instantons. [20, 21] However, the main focus at present is on
several important aspects of the theory that previously remained unresolved. The first
aspect concerns the ambiguity in the numerical factors that arises in the computation
of the instanton determinant. These numerical factors are vitally important since they
eventually enter into the renormalization group β functions and, hence, determine the
critical fixed point properties of the theory. In Section 2.4 we show how the theory
of observable parameters can be used to actually resolve this problem. The final
expressions for the β functions that we obtain are universal in the sense that they are
independent of the specific regularization scheme that is being used.

Secondly, the procedure so far did not include the effect of mass terms in the
theory and, hence, the multifractal aspects of the quantum phase transition have not
yet been investigated. The technical difficulties associated with mass terms are quite
notorious, however. These have historically resulted in the construction of highly non-
trivial extensions of the methodology such as working with constrained instantons. [45]
We briefly introduce the subject matter in Section 2.3 and illustrate the main ideas
by means of explicit examples.

It has sofar not been obvious, however, whether the concept of a constrained
instanton is any useful in the development a quantum theory. In Ref. [31] it was
pointed out that mass terms in the theory generally involve a different metric tensor
than the one that naturally appears in the harmonic oscillator problem, i.e. their
geometrical properties are incompatible. These and other complications are avoided
in the methodology of spatially varying masses which is based on the various tricks
introduced by ’t Hooft in evaluating instanton determinants. [44] In Section 2.4 we
elaborate further on the methodology of Ref. [31] and show that the idea of spatially
varying masses generally facilitates explicit computations and yields more relevant
results.

In Section 2.8 we present the detailed predictions of quantum criticality as a
function of m and n and make a comparison with the results known from other
sources. We end this chapter with a conclusion, Section 2.9.

2.2 Formalism

2.2.1 Non-linear sigma model

First we recall the non-linear sigma model defined on the Grassmann manifold G/H =
SU(m + n)/S(U(m) × U(n)) and in the presence of the θ term. We prefer to work
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in the context of the quantum Hall effect since this provides a clear physical platform
for discussing the fundamental aspects of the theory that have previously remained
unrecognized. It is easy enough, however, to make contact with the conventions and
notations of more familiar models in quantum field theory and statistical mechanics
such as the O(3) formalism, obtained by putting m = n = 1, and the CPN−1 model
which is obtained by taking m = N − 1 and n = 1.

The theory involves matrix field variables Q(r) of size (m+n)× (m+n) that obey
the non-linear constraint

Q2(r) = 1m+n. (2.2.1)

A convenient representation in terms of ordinary unitary matrices T (r) is obtained
by writing

Q(r) = T−1(r)ΛT (r), Λ =
(

1m 0
0 −1n

)
. (2.2.2)

The action describing the low energy dynamics of the two dimensional electron system
subject to a static, perpendicular magnetic field is given by [19]

S = −σxx

8

∫
dr tr(∇Q)2 +

σxy

8

∫
dr tr εabQ∇aQ∇bQ + πωρ0

∫
dr tr ΛQ. (2.2.3)

Here the quantities σxx and σxy represent the meanfield values for the longitudinal and
Hall conductances respectively. The ρ0 denotes the density of electronic levels in the
bulk of the system, ω is the external frequency and εab = −εba is the antisymmetric
tensor.

2.2.2 Boundary conditions

The second term in Eq. (2.2.3) defines the topological invariant C[Q] which can also
be expressed as a one dimensional integral over the edge of the system, [20]

C[Q] =
1

16πi

∫
dr tr εabQ∇aQ∇bQ =

1
4πi

∮
dx tr T∂xT−1Λ. (2.2.4)

Here, C[Q] is integer valued provided the field variable Q equals a constant matrix
at the edge. It formally describes the mapping of the Grassmann manifold onto the
plane following the homotopy theory result

π2 (G/H) = π1 (H) = Z. (2.2.5)

To study the σxy dependence of the theory it is in many ways natural to put ω = 0
in Eq. (2.2.3) and let the infrared of the theory be regulated by the finite system size
L. The conventional way of defining the θ vacuum is as follows

Z =
∫

∂V

DQ exp
[
−1

g

∫
dr tr(∇Q)2 + iθ C[Q]

]
, (2.2.6)

where the subscript ∂V indicates that the functional integral has to be performed with
Q(r) kept fixed and constant at the boundary, say Q = Λ. Under these circumstances
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the topological charge C[Q] is strictly integer quantized. The parameter θ in Eq.
(2.2.6) is equal to 2πσxy modulo 2π and the coupling constant g is identified as
8/σxx,

θ = 2πσxy mod(2π), g =
8

σxx
. (2.2.7)

The theory of Eq. (2.2.6), as it stands, is one of the rare examples of an asymptotically
free field theory with a vanishing mass gap. What has remarkably emerged over the
years is that the theory at θ = π develops a gapless phase that generally can be
associated with the transitions between adjacent quantum Hall plateaus. This is
unlike the theory with θ = 0, 2π where the low energy excitations are expected to
display a mass gap. The significance of the theory in terms of quantum Hall physics
becomes all the more obvious if one recognizes that the mean field parameter σxy for
strong magnetic fields is precisely equal to the filling fraction (νf ) of the disordered
Landau bands

σxy = νf . (2.2.8)

This means that the plateau transitions occur at half-integer filling fractions νf =
k + 1/2 with integer k. On the other hand, θ = 0, 2π corresponds to integer filling
fractions νf = k which generally describe the center of the quantum Hall plateaus.

As was already mentioned in the introduction, the physical objectives of the quan-
tum Hall effect have been - from early onward - in dramatic conflict with the ideas
and expectations with which the θ parameter in quantum field theory was originally
perceived. Such fundamental aspects like the existence of robust topological quantum
numbers, for example, have previously been unrecognized. This is just one of the
reasons why the quantum Hall effect primarily serves as an outstanding laboratory
where the controversies in quantum field theory can be explored and investigated in
detail.

Massless chiral edge excitations

It has turned out that the theory of Eq. (2.2.6) is not yet the complete story. By
fixing the boundary conditions in this problem (or by discarding the edge all together)
one essentially leaves out fundamental pieces of physics, the massless chiral edge
excitations, that eventually will put the strong coupling problem of an instanton
vacuum in a novel perspective.

To see how the physics of the edge enters into the problem we consider the case
where the Fermi energy of the electron gas is located in an energy gap (Landau
gap) between adjacent Landau bands. This is represented by Eq. (2.2.3) by putting
σxx = ρ0 = 0 and σxy = k, i.e. the meanfield value of the Hall conductance is an
integer k (in units of e2/h) and precisely equal to the number of completely filled
Landau bands in the system. Eq. (2.2.3) can now be written as follows

Sedge[Q] = 2πik C[Q] + πωρedge

∮
dx trQΛ

=
∮

dx tr
[
k

2
T∂xT−1Λ + πωρedgeQΛ

]
. (2.2.9)
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We have added a symmetry breaking term proportional to ρedge indicating that al-
though the Fermi energy is located in the Landau gap, there still exists a finite density
of edge levels (ρedge) that can carry the Hall current. Eq. (2.2.9) is exactly solvable
and describes long ranged (critical) correlations along the edge of the system. Some
important examples of edge correlations are given by [34]

〈Q〉edge = Λ,

〈Qαβ
+−(x)Qβα

−+(x′)〉edge = 4ϑ(x − x′) exp
[
−4πρedgeω

k
(x − x′)

]
. (2.2.10)

Here the expectation is with respect to the one dimensional theory of Eq. (2.2.9).
These results are the same for all m and n, indicating that the massless chiral edge
excitations are a generic feature of the instanton vacuum concept.

Eqs (2.2.6) and (2.2.9) indicate that field configurations with an integral and frac-
tional topological charge C[Q] describe fundamentally different physics and have fun-
damentally different properties. In the following Sections we show in a step by step
fashion how Eq. (2.2.9) generally appears as the fixed point action of the strong cou-
pling phase.

2.2.3 Effective action for the edge

We specialize from now onward to systems with an edge. The main problem next is to
see how in general we can separate the bulk pieces of the action from those associated
with the edge. The resolution of this problem provides fundamental information on the
low energy dynamics of the system that is intimately related to the Kubo formalism of
the conductances. At the end this leads to the much sought after Thouless’ criterion
for the existence of robust topological quantum numbers that explain the precision
and observability of the quantum Hall effect.

Bulk and edge field variables

At the edge an arbitrary matrix Q can be written as

Q = t−1
edgeQ0tedge (2.2.11)

where Q0 = T−1
0 ΛT0 with T0 being an arbitrary U(m)×U(n) invariant gauge at the

edge, i.e. Q0 satisfies the spherical boundary conditions

Q0

∣∣∣
edge

= Λ. (2.2.12)

The matrix field tedge describes the fluctuations about these special spherical boundary
conditions. Next we continue the matrix field tedge from the edge into the bulk
according to the following prescription. For a given matrix field tedge, we take the
matrix t which obeys the classical equations of motion in the bulk and the following
boundary conditions

t
∣∣∣
edge

= tedge. (2.2.13)
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Figure 2.4: The quantity σxy = νf is the sum of a quantized edge part k(νf ) and an
unquantized bulk part θ(νf ) .

Since the matrix t is fixed for a given tedge, it is convenient to introduce a change of
variables

Q = t−1Q0t. (2.2.14)

It is easy to see that the topological charge C[Q] can be written as the sum of two
separate pieces

C[Q] = C[t−1Q0t] = C[Q0] + C[q], q = t−1Λt. (2.2.15)

Here, the first part C[Q0] is integer valued whereas the second part C[q] describes a
fractional topological charge,

C[Q0] = k, −1
2

< C[q] � 1
2
. (2.2.16)

It is easy to see that the action for the edge, Eq. (2.2.9), only contains the field
variable t or q which we shall refer to as the edge fields in the problem. Similarly,
the Q0 are the only matrix field variables that enter into the usual definition of the θ
vacuum, Eq. (2.2.6). We will refer to them as the bulk field variables.

Bulk and edge observables

Next, from Eqs (2.2.6) and (2.2.9) we infer that the bare or meanfield Hall conductance
σxy should in general be split into a bulk piece θ(νf ) and a distinctly different edge
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piece k(νf ) as follows (see also Fig. 2.4)

σxy = νf =
θ(νf )
2π

+ k(νf ). (2.2.17)

Here, k(νf ) is an integer whereas θ(νf ) is restricted to be in the interval

−π < θ(νf ) � π. (2.2.18)

The new symbol νf indicates that the meanfield parameter σxy is the same as the fill-
ing fraction of the Landau bands. Eq. (2.2.17) can also be obtained in a more natural
fashion and it actually appears as a basic ingredient in the microscopic derivation of
the theory. [90]

We use the results to rewrite the topological piece of the action as follows

2πiσxyC[Q] = i(θ(νf )+2πk(νf ))(C[q]+C[Q0]) = 2πik(νf )C[q]+ iθ(νf )C[Q]. (2.2.19)

In the second equation we have left out the term that gives rise to unimportant phase
factor. Finally we arrive at the following form of the action

S = Sbulk[t−1Q0t] + Sedge[q], (2.2.20)

where

Sbulk[Q] = −σxx

8

∫
dr tr(∇Q)2 + iθ(νf )C[Q] (2.2.21)

Sedge[q] = 2πik(νf ) C[q]. (2.2.22)

Response formulae

After these preliminaries we come to the most important part of this Section, namely
the definition of the effective action for chiral edge modes Seff . This is obtained by
formally eliminating the bulk field variable Q0 from the theory

Seff [q] = Sedge[q] + S ′[q], expS ′[q] =
∫

∂V

D[Q0] exp Sbulk[t−1Q0t]. (2.2.23)

The subscript ∂V reminds us of the fact that the functional integral has to be per-
formed with a fixed value Q0 = Λ at the edge of the system. It is instructive to write
the Sbulk[t−1Q0t] as follows

Sbulk[t−1Q0t] = −σxx

8

∫
dr tr(∇Q0 + [At, Q0])2 + iθ(νf )C[Q0] + iθ(νf )C[q], (2.2.24)

where we have introduced At = t∇t−1. Thence, the S′[q] can be formally obtained
as an infinite series in powers of the “vector potential” At

S′[q] = iθ(νf )C[q] + ln

{
1 +

∞∑
s=0

(−1)sσs
xx

23ss!

〈[∫
dr tr

(
[At, Q0]2 + 4AtQ0∇Q0

)]s〉}
.

(2.2.25)
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Here the average is with the respect to the action Sbulk[Q0]. From symmetry consid-
erations alone it is easily established that S′[q] must be of the general form

S ′[q] = −σ ′
xx

8

∫
dr tr(∇q)2 + iθ ′C[q]. (2.2.26)

We have omitted the higher dimensional terms which generally describe the properties
of the electron gas at mesoscopic scales. [91] The most important feature of this result
is that the quantities σ′

xx = σ′
xx(L) and θ ′ = θ ′(L) can be identified with the Kubo

formulae for the longitudinal and Hall conductances respectively (L denoting the linear
dimension of the system). Notice that these quantities are by definition a measure
for the response of the bulk of the system to an infinitesimal change in the boundary
conditions (on the matrix field variable Q0).

At the same time we can regulate the infrared of the system in a different manner
by introducing U(m) × U(n) invariant mass terms in Eqs (2.2.21)-(2.2.22)

Sedge[q] → Sedge[q] + πωedgeρedge

∮
dx tr Λq, (2.2.27)

Sbulk[t−1Q0t] → Sbulk[t−1Q0t] + πω0ρ0

∫
dr tr ΛQ0. (2.2.28)

The different symbols ωedge and ω0 indicate that the frequency ω plays a different role
for the bulk fields and edge fields respectively. Notice that the response parameters
σ′

xx and σ′
xy in Eq. (2.2.26), for L large enough, now depend on frequency ω0 rather

than L.

σ′
xx → σ′

xx(ω0), σ′
xy → σ′

xy(ω0) = k(νf ) +
θ ′(ω0)

2π
. (2.2.29)

Background field methodology

Let us next go back to the background field methodology and notice the subtle differ-
ences with the effective action procedure as considered here. In this methodology we
consider a slowly varying but fixed background matrix field b that is applied directly
to the original theory of Eq. (2.2.3),

exp Seff [b−1Λb] =
∫

DQ exp
(

Sσ[b−1Qb] + πω0ρ0

∫
dr tr QΛ

)
,

Sσ[Q] = −σxx

8

∫
dr tr(∇Q)2 + 2πiσxy C[Q]. (2.2.30)

Here, Seff can again be written in the following general form

Seff [qb] = −σ′
xx(ω0)

8

∫
dr tr(∇qb)2 + 2πiσ′

xy(ω0)C[qb], (2.2.31)

where now qb = b−1Λb. Notice that an obvious difference with the situation before is
that the functional integral in Eq. (2.2.30) is now performed for an arbitrary matrix
field Q whereas in Eq. (2.2.23) the Q0 is always restricted to have Q0 = Λ at the edge.
However, as long as one works with a finite frequency ω0 the boundary conditions on
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the Q0 field are immaterial and the response parameters in Eq. (2.2.29) and those
in Eq. (2.2.31) should be identically the same. As an important check on these
statements we consider σxx = 0 and σxy = k, i.e. Sσ equals the action for the edge
Sedge. In this case Eq. (2.2.31) is obtained as follows

exp Seff [qb] =
∫

DQ exp
[∮

dx

(
k

2
tr Tb∂xb−1T−1Λ + πωρedge trQΛ

)]
=

(∫
DQ exp Sedge[Q]

)
exp
[
k

2

∮
dx tr b∂xb−1〈Q〉edge

]
. (2.2.32)

Using Eq. (2.2.10) we can write, discarding constants,

Seff [qb] = 2πik C[qb] (2.2.33)

Comparing Eqs (2.2.31) and (2.2.33) we see that σ′
xx = 0 and σ′

xy = k as it should
be. Notice that we obtain essentially the same result if instead of integrating we fix
the Q = Λ at the edge.

Eq. (2.2.32) clearly demonstrates why critical edge correlations should be regarded
as a fundamental aspect of the instanton vacuum concept. If, for example, Sedge were
to display gapped excitations at the edge then we certainly would have 〈Q〉edge = 0
in Eq. (2.2.32) and instead of Eq. (2.2.33) we would have had a vanishing Hall
conductance!

This, then, would be serious conflict with the quantum Hall effect which says that
the quantization of the Hall conductance is in fact a robust phenomenon.

Thouless criterion

We next show that a Thouless criterion [69] for the quantum Hall effect can be
obtained directly, as a corollary of the aforementioned effective action procedure. For
this purpose we notice that if the system develops a mass gap or a finite correlation
length ξ in the bulk, then the theory of Sbulk, Eq. (2.2.21), should be insensitive to
any changes in the boundary conditions, provided the system size L is large enough.
Under these circumstances the response quantities σ′

xx(L) and θ ′(L) in Eq. (2.2.26)
should vanish. In terms of the conductances we can write

σ′
xx(L) = O

(
e−L/ξ

)
, σ′

xy(L) = k(νf ) +
θ′(L)
2π

= k(νf ) + O
(
e−L/ξ

)
. (2.2.34)

This important result indicates that the quantum Hall effect is in fact a universal,
strong coupling feature of the θ vacuum, independent of the number of field compo-
nents m and n. The fixed point action of the quantum Hall state is generally given
by the one dimensional action [34]

Seff [q] =
∮

dx tr
[
k(νf )

2
t∂xt−1Λ + πωρedgeqΛ

]
, (2.2.35)

which is none other than the aforementioned action for massless chiral edge excita-
tions.



36 Chapter 2

In summary we can say that the background field methodology that was previously
introduced for renormalization group purposes alone, now gets a new appearance in
the theory and a fundamentally different meaning in term of the effective action for
massless edge excitations. This effective action procedure emerges from the theory
itself and, unlike the background field methodology, it provides the much sought after
Thouless criterion which associates the exact quantization of the Hall conductance
with the insensitivity of the bulk of the system to changes in the boundary conditions.

Conductance fluctuations and level crossing

The definition of the effective action, Eq. (2.2.23), implies that the exact expression
for Seff is invariant under a change in the matrix field t → Ut, i.e. the replacement

Seff [t−1Λt] → Seff [t−1U−1ΛUt] (2.2.36)

should leave the theory invariant. Here, the U = U(r) represents a unitary matrix
field with an integer valued topological charge, i.e. U(r) reduces to an arbitrary
U(m) × U(n) gauge at the edge of the system.

Notice that the expressions for Seff , Eqs (2.2.23) and (2.2.26), in general violate
the invariance under Eq. (2.2.36). This is so because we have expressed S ′[q] to
lowest order in a series expansion in powers of the derivatives acting on the q field.
If the response parameters σ′

xx(L) and θ′(L) are finite then the invariance under Eq.
(2.2.36) is generally broken at each and every order in the derivative expansion. The
invariance is truly recovered only after the complete series is taken into account, to
infinite order. This situation typically describes a gapless phase in the theory. The
infinite series (or at least an infinite subset of it) can in general be rearranged and
expressed in terms of probability distributions for the response parameters σ′

xx(L)
and θ′(L). Quantum critical points, for example, seem to generically display broadly
distributed response parameters. The large N expansion has provided, once more, a
lucid and exact example of these statements. [46]

On the other hand, if the theory displays a mass gap then each term in the series
for S′[q] should vanish, i.e. the response parameters are all exponentially small in the
system size. It is therefore possible to employ Eq. (2.2.36) as an alternative criterion
for the quantum Hall effect, namely by demanding that the theory be invariant under
Eq. (2.2.36) order by order in the derivative expansion. This criterion immediately
demands that σ′

xx and θ′ in Eq. (2.2.26) be zero and the effective action be given by
Eq. (2.2.35). Equations (2.2.35) and (2.2.36) imply

Seff [t−1U−1ΛUt] = Seff [t−1Λt] + 2πik(νf )C[U−1ΛU ]. (2.2.37)

Although the matrix U merely gives rise to a phase factor that can be dropped,
physically it corresponds to an integer number ne of (edge) electrons, equal to
k(νf )C[U−1ΛU ], that have crossed the Fermi level. Eq. (2.2.37) is therefore syn-
onymous for the statement which says that the quantization of the Hall conductance
σxy = k(νf )

[
e2/h

]
is related to the quantization of flux Φ = C[U−1ΛU ] [h/e] and

quantization of charge qe = ne [e] according to

qe = σxyΦ. (2.2.38)
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2.2.4 Physical observables

The response parameters σ′
xx and θ′ as well as other observables, associated with the

mass terms in the non-linear sigma model, are in many ways the most significant
physical quantities in the theory that contain complete information on the low energy
dynamics of the instanton vacuum. These quantities can all be expressed in terms of
correlation functions of the bulk field variables Q0 alone. In this Section we give a
summary of the physical observables in the theory which then completes the theory
of massless chiral edge excitations.

To start we introduce the following theory for the bulk matrix field variables (drop-
ping the subscript “0” on the Q0 from now onward)

Z =
∫

∂V

DQ exp (Sσ[Q] + Sh[Q] + Sa[Q] + Ss[Q]) . (2.2.39)

The subscript ∂V indicates, as before, that the Q is kept fixed at Q = Λ at the edge
of the system. Sσ stands for

Sσ[Q] = −σxx

8

∫
dr tr(∇Q)2 +

θ

16π

∫
dr tr εabQ∇aQ∇bQ. (2.2.40)

The quantities Sh, Sa and Ss are the U(m)×U(n) invariant mass terms that will be
specified below.

Kubo formula

Explicit expressions for response quantities σ′
xx and θ′ can be derived following the

analysis of Ref. [21]. The following U(m)×U(n) invariant results have been obtained

σ′
xx = σxx +

σ2
xx

16mnL2

∫
drdr′ tr〈Q(r)∇Q(r)Q(r′)∇Q(r′)〉, (2.2.41)

θ′ = θ − (m + n)π
4mnL2

σxx

∫
dr tr〈ΛQεabra∂bQ〉

+
πσ2

xx

8mnL2

∫
drdr′ tr εab〈Q(r)∇aQ(r)Q(r′)∇bQ(r′)Λ〉. (2.2.42)

Here and from now onward the expectations are defined with respect to the theory of
Eq. (2.2.39).

Mass terms

We shall be interested in traceless U(m)×U(n) invariant operators that are linear in
Q (Oh) and bilinear in Q (Os,a),

Sh[Q] = zh

∫
drOh[Q], Sa,s[Q] = za,s

∫
drOa,s[Q]. (2.2.43)

Here,

Oh[Q] = tr
[
Λ − m − n

m + n
1m+n

]
Q. (2.2.44)
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The bilinear operators generally involve a symmetric and an antisymmetric combina-
tion [75]

Os,a[Q] =
α,β∑
p,q

Kpq
s,a

[
Qαα

pp Qββ
qq ± Qαβ

pq Qβα
qp

]
, (2.2.45)

where Ks,a is given as a 2 × 2 matrix

Ks,a =

⎛⎝− m

n ± 1
1

1 − n

m ± 1

⎞⎠ . (2.2.46)

These quantities permit us to define physical observables z′h and z′s,a that are associ-
ated with the zh and zs,a fields respectively. Specifically,

z′h = zh
〈Oh[Q]〉
Oh[Λ]

, z′s = zs
〈Os[Q]〉
Os[Λ]

, z′a = za
〈Oa[Q]〉
Oa[Λ]

. (2.2.47)

The ratio on the right hand side merely indicates that the expectation value of the
operators is normalized with respect to the classical value.

Observable and renormalized theories in 2 + ε dimensions

Brézin et.al. [92] originally showed that the non-linear sigma model in 2+ε dimensions
generally involves a renormalization of the coupling constant or σxx and one renor-
malization associated with each of the operators Oi. Denoting the bare parameters
of the theory by σxx = 1/g0 and z0

i then the relation between the bare theory and
renormalized theory g and zi is given by

σxx =
1
g0

=
1
g
µεZ(g), z0

i = ziZi(g) (2.2.48)

with µ an arbitrary momentum scale. The functions Z(g) and Zi(g) are usually fixed
by the requirement that the theory be finite in ε. According to the minimum subtrac-
tion scheme, for example, one employs the Z and Zi for the purpose of absorbing the
pole terms in ε and nothing but the pole terms. However, it is well known that in order
to be consistent with the infrared behavior of the theory the terms that are finite in ε
can play an important role. Cross-over problems, for example, are treated incorrectly
within the minimum subtraction scheme and usually involve a very specific choice of
the functions Z that includes terms that are finite in ε. In this Section we show that
the arbitrariness in the renormalization group is in general avoided if one employs
the renormalizations Z and Zi for the purpose of identifying the renormalized and
observable theories. For simplicity we shall present the results for the theory in the
presence of the operator Oh only. It is convenient to introduce a change of variables.
Write

σ′
xx =

1
g′

, σxx =
1
g0

, (2.2.49)

and

z′h =
(h′)2

g′
, z0

h =
h2

0

g0
. (2.2.50)
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Table 2.1: Coefficients of two-loop computation
G/H a A1 A2 B

SO(m + n)
S(O(m) × O(n))

1 m + n − 2 2mn − m − n 4 − 2m − 2n

SU(m + n)
S(U(m) × U(n))

2 m + n 2(mn + 1) 0

SP (m + n)
SP (m) × SP (n)

4 m + n + 1 2mn +
m + n

2
m + n + 1

Since the g′, h′ fields have the same meaning for the various Grassmannian manifolds
listed in Table 2.1 we shall from now onward work within the general G/H non-linear
sigma model. Starting from the action

S =
a

2
Sσ[Q] + Sh[Q], (2.2.51)

then a straightforward computation to order ε2 of the observable quantities σ′
xx (see

Eq. (2.2.41)) and z′h (see Eq. (2.2.47)) yields the following results

1
g′

=
1
g0

(
1 + A1

g0h
ε
0

ε
+

1
2

(A2 − B)
g2
0h2ε

0

ε
− 1

2
A2Cg2

0h2ε
0

)
, (2.2.52)

(h′)2

g′
=

h2
0

g0

(
1 +
(

A1 −
B

A1

)
g0h

ε
0

ε
−
(

A1 −
B

A1

)
B

A1

g2
0h2ε

0

ε2

(
1 +

ε

2

))
. (2.2.53)

Here, the coefficients A1, A2 and B are listed in Table 2.1 and C is a numerical
constant. A factor 2Γ (1 − ε/2) (4π)−1−ε/2 has been absorbed in a redefinition of the
g0 and g′.

The results of Eqs (2.2.52) and (2.2.53) have originally been used in Ref. [93] for
the purpose of expressing the observable parameters in 2 + ε dimensions in terms of
the equations of state. Here we shall point out a slightly different interpretation of
these results which is obtained by recognizing that the h′ field actually plays the role
of momentum scale that is associated with the observable quantities g′ or σ′

xx and z′h.
This observation permits one to identify the observable and renormalized theories in
the following manner. First we employ Eqs (2.2.52) and (2.2.53) and eliminate the h0

field in the dimensionless combination g0h
ε
0 in favor of the induced momentum scale

h′. The results can be written as

1
g′

=
1
g0

(
1 + A1

g0(h′)ε

ε
+

1
2
A2

g2
0(h′)2ε

ε
− 1

2
A2Cg2

0(h′)2ε

)
, (2.2.54)

(h′)2

g′
=

h2
0

g0

(
1 +
(

A1 −
B

A1

)
g0(h′)ε

ε
−
(

A1 −
B

A1

)
B

A1

g2
0(h′)2ε

ε2

)
. (2.2.55)
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As a second step we make use of Eq. (2.2.54) and eliminate the bare parameter g0 in
the combination g0(h′)ε in favor of the g′. Introducing the dimensionless quantity

ḡ = g′(h′)ε, (2.2.56)

then we obtain from Eqs (2.2.54) and (2.2.55)

1
g0

=
(h′)ε

ḡ
Z(ḡ), (2.2.57)

h2
0

g0
=

(h′)2+ε

ḡ
Zh(ḡ), (2.2.58)

where to order ḡ2 the Z and Zh are given by

Z(ḡ) = 1 − A1
ḡ

ε
− A2(1 − εC)

ḡ2

2ε
, (2.2.59)

Zh(ḡ) = 1 −
(

A1 −
B

A1

)
ḡ

ε
. (2.2.60)

Equations (2.2.57) and (2.2.58) provide a natural definition of the quantities Z(g)
and Zh(g) that appear in the expressions of the renormalized theory, Eqs (2.2.48).
By fixing the renormalizations Z and Zh according to Eqs (2.2.59) and (2.2.60) we
obtain renormalization group β and γ functions in the usual manner

β(g) =
dg

d ln µ
=

εg

1 − g
d ln Z

dg

= εg − A1g
2 − g3A2(1 − εC), (2.2.61)

γh(g) = −d ln zh

d ln µ
= β(g)

d

dg
ln Zh(g) = −

(
A1 −

B

A1

)
g + O(g3). (2.2.62)

Moreover, the choice of Eqs (2.2.57) and (2.2.58) implies that the observable theories
at different momentum scales h′ and h respectively can in general be expressed in
terms of the β and γ functions according to

ḡ = g(h′) = g(h) +
∫ h′

h

dµ

µ
β(g) (2.2.63)

z′h = zh(h′) = zh(h) −
∫ h′

h

dµ

µ
γh(g)zh(µ). (2.2.64)

The skeptical reader might want to explicitly verify the fact that the results of Eqs
(2.2.63) and (2.2.64) are consistent with the original definition of the observable the-
ory, Eqs (2.2.54) and (2.2.55). Starting from Eq. (2.2.54), for example, one proceeds
by inserting g0 = h−εgZ−1(g) where g is now defined for momentum scale h. This
leads to the following expression

ḡ = g(h′) = g(h) + I
(

g(h),
h′

h

)
, (2.2.65)
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where

I
(

g(h),
h′

h

)
= g

[(
h′

h

)ε

− 1
]
− A1

g2

ε2

{
ε + A1g

[(
h′

h

)ε

− 1
]}(

h′

h

)ε

×
[(

h′

h

)ε

− 1
]
− A2

g3

2ε
(1 − εC)

(
h′

h

)ε
[(

h′

h

)2ε

− 1

]
. (2.2.66)

Simple algebra next shows that to the appropriate order in g the following identity
holds

d

d ln h
I
(

g(h),
h′

h

)
= −β(g(h)). (2.2.67)

This means that Eqs (2.2.63) and (2.2.65) are indeed identical expressions. Similarly,
by starting from Eq. (2.2.55), i.e.

z′h = z0
h

(
1 +
(

A1 −
B

A1

)
g0(h′)ε

ε
−
(

A1 −
B

A1

)
B

A1

g2
0(h′)2ε

ε2

)
, (2.2.68)

one obtains the following result for the observable quantity z′h

z′h = zh(h′) = zh(h) + J
(

g(h),
h′

h

)
(2.2.69)

where

J
(

g(h),
h′

h

)
= zh(h)

(
A1 −

B

A1

)
g

ε

[
1 − B

A1

g

ε

(
h′

h

)ε] [(
h′

h

)ε

− 1
]

. (2.2.70)

Differentiating with respect to lnh leads to the following result

d

d ln h
J
(

g(h),
h′

h

)
= zh(h)γh(g(h)) (2.2.71)

which means that Eqs (2.2.64) and (2.2.69) are identically the same as well.

β and γ functions

The observable parameters of the previous sections facilitate a renormalization group
study that can be extended to include the non-perturbative effects of instantons.
We shall first recapitulate some of the results obtained from ordinary perturbative
expansions. Let µ′ denote the momentum scale associated with the observable theory
then the quantities σ′

xx = σxx(µ′), z′i = zi(µ′) can be expressed in terms of the
renormalization group β and γ functions according to (see previous section)

σ′
xx = σxx(µ′) = σxx(µ0) +

∫ µ′

µ0

dµ

µ
βσ(σxx) (2.2.72)

z′i = zi(µ′) = zi(µ0) −
∫ µ′

µ0

dµ

µ
γi(σxx)zi(µ), (2.2.73)
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where [92]

βσ(σxx) =
m + n

2π
+

mn + 1
2π2σxx

+ O(σ−2
xx ) (2.2.74)

γh(σxx) = −m + n

2πσxx
+ O(σ−2

xx ) (2.2.75)

and [75]

γs(σxx) = −m + n + 2
2πσxx

+ O(σ−2
xx ) (2.2.76)

γa(σxx) = −m + n − 2
2πσxx

+ O(σ−2
xx ). (2.2.77)

The effects of instantons have been studied in great details in Refs [18, 19] where
the idea of the θ renormalization was introduced. The main objective of the present
chapter is to extend the results of Eqs (2.2.74)-(2.2.77) to include the effect of instan-
tons. Recall that the γi functions are of very special physical interest. For example,
the quantity γh should vanish in the limit m,n → 0 indicating that the density of
levels of the electron gas is in general unrenormalized. At the same time one ex-
pects the anomalous dimension γa to become positive as m,n → 0 since it physically
describes the singular behavior of the (inverse) participation ratio of the electronic
levels. These statements serve as an important physical constraint that one in general
should impose upon the theory. [75]

2.3 Instantons

2.3.1 Introduction

In the absence of symmetry breaking terms, the existence of finite action solutions
(instantons) follows from the Schwartz inequality

tr (∇xQ ± iQ∇yQ)2 � 0, (2.3.1)

which implies
1
8

∫
dr tr(∇Q)2 � 2π|C[Q]|. (2.3.2)

Matrix field configurations that fulfill inequality (2.3.2) as an equality are called in-
stantons. The classical action becomes

Sinst
σ = −2πσxx|C[Q]| + iθC[Q]. (2.3.3)

In this thesis we consider single instantons only with a topological charge C[Q] = ±1.
A convenient representation of the single instanton solution is given by [20, 21]

Qinst(r) = T−1Λinst(r)T, Λinst(r) = Λ + ρ(r). (2.3.4)
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Here, the matrix ραβ
pq (r) has four non-zero matrix elements only

ρ11
11 = −ρ11

−1−1 = − 2λ2

|z − z0|2 + λ2
, ρ11

1−1 = ρ̄11
−11 =

2λ(z − z0)
|z − z0|2 + λ2

, (2.3.5)

with z = x + iy. The quantity z0 describes the position of the instanton and λ
is the scale size. These parameters, along with the global unitary rotation T ∈
U(m + n), describe the manifold of the single instanton. The anti-instanton solution
with topological charge C[Q] = −1 is simply obtained by complex conjugation.

Next, to discuss the mass terms in the theory, we substitute Eq. (2.3.4) into
Eqs (2.2.44) and (2.2.45). Putting T = 1m+n for the moment then one can split the
result for the operators Oi into a topologically trivial part and an instanton part as
follows

Oi[Qinst] = Oi[Λinst] = Oi[Λ] + Oinst
i (r), (2.3.6)

where
Oh[Λ] =

4mn

m + n
, Oa[Λ] = −4mn, Os[Λ] = −4mn (2.3.7)

and

Oinst
h (r) = 2ρ11

11(r), Oinst
a (r) = −4(m + n − 1)ρ11

11(r)

Oinst
s (r) = −4(m + n + 1)ρ11

11(r)
(

1 +
2ρ11

11(r)
m + n + 2

)
. (2.3.8)

Similarly we can write the free energy as the sum of two parts

Fclass = Fclass
0 + Fclass

inst , (2.3.9)

where Fclass
0 denotes the contribution of the trivial vacuum with topological charge

equal to zero (Q = Λ) and Fclass
inst is the instanton part

Fclass
0 = zh

∫
drOh[Λ] + zs

∫
drOs[Λ] + za

∫
drOa[Λ] (2.3.10)

Fclass
inst =

∫
inst

exp
[

− 2πσxx ± iθ + zh

∫
drOinst

h (r)

+ zs

∫
drOinst

s (r) + za

∫
drOinst

a (r)
]
. (2.3.11)

The subscript “inst” on the integral sign indicates that the integral is in general to
be performed over the manifold of instanton parameters. Notice, however, that the
global matrix T is no longer a part of the instanton manifold except for the subgroup
U(m)×U(n) only that leaves the action invariant. In the presence of the mass terms
we therefore have, instead of Eq. (4.3.3),

Qinst(r) = W−1Λinst(r)W = Λ + W−1ρ(r)W (2.3.12)

with W ∈ U(m) × U(n). On the other hand, the spatial integrals in the exponential
of Eq. (2.3.11) still display a logarithmic divergence in the size of the system. To deal
with these and other complications we shall in this thesis follow the methodology as
outlined in Ref. [31]. Before embarking on the quantum theory, however, we shall
first address the idea of working with constrained instantons. [45]
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2.3.2 Constrained instantons

It is well known that the discrete topological sectors do not in general have stable
classical minima for finite values of zi = 0. It is nevertheless possible construct matrix
field configurations that minimize the action under certain fixed constraints. In this
Section we are interested in finite action field configurations Q that smoothly turn
into the instanton solution of Eq. (2.3.12) in the limit where the symmetry breaking
fields zi all go to zero. Although the methodology of this thesis avoids the idea of
constrained instantons all together, the problem nevertheless arises in the discussion
of a special aspect of the theory, the replica limit (Section 2.7.5). To simplify the
analysis we will consider the theory in the presence of the Sh term only.

Explicit solution

To obtain finite action configurations for finite values of zh it is in many ways natural
to start from the original solution of Eq. (2.3.12) and minimize the action with respect
to a spatially varying scale size λ(r) rather than a spatially independent parameter
λ. Write

λ2 → λ2(r) = λ2f
(
x, h̃2

)
, (2.3.13)

where f(x, h̃2) is a dimensionless function of the dimensionless quantities x = r2/λ2

and h̃2 = 4zhλ2/σxx respectively. The strategy is to find an optimal function f with
the following constraints

f(x, 0) = 1 (2.3.14)
f(0, h̃2) = 1 (2.3.15)

f(x → ∞, h̃2 > 0) = 0. (2.3.16)

The first of these equations ensures that in the absence of mass terms (zh = h̃2 = 0) we
regain the original instanton solution. The second and third ensure that the classical
action is finite for finite values of zh or h̃2.

It is easy to see that for all functions f(x, h̃2) satisfying Eqs (2.3.14) - (2.3.16) the
topological charge equals unity, i.e.

C[Q] =

∞∫
0

dx
f − x∂xf

(x + f)2
= 1. (2.3.17)

Next, the expression for the action becomes (discarding the constant terms in the
definition of Sh)

Sσ + Sh = −πσxx

∞∫
0

dx

{
f

(x + f)2
[
1 +
(
1 − x∂xf

f

)2]
+ h̃2 f

x + f

}
. (2.3.18)

The function f0(x, h̃2) that optimizes the action satisfies the following equation

−x[2∂2
xf0 − f0(∂xf0)2] + 2

f0∂xf0

x + f0
[x∂xf0 − 2f0] + h̃2f2

0 = 0. (2.3.19)
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We are generally interested in the limit h̃2 � 1 only. Eq. (2.3.19) cannot be solved
analytically. The asymptotic behavior of f0(x, h̃2) in the limit of large and small
values of x is obtained as follows. For x � 1, we find

f0(x, h̃2) ∝ h̃2xK2
1 (h̃

√
x) =

⎧⎪⎨⎪⎩
πh̃

2
√

x exp(−2h̃
√

x), x � h̃−2,

1 + h̃2x ln
h̃
√

x

2
, h̃−2 � x � 1.

(2.3.20)

Here, K1(z) stands for the modified Bessel function. In the regime x � 1 we obtain

f0(x, h̃2) ≈ 1 + 4h̃2x, x � 1. (2.3.21)

Notice that these asymptotic results can also be written more simply as follows

f0(x, h̃2) ≈

⎧⎪⎪⎨⎪⎪⎩
π

2
hr exp(−2hr), r � h−1

1 + (hr)2 ln
hr

2
, h−1 � r � λ

1 + 4(hr)2, r � λ.

(2.3.22)

In the intermediate regimes r ≈ λ and r ≈ h−1 we have obtained the solution nu-
merically. In Fig. 2.5 we plot the results in terms of the matrix element ρ11

11(r), Eq.
(2.3.5),

ρ11
11(r) = − 2λ

r2 + λ2
→ − 2f

x + f
. (2.3.23)

Comparing the result with h̃2 = 0.3 with the original instanton result, f = 1, we
see that the main difference is in the asymptotic behavior with large r where the ρ11

11

for the “constrained instanton” vanishes exponentially (∝ exp(−2hr)), rather than
algebraically (∝ 1/r2).

Finite action

We conclude that in the presence of the mass term Sh the requirement of finite action
forces the instanton scale size to become spatially dependent in general such that the
contributions from large distances r � h−1 are strongly suppressed in the spatial
integrals. On the other hand, from Eqs (2.3.20) and (2.3.21) one can also see that for
small scale sizes λ such that

λ � λh ∝ h−1, (2.3.24)

the dominant contribution comes from the original, unconstrained instanton solution
of Eq. (2.3.4).

In order to see the effect of the constrained instanton on the analytic form of the
action we first consider a simpler example of a trial function ftr(x) of the type

ftr(x) = exp(−ax). (2.3.25)

Here we use a as a variational parameter. The classical action becomes

Sσ + Sh = −2πσxx

[
1 +

a

2
+

h̃2

2

(
ln

1
a
− γ
)]

+ O(h̃4), (2.3.26)
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Figure 2.5: The matrix element |ρ11
11|/2 as the function of r2/λ2 for h̃2 = 0.3.

where the constant γ ≈ 0.577 stands for the Euler constant. The optimal value of a
is given by

a = h̃2, ftr(x) = exp(−h̃2x). (2.3.27)

Hence we find for Eq. (2.3.26)

Sσ + Sh = −2πσxx

[
1 +

h̃2

2
ln

1.53
h̃2

]
. (2.3.28)

This simple result obtained from the trial function (2.3.27) has the same asymptotic
form as one determined by the much more complicated optimal function f0(x) in the
limit h̃2 → 0, except that the numerical constant 1.53 is replaced by 0.85.

Eq. (2.3.28) indicates that that in the limit h → 0 the finite action of the con-
strained instanton smoothly goes over into the finite action of the unconstrained
instanton. Furthermore, it is easy to see that the final result of Eq. (2.3.28) has
precisely the features that one would normally associate with mass terms. Consider
for example the action of the unconstrained instanton with a fixed scale size λ. By
putting the system inside a large circle of radius R we obtain the following result

Sσ + Sh = −2πσxx

[
1 − λ2

R2
+

h̃2

2
ln

R2

λ2

]
. (2.3.29)

By comparing Eq. (2.3.28) and Eq. (2.3.29) we conclude that the following effective
size Rh is induced by the h field

Rh =
1.47
h

. (2.3.30)
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The effect of mass terms can therefore be summarized as follows. First, the integral
over scale sizes λ (see Eq. (2.3.11)) effectively proceeds over the interval λ � h−1.
Secondly, the spatial integrals in the theory are cut off in infrared and the effective
sample size equals Rh. The two different scales that are being induced by Sh, h−1

and Rh, are of the same order of magnitude.

2.4 Quantum theory

One of the problems with the idea of constrained instantons is that it does not facil-
itate an expansion of the theory about zi = 0 in any obvious fashion. This is unlike
the method of spatially varying masses which is based on the results obtained in
Ref. [20] and [21]. To start we first recapitulate the formalism of the theory without
mass terms in Section 2.4.1. In Section 2.4.2 we introduce the idea of spatially varying
masses. Finally, in Section 2.4.3 we present the complete action of the small oscillator
problem that will be used in the remainder of this chapter.

2.4.1 Preliminaries

To obtain the most general matrix field variable Q with topological charge equal
to unity we first rewrite the instanton solution Λinst in Eqs (2.3.4) and (2.3.5) as a
unitary rotation R about the trivial vacuum Λ

Λinst = R−1ΛR (2.4.1)

where

R =
(

δαβ + (ē1 − 1)δα1δβ1 e0δ
α1δβ1

−e0δ
α1δβ1 δαβ + (e1 − 1)δα1δβ1

)
. (2.4.2)

The quantities e0 and e1 are defined as

e0 =
λ√

|z − z0|2 + λ2
, e1 =

z − z0√
|z − z0|2 + λ2

. (2.4.3)

For illustration we have written the full matrix Rαβ
pp′ in Fig. 2.6. It is a simple matter

to next generalize these expressions and the result is

Q = T−1
0 R−1q R T0. (2.4.4)

Here, T0 denotes a global U(m+n) rotation. The matrix q with q2 = 1m+n represents
the small fluctuations about the one instanton. Write

q = w + Λ
√

1m+n − w2 (2.4.5)

with

w =
(

0 v
v† 0

)
(2.4.6)

then the matrix q can formally be written as a series expansion in powers of the
m × n complex matrices v, v† which are taken as the independent field variables in
the problem.
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Figure 2.6: The matrix R.



θ renormalization in generalized CPN−1 models 49

Stereographic projection

Eq. (2.4.4) lends itself to an exact analysis of the small oscillator problem. First we
recall the results obtained for the theory without mass terms, [20, 21]

σxx

8

∫
dr tr(∇Q)2 =

σxx

8

∫
dr tr[∇ + A, q]2, (2.4.7)

where the matrix A contains the instanton degrees of freedom

A = RT0∇T−1
0 R−1 = R∇R−1. (2.4.8)

By expanding the q in Eq. (2.4.7) to quadratic order in the quantum fluctuations v,
v† we obtain the following results

σxx

8

∫
dr tr[∇ + A, q]2 =

σxx

4

∫
drµ2(r)

[
v11O(2)v†11 +

m∑
α=2

vα1O(1)v†1α

+
n∑

β=2

v1βO(1)v†β1 +
m∑

α=2

n∑
β=2

vαβO(0)v†βα

]
. (2.4.9)

The three different operators O(a) are given as

O(a) =
(r2 + λ2)2

4λ2

[
∇b +

iaεbcrc

r2 + λ2

]2
+

a

2
. (2.4.10)

The introduction of a measure µ2(r) for the spatial integration in Eq. (2.4.9),

µ(r) =
2λ

r2 + λ2
, (2.4.11)

indicates that the quantum fluctuation problem is naturally defined on a sphere with
radius λ. It is convenient to employ the stereographic projection

η =
r2 − λ2

r2 + λ2
, −1 < η < 1 (2.4.12)

θ = tan−1 y

x
, 0 � θ < 2π. (2.4.13)

In terms of η, θ the integration can be written as∫
drµ2(r) =

∫
dηdθ. (2.4.14)

Moreover,

e0 =

√
1 − η

2
, e1 =

√
1 + η

2
eiθ, (2.4.15)

and the operators become

O(a) =
∂

∂η

[
(1 − η2)

∂

∂η

]
+

1
1 − η2

∂2

∂2θ
− ia

1 − η

∂

∂θ
− a2

4
1 + η

1 − η
+

a

2
, (2.4.16)

with a = 0, 1, 2. Finally, using Eq. (2.4.9) we can count the total number of fields vαβ

on which each of the operators O(a) act. The results are listed in Table 2.2.
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Table 2.2: Counting the number of zero modes

Operator The number of fields vαβ involved Degeneracy

O(0) (m − 1)(n − 1) 1

O(1) (m − 1) + (n − 1) 2

O(2) 1 3

Energy spectrum

We are interested in the eigenvalue problem

O(a)Φ(a)(η, θ) = E(a)Φ(a)(η, θ), (2.4.17)

where the set of eigenfunctions Φ(a) are taken to be orthonormal with respect to the
scalar product

(Φ̄(a)
1 ,Φ(a)

2 ) =
∫

dηdθ Φ̄(a)
1 (η, θ)Φ(a)

2 (η, θ). (2.4.18)

The Hilbert space of square integrable eigenfunctions is given in terms of Jacobi
polynomials,

Pα,β
n (η) =

(−1)n

2nn!
(1 − η)−α(1 + η)−β dn

dηn
(1 − η)n+α(1 + η)n+β (2.4.19)

Introducing the quantum number J to denote the discrete energy levels

E
(0)
J = J(J + 1), J = 0, 1, · · ·

E
(1)
J = (J − 1)(J + 1), J = 1, 2, · · ·

E
(2)
J = (J − 1)(J + 2), J = 1, 2, · · ·

(2.4.20)

then the eigenfunctions are labelled by (J,M) and can be written as follows

Φ(0)
J,M = C

(0)
J,MeiMθ

√
(1 − η2)MPM,M

J−M (η), M = −J, · · · , J

Φ(1)
J,M = C

(1)
J,MeiMθ

√
(1 − η2)M

√
1 − ηPM+1,M

J−M−1 (η), M = −J, · · · , J − 1
Φ(2)

J,M = C
(2)
J,MeiMθ

√
(1 − η2)M (1 − η)PM+2,M

J−M−1 (η), M = −J − 1, · · · , J − 1
(2.4.21)
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where the normalization constants equal

C
(0)
J,M =

√
Γ(J − M + 1)Γ(J + M + 1)(2J + 1)

2M+1
√

πΓ(J + 1)
,

C
(1)
J,M =

√
Γ(J − M)Γ(J + M + 1)

2M+1
√

πΓ(J)
,

C
(2)
J,M =

√
Γ(J − M)Γ(J + M + 2)(2J + 1)

2M+2
√

πΓ(J)
√

J(J + 1)
.

(2.4.22)

Zero modes

From Eq. (2.4.20) we see that the operators O(a) have the following zero modes

O(0) =⇒ Φ(0)
0,0 = 1,

O(1) =⇒ Φ(1)
1,−1 =

1√
2π

ē1, Φ(1)
1,0 =

1√
2π

e0,

O(2) =⇒ Φ(2)
1,−2 =

√
3
4π

ē2
1, Φ(2)

1,−1 =

√
3
2π

e0ē1, Φ(2)
1,0 =

√
3
4π

e2
0.

(2.4.23)
The number of the zero modes of each O(a) is listed in Table 2.2. The total we find
2(mn+m+n) zero modes in the problem. Next, it is straight forward to express these
zero modes in terms of the instanton degrees of freedom contained in the matrices R
and T0 of Eq. (2.4.4). For this purpose we write the instanton solution as follows

Qinst(ξi) = U−1(ξi)ΛU(ξi). (2.4.24)

Here, U = R T0 and the ξi stand for the position z0 of the instanton, the scale size
λ and the generators of T0. The effect of an infinitesimal change in the instanton
parameters ξi → ξi + εi on the Qinst can be written in the form of Eq. (2.4.4) as
follows

Qinst(ξi + εi) = U−1(ξi)qεU(ξi), (2.4.25)

where
qε ≈ Λ − εi

[
U∂εi

U−1,Λ
]
. (2.4.26)

Notice that

−εi

[
U∂εi

U−1,Λ
]

= 2εi

(
0

[
U∂εi

U−1
]αβ

1,−1

−
[
U∂εi

U−1
]αβ

−1,1
0

)
. (2.4.27)

By comparing this expression with Eq. (2.4.4) we see that the small changes εi tan-
gential to the instanton manifold can be cast in the form of the quantum fluctuations
v, v† according to

vαβ = 2εi

[
R T0∂εi

T−1
0 R−1

]αβ

1,−1
, v†αβ = −2εi

[
R T0∂εi

T−1
0 R−1

]αβ

−1,1
. (2.4.28)

Next we wish to work out these expressions explicitly. Let t denote an infinitesimal
U(m + n) rotation

T0 = 1m+n + i t, (2.4.29)
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m n

m
n

U(m-1)

U(n-1)

U(1)

U(m-1)U(1)x

U(m)

U(n-1)U(1)x

U(n)

Figure 2.7: Symmetry breaking.

and δλ, δz0 infinitesimal changes in the scale size and position respectively,

R(λ + δλ, z0 + δz0) = R(λ, z0)
[
1m+n + δλR−1∂λR + δz0 R−1∂z0R

]
. (2.4.30)

The zero frequency modes can be expressed in terms of the instanton parameters t,
δλ and δz0 and the eigenfunctions Φ(a)

JM according to

vαβ = 2itαβ
1,−1Φ

(0)
0,0[

vα1

v1β

]
= 2

√
2πi

(
tα1
1,−1 −tα1

1,1

t1β
1,−1 t1β

−1,−1

)[
Φ(1)

1,−1

Φ(1)
1,0

]

v11 = 4
√

π

3

[
it11−1,1,

(
it11−1,−1 − it111,1 −

δλ

λ

)
, −it111,−1 +

δz̄0

λ

]⎡⎢⎣ Φ(2)
1,−2

Φ(2)
1,−1

Φ(2)
1,0

⎤⎥⎦
(2.4.31)

From this one can see that besides the scale size λ and position z0 the in-
stanton manifold is spanned by the tαβ

1,−1 and tαβ
−1,1 which are the generators of

U(m + n)/U(m) × U(n). The t1α
1,1 and tα1

1,1 with α > 1 are the generators of
U(n)/U(n − 1) × U(1) and the t1α

−1,−1 and tα1
−1,−1 those of U(m)/U(m − 1) × U(1).

Finally, t111,1 − t11−1,−1 is the U(1) generator describing the rotation of the O(3) instan-
ton about the z axis. In total we find 2(mn + m + n) zero modes as it should be.
The hierarchy of symmetry breaking by the one-instanton solution is illustrated in
Fig. 2.7.
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2.4.2 Spatially varying masses

We have seen that the quantum fluctuations about the instanton acquire the metric
of a sphere, Eq. (2.4.11). This, however, complicates the problem of mass terms which
are naturally written in flat space. To deal with this problem we modify the definition
of the mass terms and introduce a spatially varying momentum scale µ(r) as follows

zi → zi µ2(r), (2.4.32)

such that the action now becomes finite and can be written as

Si = zi

∫
drOi[Q] → zi

∫
drµ2(r)Oi[Q]. (2.4.33)

Several comments are in order. First of all, we expect that the introduction of a
spatially varying momentum scale µ(r) does not alter the singularity structure of the
theory at short distances. We shall therefore proceed and first develop a full quantum
theory for the modified mass terms in Sections 2.5 and 2.6. Secondly, we postpone
the problem of curved versus flat space all the way until the end of the computation
in Section 2.7 where we elaborate on the tricks developed by ’t Hooft. [44]

As we shall discuss in detail in the remainder of this chapter, the validity of the
procedure with spatially varying masses relies entirely on the statement which says
that the quantum theory of the modified instanton problem displays exactly the same
ultraviolet singularities as those obtained in ordinary perturbative expansions. In
fact, we shall greatly benefit from our introduction of observable parameters since it
can be used to explicitly verify this statement.

Since the action is now finite one can go ahead and formally expand the theory
about zi = 0. To see how this works let us first consider the operator Oh. Using
Eq. (2.4.4) we can write for Sh

Sh = zh

∫
drµ2(r) tr Ahq, (2.4.34)

where

Ah = R T0

(
Λ − m − n

m + n
1m+n

)
T−1

0 R−1. (2.4.35)

Now we can formally proceed by evaluating the expectation 〈q〉 with respect to the
theory of the previous Section, Eq. (2.4.9). It is important to keep in mind, however,
that the global unitary matrix T0 is eventually restricted to run over the subgroup
U(m) × U(n) only. Since it is in many ways simpler to carry out the quantum
fluctuations about the theory with T0 = 1m+n, we shall in what follows specialize
to this simpler case. We will come back to the more general situation in Section 2.6
where we show that the final results are in fact independent of the specific choice
made for the matrix T0.

2.4.3 Action for the quantum fluctuations

Keeping the remarks of the previous Section in mind we obtain the complete action
as the sum of a classical part Sinst and a quantum part δS as follows

S = Sinst + δS, (2.4.36)
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where
Sinst = −2πσxx + i θ + Sinst

h + Sinst
a + Sinst

s (2.4.37)

and
δS = δSσ + δSh + δSa + δSs. (2.4.38)

Here, Sinst
i stands for the classical action of the modified mass terms Oinst

i , Eq. (2.3.6),
and is given by

Sinst
h = zh

∫
drµ2(r)Oinst

h (r) = −8πzh,

Sinst
a = za

∫
drµ2(r)Oinst

a (r) = 16π(m + n − 1)za, (2.4.39)

Sinst
s = zs

∫
drµ2(r)Oinst

s (r) = 16π(m + n + 1)zs

[
1 − 8

3(m + n + 2)

]
.

Next, the results for δSσ and δSi can be written up to quadratic order in v, v† as
follows

δSσ = −σxx

4

∫
ηθ

[
m∑

α=2

n∑
β=2

vαβO(0)v†βα +
m∑

α=2

vα1O(1)v†1α +
n∑

β=2

v1βO(1)v†β1

+v11O(2)v†11
]

(2.4.40)

where ∫
ηθ

≡
∫

dηdθ. (2.4.41)

The operators O(a) with a = 0, 1, 2 are given by Eq. (2.4.16). Furthermore,

δSh = −zh

∫
ηθ

[
m∑

α=2

n∑
β=2

vαβv†βα + (1 − e2
0)

⎛⎝ m∑
α=2

vα1v†1α +
n∑

β=2

v1βv†β1

⎞⎠
+(1 − 2e2

0)v
11v†11 + 2(e0e1v

11 + e0ē1v
†11)

]
, (2.4.42)

δSa = 2(m + n − 1)za

∫
ηθ

[
m + n − 2 − 4e2

0

m + n − 2

m∑
α=2

n∑
β=2

vαβv†βα + (1 − e2
0)

×
( m∑

α=2

vα1v†1α +
n∑

β=2

v1βv†β1
)

+ (1 − 2e2
0)v

11v†11

+2(e0e1v
11 + e0ē1v

†11)

]
, (2.4.43)
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δSs = 2
m + n + 1
m + n + 2

zs

∫
ηθ

[
(m + n + 2 − 4e2

0)
m∑

α=2

n∑
β=2

vαβv†βα + (1 − e2
0)

×(m + n + 2 − 8e2
0)

⎛⎝ m∑
α=2

vα1v†1α +
n∑

β=2

v1βv†β1

⎞⎠
+
[
(1 − 2e2

0)(m + n + 2 − 8e2
0) − 8e2

0|e1|2
]
v11v†11

−4(e2
0e

2
1v

11v11 + e2
0ē

2
1v

†11v†11)

+2(m + n + 2 − 8e2
0)(e0e1v

11 + e0ē1v
†11)

]
. (2.4.44)

Notice that the terms linear in v, v† in Eqs (2.4.42)-(2.4.44) can be written as∫
ηθ

[
e0e1v

11 + e0ē1v
†11] ∝ ∫

ηθ

[
Φ(2)

1,−1v
11 + Φ̄(2)

1,−1v
†11
]
∝ δλ

λ
. (2.4.45)

This means that the fluctuations tangential to the instanton parameter λ are the only
unstable fluctuations in the problem. However, the linear fluctuations are not of any
special interest to us and we proceed by formally evaluating the quantum fluctuations
to first order in the fields zi only. The expansion is therefore with respect to the theory
with δSσ alone and this has been analyzed in detail in Ref.[20, 21].

Finally, we also need the action S0 for the quantum fluctuations about the trivial
vacuum. The result is given by

S(0) = δS(0)
σ + δS

(0)
h + δS(0)

a + δS(0)
s (2.4.46)

where

δS(0)
σ = −σxx

4

∫
ηθ

m∑
α=1

n∑
β=1

vαβO(0)v†βα, δS
(0)
h = −zh

∫
ηθ

m∑
α=1

n∑
β=1

vαβv†βα,

δS(0)
a,s = 2(m + n ∓ 1)za,s

∫
ηθ

m∑
α=1

n∑
β=1

vαβv†βα. (2.4.47)

2.5 Pauli-Villars regulators

Recall that after integration over the quantum fluctuations one is left with two sources
of divergences. First, there are the ultraviolet divergences which eventually lead to
the renormalization of the coupling constant or σxx. At present we wish to extend
the analysis to include the renormalization of the the zi fields. The ultraviolet can be
dealt with in a standard manner, employing Pauli-Villars regulator fields with masses
Mf (f = 0, 1, · · · ,K) and with an alternating metric êf . [94] We assume ê0 = 1,
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M0 = 0 and large masses Mf � 1 for f > 1. The following constraints are imposed

K∑
f=0

êfMk
f = 0, 0 � k < K,

K∑
f=1

êf lnMf = − lnM.

The regularized theory is then defined as

δSreg = δS0 +
K∑

f=1

êfδSf . (2.5.1)

Here action δSf is the same as the action δS except that the kinetic operators O(a)

are all replaced by O(a) + M2
f .

Our task is to evaluate Eq. (2.5.1) to first order in the fields zi. This means that
δS0 still naively diverges due to the zero modes of the operators O(a). These zero
modes are handled separately in Section 2.6, by employing the collective coordinate
formalism introduced in Ref. [20]. The regularized theory δSreg is therefore defined
by omitting the contributions of all the zero modes in δS0.

To simplify the notation we shall work with m = n in the subsequent Sections.
The final answer will be expressed in terms of m and n, however.

2.5.1 Explicit computations

To simplify the notation we will first collect the results obtained after a naive integra-
tion over the field variables v, v†. These are easily extended to include the alternating
metric and the Pauli-Villars masses which will be main topic of the next Section.
Consider the ratio

Zinst

Z0
=

∫
D[v, v†] exp S∫
D[v, v†] exp S0

= exp
[

− 2πσxx ± iθ + D

+ Sinst
h + ∆Sh

+ Sinst
a + ∆Sa

+ Sinst
s + ∆Ss

]
. (2.5.2)

Here, the quantum corrections D, ∆Sh, ∆Sa and ∆Ss can be expressed in terms of
the propagators

Ga =
1

O(a)
=
∑
JM

|JM〉(a)(a)〈JM |
E

(a)
J

, a = 0, 1, 2. (2.5.3)
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The results can be written as follows

D = tr
[
2(n − 1)

(
lnG1 − lnG0

)
−
(
lnG2 − lnG0

)]
, (2.5.4)

∆Sh = −4zh

σxx
tr
[
2(n − 1)[(1 − e2

0)G1 − G0] + [(1 − 2e2
0)G2 − G0]

]
, (2.5.5)

∆Sa =
8(2n − 1)za

σxx
tr
[
(n − 1)[(n − 1 − 2e2

0)G0 − (n − 1)G0] + 2(n − 1)

×[(1 − e2
0)G1 − G0] + [(1 − 2e2

0)G2 − G0]
]
, (2.5.6)

∆Ss =
8(2n + 1)zs

(n + 1)σxx
tr
[
(n − 1)2[(n + 1 − 2e2

0)G0 − (n + 1)G0]

+2(n − 1)[(1 − e2
0)(n + 1 − 4e2

0)G1 − (n + 1)G0]

+
(
[(1 − 2e2

0)(n + 1 − 4e2
0) − 4e2

0(1 − e2
0)]G2

−(n + 1)G0

)]
. (2.5.7)

In these expressions the trace is taken with respect to the complete set of eigenfunc-
tions of the operators O(a). To evaluate these expressions we need the help of the
following identities (see Appendix 2.A)

J−ka∑
M=−J−a+ka

(a)〈J,M |e2
0|M,J〉(a) =

1
2
(2J + 1 + a − 2ka), (2.5.8)

J−ka∑
M=−J−a+ka

(a)〈J,M |e4
0|M,J〉(a) =

1
3
(2J + 1 + a − 2ka), (2.5.9)

where ka = 0, 1, 1 for a = 0, 1, 2 respectively. After elementary algebra we obtain

D = − 2(n − 1)D(1) − D(2), (2.5.10)

∆Sh = − zh
4

σxx

[
(n − 1)Y (1) − (2n − 1)Y (0)

]
, (2.5.11)

∆Sa = za
8(2n − 1)

σxx

[
(n − 1)Y (1) − (3n − 2)Y (0)

]
, (2.5.12)

∆Ss = zs
8(2n + 1)(3n − 1)

3(n + 1)σxx

[
(n − 1)Y (1) − 3nY (0)

]
. (2.5.13)

We have introduced the following quantities

D(r) =
∞∑

J=1

(2J + r − 1) ln E
(r)
J −

∞∑
J=0

(2J + 1) ln E
(0)
J , r = 1, 2 (2.5.14)

Y (s) =
∞∑

J=s

2J + 1 − s

E
(s)
J

, s = 0, 1. (2.5.15)
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2.5.2 Regularized expressions

To obtain the regularized theory one has to include the alternating metric ef and add
the masses Mf to the energies E

(a)
J in the expressions for D(r) and Y (s). To start,

let us define the function

Φ(Λ)(p) =
Λ∑

J=p

2J ln(J2 − p2). (2.5.16)

According to Eq. (2.5.1), the regularized function Φ(Λ)
reg (p) is given by

Φ(Λ)
reg (p) =

Λ∑
J=p+1

2J ln(J2 − p2) +
K∑

f=1

ef

Λ∑
J=p

2J ln(J2 − p2 + M2
f ), (2.5.17)

where we assume that the cut-off Λ is much larger than Mf . In the presence of a
large mass Mf we may consider the logarithm to be a slowly varying function of
the discrete variable J . We may therefore approximate the summation by using the
Euler-Maclaurin formula

Λ∑
J=p+1

g(J) =
∫ Λ

p

dx g(x) +
1
2
g(x)

∣∣∣Λ
p

+
1
12

g′(x)
∣∣∣Λ
p
. (2.5.18)

After some algebra we find that Eq. (2.5.17) can be written as follows [20]

Φ(Λ)
reg (p) = − 2Λ(Λ + 1) ln Λ + Λ2 − ln eΛ

3
+ 4

Λ∑
J=1

J ln J

+
1 − 6p

3
lnM + 2p2 − 2

2p∑
J=1

(J − p) ln J. (2.5.19)

The regularized expression for D(r) can be obtained as

D(r)
reg = lim

Λ→∞

[
Φ(Λ)

reg

(
1 + r

2

)
− Φ(Λ)

reg

(
1
2

)]
. (2.5.20)

From this we obtain the final results

D(1)
reg = − lnM +

3
2
− 2 ln 2, D(2)

reg = −2 lnM + 4 − 3 ln 3 − ln 2. (2.5.21)

Next, we introduce another function

Y (Λ)(p) =
Λ∑

J=p

2J

J2 − p2
. (2.5.22)

According to Eq. (2.5.1), the regularized function Y
(Λ)
reg (p) is given by

Y (Λ)
reg (p) =

K∑
f=1

ef

Λ∑
J=p

2J

J2 − p2 + M2
f

+
Λ∑

J=p+1

2J

J2 − p2
, (2.5.23)
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where as before we assume that the cut-off Λ � Mf . By using a similar procedure
as discussed above we now find

Y (Λ)
reg (p) = 2 lnM + 2γ −

2p∑
J=1

1
J

+ O(Λ−1). (2.5.24)

The regularized expressions for Y (s) can be written as

Y (s)
reg = lim

Λ→∞
Y (Λ)

reg

(
1 + s

2

)
, (2.5.25)

such that we finally obtain

Y (0)
reg = 2 lnM + 2γ − 1,

Y (1)
reg = 2 lnM + 2γ − 3

2
,

Y (2)
reg = 2 lnM + 2γ − 11

6
. (2.5.26)

We therefore have the following results for the quantum corrections

Dreg = 2n lnM + n(4 ln 2 − 3) − 1 + 3 ln
3
2
, (2.5.27)

∆Sreg
h = zh

8n

σxx

[
lnMeγ−1/2 − 2n − 1

4n

]
, (2.5.28)

∆Sreg
a = −za

16(2n − 1)2

σxx

[
lnMeγ−1/2 − 3n − 2

2(2n − 1)

]
, (2.5.29)

∆Sreg
s = −zs

16(2n + 1)2(3n − 1)
3σxx(n + 1)

[
lnMeγ−1/2 − 3n

2(2n + 1)

]
. (2.5.30)

Apart from the logarithmic singularity in M, the numerical constants in the expres-
sion for Dreg are going to play an important role in what follows. This is unlike
the expressions for ∆Sreg

i where the second term in the brackets should actually be
considered as higher order terms in an expansion in powers of 1/σxx. We collect the
various terms together and obtain the following result for the instanton contribution
to the free energy

ln
[
Zinst

Z0

]reg
= − 1 + 3 ln

3
2
− (m + n)

(
γ +

3
2
− 2 ln 2

)
± i θ (2.5.31)

− 2πσxx

[
1 − m + n

2πσxx
lnMeγ

]
(2.5.32)

− 8πzh

[
1 − m + n

2πσxx
lnMeγ−1/2

]
(2.5.33)

+ 16π(m + n − 1)za

[
1 − m + n − 1

πσxx
lnMeγ−1/2

]
(2.5.34)

+
16π(m + n + 1)(3m + 3n − 2)

3(m + n + 2)
zs

[
1 − m + n + 1

πσxx
lnMeγ−1/2

]
.

(2.5.35)
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2.5.3 Observable theory in Pauli-Villars regularization

The important feature of these last expressions, as we shall see next, is that the
quantum corrections to the parameters σxx, zh, za and zs are all identically the same
as those obtained from the perturbative expansions of the observable parameters σ′

xx,
z′h, z′a and z′s introduced in Section 2.2.4. Notice that we have already evaluated
this theory in dimensional regularization in Section 2.2.4. The problem, however, is
that the different regularization schemes (dimensional versus Pauli-Villars) are not
related to one another in any obvious fashion. Unlike dimensional regularization,
for example, it is far from trivial to see how the general form of the observable
parameters, Eqs (2.2.72) and (2.2.73), can be obtained from the theory in Pauli-
Villars regularization.

In Appendix 2.B we give the details of the computation using Pauli-Villars regu-
lators. Denoting the results for σ′

xx and z′i by σxx(M) and zi(M) respectively,

σ′
xx = σxx(M), z′i = zi(M) (2.5.36)

then we have

σxx(M) = σxx

[
1 − m + n

2πσxx
lnMeγ

]
, (2.5.37)

zi(M) = zi

[
1 +

γ
(0)
i

σxx
lnMeγ−1/2

]
. (2.5.38)

The coefficients γ
(0)
i are given by

γ
(0)
h = −m + n

2π
, γ(0)

a = −m + n − 1
π

, γ(0)
s = −m + n + 1

π
. (2.5.39)

Since so much of what follows is based on the results obtained in this Section
and the previous one, it is worthwhile to first present a summary of the various
issues that are involved. First of all, it is important to emphasize that our results
for observable parameter σ′

xx, Eq. (2.5.37), resolve an ambiguity that is well known
to exist, in the instanton analysis of scale invariant theories. Given Eq. (2.5.37) one
uniquely fixes the quantity σxx(M) (Eq. (2.5.32)) and the constant term of order unity
(Eq. (2.5.31)) that is otherwise left undetermined. This result becomes particularly
significant when we address the non-perturbative aspects of the renormalization group
β functions in Section 2.7. Secondly, the results for zi in the observable theory, Eq.
(2.5.38), explicitly shows that the idea of spatially varying masses does not alter the
ultraviolet singularity structure of the instanton theory, i.e. Eqs (2.5.33) - (2.5.35). A
deeper understanding of this problem is provided by the computations in Appendix
2.B where we show that Pauli-Villars regularization retains translational invariance
in the sense that the expectation of local operators like 〈Oi[Q(r)]〉 is independent
of r. This aspect of the problem is especially meaningful when dealing with the
problem of electron-electron interactions. As is well known, the presence of mass
terms generally alters the renormalization of the theory at short distances in this
case, i.e. the renormalization group β functions. [32] Finally, on the basis of the
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theory of observable parameters Eqs (2.5.37) and (2.5.38) we may summarize the
results of our instanton computation, Eqs (2.5.31)-(2.5.35), as follows

ln
[
Zinst

Z0

]reg
= − 1 + 3 ln

3
2
− (m + n)

(
γ +

3
2
− 2 ln 2

)
(2.5.40)

− 2πσxx(M) ± iθ(νf ) (2.5.41)

+ zh(M)
∫

drµ2(r)Oinst
h (r) (2.5.42)

+ zs(M)
∫

drµ2(r)Oinst
s (r) (2.5.43)

+ za(M)
∫

drµ2(r)Oinst
a (r). (2.5.44)

Here, the quantities Oinst
i (r) are the classical expressions given by Eq. (2.3.8). On the

other hand, the parameters σxx(M) and zi(M) are precisely those obtained from the
observable theory.

2.6 Instanton manifold

In this Section we first recapitulate the integration over the zero frequency modes
following Refs [20] and [21]. In the second part of this Section we address the zero
modes describing the U(m + n)/U(m)×U(n) rotation of the instanton that we sofar
have discarded.

2.6.1 Zero frequency modes

The complete expression for Zinst/Z0 can be written as follows

Zinst

Z0
=
∫
D[Qinst] [Zinst]

reg∫
D[Q0] [Z0]

reg . (2.6.1)

Here, Qinst denotes the manifold of the instanton parameters as is illustrated in
Fig. 2.7 ∫

D[Qinst] = Ainst

∫
dr0

∫
dλ

λ3

∫
D[U(1)]

×
∫

D
[

U(m)
U(1) × U(m − 1)

] ∫
D
[

U(n)
U(1) × U(n − 1)

]
×

∫
D
[

U(m + n)
U(m) × U(n)

]
. (2.6.2)

The Q0 represents the zero modes associated with the trivial vacuum∫
D[Q0] = A0

∫
D
[

U(m + n)
U(m) × U(n)

]
. (2.6.3)
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The numerical factors Ainst and A0 are given by

Ainst = 〈e4
0〉〈|e1|4〉〈e2

0|e1|2〉
(
〈e2

0〉〈|e1|2〉
)m+n−2 〈1〉(m−1)(n−1)π−mn−m−n

A0 = 〈1〉mnπ−mn (2.6.4)

where the average 〈· · · 〉 is with respect to the surface of a sphere

〈f〉 = σxx

1∫
−1

dη

2π∫
0

dθf(η, θ). (2.6.5)

Notice that in the absence of symmetry breaking terms the integration over U(m +
n)/U(m) × U(n) drops out in the ratio. We shall first discard this integration in the
final answer which is then followed by a justification in Section 2.6.2. With the help
of the identity [20] ∫

D
[

U(k)
U(1) × U(k − 1)

]
=

πk−1

Γ(k)
, (2.6.6)

we can write the complete result as follows

Zinst

Z0
=

mn

2
Dmn

∫
dr0

∫
dλ

λ3
(2πσxx)n+m exp S′

inst (2.6.7)

where

S′
inst = −2πσxx(M)± iθ+zh(M)

∫
ηθ

Oinst
h +zs(M)

∫
ηθ

Oinst
s +za(M)

∫
ηθ

Oinst
a . (2.6.8)

The numerical constant Dmn is given by

Dmn =
4
πe

e−(m+n)(γ+3/2−ln 2)Γ−1(1 + m)Γ−1(1 + n). (2.6.9)

2.6.2 The U(m + n)/U(m) × U(n) zero modes

To justify the result of Eq. (2.6.7) we next consider the full expression for Zinst/Z0

that includes the U(m+n)/U(m)×U(n) rotational degrees of freedom. For simplicity
we limit ourselves to the theory in the presence of the zh field only. We now have

Zinst

Z0
=

∫
D[Qinst] exp{−2πσxx ± i θ + zh

∫
ηθ

tr ΛhT−1
0

[
R−1〈q〉R

]reg
T0}∫

D[Q0] exp{zh

∫
ηθ

tr Λht−1
0 [〈q〉0]reg t0}

. (2.6.10)

Here, we have defined

Λh = Λ − m − n

m + n
1m+n. (2.6.11)

The expectation 〈· · · 〉 is with respect to the theory of δSσ, Eq. (2.4.40), whereas
〈· · · 〉0 refers to the quantum theory of the trivial vacuum which is obtained from δSσ
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by replacing all operators O(a) by O(0). Let us write the rotational degrees of freedom
T0 ∈ U(m + n) as follows

T0 = t0W, Q0 = t−1
0 Λt0. (2.6.12)

The quantity t0 or Q0 runs over the manifold U(m + n)/U(m)×U(n) and W stands
for the remaining degrees of freedom U(m)/U(m− 1)×U(1), U(n)/U(n− 1)×U(1)
and U(1) respectively. We can write∫

D[Qinst] = Ainst

∫
dr0

dλ

λ3
D[Q0]D[W ] (2.6.13)

The quantity
[
R−1〈q〉R

]reg, unlike [〈q〉0]reg in Eq. (2.6.10), is not invariant under
U(m) × U(n) rotations. We therefore perform the integration over W explicitly as
follows

〈
e

zh

∫
ηθ

tr Λht−1
0 W−1[R−1〈q〉R]regWt0

〉
W

= e
zh

〈 ∫
ηθ

tr Λht−1
0 W−1[R−1〈q〉R]regWt0

〉
W

+O(z2
h)

(2.6.14)
Here,

〈X[W ]〉W =
∫
D[W ]X[W ]∫

D[W ]
. (2.6.15)

The matrix [R−1〈q〉R]reg is given as

[R−1〈q〉R]reg = R−1ΛR − 2
σxx

ΛG +
1

σxx
(R−1ΛR − Λ)(G(1)

1 + G
(1)
−1), (2.6.16)

where the matrix G is diagonal in the replica and retarded-advanced spaces

Gαβ
pp′ = δαβ

pp′G
(α)
p (2.6.17)

and the diagonal elements Gα
p are defined as

G
(α)
1 =

⎧⎪⎨⎪⎩
m − 1
O(1)

+
1

O(2)
, α = 1,

m − 1
O(0)

+
1

O(1)
, α = 2, · · ·n.

(2.6.18)

G
(α)
−1 =

⎧⎪⎨⎪⎩
n − 1
O(1)

+
1

O(2)
, α = 1,

n − 1
O(0)

+
1

O(1)
, α = 2, · · ·m.

(2.6.19)
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Integration over W restores the U(m) × U(n) invariance and we obtain

zh

〈∫
ηθ

tr Λht−1
0 W−1[R−1〈q〉R]regWt0

〉
W

= − zh

2mn

∫
ηθ

(
1 − 1

σxx

[
(m + n − 2)Y (1)

reg + 2Y (2)
reg

])
tr Λht−1

0 ΛXt0

+zh

∫
ηθ

tr Λht−1
0 Λ
[
1m+n − 1

mnσxx

(
Y (2)

reg + (m + n − 2)Y (1)
reg

+(m − 1)(n − 1)Y (0)
reg

)
X
]
t0, (2.6.20)

where

X = (m + n)1m+n + (m − n)Λ. (2.6.21)

By using the traceless nature of the matrix Λh, we find

zh

〈∫
ηθ

tr Λht−1
0 W−1[R−1〈q〉R]regWt0

〉
W

= zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh

[
R−1〈q〉R

]reg
(2.6.22)

The Q0 is now the only rotational degree of freedom left in the terms with zh and the
result can therefore be written as follows

Zinst

Z(0)
=

mn

2
Dmn

∫
dr0

∫
dλ

λ3
(2πσxx)m+n exp (−2πσxx ± i θ + δS′

inst) , (2.6.23)

where

exp δS′
inst =

∫
D[Q0] exp

⎧⎪⎨⎪⎩zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh

[
R−1〈q〉R

]reg⎫⎪⎬⎪⎭
∫
D[Q0] exp

⎧⎪⎨⎪⎩zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh [〈q〉0]reg

⎫⎪⎬⎪⎭
. (2.6.24)

We can write the result as an expectation with respect to the matrix field variable
Q0,

exp δS′
inst =

〈
exp

⎧⎪⎨⎪⎩zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh

[
R−1〈q〉R − 〈q〉0

]reg⎫⎪⎬⎪⎭
〉

Q0

, (2.6.25)
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where

〈X[Q0]〉Q0 =

∫
D[Q0] exp

⎧⎪⎨⎪⎩zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh [〈q〉0]reg

⎫⎪⎬⎪⎭X[Q0]

∫
D[Q0] exp

⎧⎪⎨⎪⎩zh

∫
ηθ

Oh[Q0]
Oh[Λ]

tr Λh [〈q〉0]reg

⎫⎪⎬⎪⎭
. (2.6.26)

Notice that by putting the classical value 〈q〉 = 〈q〉0 = Λ in the expression [· · · ]reg in
Eq. (2.6.25) we precisely obtain the quantity Oinst

h . We therefore obtain (see also Eq.
(2.6.8))∫

ηθ

zh tr Λh

[
R−1〈q〉R − 〈q〉0

]reg
=
∫
ηθ

[
zh(M) +

5
24πσxx

zh

]
Oinst

h . (2.6.27)

This is precisely the result that was obtained before, by fixing Q0 = Λ at the outset.
By the same token we write∫

ηθ

zh tr Λh [〈q〉0]reg =
∫
ηθ

zh(M)Oh(Λ) (2.6.28)

We have already seen that the quantity that appears in Eq. (2.6.27) differs from zh(M)
by a constant of order 1/σxx which is not of interest to us. The final expression for
δS′

inst can now be written in a more transparent fashion as follows

exp δS′
inst =

〈
exp

⎧⎪⎨⎪⎩Oh[Q0]
Oh[Λ]

∫
ηθ

zh(M)Oinst
h

⎫⎪⎬⎪⎭
〉

QO

, (2.6.29)

where instead of Eq. (2.6.26) we now write

〈X[Q0]〉Q0 =

∫
D[Q0] exp{

∫
ηθ

zh(M)Oh[Q0]}X[Q0]∫
D[Q0] exp{

∫
ηθ

zh(M)Oh[Q0]}
. (2.6.30)

In summary we can say that as long as one works with mass terms in curved space,
the rotational degrees of freedom are non-trivial and the integration over the global
matrix field Q0 has to be performed in accordance with Eq. (2.6.30). However, we are
ultimately interested in the theory in flat space which means that the integral over
the unit sphere

∫
dηdθ in Eq. (2.6.30) is going to be replaced by the integral over the

entire plane in flat space,
∫

dr. This then fixes the matrix variable Q0 in Eqs (2.6.29)
and (2.6.30) to its classical value Q0 = Λ. The final results are therefore the same as
those that are obtained by putting Q0 = Λ at the outset of the problem.
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2.7 Transformation from curved space to flat space

In this Section we embark on the various steps that are needed in order express the
final answer in quantities that are defined in flat space. As a first step we have undo the
transformation zi → ziµ

2(r) that was introduced in Section 2.4.2 (see Eq. (2.4.32)).
This means that the integrals over η, θ in the expression for S′

inst, Eq. (2.6.8), have
to be replaced as follows∫

dηdθOinst
i =

∫
drµ2(r)Oinst

i (r) →
∫

drOinst
i (r). (2.7.1)

The complete expression for the instanton contribution to the free energy is therefore
the same as Eq. (2.6.7) but with S′

inst now given by

S′
inst → − 2πσxx(M) ± iθ (2.7.2)

+
∫ ′

drzh(M)Oinst
h (r) (2.7.3)

+
∫ ′

drzs(M)Oinst
s (r) (2.7.4)

+
∫ ′

drza(M)Oinst
a (r). (2.7.5)

The “prime” on the integral signs reminds us of the fact that the mass terms still
formally display a logarithmic divergence in the infrared. However, from the discus-
sion on constrained instantons we know that a finite value of zi generally induces
an infrared cut-off on both the spatial integrals

∫
drOinst

i (r) and the integral over
scale sizes λ in the theory. Keeping this in mind, we can proceed and evaluate the
expressions for the physical observables of the theory, introduced in Section 2.2.4.

2.7.1 Physical observables

According to definitions in Section 2.2.4 we obtain the following results for the pa-
rameters σ′

xx and θ′ (see also Refs [20] and [21])

σ′
xx = σxx(M) − Dmn

∫ ′ dλ

λ
(2πσxx)m+n+2e−2πσxx(M) cos θ (2.7.6)

θ′

2π
=

θ

2π
− Dmn

∫ ′ dλ

λ
(2πσxx)m+n+2e−2πσxx(M) sin θ. (2.7.7)

Similarly we obtain the z′i parameters as follows

z′i = zi(M) + Dmn

∫ ′ dλ

λ
(2πσxx)m+ne−2πσxx(M) cos θ (2.7.8)

×zi(M)
(

mn

Oi[Λ]

∫ ′ dr
λ2

Oinst
i (r)

)
,
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where i = a, h and s. By using the results of Eqs (2.3.6) and (2.3.7), the expression
simplifies somewhat and can be written in a more general fashion as follows

z′i = zi(M) + πγ
(0)
i Dmn

∫ ′ dλ

λ
(2πσxx)m+ne−2πσxx(M) cos θ (2.7.9)

×zi(M)
∫ ′

dr
µ(r)
λ

.

The important feature of the results of this Section is that the non-perturbative
(instanton) contributions are all unambiguously expressed in terms of the perturbative
quantities σxx(M), θ and zi(M).

2.7.2 Transformation µ2(r)M → µ0

Next we wish to obtain the results in terms of a spatially flat momentum scale µ0,
rather than in the spatially varying quantity µ2(r)M which appears in the Pauli-
Villars regularization scheme. For this purpose we introduce the following renormal-
ization group counter terms

σxx(M) → σxx(M)
[
1 +

m + n

2πσxx
ln

µ(r)M
µ0

]
= σxx

[
1 − m + n

2πσxx
ln

µ0

µ(r)
eγ

]
= σxx(µ(r)), (2.7.10)

zi(M) → zi(M)

[
1 +

γ
(0)
i

σxx
ln

µ(r)M
µ0

]

= zi

[
1 − γ

(0)
i

σxx
ln

µ0

µ(r)
eγ−1/2

]
= zi(µ(r)). (2.7.11)

The expression for S′
inst now becomes

S′
inst → −

∫
drσxx(µ(r)) tr(∇Qinst(r))2 ± iθ (2.7.12)

+
∫ ′

drzh(µ(r))Oinst
h (r) (2.7.13)

+
∫ ′

drzs(µ(r))Oinst
s (r) (2.7.14)

+
∫ ′

drza(µ(r))Oinst
a (r). (2.7.15)

2.7.3 The β functions

Let us first evaluate Eq. (2.7.12) which can be written as∫
drσxx(µ(r)) tr(∇Qinst(r))2 =

∫
drµ2(r)σxx(µ(r)) = 2πσxx(ζλ), (2.7.16)
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where
σxx(ζλ) = σxx − m + n

2π
ln ζλµ0e

γ , ζ = e2/4. (2.7.17)

Notice that the expression for σxx(ζλ) can be simply obtained from σxx(M) by re-
placing the Pauli-Villars mass M according to

M → ζλµ0. (2.7.18)

We next wish to express the quantity σ′
xx(M) in a similar fashion. Write

σ′
xx(M) → σ′

xx(µ′(r)), (2.7.19)

σ′
xx(ζλ′) =

1
2π

∫
dr(µ′(r))2σ′

xx(µ′(r)). (2.7.20)

One can think of the µ′(r) = 2λ′/(r2 + λ′2) as being a background instanton with a
large scale size λ′. The expressions for σ′

xx and θ′ in flat space can now be written as
follows

σ′
xx(ζλ′) = σxx(ζλ′) − Dmn

∫ ′ dλ

λ
(2πσxx)m+n+2e−2πσxx(ζλ) cos θ, (2.7.21)

θ′(ζλ′)
2π

=
θ

2π
− Dmn

∫ ′ dλ

λ
(2πσxx)m+n+2e−2πσxx(ζλ) sin θ.(2.7.22)

In words, the scale size λ′ has identically the same meaning for the perturbative
and instanton contributions. Notice that σxx(ζλ′) is the same as Eq. (2.7.17) with
λ replaced by λ′. Next, introducing an arbitrary scale size λ0 we can write the
perturbative expression σxx(ζλ0) as follows

σxx(ζλ′) = σxx(ζλ0) −
m + n

2π
ln

λ′

λ0
= σxx(ζλ0) −

m + n

2π

∫ ′

λ0

dλ

λ
. (2.7.23)

On the basis of these results one obtains the following complete expressions for the
quantities σ′

xx and θ′

σ′
xx = σxx(ζλ0) −

∫ ′

ζλ0

d[ζλ]
ζλ

[
m + n

2π
+ Dmn(2πσxx)m+n+2e−2πσxx(ζλ) cos θ

]
,

θ′

2π
=

θ(ζλ0)
2π

−
∫ ′

ζλ0

d[ζλ]
ζλ

Dmn(2πσxx)m+n+2e−2πσxx(ζλ) sin θ. (2.7.24)

Several remarks are in order. First of all, we have made use of the well known fact
that the quantities σxx in the integral over scale sizes all acquire the same quantum
corrections and can be replaced by σxx(ζλ). Secondly, although the instanton con-
tributions are finite in the ultraviolet, they have nevertheless dramatic consequences
for the behavior of the system in the infrared. Equations (2.7.24) determine the
renormalization group β functions as follows

σ′
xx = σxx(ζλ0) −

∫ ′

ζλ0

d[ζλ]
ζλ

βσ(σxx(ζλ), θ(ζλ)), (2.7.25)

θ′

2π
=

θ(ζλ0)
2π

−
∫ ′

ζλ0

d[ζλ]
ζλ

βθ(σxx(ζλ), θ(ζλ)), (2.7.26)
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where

βσ(σxx, θ) = − dσxx

d ln λ
=

m + n

2π
+ Dmn(2πσxx)m+n+2e−2πσxx cos θ,

βθ(σxx, θ) = −d(θ/2π)
d ln λ

= Dmn(2πσxx)m+n+2e−2πσxx sin θ. (2.7.27)

These final results which generalize those obtained earlier, on the basis of perturbative
expansions (see Eq. (2.2.74)), are universal in the sense that they are independent
of the particular regularization scheme that is being used to define the renormalized
theory.

2.7.4 Negative anomalous dimension

Eqs (2.7.17), (2.7.18) and (2.7.20) provide a general prescription that should be used
to translate the parameters zi(M) and z′i(M) into the corresponding quantities zi(ζλ)
and z′i(ζλ′) in flat space. Analogous to Eqs (2.7.16) and (2.7.20) we introduce the
parameters zi and z′i associated with scale sizes λ and λ′ respectively as follows

zi(ζλ) =
1
2π

∫
drµ2(r)zi(µ(r)), (2.7.28)

z′i(ζλ′) =
1
2π

∫
dr(µ′(r))2z′i(µ

′(r)). (2.7.29)

Equation (2.7.28) implies that zi(ζλ) is related to zi(M) according to the prescription
of Eq. (2.7.18),

zi(ζλ) = zi

[
1 − γ

(0)
i

σxx
ln ζλµ0e

γ−1/2

]
. (2.7.30)

It is important to emphasize that the final expressions for zi(ζλ) and σxx(ζλ) are
consistent with those obtained in dimensional regularization. Next we make use of
Eqs (2.7.17), (2.7.28) and (2.7.29) and write the result for z′i, Eq. (2.7.9), as follows

z′i(ζλ′) = zi(ζλ′) + Dmn

∫ ′ dλ

λ
(2πσxx)m+ne−2πσxx(ζλ)Ai cos θ. (2.7.31)

The problem that remains is to find the appropriate expression for the quantity Ai

which is defined as

Ai = πγ
(0)
i

∫ ′
dr

µ(r)
λ

zi(µ(r)). (2.7.32)

Amplitude Ai

To evaluate Ai further it is convenient to introduce the quantity Mi(r) and write

Ai = −2π2γ
(0)
i zi(µ(0))

∫ µ(L′)

µ(0)

d[ln µ(r)]Mi(r), Mi(r) =
zi(µ(r))
zi(µ(0))

. (2.7.33)

In the language of the Heisenberg ferromagnet Mi(r) represents a spatially varying
spontaneous magnetization which is measured relative to the center |r| = 0 of the
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instanton. Notice that for small instanton sizes λ which are of interest to us, the
associated momentum scale µ(r) strongly varies from large values O(λ−1) at short
distances (|r| � λ) to small values O(λ/|r|2) at very large distances (|r| � λ).
Since a continuous symmetry cannot be spontaneously broken in two dimensions [95]
the results indicate that Mi(r) generally vanishes for large |r|. We therefore expect
the amplitude Ai to remain finite as L′ → ∞. This is quite unlike the theory at a
classical level where Ai diverges and one is forced to work with the idea of constrained
instantons.

Notice that the theory in the replica limit m = n = 0 is in many ways special. In
this case the anomalous dimension γi of mass terms can have an arbitrary sign which
means that Ma(r) can diverge as |r| increases. In what follows we shall first deal with
the problem of ordinary negative anomalous dimensions, including γi = 0. This is
then followed by an analysis of the special cases.

Details of computation

To simplify the discussion of the amplitude Ai we limit ourselves to the theory with
θ = 0, π such that βθ = 0 and βσ, γi are functions of σxx only,

γi(σxx, θ) → γi(σxx), βσ(σxx, θ) → βσ(σxx). (2.7.34)

Write

Mi(r) = exp
{
−
∫ ln µ(r)

ln µ(0)

d[lnµ]γi

}
, (2.7.35)

then the complete expression for Ai becomes

Ai = −2π2γ
(0)
i zi(µ(0))

∫ ln µ(L′)

ln µ(0)

d[ln µ(r)] exp
{
−
∫ ln µ(r)

ln µ(0)

d[ln µ]γi

}
. (2.7.36)

As a next step we change the integrals over ln µ into integrals over σxx and write

Ai = zi(µ(0))Hi(σxx(µ(0))), (2.7.37)

where

Hi = −2π2γ
(0)
i

∫ σxx(µ(L′))

σxx(µ(0))

dσxx

βσ(σxx)
exp
{
−
∫ σxx

σxx(µ(0))

dσ

βσ(σ)
γi(σ)

}
. (2.7.38)

The meaning of this result becomes more transparent if we write it in differential
form. Taking the derivative of Hi with respect to ln λ we find(

βσ(σxx(µ(0)))
d

dσxx(µ(0))
− γi(σxx(µ(0)))

)
Hi = 2π2γ

(0)
i (1 + Mi(L′)) . (2.7.39)

Since in general we have Mi(L′) → 0 for γ
(0)
i < 0 we can safely put L′ = ∞ from

now onward. At the same time one can solve Eq. (2.7.39) in the weak coupling limit
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λ → 0 where µ(0), σxx(µ(0)) → ∞. Under these circumstances it suffices to insert
for γi and βσ the perturbative expressions

γi(σxx) =
γ

(0)
i

σxx
+ O(σ−2

xx ), (2.7.40)

βσ(σxx) = β0 +
β1

σxx
+ O(σ−2

xx ), (2.7.41)

where
β0 =

m + n

2π
, β1 =

mn + 1
2π2

. (2.7.42)

The differential equation (2.7.39) becomes(
β0 +

β1

σxx(µ(0))

)
dHi

dσxx(µ(0))
− γ

(0)
i

σxx(µ(0))
Hi = 2π2γ

(0)
i . (2.7.43)

The special solution can be written as follows

H(1)
i =

2π2γ
(0)
i

β0 − γ
(0)
i

(
σxx(µ(0)) +

β1

γ
(0)
i

)
(2.7.44)

indicating that Hi can be written as a series expansion in powers of 1/σxx(µ(0)). The
special solution H(1)

i does not generally vanish when γ
(0)
i → 0, however. To obtain the

solution with the appropriate boundary conditions we need to solve the homogeneous
equation. The result is

H(0)
i = C

(
1 +

β0

β1
σxx(µ(0))

)γ
(0)
i /β0

. (2.7.45)

We obtain Hi = 0 for γ
(0)
i = 0 provided we choose

C = − 2π2γ
(0)
i

β0 − γ
(0)
i

β1

γ
(0)
i

. (2.7.46)

The desired result for Hi(σxx(µ(0))) therefore becomes

Hi =
2π2γ

(0)
i

β0 − γ
(0)
i

⎧⎨⎩σxx(µ(0)) +
β1

γ
(0)
i

⎡⎣1 −
(

1 +
β0

β1
σxx(µ(0))

)γ
(0)
i /β0

⎤⎦⎫⎬⎭ . (2.7.47)

As a final step we next express σxx(µ(0)) and zi(µ(0)) in terms of the flat space quan-
tities σxx(ζλ) and zi(ζλ) respectively. From the definitions of Eqs (2.7.10), (2.7.11),
(2.7.17), and (2.7.30), we obtain the following relations

σxx(µ(0)) = σxx(ζλ)
[
1 +

β0

σxx(ζλ)
ln 2ζ

]
,

zi(µ(0)) = zi(ζλ)

[
1 +

γ
(0)
i

σxx(ζλ)
ln 2ζ

]
. (2.7.48)
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For our purposes the correction terms O(σ−1
xx ) are unimportant and it suffices to

simply replace the σxx(µ(0)) and zi(µ(0)) by σxx(ζλ) and zi(ζλ) respectively in the
final expression for z′i,

z′i(ζλ′) = zi(ζλ′) + Dmn

∫ ′ dλ

λ
(2πσxx)m+nzi(ζλ)Hi(σxx(ζλ))e−2πσxx(ζλ) cos θ.

(2.7.49)
This result solves the problem stated at the outset which is to express the amplitude
Ai, Eq. (2.7.32), in terms of the quantities zi(ζλ) and σxx(ζλ), i.e.

Ai = zi(ζλ)Hi(ζλ) (2.7.50)

with the function Hi given by Eq. (2.7.47).

γi function

Introducing an arbitrary renormalization point λ0 as before one can write the pertur-
bative expression for zi(ζλ′), Eq. (2.7.30), as follows

zi(ζλ′) = zi(ζλ0) +
∫ ′

ζλ0

d[ζλ]
ζλ

γ
(0)
i

σxx(ζλ)
zi(ζλ), (2.7.51)

then Eq. (2.7.49) can be written in terms of the γi function as follows

z′i(ζλ′) = zi(ζλ0) +
∫ ′

ζλ0

d[ζλ]
ζλ

γi(σxx(ζλ), θ(ζλ))zi(ζλ), (2.7.52)

where the complete expression for γi equals

γi(σxx, θ) =
γ

(0)
i

σxx
+ Dmn(2πσxx)m+nHi(σxx)e−2πσxx cos θ, (2.7.53)

with

Hi(σxx) =
2π2γ

(0)
i

β0 − γ
(0)
i

⎧⎨⎩σxx +
β1

γ
(0)
i

⎡⎣1 −
(

1 +
β0

β1
σxx

)γ
(0)
i /β0

⎤⎦⎫⎬⎭ . (2.7.54)

This final expression generalizes the results obtained earlier, on the basis of pertur-
bative expansions (see Eq. (2.2.75)). Moreover, it demonstrates that the replica limit
can in general be taken, at least for all operators with γ

(0)
i � 0.

2.7.5 Free energy

For completeness we next discuss the part Sh of the free energy (2.7.4)

Sh =
∫ ′

drzh(µ(r))Oinst
h (r). (2.7.55)
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Notice that Sh can be expressed in terms of the amplitude Ah (see Eq. (2.7.50)),

Sh =
2λ2Ah

πγ
(0)
h

= 2λ2zh(ζλ)
Hh(ζλ)

πγ
(0)
h

. (2.7.56)

Although this result is correct for positive values of m and n, it does not give the right
result in the replica limit m = n = 0 where both γ

(0)
h and Hi go to zero. To obtain

the correct result for Hh(ζλ)/(πγ
(0)
h ) in this case we write Eq. (2.7.39) as follows(

βσ(σxx(µ(0)))
d

dσxx(µ(0))
− γh(σxx(µ(0)))

)[
Hh(ζλ)

πγ
(0)
h

]
= −2π (1 + Mh(L′)) .

(2.7.57)
In the limit where γh = 0 we have Mh(L′) = 1 and Eq.(2.7.57) becomes simply

d

d ln λ

Hh(ζλ)

πγ
(0)
h

= 4π. (2.7.58)

The result is given by
Hh(ζλ)

πγ
(0)
h

= 2π ln h̃2 + const (2.7.59)

and the expression for Sh becomes

Sh = 4πzhλ2
(
ln h̃2 + const

)
. (2.7.60)

This result can of course be obtained directly from Eq. (2.7.36) by substituting h−1

for L′. In this way we recover the result on the basis of constrained instantons, Section
2.3.2.

2.7.6 Positive anomalous dimension

In case the anomalous dimension of the za becomes positive (γ(0)
a > 0) we have to

follow a slightly different route. The quantity to consider in this case is ya = z−1
a

which has an ordinary negative anomalous dimension

y′
a = ya(M) − πγ(0)

a Dmn

∫ ′ dλ

λ
(2πσxx)m+ne−2πσxx(M) cos θ

∫ ′
dr

µ(r)
λ

. (2.7.61)

In fact, the analysis for the ya field proceeds along exactly the same lines as written
in the previous Section and the γ function is correctly given by Eq. (2.7.53). Since
the γa functions of the ya and za fields are identical except for a difference in the
overall sign, one can trivially obtain the final result for the za field from the known
expression for the ya field. This leads to the following generalization of Eq. (2.7.53)

γi =
γ

(0)
i

πσxx
+ Dmn(2πσxx)m+nH̃i(σxx)e−2πσxx cos θ, (2.7.62)
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where

H̃i =
2π2γ

(0)
i

β0 + |γ(0)
i |

⎡⎣σxx − β1

|γ(0)
i |

⎧⎨⎩1 −
(

1 +
β0

β1
σxx

)−|γ(0)
i |/β0

⎫⎬⎭
⎤⎦ . (2.7.63)

This final expression which holds for both positive and negative values of γ
(0)
i , includ-

ing γ
(0)
i = 0, is one of the main results of the present chapter. In the remainder of

this chapter we shall embark on the physical consequences of our results.

2.8 Summary of results

Since the theory with an ordinary integer number of field components m,n � 1 is
distinctly different from the one with 0 � m,n � 1 we next discuss the two cases
separately.

2.8.1 m,n � 1

In this case the results for the β and γ functions are essentially the same for all values
of m,n and consistent with the Mermin-Wagner-Coleman theorem which says that a
continuous symmetry cannot be spontaneously broken in two dimensions. [95] The γi

functions are all negative and the results can be written as

βσ =
m + n

2π
+

mn + 1
2π2σxx

+ Dmn(2πσxx)m+n+2e−2πσxx cos 2πσxy,

βθ = Dmn(2πσxx)m+n+2e−2πσxx sin 2πσxy,
(2.8.1)

γs,a = −m + n ± 1
πσxx

− 2π(m + n ± 1)
3(m + n) ± 2

Dmn(2πσxx)m+n+1e−2πσxx cos 2πσxy,

γh = −m + n

2πσxx
− π

2
Dmn(2πσxx)m+n+1e−2πσxx cos 2πσxy,

(2.8.2)
where we remind

Dmn =
4
πe

e−(m+n)(γ+3/2−ln 2)Γ−1(1 + m)Γ−1(1 + n). (2.8.3)

We see that along the θ = 0 line the instanton contributions ∝ e−2πσxx generally
reinforce the results obtained from ordinary perturbation theory. This means that
the instanton contribution generally tends to make the βσ function more positive and
the γi functions more negative. Therefore, upon decreasing the momentum scale - or
in the limit of large distances - the instantons enhance the flow of the system toward
the strong coupling phase or symmetric phase.

Notice that for θ = π the perturbative and non-perturbative contributions carry
an opposite sign indicating that the θ = π line displays infrared properties that are
generally different from those along θ = 0. The instanton contributions indicate that
the renormalization group flow is generally controlled by the weak coupling fixed point
located at σxx = ∞ and the strong coupling fixed points located at σxx = 0. The large
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Figure 2.8: The renormalization group flow diagram for different values of field com-
ponents n and m. (a) The results for large values n,m � 1. (b) The results for small
values n,m � 1.
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N expansion can be used as a stage setting for what happens in the strong coupling
symmetric phase. The results of Ref. [46] indicate that although the transition at
θ = π is a first order one, there is nevertheless a diverging length scale in the problem

ξ = ξ0|θ − π|−1/2, (2.8.4)

where the exponent 1/2 equals 1/D with D = 2 the dimension of the system. The
following scaling results have been found [46]

σxx(X,Y ) =
e−X

e−2X + 1 + 2Y e−X
Y, (2.8.5)

σxy(X,Y ) = k(νf ) +
1 + Y e−X

e−2X + 1 + 2Y e−X
, (2.8.6)

with

X =
L2

ξ2
0

|θ(νf ) − π| = ±
(

L

ξ

)2

, (2.8.7)

Y ∝ sinh X

X
exp
(
− L

ξM

)
. (2.8.8)

These scaling results are in many ways the same as those expected for second order
transitions and indicate that the θ vacuum generically displays all the fundamental
features of the quantum Hall effect.

Equations (2.8.5)-(2.8.8) are valid in the regime where L � ξM where ξM denotes
the correlation length that describes the cross-over between the weak coupling Gold-
stone singularities at short distances (described by Eqs (2.8.2)) and the quantum Hall
singularities (described by Eqs (2.8.5)-(2.8.8)) that generally occur at much larger
distances only. An overall sketch of the renormalization in the σxx, σxy conductivity
plane is given in Fig. 2.8a. We see that the infrared of the system is generally con-
trolled by the stable quantum Hall fixed points with σxy = k(νf ) and the unstable
fixed points located at σxy = k(νf )+1/2 that describe the singularities of the plateau
transitions.

2.8.2 0 � m,n � 1

Figure 2.8b illustrates how for small values of m and n the instanton contributions
to the β functions produce an infrared zero along the line θ = π with σxx = O(1).
This indicates that the transition at θ = π now becomes a true second order one. In
Fig. 2.9 we have plotted the lines in the m, n plane that separate the regimes of first
order and second order transitions.

To proceed we first address the replica limit m = n = 0 where the theory describes
the physics of the disordered electron gas. The results for the β and γ functions can
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Figure 2.9: Nature of the transition at σxy = k+1/2. The solid red line separates the
regions of the first and second order transitions as predicted by βσ, βθ, Eqs (2.8.2).
The dashed blue line is obtained by extending the perturbative contributions to βσ

to include the two-loop results.
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Figure 2.10: The plot of βσ, −dβθ/dσxy, γa and γs as functions of σxx at σxy = k+1/2.
Blue dot denotes the fixed point.

be summarized as follows

βσ =
1

2π2σxx
+

16π

e
σ2

xxe−2πσxx cos 2πσxy,

βθ =
16π

e
σ2

xxe−2πσxx sin 2πσxy,

γs = − 1
πσxx

− 8π

e
σxxe−2πσxx cos 2πσxy,

γa =
1

πσxx
+

8π

e
σxxe−2πσxx cos 2πσxy,

γh = 0.

(2.8.9)

Here we have extended the quantity βσ to include the perturbative results obtained
to two loop order.

We see that along the lines where σxy is an integer, the instanton contributions
generally enhance the tendency of the system toward Anderson localization. Like
the theory with large values of m and n, this means that the βσ function renders
more positive in the presence of instantons. Unlike the previous case, however, the γh

function is now identically zero whereas the γa function becomes manifestly positive.
As already mentioned earlier, these results are extremely important and dictated by
the physics of the problem.

When σxy is close to half-integer values the perturbative and non-perturbative
contributions generally carry the opposite sign. The critical infrared fixed point βσ =
0 at σ∗

xx ≈ 0.88 (Fig. 2.10) indicates that the electron gas de-localizes. Notice that
the situation is in many ways identical to the mobility edge problem in 2 + ε spatial
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dimensions except for the fact that the transition is now being approached from the
insulating side only.

The consequences of this fixed point for the physics of the electron gas can be
summarized as follows.

1. Localization length. Introducing the quantities

∆θ = σ0
xy − k(ν∗

f ) − 1
2

= νf − ν∗
f , ∆σ = σ0

xx − σ∗
xx (2.8.10)

which denote the linear environment of the critical fixed point then the divergent
localization length ξ of the electron gas can be expressed as

ξ = ξ0|∆θ|−ν . (2.8.11)

Here, ξ0 is an arbitrary length scale determined by the microscopics of the electron
gas and the localization length exponent ν is obtained as

ν = −
[(

dβθ

dσxy

)∗]−1

≈ 2.8. (2.8.12)

2. Transport parameters. Next, the ensemble averaged transport parameters of
the electron gas can be written as regular functions of two scaling variables X and Y
(see Ref. [22])

σxx = σxx(X,Y ), σxy = σxy(X,Y ), (2.8.13)

where

X =
(

L

ξ0

)yθ

∆θ, Y =
(

L

ξ0

)yσ

∆σ (2.8.14)

with

yθ = ν−1 ≈ 0.36, yσ = −
(

dβσ

dσxx

)∗
≈ −0.17. (2.8.15)

Besides the aforementioned results obtained from the large N expansions there exists,
until to date, no knowledge on the explicit form of the scaling functions. Nevertheless,
there indications which tell us that the functions σxx(X,Y ) and σxy(X,Y ) are, in fact,
very similar for all the cases of interest. For example, recent experiments on quantum
criticality in the quantum Hall regime have shown that the scaling functions for the
true, interacting electron gas are given by [53]

σxx(X,Y ) =
e−X

e−2X + 1 + 2Y e−X
, (2.8.16)

σxy(X,Y ) = k(νf ) +
1 + Y e−X

e−2X + 1 + 2Y e−X
. (2.8.17)

Notice that these results are strikingly similar to those obtained from the large N
expansion, in spite of the fact that the two systems in question are physically totally
different. Both systems are realizations of an instanton vacuum, however. The results
therefore indicate that the list of super universal features of the theory is likely to be
extended to include the actual form of the scaling functions σxx(X,Y ) and σxy(X,Y ).
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3. Inverse participation ratio. The electronic wave functions ΨE(r) near the Fermi
energy E define a quantity

P (2) =
〈∫

dr|ΨE(r)|4
〉
, (2.8.18)

which is called the inverse participation ratio. Here, the brackets denote the average
with respect to the impurity ensemble. P (2) is a measure for the inverse of the volume
that is taken by these electronic levels. It is expected to be zero for extended states
and finite for localized states. Hence, this quantity can be used as an alternative
probe for Anderson localization. In the language of the non-linear sigma model we
can expressed this quantity in terms of the antisymmetric operator Oa according to

P (2) ∝
〈
zhOa(Q)

〉
zh→0

= ξ−D2f2

(
zhξd,∆σξyσ

)
|zh→0. (2.8.19)

Here the expectation is with respect to the non-linear sigma model in the presence of
the operator Oh. The exponent D2 equals

D2 = D − γ∗
a ≈ 1.67 (2.8.20)

with D = 2 denoting the dimension of the system. It is interesting to remark that
the numerical value of D2 is largely determined by the perturbative contribution to
γa, the instanton part merely contributing an amount of roughly three percent.

4. Multifractality. Following Wegner [74] the generalized inverse participation
ratio is defined as follows

P (q) =
〈∫

dr|ΨE(r)|2q
〉
. (2.8.21)

The mapping of P (q) onto the non-linear sigma model now involves composite oper-
ators with q matrix field variables Q. On the basis of this mapping one expects a
scaling behavior of the form

P (q) ∝ ξ−(q−1)Dqfq(zhξd,∆σξyσ ). (2.8.22)

The generalized dimension Dq can be written in terms of the anomalous dimension
γq of the composite operators according to

Dq = D −
γ∗

q

q − 1
. (2.8.23)

The following perturbative expression is known [96]

γq =
q(q − 1)
2πσxx

+ O(σ−2
xx ). (2.8.24)

Based on our results, Eqs (2.7.62) and (2.7.63), we ready generalize the expression
for γq to include the effect of instantons. We obtain

γq =
q(q − 1)
2πσxx

− 8π

e
σxxB

(
πσxxq(q − 1)

)
e−2πσxx , (2.8.25)
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where function B(x) is obtained from the β0 → 0 limit of the H̃(σxx) function and is
equal to

B(x) = 1 − 1 − e−x

x
. (2.8.26)

The validity of Eq. (2.8.25) is likely to be limited to the case of small values of q only,
presumably q � 10. This is so because the higher order terms in the perturbative
series for γq are rapidly increasing with increasing values of q. [96] The result for Dq

becomes

Dq = D − q

2
γ∗

a

[
1 − γ∗

a

2q(q − 1)
B

(
q(q − 1)

γ∗
a

)]
,

where γ∗
a = 1/πσ∗

xx ≈ 0.36. An important feature of these results is that γ∗
q → 0 or

Dq → D as q approaches zero. This property permits one to express the multifractal
properties of generalized inverse participation ratios in terms of the f(α) singularity
spectrum as follows. Introducing the variable

αq = Dq − (q − 1)
dDq

dq
(2.8.27)

then f(αq) is given by
f(αq) = qαq − (q − 1)Dq. (2.8.28)

To proceed let us first consider the perturbative contributions to the generalized
dimension Dq, Eqs (2.8.23) and (2.8.24). The result can be cast in the familiar form

f(α) = D − (α − α0)2

4(α0 − D)
, (2.8.29)

where
α0 = D +

1
2
γ∗

a. (2.8.30)

The result of Eq. (2.8.29) generally describes the f(α) singularity spectrum near
its maximum value at α = α0 only. Next, by taking into account the effects from
instantons (see Eq. (2.8.25)) we find that the expression of Eq. (2.8.30) is only slightly
modified in that the quantity α0 is now given by

α0 = D +
3
8
γ∗

a. (2.8.31)

Whereas Eq. (2.8.30) leads to a numerical value α0 = 2.18, Eq. (2.8.31) gives
α0 = 2.14. Again we find that the instanton contribution is numerically a small
fraction of the final answer. We attribute important significance to these results since
they are an integral part of the final conclusion of this chapter which says that the
quantum critical aspects of the electron gas are within the range of weak coupling
expansion techniques.

As a final remark it should be mentioned that the tails of the f(α) singularity
spectrum, which are generally controlled by the Dq with large values of q, is beyond
the scope of the present analysis.
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Table 2.3: The critical and multifractal exponents for the noninteracting electrons.
Exponent Instantons Numerical results

2.5 ± 0.5 [76], 2.34 ± 0.04 [77]
ν 2.8 ± 0.4 2.3 ± 0.08 [78], 2.4 ± 0.1 [79]

2.2 ± 0.1 [80], 2.43 ± 0.18 [81]

yσ −0.17 ± 0.02 −0.38 ± 0.04 [88], −0.4 ± 0.1 [89]

D2 1.67 ± 0.03 1.62 ± 0.04 [82], 1.62 ± 0.02 [83]
1.40 ± 0.02 [85]

α0 2.14 ± 0.02 2.30 ± 0.07 [86], 2.29 ± 0.02 [87]
2.260 ± 0.003 [89]

2.8.3 Comparison with numerical work

In Table 2.3 we compare our results for the critical indices ν, yσ, D2 and α0 with
those extracted from numerical simulations on the electron gas. The agreement is in
many respects spectacular, indicating that our instanton analysis captures some of
the most essential and detailed physics of the problem.

The study of the multifractal aspects of the problem - as done in the previous
Section - already indicates that higher order instanton effects are numerically of minor
importance. To generally understand why the effects of multi-instanton configurations
do not carry much weight, however, one might argue that the very existence of the
critical fixed point at σxx = σ∗

xx and σxy = k(νf ) + 1/2 implies that the corrections
due to multi-instantons typically involve factors like e−4πσ∗

xx which are negligible as
compared to the leading order result e−2πσ∗

xx . To specify the thought we introduce
the quantity

ε =
16π

e
σxxe−2πσxx . (2.8.32)

In the neighborhood of the lines σxy = k(νf ) + 1/2 the renormalization group func-
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Figure 2.11: The dependence of ε on the σxx for the model of free electrons m = n = 0.

tions (2.8.9) can then be written in the form of an ordinary ε-expansion

βσ = −εσxx +
1

2π2σxx
+ [[βσ]] , (2.8.33)

dβθ

dσxy
= −2πεσxx +

[[
dβθ

dσxy

]]
, (2.8.34)

γs =
ε

2
− 1

πσxx
+ [[γs]] , (2.8.35)

γa = − ε

2
+

1
πσxx

+ [[γa]] , (2.8.36)

γh = 0. (2.8.37)

The brackets [[· · · ]] in the β and γ functions generally stand for the higher order terms
that contain the more complex contributions from the multi-instanton configurations.
It is clear, however, that in order for the one-instanton approach to be successful the
parameter ε must be a small quantity. By the same token, the expressions [[· · · ]]
should be well approximated by inserting the leading order corrections as obtained
from ordinary perturbative expansions [57]

[[βσ]] =
3

8π4σ3
xx

+ · · · , (2.8.38)[[
dβθ

dσxy

]]
= 0, (2.8.39)
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(a)

(b)

Figure 2.12: The dependence of the critical point g∗ = 1/πσ∗
xx from ε. (a) The model

of free electrons, m = n = 0. (b) The model with m = n = 0.3.
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and [96]

[[γs]] = −3(1 + c)
8π3σ3

xx

+ · · · , (2.8.40)

[[γa]] =
3

8π3σ3
xx

+ · · · . (2.8.41)

Here, the constant c has not yet been computed explicitly. The critical fixed point
can then be obtained formally as an expansion in powers of ε,

(πσ∗
xx)−2 = 2ε

(
1 − 3

2
ε

)
. (2.8.42)

Similarly, the critical indices can be obtained as

yθ =
√

2ε
(
1 +

3
4
ε
)
,

yσ = −
√

2ε
(
1 − 3

2

√
2ε + ε

)
,

γ∗
s = −

√
2ε
(
1 − 1

4

√
2ε +

3c

4
ε
)
,

γ∗
a =

√
2ε
(
1 − 1

4

√
2ε

)
,

γ∗
h = 0 .

(2.8.43)

A simple computation next tells us that at the fixed point σ∗
xx the parameter ε

equals ε ≈ 0.07 which is indeed a “small” quantity in every respect. In Fig. 2.11 we
have plotted the curve ε with varying values of σxx according to Eq. (2.8.32). We see
that the fixed point values σ∗

xx and ε∗ are located well inside the “exponential tail”
region where the curve is dominated by the instanton factors e−2πσxx . In Fig. 2.12(a)
we have plotted the critical value g2

∗ = (πσ∗
xx)−2 with varying values of ε in two-

loop approximation where the correction term [[βσ]] in βσ (see Eqs (2.8.33)) has been
dropped, as well as in four-loop approximation where this term is retained. The
results clearly indicate that the theory with m = n = 0 lies well inside the regime of
validity of the weak coupling expansions as considered in this chapter.

Finally, we have used the highest order correction terms in the series of Eq. (2.8.43)
as an estimate for the uncertainty in the exponent values based on instantons (see
Table 2.3).

2.8.4 Continuously varying exponents and a conjecture

The critical behavior at θ = π changes continuously as the value of m and n increases.
In Figs 2.13 and 2.14 we plot our instanton results for the exponents ν and yσ in the
interval 0 � m = n � 0.3. In Fig. 2.15 the results are presented for the three different
exponents γ∗

i with varying m = n. Of interest is the critical end-point m = n ≈ 0.3
or, more generally, the boarder line in the m,n plane that separates the regimes of
second order and first order phase transitions (Fig. 2.9). From the mechanism by
which the critical fixed point in βσ is generated (see Fig. 2.8) it is clear that the
boarding line is defined by the points m,n where the exponent yσ renders marginal.
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Figure 2.13: The correlation length exponent ν with varying values of 0 � m = n � 1.
For comparison we have plotted the value ν = 2/3 which is known to be the exact
result for m = n = 1, see text.

Figure 2.14: The irrelevant exponent yσ with varying values of 0 � m = n � 1, see
text.
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Figure 2.15: The anomalous dimension γ∗
s , γ∗

a and γ∗
h with varying values of 0 � m =

n � 1, see text.

Along this line the expansion of the β functions about the fixed point values σ∗
xx and

σ∗
xy = k(νf ) + 1/2 can be written as follows

βσ = −α2 (σxx − σ∗
xx)2 (2.8.44)

βθ = −ν−1

(
σxy − k(νf ) − 1

2

)
.

Here, ν equals the correlation length exponent and α2 is a positive constant. Notice
that the variable σxx−σ∗

xx > 0 scales to zero in the infrared and, hence, this quantity
is marginally irrelevant. On the other hand, the variable σxx − σ∗

xx < 0 increases
with increasing length scales and this quantity is therefore marginally relevant. A
characteristic feature of marginally relevant/irrelevant scaling variables is that the
critical correlation functions of the system are no longer given by simple power laws
but, rather, they acquire logarithmic corrections.

The problem, however, is that the exact location of this line in the m,n plane
is beyond the scope of the present analysis. It is easy to see, for example, that the
quantity ε (Eq. 2.8.32), unlike the theory with m = n = 0, cannot be considered as a
“small” parameter when the values of m and n increase. For illustration we compare
in Fig. 2.12 the critical fixed point g∗ = 1/πσ∗

xx with varying values of ε for two
different values of m = n. Whereas the theory with m = n = 0 lies well inside the
range of validity of the “ε expansion”, this is no longer the case when m = n ≈ 0.3. At
the same time, the expansion is no longer controlled by the exponential tails e−2πσxx

when the values of m and n increase. All this indicates that the exact location of the
critical boarding line in the m,n plane necessarily involves a detailed knowledge of
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multi-instanton effects.
In spite of these and other complications, however, there are very good reasons

to believe that our instanton results display all the qualitative features of quantum
criticality in the theory with small m,n. It is well known, for example, that the
O(3) model at θ = π exhibits a second order phase transition. Since the (algebraic)
correlation functions turn out to have logarithmic corrections in this case [97] it is
natural to associate the point m = n = 1 with the aforementioned boarder line in the
m,n plane. This means that the regime of second order phase transitions actually
spans the interval 0 � m = n � 1 in Figs 2.13 - 2.15, rather than 0 � m = n � 0.3 as
predicted by our instanton analysis. At the same time one expects the global phase
diagram (Fig. 2.9) to be slightly modified and replaced by Fig. 2.3 in the exact
theory.

2.9 Conclusions

The results of this chapter are an integral part of the general statement which says
the physics of the quantum Hall effect is a super universal strong coupling feature
of the topological concept of an instanton vacuum in asymptotically free field the-
ory. We have shown that the instanton gas unequivocally describes the cross-over
between the Goldstone phase where perturbation theory applies and the completely
non-perturbative regime of the quantum Hall effect that generally appears in the limit
of much larger distances only.

As a major technical advance we have obtained not only the non-perturbative β
functions of the theory but also the anomalous dimension or γ function associated
with mass terms. Amongst many other things, the results of this chapter lay the
foundation for a non-perturbative analysis of the electron gas that includes the effects
of electron-electron interactions.

Whereas the theory with finite m,n > 1 has been discussed in detail in Ref. [46],
on the basis of the large N expansion, the main objective of the present analysis has
been the theory with 0 � m,n � 1. In this case one expects a second order phase
transition at θ = π that is characterized by a finite value of σ∗

xx as well as continuously
varying exponents. Although much of the global phase structure of the theory was
either known or anticipated in previous papers on the subject [20, 21, 46], we shall
show that the technical advances made in this chapter are nevertheless extremely
important. The main difference with the previous situation is that certain ambiguities
in the theory have been removed, notably the definition of the β functions. Moreover,
by extending the theory to include the renormalization group γ functions we have not
only resolved some of the outstanding problems in the instanton methodology, but
also facilitated detailed comparisons between the predictions of the theory on the one
hand, and the data known from numerical experiments on the free electron gas on
the other.

We have seen that the results of the theory with m = n = 0 agree remarkably well
with the exponent values extracted from numerical simulations (Table 2.3). Notice
that this is the first time - ever since the θ parameter was introduced in the theory of
the quantum Hall effect by one of us - that accurate estimates for the critical indices of
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the plateau transitions have been obtained analytically. The advances reported in this
chapter are obviously important since they teach us something fundamental about the
strong coupling problems in QCD where the algebra is the same, but experiments are
impossible.

2.A Computation of the matrix elements

For the computations of the quantum fluctuations for the mass terms Oi we have
used different matrix elements between the eigenfunctions of the O(a) operators. Let
us define matrix elements of a function f(η, θ) as

(a)

〈
J,M |f(η, θ)|M ′

, J
′〉

(b)
=
∫

dηdθ Φ(a)
J,M (η, θ)f(η, θ)Φ̄(b)

J ′ ,M ′ (η, θ), (2.A.1)

where a, b = 0, 1, 2. By using the following relation for the Jacobi polynomials [98]

(2n + α + β)P (α−1,β)
n (x) = (n + α + β)P (α,β)

n (x) − (n + β)P (α,β)
n (x), (2.A.2)

and the normalization condition [98]
1∫

−1

dx(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)

= δn,m2α+β+1 Γ(α + n + 1)Γ(β + n + 1)
(α + β + 2n + 1)Γ(n + 1)Γ(α + β + n + 1)

(2.A.3)

we shall find the following results for different matrix elements. For e0 and e1 functions
we obtain

(0) 〈J,M |e∗1|M − 1, J〉(1) =
1√
2

√
J + M

2J + 1
, (2.A.4)

(0) 〈J,M |e∗1|M − 1, J + 1〉(1) =
1√
2

√
J − M + 1

2J + 1
, (2.A.5)

(0) 〈J,M |e0|M,J〉(1) = − 1√
2

√
J − M

2J + 1
, (2.A.6)

(0) 〈J,M |e0|M,J + 1〉(1) =
1√
2

√
J + M + 1

2J + 1
. (2.A.7)

The matrix elements of e2
0 are as follows

(1)

〈
J,M |e2

0|M,J − 1
〉
(1)

= −
√

(J − M − 1)(J + M)
2(2J − 1)

, (2.A.8)

(1)

〈
J,M |e2

0|M,J
〉
(1)

=
1
2

[
1 +

2M + 1
4J2 − 1

]
, (2.A.9)

(1)

〈
J,M |e2

0|M,J + 1
〉
(1)

= −
√

(J + M + 1)(J − M)
2(2J + 1)

, (2.A.10)

(2)

〈
J,M |e2

0|M,J
〉
(2)

=
1
2

M + 1
J(J + 1)

. (2.A.11)
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The matrix elements of the e0e1 function are given as

(1) 〈J,M − 1|e0e1|M,J − 1〉(1) =

√
(J − M)(J − M − 1)

2(2J − 1)
,

(1) 〈J,M − 1|e0e1|M,J〉(1) =

√
(J − M)(J + M + 1)

4J2 − 1
,

(1) 〈J,M − 1|e0e1|M,J + 1〉(1) =

√
(J + M)(J + M + 1)

2(−2J − 1)
, (2.A.12)

(0) 〈J,M |e0e
∗
1|M − 1, J − 1〉(0) =

√
(J + M − 1)(J + M)

4(2J − 1)(2J + 1)
,

(0) 〈J,M + 1|e0e
∗
1|M,J + 1〉(0) = −

√
(J − M)(J − M + 1)

4(2J + 1)(2J + 3)
.

Finally, we find the matrix elements of the e4
0 function

(2)

〈
J,M |e4

0|M,J
〉
(2)

=
(M + 1)(3M − J(J + 1)(M − 3)) − J2(J + 1)2

2J(J + 1)(2J − 1)(2J + 3)
. (2.A.13)

We have used the following results for the summation over M

J−1∑
M=−J

(1)

〈
J,M |e2

0|M,J
〉
(1)

=
2J

2
, (2.A.14)

J−1∑
M=−J−1

(2)

〈
J,M |e2

0|M,J
〉
(2)

=
2J + 1

2
, (2.A.15)

J−1∑
M=−J−1

(2)

〈
J,M |e4

0|M,J
〉
(2)

=
2J + 1

3
, (2.A.16)

and

J−1∑
M=−J

(1)

〈
J,M |e2

0|e1|2|M,J
〉
(1)

=
J

3
, (2.A.17)

J−1∑
M=−J−1

(2)

〈
J,M |e2

0|e1|2|M,J
〉
(2)

=
2J + 1

6
. (2.A.18)

2.B Renormalization around the trivial vacuum
with the help of Pauli-Villars procedure

The σxx renormalization

In order to find the renormalization of the σxx conductivity we should compute the
average in Eq. (2.2.41). Using the parameterization Q = T−1

0 qT0 with the global
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unitary matrix T0 ∈ U(m) × U(n) and expanding the q to the second order in w, we
obtain

σ′
xx = σxx +

σ2
xx

16mn

∫
dr∇2

m∑
α,γ=1

n∑
β,δ=1

[
〈vαβ(r)v†δα(r′)〉0〈vγδ(r′)v†βγ(r)〉0

+〈vαβ(r)v†βγ(r′)〉0〈vγδ(r′)v†δα(r)〉0
]
, (2.B.1)

where a point r′ can be chosen arbitrary since the averages are depend only on the
difference of the coordinates. Now by going from (x, y) to (η, θ) coordinates and
performing the averages, we find

σ′
xx = σxx − 2πβ0

∫
ηθ

O(0)G0(ηθ; η′θ′)G0(η′θ′; ηθ). (2.B.2)

Integrating over η, θ and introducing the Pauli-Villars masses as above, we leads to
the following result

σ′
xx = σxx − 2πβ0

⎡⎣∑
J=1

1

E
(0)
J

+
K∑

f=1

êf

∑
J=0

E
(0)
J

(E(0)
J + M2

f )2

⎤⎦
×

J∑
M=−J

Φ(0)
JM (η′, θ′)Φ̄(0)

JM (η′, θ′). (2.B.3)

It is worth mentioning that the Jacobi polynomial PM,M
J−M (η) is proportional to the

Gegenbauer polynomial C
M+1/2
J−M (η). By using the summation theorem [98]

Cλ
J (cos φ cos φ′ + z sinφ sin φ′) =

Γ(2λ − 1)
Γ2(λ)

J∑
M=0

22MΓ(J − M + 1)
Γ(J + M + 2λ)

Γ2(M + λ)

×(2M + 2λ − 1) sinM φ sinM φ′CM+λ
J−M (cos φ)CM+λ

J−M (cos φ′)Cλ−1/2
M (z) (2.B.4)

with z = 1 and λ = 1/2, we find that the projection operator

J∑
M=−J

Φ(0)
JM (cos φ, θ)Φ̄(0)

JM (cos φ′, θ) =
2J + 1

4π
C

1/2
J (cos(φ − φ′)) . (2.B.5)

Since C
1/2
J (1) = 1, we obtain

σ′
xx = σxx − β0

2
lim

Λ→∞

[
Λ∑

J=3/2

2J(J2 − 1
4 )

(J2 − 1
4 )2

+
K∑

f=1

êf

Λ∑
J=1/2

2J(J2 − 1
4 )

(J2 − 1
4 + M2

f )2

]
. (2.B.6)

Finally, evaluation of the sums above yields

σ′
xx = σxx − β0

2

(
Y (0)

reg + 1
)

= σxx

(
1 − β0

σxx
lnMeγ

)
. (2.B.7)



The zi renormalization

The renormalized quantities z′i with i = a, s, h are defined by Eqs (2.2.47). Using the
parameterization Q = T−1

0 qT0 with the global unitary matrix T0 ∈ U(m)×U(n) and
expanding q to the second order in w, we find

z′i = zi

⎛⎝1 +
γ

(0)
i π

2mn

m∑
α=1

n∑
β=1

〈vαβv†βα〉0

⎞⎠ . (2.B.8)

Here the average 〈· · · 〉0 is defined with the respect to the action δS
(0)
σ . The averages

yield

z′i = zi

(
1 +

2πγ
(0)
i

σxx
G0(ηθ; ηθ)

)
. (2.B.9)

By using Eq.(2.B.5), we find

z′i = zi

(
1 +

γ
(0)
i

2σxx
Y (0)

reg

)
. (2.B.10)

We finally obtain

z′i = zi

(
1 +

γ
(0)
i

σxx
lnMeγ−1/2

)
. (2.B.11)



Chapter 3

Non-Fermi liquid theory for
disordered metals near two
dimensions

3.1 Introduction

The integral quantum Hall regime has traditionally been viewed as a (nearly) free par-
ticle localization problem with interactions playing only a minor role. [1] Although it is
well known that many features of the experimental data, taken from low mobility het-
erostructures, [99] can be explained as the behavior of free particles, a much sharper
formulation of the problem is obtained by considering the quantum Hall plateau tran-
sitions. [22] Following the experimental work by H.P Wei et al., [23] these transitions
behave in all respects like a disorder driven metal-insulator transition that is charac-
terized by two independent critical indices, i.e. a localization length exponent ν and
a phase breaking length exponent p. [22] Whereas transport measurements usually
provide an experimental value of only the ratio κ = p/2ν, it is generally not known
how the values of ν and p can be extracted separately.

In spite of the fact that one can not proceed without having a microscopic theory
of electron-electron interaction effects, there is nevertheless a strong empirical believe
in the literature [100, 101, 102, 103, 104, 105] which says that the zero temperature
localization length exponent ν is given precisely by the free electron value ν = 2.3 as
obtained from numerical simulations. [77] The experimental situation has not been
sufficiently well understood, [53, 63, 64, 65] however, to justify the bold assumption
of Fermi liquid behavior. In fact, the progress that has been made over the last few
years in the theory of localization and interaction effects clearly indicates that Fermi
liquid principles do not exist in general. The Coulomb interaction problem lies in a
different universality class of transport phenomena [31] with a previously unrecognized
symmetry, called F invariance. [32, 33, 34, 35] The theory relies in many ways on the
approach as initiated by Finkelstein [30] and adapted to the case of the spin polarized
or spinless electrons. [31] By reconciling the Finkelstein theory with the topological
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concept of an instanton vacuum [19] and the Chern Simons statistical gauge fields, [68]
the foundations have been laid for a complete renormalization theory that unifies the
quantum theory of metals with that of the abelian quantum Hall states. [32, 33, 34, 35]

3.1.1 A historical problem

The unification of the integral and fractional quantum Hall regimes is based on the
assumption that Finkelstein approach [30, 31] is renormalizable and generates a strong
coupling, insulating phase with a massgap. However, the traditional analyses of the
Finkelstein theory have actually not provided any guarantee that this is indeed so.

In spite of Finkelstein’s pioneering and deep contributions to the field, it is well
known that the conventional momentum shell renormalization schemes do not facil-
itate any computations of the quantum theory beyond one loop order. At the same
time, application of the more advanced technique of dimensional regularization has
led to conceptual difficulties with such aspects like dynamical scaling. [60] One can
therefore not rule out the possibility that there are complications, either in the idea of
renormalizability, or in other aspects of the theory such as the Matsubara frequency
technique.

Nothing much has been clarified, however, by repeating similar kinds of analysis
in a different formalism, like the Keldysh technique. [61, 62] What has been lacking
all along is the understanding of a fundamental principle that has prevented the
Finkelstein approach from becoming a fully fledged field theory for localization and
interaction effects.

3.1.2 F invariance

In Ref. [32] it has been shown that the Finkelstein action has an exact symmetry (F
invariance) that is intimately related to the electrodynamic U(1) gauge invariance of
the theory. F invariance is the basic mechanism that protects the renormalization of
the problem with infinitely ranged interaction potentials such as the Coulomb poten-
tial. Moreover, it has turned out that the infrared behavior of physical observables
can only be extracted from F invariant quantities and correlations, and these include
the linear response to external potentials. Arbitrary renormalization group schemes
break the F invariance of the action and this generally complicates the attempt to
obtain the temperature and/or frequency dependence of physical quantities such as
the conductivity and specific heat.

Quantum Hall physics is in many ways a unique laboratory for investigating and
exploring the various different consequences of F invariance. For example, one of
the longstanding questions in the field is whether and how the theory dynamically
generates the exact quantization of the Hall conductance. As we mention in the
previous chapter, the important progress has been made recently by demonstrating
that the instanton vacuum, on the strong coupling side of the problem, generally
displays massless excitations at the edge of the system. [46] These massless edge
excitations are identical to those described by the more familiar theory of chiral edge
bosons. [34] The theory of massless edge excitations implies that the concept of F
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invariance retains its fundamental significance all the way down to the regime of
strong coupling.

3.1.3 Outline of this chapter

In this paper we put the concept of F invariance at work and evaluate the renormal-
ization behavior of the Finkelstein theory at a two loop level. As shown in Ref. [33],
the technique of dimensional regularization is a unique procedure, not only for the
computation of critical indices, but also for extracting the dynamical scaling func-
tions. In fact, the metal-insulator transition in 2 + ε spatial dimensions is the only
place in the theory where the temperature and/or frequency dependence of physical
observables can be obtained explicitly. This motivates us to further investigate the
problem in 2 + ε dimensions and use it as a stage setting for the much more complex
problem of the quantum Hall plateau transitions that we consider in the next chapter.

The final results of this chapter are remarkably similar to those of the more famil-
iar classical Heisenberg ferromagnet. [92] For example, unlike the free electron gas,
the Coulomb interaction problem displays a conventional phase transition (metal-
insulator transition) in 2 + ε dimensions with an ordinary order parameter. The
theory is therefore quite different from that of free electrons which has a different
dimensionality and displays, as is well known, [96] anomalous or multifractal density
fluctuations near criticality (see Section 2.8.2).

It is important to bear in mind, however, that the analogy with the Heisenberg
model is rather formal and it fails on many other fronts. For example, the classifica-
tion of critical operators is very different from what we used in the previous chapter
for generalized CPN−1 models (ordinary sigma models). Moreover, the Feynman
diagrams of the Finkelstein theory are more complex, involving internal frequency
sums which indicate that the theory effectively exists in 2 + 1 space-time dimensions,
rather than in two spatial dimensions alone. The complexity of F invariant systems
is furthermore illustrated by the lack of such principles like Griffith analyticity that
facilitates a discussion of the symmetric phase in conventional sigma models. [107, 43]
The dynamics of the strong coupling insulating phase of the electron gas is distinctly
different from that of the Goldstone (metallic) phase and controlled by different op-
erators in the theory. [108]

This chapter is organized as follows. After introducing the formalism (Section 3.2)
we embark on the details of the two loop contributions to the conductivity in Sec-
tion 3.4. We employ an F-invariance-breaking parameter α to regularize the infinite
sums over frequency. This methodology actually provides numerous self consistency
checks and a major part of the computation consists of finding the ways in which
the various singular contributions in α cancel each other. The actual computation of
the diagrams is described in the Appendices which contain the list of the momentum
and frequency integrals that are used in the main text of this chapter. In tables 3.1
and 3.2 we summarize how the different singular contributions in α cancel each other.
Table 3.3 lists the various finite contributions to the pole term in ε. The final result
for the β function is given by Eqs (3.4.30) - (3.4.34). In Section 3.5 we summarize
the consequences for scaling and present the renormalization group flow diagram in
2 + ε dimensions in Section 3.6. We end this chapter with a conclusion (Section 3.7).
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3.2 Effective parameters

3.2.1 The action

The generalized replica non-linear sigma model involves unitary matrix field variables
Qαβ

nm(r) that obey the following constraints

Q = Q†, trQ = 0, Q2 = 1. (3.2.1)

The superscripts α, β = 1, · · · , Nr represent the replica indices and the subscripts
n,m are the indices of the Matsubara frequencies ωk = πT (2k + 1) with k = n,m. A
convenient representation in terms of unitary matrices T (r) is obtained by writing

Q(r) = T −1(r)ΛT (r), Λαβ
nm = sign(ωn)δαβδnm. (3.2.2)

The effective action for the two-dimensional interacting electron gas in the presence
of disorder and an external vector potential A can be written as follows [32]

Z =
∫

D[Q] exp S, S = Sσ + SF + Sh. (3.2.3)

Here, Sσ is the free electron action

Sσ[Q,A] = −σxx

8

∫
dr tr[D, Q]2. (3.2.4)

We remind that the quantity σxx represents the meanfield values for the dissipative
conductance in units e2/h respectively. The D is covariant derivative

D = ∇− iÂ, (3.2.5)

with
Â =

∑
α,n

Aα
nIα

n , (3.2.6)

and Aα
n is the Fourier transform of the homogeneous external vector potential Aα(τ)

from imaginary time τ , Aα(τ) =
∑

n Aα(νn) exp(−iνnτ). Here νn = 2πTn is the
Matsubara frequency with T being the temperature. Matrix

(Iα
n )βγ

km = δαβδαγδk,n+m (3.2.7)

is the Matsubara representation of the U(1) generator exp(−iνnτ).
Next, SF contains the singlet interaction term [30, 32]

SF [Q] = πTz

∫
drOF [Q], (3.2.8)

where
OF [Q] = c

∑
αn

tr Iα
n Q tr Iα

−nQ + 4 tr ηQ − 6 tr ηΛ. (3.2.9)
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Here, z is the so-called singlet interaction amplitude and c the crossover parameter
which allows the theory be interpolated between the case of electrons with Coulomb
interaction (c = 1) and the free electron case (c = 0). It is worthwhile to mention that
the quantity α = 1− c breaks the F invariance of the theory and we shall eventually
be interested below in the limit where α goes to zero. The singlet interaction term
involves a matrix

ηαβ
nm = nδαβδnm (3.2.10)

that is used to represent the set of the Matsubara frequencies ωn. Finally, the term

Sh[Q] =
σxxh2

0

4

∫
dr tr ΛQ. (3.2.11)

is not a part of the theory but we shall use it later on as a convenient infrared regulator
of the theory.

3.2.2 F invariance and F algebra

Unlike the free particle problem (c = 0) that we consider in a great details in the
previous chapter, the theory with electron-electron interactions (0 < c � 1) is mainly
complicated by the fact that the range of Matsubara frequency indices m,n must
be taken from −∞ to +∞, along with the replica limit Nr → 0. Under these cir-
cumstances one can show that the singlet interaction term fundamentally affects the
ultra violet singularity structure of the theory (the renormalization group β and γ
functions) which is one of the peculiar features of the theory of electron-electron inter-
actions. [30, 33] Moreover, the problem with infinite range interactions (c = 1) such as
the Coulomb interaction displays an exact global symmetry named F invariance [32].
This means that SF is invariant under electrodynamic U(1) gauge transformations
which are spanned by the matrices Iα

n . This symmetry is broken by the problem with
finite range interactions (0 < c < 1). In order to retain the U(1) algebra in truncated
frequency space with a cut-off Nm a set of algebraic rules has been developed named
F algebra. [32] These rules permit one to proceed in finite frequency space where the
index n runs from −Nm to Nm − 1, i.e the matrix field variables Q have a finite size

Q(r) = T −1(r)ΛT (r), T (r) ∈ U(2N) (3.2.12)

where N = NrNm. The two limits of the theory, Nr → 0 and then Nm → ∞ respec-
tively, are taken at the end of all computations. The main purpose of F algebra is
to ensure that electrodynamic U(1) gauge invariance as well as F invariance are pre-
served by the renormalization group, both perturbatively and at a non-perturbative
level.

3.2.3 Physical observables

Next, for a detailed understanding of interaction effects it is clearly necessary to
develop a quantum theory for the observable parameters σ′

xx, z′ and c′. At the same
time it is extremely important to show that the response quantities defined by the
background field procedure are precisely the same as those obtained from ordinary
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linear response theory. This will be done further where we embark on some of the
principal results of F algebra.

In this Section we recollect the F invariant expressions for the observable param-
eters that will be used in the remainder of this chapter. As pointed out in Ref. [33]
the main advantage of working with F invariant quantities is that they facilitate
renormalization group computations at finite temperatures and frequencies. They
are furthermore valid in the entire range 0 � c � 1 and simpler to work with in
general. In the second part of this Section we briefly recall the known results of the
theory in 2 + ε spatial dimensions.

Kubo formula

The response quantity σ′
xx for arbitrary values of c can be expressed in terms of

current-current correlations according to [21, 33]

σ′(n) = 〈O1〉 + 〈O2〉, (3.2.13)

where
O1 = −σxx

4n
tr[Iα

n , Q(r)][Iα
−n, Q(r)] (3.2.14)

and

O2 =
σ2

xx

4nD

∫
drtrIα

n Q(r)∇Q(r)trIα
−nQ(r′)∇Q(r′), (3.2.15)

with D = 2 + ε. Here and from now onward the expectations are defined with the
respect to the theory of Eqs (3.2.3)- (3.2.9) and we assume the spherical boundary
conditions (see previous chapter).

Specific heat

A natural definition of the observable quantity z′ is obtained through the derivative
of the thermodynamic potential with respect to temperature, i.e.

∂ ln Z

∂ ln T
= πTz′

∫
drOF [Λ] (3.2.16)

which is directly related to the specific heat of the electron gas. [33] Equivalently we
can write

z′ = z
〈OF [Q]〉
OF [Λ]

. (3.2.17)

Finally, the observable quantity c′ may be obtained from the general conditions that
are imposed on static response of the system. These general conditions imply that
quantity zα = z(1 − c) remains unaffected by the quantum fluctuations. [30, 32, 33]
The c′ is therefore determined by the relation

z′(1 − c′) = z(1 − c) or z′α′ = zα. (3.2.18)
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β and γ functions

Before embarking of the computation of the observable σ′
xx in the two-loop approxima-

tion we shall first recapitulate the known results of the perturbative renormalization
group for disordered spinless metals in 2+ε dimensions. [30, 33] Let µ′ denote the mo-
mentum scale associated with the observable theory then the quantities σ′

xx = σxx(µ′),
z′ = z(µ′) and c′ = c(µ′) can be expressed in terms of the renormalization group β
and γ functions according to (see Section 2.2.4)

σ′
xx = σxx +

∫ µ′

µ0

dµ

µ
βσ(σxx, c), (3.2.19)

z′ = z −
∫ µ′

µ0

dµ

µ
γz(σxx, c)z, (3.2.20)

z′α′ = zα, (3.2.21)

where

βσ(σxx, c) = −εσxx + β0(c) +
β1(c)
σxx

+ O(σ−2
xx ), (3.2.22)

γz(σxx, c) =
cγ0

σxx
+

cγ1(c)
σ2

xx

+ O(σ−3
xx ). (3.2.23)

The one-loop results are known for arbitrary value of the crossover parameter c and
are given by [30, 33]

β0(c) =
2
π

(
1 +

α

c
ln α
)

, γ0 = − 1
π

, (3.2.24)

whereas the two-loop results for βσ were obtained for c = 0 only and for γz for c = 0
and c = 1. In the case of electrons with the Coulomb interaction (c = 1) the results
are as follows [33]

γ1(1) = − 3
π2

− 1
6
≈ −0.47, (3.2.25)

For the case of free electrons (c = 0) the two-loop results is known [92]

β1(0) =
1

2π2
, (3.2.26)

γ1(0) = 0. (3.2.27)

3.2.4 The h0 field

Although we are interested, strictly speaking, in evaluating σ′(n) with varying values
of external frequencies νn and temperature, the computation simplifies dramatically if
we put these parameters equal to zero in the end and work with a finite value of the h0

field instead. This procedure has been analyzed in exhaustive detail in our previous
work and, in what follows, we shall greatly benefit from the technical advantages that
make the two-loop analysis of the conductivity possible. We shall return to finite
frequency and temperature problem in the end of this paper (Section 3.5).
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The infrared regularization by the h0 field relies on the following statement

σxxh2
0〈Q(r)〉 = σ′

xxh′2Λ, (3.2.28)

which says that there is an effective mass h′ in the problem that is being induced by
the presence of the h0 field. It is very well known that, since the quantity 〈Q(r)〉 is
not a gauge invariant object, the definition of the h′ field is singular as α goes to zero
and the theory is generally not renormalizable. However, the effective parameter σ′

is truly defined in terms of the effective mass h′ rather than the bare parameter h0.
Hence, all the non-renormalizable singularities are removed from the theory, provided
we express σ′ in terms of the h′ rather than the h0 (see Section 2.2.4). We shall show
that the ultraviolet singularities of the theory can be extracted directly from the final
result for σ′(h′). On the other hand, we can make use of our previous results [33]
and express the final answer in terms of frequencies and temperature, rather than the
mass h′.

3.3 Linear response versus background field proce-
dure

With the introduction of F algebra it has become possible to show that observable
quantities σ′

xx, σ′
xy, z′ and c′ which are usually obtained by means of background

field procedures or momentum shell procedures are, in fact, precisely the same as the
expressions for the conductances at zero temperature that one derives from ordinary
linear response theory in the external vector potential (Eq. (3.2.13)). [32] For the
purpose of next chapter we also extend the discussion to the conductivity σ′

xy. By
the same procedure we prove results (3.2.17) and (3.2.18). In this section we present
the arguments for the special case where the infrared of the system is regulated by a
finite size L rather than by the infrared regulator h2

0.

3.3.1 Linear response theory

The response of the system to an external vector potential A can generally be written
in terms of an effective action Seff[A] according to

expSeff[A] =
∫

D[Q] exp
(
Sσ[Q,A] + SF [Q]

)
. (3.3.1)

In the presence of the Hall conductivity σxy the free electron part (3.2.4) becomes [32]

Sσ[Q,A] = −σxx

8

∫
dr tr[D, Q]2 +

σxy

8

∫
dr tr εjkQ[Dj , Q][Dk, Q]. (3.3.2)

Since we are interested in the global response at zero temperature and frequency it
suffices to take a spatially independent Aα(νn) and consider a small range of values
νn = 2πTn ≈ 0 only. The response parameters σ′

xx and σ′
xy are then defined by the

following general form of the effective action

Seff[A] = −
∫

dr
∑

α,n>0

n
[
σ′

xxδjk + σ′
xyεjk

]
Aj(νn)Ak(−νn). (3.3.3)
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By using this expression for the left hand side of Eq. (3.3.1) it is easy to derive
result (3.2.13) for σ′

xx and the following result for σ′
xy

σ′
xy = σxy +

σ2
xx

4nD

∫
dr εab〈tr Iα

n Q(r)∇aQ(r) tr Iα
−nQ(r′)∇bQ(r′)〉. (3.3.4)

Eqs. (3.2.13) and (3.3.4) are some of the most fundamental quantities of the theory
since they can generally be used for studies at finite temperature and frequency rather
than finite sample sizes. Moreover, they facilitate an analysis of mesoscopic fluctua-
tions as well as important self-consistency checks in practical computations such as
the replica limit Nr = 0 and Nm → ∞.

However, the complications primarily arise if one wants to make sure that the
Finkelstein formalism preserves the fundamental symmetries of the interacting elec-
tron gas, in particular the electrodynamic U(1) gauge invariance as well as F invari-
ance which are properly defined in infinite Matsubara frequency space only. As we
shall see next, these complications automatically arise in the attempt to lay the bridge
between linear response theory and the effective action for the edge modes.

3.3.2 F invariance

To deal with electrodynamic gauge invariance in finite frequency space we start out by
embedding the matrix variables Q of size 2NrNm × 2NrNm in a much larger matrix
space of size 2NrN

′
m × 2NrN

′
m with 1 � Nm � N ′

m. All matrix manipulations will
be carried out from now onward in the space of large matrices whereas the unitary
rotations Q effectively retain their size 2NrNm × 2NrNm which we term small.

Let us next introduce the quantity ϕα
n(r) = Aα(νn) · r. We can then express the

vector potential Â in terms of the large unitary matrix ϕ̂ = ϕ̂(r) according to

Â = ∇ϕ̂ = iW−1∇W, W = exp(−iϕ̂). (3.3.5)

Following the rules of F algebra [32] the unitary matrix W just stands for an elec-
trodynamic U(1) gauge transformation in Matsubara frequency notation. The free
electron part of the action (3.3.2) can be expressed in terms of the W rotation on
the matrix field variable Q according to

Sσ[Q,A] = Sσ[W−1QW ] = −σxx

8

∫
dr tr[∇(W−1QW )]2

+
σxy

8

∫
dr tr εjkQ∇j(W−1QW )∇k(W−1QW ). (3.3.6)

Next we split the quantity OF [Q] into an F invariant part Os[Q] and a symmetry
breaking part

OF [Q] = Os[Q] + Oη[Q], (3.3.7)



102 Chapter 3

where [32]

Os[Q] = zc
(∑

αn

tr Iα
n Q tr Iα

−nQ + 4 tr ηQ − 6 tr ηΛ
)

= zc
∑
αn

′
tr[Iα

n , Q][Iα
−n, Q] (3.3.8)

Oη[Q] = zα {4 tr ηQ − 6 tr ηΛ} . (3.3.9)

The statement of F invariance now says that Os[Q] is gauge invariant [32]

Os[Q] = Os[W−1QW ]. (3.3.10)

On the other hand, as long as one evaluates the theory at zero temperature and finite
system sizes, the response parameters σ′

xx and σ′
xy remain unchanged if one inserts

the W rotation into the quantity Oη[Q], i.e. the replacement

Oη[Q] → Oη[W−1QW ] (3.3.11)

does not affect the statement of Eq. (3.3.3) where the σ′
xx and σ′

xy depend on the
system size L. Linear response theory at zero temperature and finite system sizes is
therefore formally the same thing as evaluating the theory in the presence of a gauge
field W

exp S̃eff[A] =
∫

D[Q] exp
(
Sσ[W−1QW ] + SF [W−1QW ]

)
. (3.3.12)

The main reason for introducing the two different cut-offs 1 � Nm � N ′
m in finite

Matsubara frequency space is to ensure that Eqs. (3.3.6), (3.3.11) and (3.3.12) display
the exact same symmetries that are known to exist in the theory where Nm and N ′

m

are being sent off to infinity.

3.3.3 Background field formalism

It is clear the the statement of Eq. (3.3.12) is non-trivial only due to the fact that
that we work at zero temperature and with fixed boundary conditions on the matrix
field variable Q. If on the other hand we were to work with finite temperatures and
infinite system sizes L then Eq. (3.3.12) is merely a statement of electrodynamic U(1)
gauge invariance which is clearly very different from Eq. (3.3.1).

Notice that Eq. (3.3.12) is not yet quite the same as the back ground field methodol-
ogy that previously has been studied intensively for renormalization group purposes.
This is because the quantities Q and W−1QW by construction belong to different
manifolds for any finite value of Nm and N ′

m. However, in order for the W rota-
tion in Eqs. (3.3.10), (3.3.11) and (3.3.12) to represent an exact electrodynamic U(1)
gauge transformation it is imperative that the results do not fundamentally depend
on the details of how the frequency cut-offs Nm and N ′

m go to infinity. Moreover, the
statement of Eq. (3.3.12) renders highly non-trivial if one recognizes that the unitary
matrix W can in general be written as the product of two distinctly different matrices
t and U0

W = exp(−iϕ̂) = U0 t, U0 ∈ U(N ′) × U(N ′), (3.3.13)
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where N ′ = NrN
′
m. Here, t is a “small” background matrix field in the true sense of

the word

t = exp
(

i

2
[ϕ̂,Λ]Λ + . . .

)
(3.3.14)

whereas the “large” generators of W are all collected together in the U(N ′)× U(N ′)
gauge U0 which can be written as

U0 = exp
(

i

2
{ϕ̂,Λ}Λ

)
. (3.3.15)

Next we consider the change of variables

U−1
0 QU0 → Q. (3.3.16)

It is clear that this transformation preserves the spherical boundary conditions and
leaves the measure of the functional integral unchanged. Equation (3.3.12) can there-
fore be represented as follows

exp S̃eff[A] =
∫

D[Q] exp
(
Sσ[t−1Qt] + SF [t−1Qt]

)
(3.3.17)

which precisely corresponds to the background field methodology with the “small”
matrix field t given explicitly by Eq. (3.3.14). This, then, leads to the principle result
of this Section which says that Eq. (3.3.17) in the limit where Nm, N ′

m → ∞ and
T = 0 is identically the same as linear response theory Eqs. (3.2.13) and (3.3.4).

Eq. (3.3.14) together with Eq. (3.3.17) can be used to derive different or alternative
expressions for the quantities σ′

xx and σ′
xy which are completely equivalent to those

given by Eqs. (3.2.13) and (3.3.4). Here we do not list these expressions but instead we
simply verify the correctness of the effective action of Eq. (3.3.3). Since Eq. (3.3.17)
has the same form as the effective action for the edge modes we can immediately write
down the following general result

S̃0
eff[A] = −σ′

xx

8

∫
dr tr(∇q)2 +

σ′
xy

8

∫
dr tr εjkq∇jq∇kq, (3.3.18)

where the superscript “0” denotes the result at T = 0. Eq. (3.3.18) can be obtained,
as before, by expanding in the gradients of the slowly varying matrix field q = t−1Λt.
By inserting expression (3.3.14) for t in Eq. (3.3.18) we obtain

S̃0
eff[A] = −

∫
dr
∑

α,n>0

n
[
σ′

xxδjk + σ′
xyεjk

]
∇jϕ

α
n∇kϕα

−n. (3.3.19)

The following identities have been used

tr[Îα
n ,Λ][Îα

−n,Λ] = −4n, (3.3.20)

tr Λ[Îα
n , Îα

−n] = 2n. (3.3.21)

We see that we recover the same results as those in Eq. (3.3.3).
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3.3.4 The quantities z′ and c′

For completeness we next extend the results of the background field methodology to
include the terms obtained by expanding to lowest order in T

exp S̃eff[A] = exp
(
S̃0

eff[A]
)(

1 + Tz′c′
∫

dr
∑
αn

′
tr[Iα

n , q][Iα
−n, q]

+Tzα

∫
dr (4 tr ηq − 6 tr ηΛ)

)
. (3.3.22)

These results indicate that the quantity zc is renormalized whereas the statement
zα = z′α′ is a physical constraint that should in general be imposed upon the theory.
Eq. (3.3.22) has been verified in the theory of perturbative expansions. In next chapter
we explicitly check the validity of this statement at a non-perturbative level. As a final
remark, it should be mentioned that by taking q = Λ in Eq. (3.3.22) one immediately
obtains the expression for z′, Eq. (3.2.17).

3.4 Computation of conductivity in D = 2 + ε di-
mensions

3.4.1 Introduction

To define a theory for perturbative expansions we use the following parameterization

Q =

( √
1 − qq† q†

q −
√

1 − q†q

)
. (3.4.1)

The action can be written as an infinite series in the independent fields qαβ
n1n2

and
[q†]αβ

n4n3
. We use the convention that Matsibara indices with odd subscripts: n1, n3, ...,

run over non-negative integers, whereas those with even subscripts: n2, n4, ..., run over
negative integers. The parameterization (3.4.1) introduces the nontrivial Jacobian for
integration over q and q† fields. Fortunately, it does not contribute in the ε-expansion
procedure. [42]

The propagators can be written in the form [60, 33]

〈qαβ
n1n2

(p)[q†]γδ
n4n3

(−p)〉 =
4

σxx
δαδδβγδn12,n34Dp(n12)

(
δn1n3 + δαβκ2zcDc

p(n12)
)
,

(3.4.2)
where

[Dp(n12)]−1 = p2 + h2
0 + κ2zn12, (3.4.3)

[Dc
p(n12)]−1 = p2 + h2

0 + κ2αzn12. (3.4.4)

Here we use the notation n12 = n1 − n2 and κ2 = 8πT/σxx.
The expression for the DC conductivity is known to one loop order [33]

σ′ one
xx = σxx +

8ΩDhε
0

ε
, ΩD =

SD

2(2π)D
, (3.4.5)

where SD = 2πD/2/Γ(D/2) is the surface of a D dimensional unit sphere.
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3.4.2 The two-loop theory

To proceed we need the following terms obtained by expanding the action (2.1) in
terms of q and q† fields:

S
(3)
int = −πTzc

∫
dr
∑

β,m>0

{
trIβ

mq† trIβ
−m[q, q†] + trIβ

−mq trIβ
m[q, q†]

}
, (3.4.6)

S
(4)
int =

1
4
πTzc

∫
dr

⎧⎨⎩2
∑

β,m>0

trIβ
−m[q, q†] trIβ

m[q, q†] +
∑

β

(trIβ
0 [q, q†])2

⎫⎬⎭ , (3.4.7)

S
(4)
0 =

σxx

32

∫
pi

δ

(
4∑

i=1

pi

)
βγδµ∑

n1n2n3n4

qβγ
n1n2

(p1)(q†)γδ
n2n3

(p2)qδµ
n3n4

(p3)(q†)µβ
n4n1

(p4)

×
{
(p1 + p2) · (p3 + p4) + (p2 + p3) · (p1 + p4) − κ2z0(n12 + n34) − 2h2

0

}
,

(3.4.8)

where the superscripts is equal to the number of q or q† fields and∫
p

≡
∫

dDp
(2π)D

. (3.4.9)

In addition, we need the following terms obtained by expanding the expression for
the conductivity, Eq. (3.2.13),

O
(2)
1 = −σxx

2
tr
{
Iα
n q†Iα

−nq + Iα
−nq†Iα

n q − 2(Iα
n ΛIα

−n + Iα
−nΛIα

n )[q, q†]
}

, (3.4.10)

O
(3)
1 =

σxx

4
tr
{
Iα
n (q + q†)Iα

−nqq† − Iα
−n(q + q†)Iα

n q†q
}

, (3.4.11)

O
(4)
1 =

σxx

16
tr
{
(Iα

n ΛIα
−n + Iα

−nΛIα
n )[qq†q, q†] − 2Iα

n [q, q†]Iα
−n[q, q†]

}
, (3.4.12)

O
(4)
2 =

σ2
xx

4D

∫
drtrIα

n (q∇q† + q†∇q)trIα
−n(q∇q† + q†∇q), (3.4.13)

O
(5)
2 =

σ2
xx

8D

∫
dr
{

trIα
n (q∇q† + q†∇q)trIα

−nq(∇q†)q

+trIα
−n(q∇q† + q†∇q)trIα

n q†(∇q)q†
}

, (3.4.14)

O
(6)
2 =

σ2
xx

16D

∫
dr
{

trIα
n Λq†(∇q)q†)trIα

−nΛq(∇q†)q)

+trIα
n (q∇q† + q†∇q)trIα

−n(qq†∇(qq†) + q†q∇(q†q))

+trIα
−n(q∇q† + q†∇q)trIα

n (qq†∇(qq†) + q†q∇(q†q))
}

. (3.4.15)

Next we give the complete list of two loop contributions to the conductivity as follows

σ′ two
xx (n) =

〈
O

(4)
1 + O

(3)
1 S

(3)
int + O

(2)
1 (S(4)

int + S
(4)
0 +

1
2
(S(3)

int )2)

+ O
(6)
2 + O

(5)
2 S

(3)
int + O

(4)
2 (S(4)

int + S
(4)
0 +

1
2
(S(3)

int )2)
〉
. (3.4.16)



106 Chapter 3

The computations of the terms in Eq. (3.4.16) are straightforward but lengthy
and tedious. In what follows we present the expressions in terms of the momentum
integrals, frequency sums and propagators Dp, Dc

p for each term in Eq. (3.4.16)
separately, along with the final answer. In the Appendix 3.A we give the complete
list of integrals and symbols that we shall make use of here.

3.4.3 Computation of contractions in Eq. (3.4.16)

The first contraction is given as

〈O(4)
1 〉 =

2
σxx

(∫
p

Dp(0)
)2

+
2a2

σxx

(∑
m>0

∫
p

DDc
q(m)

)2

= 8
Ω2

Dh2ε
0

σxxε2
(1+ln2 α) (3.4.17)

with DDc
q(m) ≡ Dq(m)Dc

q(m). Next,

〈O(3)
1 S

(3)
int 〉 = − 8

σxx
κ2zc

∫
p,q

∑
k>0

[
Dc

p+q(0)Dq(k)Dp(k) + κ2zc
∑
m>0

Dc
p(m)DDc

q(k)

×Dp+q(k + m)

]
= 2

Ω2
Dh2ε

0

σxxε

(
4S0 + 4A0

00

)
= 16

Ω2
Dh2ε

0

σxxε2

[
−(1 + ln2 α)

+ε(1 + ζ(3)/2)
]
, (3.4.18)

where ζ(x) is the Riemann zeta-function. The third contraction yields

〈
O

(2)
1 (S(4)

int + S
(4)
0 +

1
2
(S(3)

int )2))
〉

=
4

σxx
κ2zc

∫
p,q

∑
k>0

[
Dc

p+q(0)Dq(k)Dp(k)

+κ2zc
∑
m>0

Dc
p(m)Dc

q(k)D2
p+q(k + m) + κ2zc

∑
m>0

(1 + κ2zcmDc
p(m))

×DDc
q(k)D2

p+q(k + m)

]
= 2

Ω2
Dh2ε

0

σxxε

(
−2S0 − 2D1 − 2T01 − 2A0

1,0

)
= 4

Ω2
Dh2ε

0

σxxε2
[
2(1 + ln2 α) − ε

(
2 + ζ(3) + π2/3

)]
. (3.4.19)
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The next one,

〈O(6)
2 〉 =

(−4)
σxxD

∫
p,q

p2

{
Dp(0)Dq(0)Dp+q(0) − 4(κ2zc)2

∑
k,m>0

D2Dc
p(m)ŜmDDc

q(k)

−(κ2zc)2
∑

k,m>0

[
Dp(k + m)DDc

q(m)DDc
p+q(k) + 2DDc

p(k + m)DDc
q(m)

×Dp+q(k)
]}

= 2
Ω2

Dh2ε
0

σxxε

[
S1 + 4

(
2 ln α

ε
+ B1

)
+ C01 + 2C00

]
= 4

Ω2
Dh2ε

0

σxxε2

[
16 ln α − 2 +

ε

2

(
−4 ln α − π2

3
+

π2

2
ln 2 +

π4

12
+

11ζ(3)
2

+
π2

3
ln2 2 − 1

3
ln4 2 − 7ζ(3) ln 2 − 8 li4

(1
2

))]
. (3.4.20)

Here DnDc
q(m) ≡ Dn

q (m)Dc
q(m) and lin(x) =

∞∑
k=1

xk/kn is the polylogarithmic func-

tion (li4(1/2) ≈ 0.517), and we have introduced an operator Ŝm which acts only on
frequency k according to the following rule Ŝmf(k) = f(k) + f(k + m). The fifth
contraction is as follows

〈O(5)
2 S

(3)
int 〉 =

16
σxxD

κ2zc

∫
p,q

{
p · (p − q)

∑
k>0

Dc
p+q(0)D2

p(k)Dq(k) + κ2zcp2

×
∑

k,m>0

Dc
p+q(m)

[
D2

p(k + m)DDc
q(k) + D2Dc

p(k + m)

×Dq(k)
]
− κ2zc (p · q)

∑
k,m>0

[
DDc

p(m)T̂mDDc
p+q(k)Dq(k + m)

+Dc
p+q(m)D2Dc

p(k + m)Dq(k + 2m)
]}

= 2
Ω2

Dh2ε
0

σxxε

(
−4S00 − 4A1

01

−4H0 − 4C0 − 4A0

)
= 4

Ω2
Dh2ε

0

σxxε2

[
−8 ln α + 4 +

ε

2

(
4 ln2 α + 20 ln α

−12 + 4ζ(3) +
4π2

3
− 4A0 + 4C

′
0

)]
, (3.4.21)

where we have introduced yet another operator T̂m which acts only on frequency k but
now according to the rule T̂mf(k) = f(k)− f(k +m). The result for next contraction
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can be written as

〈O(4)
2 S

(4)
0 〉 =

8κ4z2c2

σxxd

∫
p,q

p2
∑

k,m>0

{
3D3Dc

p(m)ŜmDc
q(k) + 3D2Dc

p(m)ŜmDDc
q(k)

+2κ2zckD2[Dc
p]

2(m)T̂m

[
Dp(m)Dc

q(k) + DDc
q(k)
]}

= 2
Ω2

Dh2ε
0

σxxε

(
−3T 0

10 − 3T 0
11 −

12 ln α

ε
− 6B1 − 2T 0

20 + 2T 0
21 − 4T 1

10 + 4B2

)
= 4

Ω2
Dh2ε

0

σxxε2

[
4(ln α − 1)2 − 2 +

ε

2

( 2
α
− 2 ln2 α + lnα +

44
3

)]
. (3.4.22)

Finally,

〈O(4)
2 (S(4)

int +
1
2
(S(3)

int )2)〉 =
16κ4z2c2

σxxD

∫
p,q

(p · q)
∑
k>0

kDp+q(0)D2
p(k)D2

q(k)

−16κ2zc

σxxD

∫
p,q

p2
∑
k>0

[
2κ2zckDc

p+q(0)D3
p(k)Dq(k) − D3

p(k)Dq(k)
]

+
16κ4z2c2

σxxD

∫
p,q

(pq)
∑

k,m>0

[
2(1 + κ2zcmDq(k))Dc

p+q(m)D2
p(k + m)DDc

q(k)

−DDc
q(k)DDc

p(m)Dp+q(k + m)
]
− 16κ4z2c2

σxxD

∫
p,q

p2
∑

k,m>0

{
(1 + κ2zcm

×Dc
p+q(m))

[
(2 + T̂m + κ2zckT̂mDc

p(k))D3Dc
p(k)Dq(k + m) +

1
2
Dq(k)

×D3
p(k + m)(3Dc

q(k) + Dc
p(k + m))

]
+

3
2
Dc

q(m)Dc
p+q(k)D3

p(k + m) + (1

+T̂m + 2κ2zckT̂mDc
p(k))Dc

p+q(m)D2Dc
p(k)Dq(k + m) + κ2zckT̂mD[Dc

p(m)]2

×DDc
q(k)Dp+q(k + m)

}
= 2

Ω2
Dh2ε

0

σxxε

(
4S11 + 4S01 +

2
ε

+ 8A01 + 8A11 − 4C11

+4T02 + 4A10 + 2T12 + 2A1 + 3T01 + 3A1
11 + αT 0

10 − T02 + H1 + 3D2 + 4C1

+8A2 + 8A00 − 4A3

)
= 4

Ω2
Dh2ε

0

σxxε2

[
−4 ln2 α − 4 +

ε

2

(
− 2

α
− 2 ln2 α − 25 ln α

+
55
2

− 2ζ(3) − 8
3
π2 + 12 ln2 2 − 44 ln 2 − 4C

′
0 + 4A0 + 16G − 8 li2

(1
2

)]
,

(3.4.23)

where G ≈ 0.916 denotes the Catalan constant.
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3.4.4 Results of the computations

We proceed by presenting the final answer for all the pole terms in ε. By putting the
external frequency equal to zero and in the limit α → 0 we obtain

σ′ two
xx = 2

Ω2
Dh2ε

0

σxxε
(A − 8(2 + lnα)) . (3.4.24)

Here, the A stands for all the terms that are finite in α. The complete list is as follows

A = 50 +
1
6
− 3π2 +

19
2

ζ(3) + 16 ln2 2 − 44 ln 2 +
π2

2
ln 2 + 16G

+
π4

12
+

π2

3
ln2 2 − 1

3
ln4 2 − 7ζ(3) ln 2 − 8 li4(1/2) ≈ 1.64. (3.4.25)

Before Eq. (3.4.24) is obtained, one has to deal with a host of other contributions
that are more singular in α and/or ε. These more singular contributions all cancel one
another in the end, however. There are in total six different types of contributions
that are more singular than the simple pole term 1/ε. In Tables 3.1 and 3.2 we list
these terms, show where they come from and how they sum up to zero. There is one
exception, namely the terms proportional to lnα/ε, and their contribution is written
in Eq. (3.4.24). However, these terms are absorbed in the definition of an “effective”
h′ field. More specifically, from the two-loop computation of the singlet amplitude z
we know that the effective h′ field is given by [33]

h2
0 → h′2 = h2

0

(
1 − (2 + lnα)

hε
0g0

ε

)
, (3.4.26)

where g0 = 4ΩD/σxx (see Section (2.2.4)). Using this result, as well as Eqs. (3.4.5)
and (3.4.24), we can write the total answer for the conductivity as follows

σ′
xx = σxx

(
1 + 2

h′εg0

ε
+ 2A

h′2εg2
0

ε

)
. (3.4.27)

Eq. (3.4.27) no longer contains α and is therefore the desired result.

3.4.5 β and γ functions

For completeness we list the two-loop result for the singlet interaction amplitude [33]

z′ = z

(
1 +

h′εg0

ε
+

h′2εg2
0

2ε2
[
1 − ε(4 + π2/3)

])
. (3.4.28)

Following the methodology of Section 2.2.4 we obtain the following relation between
observable and bare theory

1
g0

=
1
g′

Z−1
1 (g′h′), z0 = z′Z2(g′h′), (3.4.29)
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Contractions Diagrams 2
εα

ln2 α
(ε/2)2

ln α
(ε/2)2

ln2 α
ε/2

ln α
ε/2

4
ε2

〈O(4)
1 〉 2 2

〈O(3)
1 S

(3)
int 〉 -4 -4

〈O(2)
1 (S(4)

int + S
(4)
0

+ 1
2 (S(3)

int )2)〉
2 2

Total 0 0 0 0 0 0

Table 3.1: The second-loop contributions to the O1 term in the effective conductivity.
The α-dependent and 1/ε2 contributions. A black solid dot denotes the vertex in O1

term, a white solid dot denotes the vertex in S terms, and
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Contractions Diagrams 2
εα

ln2 α
(ε/2)2

ln α
(ε/2)2

ln2 α
ε/2

ln α
ε/2

4
ε2

〈O(6)
2 〉 16 -4 -2

〈O(5)
2 S

(3)
int〉∗ -8 4 20 4

〈O(4)
2 S

(4)
0 〉 2 4 -8 -2 1 2

〈O(2)
2 (S(4)

int + 1
2 (S(3)

int )2)〉∗ -2 -4 -2 -25 -4

Total 0 0 0 0 - 8 0

Table 3.2: The second-loop contributions to the O2 term in the effective conductivity.
The α-dependent and 1/ε2 contributions. The symbol ∗ denotes that we exclude
integrals A0 and C

′
0 which cancel in the sum of the two terms. A black solid triangle

denotes the current vertex in O2 term, a white solid dot denotes the vertex in S terms,
and
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Contractions 2/ε

〈O(4)
1 〉 0

〈O(3)
1 S

(3)
int 〉 8 + 4ζ(3)

〈O(2)
1 (S(4)

int + S
(4)
0

+ 1
2 (S(3)

int )2)〉
−4 − 2ζ(3) − 2π2/3

〈O(6)
2 〉 −π2/3 +

π2

2
ln 2 + π4/12 + 11ζ(3)/2 +

π2

3
ln2 2

−1
3

ln4 2 − 7ζ(3) ln 2 − 8 li4(1/2)

〈O(5)
2 S

(3)
int 〉∗ −12 + 4ζ(3) + 4π2/3

〈O(4)
2 S

(4)
0 〉 44/3

〈O(2)
2 (S(4)

int + 1
2 (S(3)

int )2)〉∗ 55/2 − 2ζ(3) − 8π2/3 + 12 ln2 2
−44 ln 2 + 16G − 8 li2(1/2)

Total 34 + 1/6 − 3π2 + 19ζ(3)/2 + 16 ln2 2 − 44 ln 2

+
π2

2
ln 2 + 16G + π4/12 +

π2

3
ln2 2

− 1
3 ln4 2 − 7ζ(3) ln 2 − 8 li4(1/2)

Table 3.3: The two-loop contributions to the O2 term in the effective conductivity.
The 2/ε contributions.
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where

Z1(ḡ) = 1 + 2
ḡ

ε
+ 4

ḡ2

ε2
(1 + εA/2) (3.4.30)

Z2(ḡ) = 1 − ḡ

ε
− ḡ2

2ε2
(
1 + ε(π2/6 + 2)

)
. (3.4.31)

Hence for the β and γ functions which are defined as (see section 2.2.4)

β(g) =
dg

d ln µ
=

εg

1 + g
d ln Z1(g)

dg

, (3.4.32)

γz(g) = − d ln z

d ln µ
= β(g)

d ln Z2(g)
dg

, (3.4.33)

the final answer can be written as

β(g) = εg − 2g2 − 4Ag3, γz(g) = −g − (3 + π2/6)g2. (3.4.34)

By using that
βσ(σxx, 1) = −πσ2

xxβ(1/πσxx), (3.4.35)

we find finally, that (see Eq. (3.2.22))

β1(1) =
4
π2

A =
4
π2

[
50 +

1
6
− 3π2 +

19
2

ζ(3) + 16 ln2 2 − 44 ln 2 +
π2

2
ln 2 + 16G

+
π4

12
+

π2

3
ln2 2 − 1

3
ln4 2 − 7ζ(3) ln 2 − 8 li4(1/2)

]
≈ 0.66. (3.4.36)

3.5 Dynamical scaling

3.5.1 Relation between h
′
and ωs

In this Section we combine the two loop computations of this chapter with those of the
amplitude z′ presented in Ref. [33] and establish the connection between the effective
mass h′ and the frequency ωs. For this purpose, recall that the renormalization of
the z field was obtained from the derivative of the grand potential Ω with respect to
ln T . [33] The result of the computation has been as follows

dΩ
d ln T

= 2
∑
s>0

ωszMb(g0, h
2
s), (3.5.1)

where

Mb(g0, h
2
s) = 1 +

hε
sg0

ε
+

h2ε
s g2

0

2ε2
[
−1 + ε

(
2 + π2/3

)]
. (3.5.2)
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Here, the frequency enters through the quantity h2
s = κ2zs = 2πωszg0/Ωd which has

the dimension of the mass squared. The frequency dependence in σ′
xx(s) is restored

by writing

σ′
xx(s) =

4Ωd

g0
Rb(g0, h

2
s) (3.5.3)

with

Rb(g0, h
2
s) = 1 + 2

hε
sg0

ε
+ (2A − 1)

h2ε
s g2

0

ε
(3.5.4)

One can easily verify that Eqs (3.5.1)-(3.5.3) lead to the same expressions for Z1 and
Z2 and, hence, the same β and γ functions as those of the previous Section. Eq. (3.5.3)
is therefore the correct result. The relation between h′ and ωs can now be made more
explicit by writing

h′2 = h2
sMb(g0, h

2
s)/Rb(g0, h

2
s). (3.5.5)

Here, h′ is the effective mass that is induced by the frequency ωs and the result is
consistent with all previous statements and explicit computations. [33]

3.5.2 The Goldstone phase

Specific heat and AC conductivity

The zero of the function β(g), Eq. (3.4.34), determines a critical point g∗ = O(ε) that
separates the Goldstone or metallic phase (g < g∗) from an insulating phase (g > g∗).
To second order in ε we have

g∗ = ε/2 − Aε2/2 ≈ 0.5ε − 0.82ε2 (3.5.6)

We see that the ε2 contribution is rather large and the expansion can clearly not
be trusted for ε = 1 or three spatial dimensions. This is a well-known drawback of
asymptotic expansions and the two-loop theory is otherwise necessary to completely
establish the scaling behavior of the electron gas in 2 + ε spatial dimensions. To
discuss this scaling behavior, we proceed and express Eqs (3.5.1) and (3.5.3) in terms
of the renormalized parameters g and z. The results can be written in the following
general form

dΩ
d ln T

= 2
∑
s>0

µ2εωszM(g, ωsz), (3.5.7)

σ′
xx(s) = µε 4Ωd

g
R(g, ωsz). (3.5.8)

The expressions are now finite in ε. The AC conductivity is obtained from σ′
xx(s) by

analytic continuation from imaginary frequencies iωs in the upper half-plane to the
real frequencies ω. On the other hand, the specific heat of the electron gas can be
expressed as [33]

cv =
∫ ∞

0

dω
∂fBE(ω)

∂T
ωρqp(ω), (3.5.9)
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where
fBE(ω) =

1
eω/T − 1

(3.5.10)

and
ρqp(ω) =

z

π
(M(g, iωz) + M(g,−iωz)) (3.5.11)

is the density of states of bosonic quasiparticles indicating that the Coulomb system
is unstable with respect to the formation of particle-hole bound states. [110]

Scaling results

Next, from the method of characteristics we can obtain the general scaling behavior
of the quantities M and R as usual:

M(g, ωsz) = M0(g)G[ωszξdM0(g)], (3.5.12)
R(g, ωsz) = R0(g)H[ωszξdR0(g)]. (3.5.13)

Here G and H are unspecified functions, whereas ξ, R0 and M0 each have a clear
physical significance and are identified as the correlation length, the DC conductivity
and ρqp(0) respectively. They obey the following equations

(µ∂µ + β(g)∂g)ξ(g) = 0,
(β(g)∂g − ε − β(g)/g)R0(g) = 0,

(β(g)∂g + γ(g))M0(g) = 0. (3.5.14)

In the metallic phase (g < g∗) the solutions can be written as follows

R0(g) = (1 − g/g∗)ενε , M0(g) = (1 − g/g∗)βε , (3.5.15)

ξ = µ−1

(
g

4Ωd

)1/ε

(1 − g/g∗)−νε , (3.5.16)

where the critical exponents νε and βε are obtained as

ν−1
ε = −∂gβ(g)

∣∣∣
g=g∗

, βε = −νεγ(g∗). (3.5.17)

To second order in ε the results are

ν−1
ε = ε(1 + Aε) ≈ ε + 1.64ε2 (3.5.18)
βε = 1/2 + (π2/24 + 3/4 − A)ε ≈ 0.50 − 0.48ε. (3.5.19)

Notice that R0 is not an independent quantity and can be expressed in terms of the
correlation length ξ. For example, Eq. (3.5.8) can be written as

σ′
xx(s) = ξ−εH[ωszξdM0(g)], (3.5.20)

where the function H is the same as in Eq. (3.5.13). Similarly one can write the
quantity h′2

s (Eq. (3.5.5)) as follows:

h′2
s = ξ−2K[ωszξdM0(g)], (3.5.21)
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where the function K(Y ) = 4Y [G(Y )/H(Y )]. Both the DC conductivity R0 ∼ ξ−ε

and the quantity M0 vanish as one approaches the metal-insulator transition at g = g∗.
The results are quite familiar from the Heisenberg ferromagnet where M0 stands
for the spontaneous magnetization. Unlike the free electron gas, [19] however, the
interacting system with Coulomb interactions has a true order parameter, M0, which
is associated with a non-Fermi liquid behavior of the specific heat.

Equations of state

The explicit results of Section 3.5.1 can be used to completely determine the quantities
M and R in the Goldstone phase. They take the form of an “equation of state” [93]

ωszg

M δε
=
(

g∗
g

)1/ε(
1 + (2ενε − 1)(1 − g/g∗) − 2ενε

1 − g/g∗
M1/βε

)1/ε

,

ωszg

Rκε
=
(

g∗
g

)1/ε(
1 − 1 − g/g∗

R1/2ενε

)1/ε

. (3.5.22)

Here, the exponents δε and κε can be obtained from the values of νε and βε following
the relations

dνε = βε(δε + 1), ενεκε = βεδε. (3.5.23)

The universal features of the “equations of state” are the Goldstone singularities at
g = 0 and the critical singularities near g = g∗.

Equations (3.5.22) provide the complete solution of the physical observables,
Eqs (3.5.8) and (3.5.9), of the theory in D = 2 + ε dimension. As for the specific
heat, we find the usual behavior cv = γ0T at g = 0. At criticality the following
algebraic behavior is found

cv = γ1T
1+1/δε , (3.5.24)

where

δ−1
ε =

ε

4

[
1 −
(

A − π2

12
− 5

4

)
ε

]
≈ 0.25ε + 0.11ε2. (3.5.25)

It is worthwhile to mention that the one-loop result for δ−1
ε (contribution of the order

of ε) has been obtain in Ref. [109].
It is important to remark that the result for the conductivity σ′

xx(s), Eq. (3.5.8),
can also be used to obtain the scaling behavior at finite temperatures. For example, we
may, on simple dimensional grounds, substitute T for ωs in expressions for h′2

s , σ′
xx(s)

and R. The results, however, strictly describe the Goldstone and critical phases
only. The “equations of state” cannot be analytically continued and used to obtain
information on the insulating phase. As we already mentioned in the Introduction
to this Chapter, the strong coupling phase is controlled by different operators in the
theory and has a distinctly different frequency and temperature dependence.
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3.6 Renormalization group flows in D = 2+ε dimen-
sions

It is helpful to discuss the structure of the theory in 2 + ε dimensions for general
crossover parameter 0 � c � 1 (see Eqs (3.2.19) and (3.2.21)),

dσxx

d ln µ
= βσ(σxx, c). (3.6.1)

dc

d ln µ
= βc(σxx, c) = (1 − c)γz(σxx, c). (3.6.2)

The renormalization group flow lines in the (σxx, c) plane are sketched in Fig. 3.1.
We see that there are two critical fixed points describing a quantum phase transition
between a metal and an insulator. As it was shown in Section 3.5 along the Coulomb
line (c = 1) the fixed point value is σ∗

xx = O(ε−1). However, along the Fermi liquid
line (c = 0), the renormalization group function become

βσ(σxx, 0) = −εσxx +
1

2π2σxx
+

3
8π4σ3

xx

, γz(σxx, 0) = 0, (3.6.3)

where we add the four-loop contribution to the βσ(σxx, 0). [57] There is the critical
fixed point σ∗

xx = (1/
√

2π2ε)(1 + 3ε/4) with the critical exponent ν−1
ε = 2ε(1 +

3ε/2). In general the renormalization is determined, to a major extend, by the global
symmetries of the problem. [42] In particular, since F invariance is retained along
the Coulomb line c = 1 only and broken otherwise one generally expects, that the
problem with finite range interactions 0 < c < 1 lies in the domain of attraction of
the Fermi liquid line c = 0 whereas the Coulomb interaction problem c = 1 describes
a distinctly different, non-Fermi liquid universality class. The results presented in
Section (3.5) and renormalization group flow shown in Fig. 3.1 completely prove this
scenario.

In two spatial dimensions the metallic phases (σxx > σ∗
xx) disappear altogether

indicating that all the states of the (spin polarized or spinless) electron gas are now
Anderson localized, independent of the presence of electron-electron interactions. We
consider the Coulomb interaction problem (c = 1) in two dimensions (ε = 0). Since
the response parameter σ′

xx is independent of the arbitrary momentum scale µ0 that
defines the “renormalized” theory σxx(µ0) we immediately obtain from Eq. (3.2.19)
the general scaling result

σ′
xx = σxx(µ′) = fσ(µ′ξ) (3.6.4)

where µ′ is related to the linear dimension L of the system according to µ′ = L−1.
The ξ obeys the differential equation

(µ0∂µ0 + βσ∂σxx
) ξ = 0 (3.6.5)

and can be identified with a dynamically generated correlation length (localization
length) of the system

ξ = µ−1
0 σ

−β1(1)/β2
0(1)

xx eσxx/β0(1). (3.6.6)
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Figure 3.1: Renormalization group flow in terms of σxx and c. Here ε = 0.1.

Next, comparison of Eqs. (3.6.4) and (3.6.6) with the expression of Eq. (3.2.19) leads
to the following explicit (weak coupling) result for the scaling function fσ(X) with
X = (µ′ξ)β0(1)

fσ(X) ≈ ln X +
β1(1)
β0(1)

ln lnX +
β2

1(1)
β2

0(1)
ln lnX

ln X
, X � 1. (3.6.7)

The statement of exponential localization can now be formulated by saying that in
the regime of strong coupling the scaling function f(X) vanishes according to

fσ(X) ≈ exp
(
−X−1/β0(1)

)
= exp (−1/(µ′ξ)) , X � 1. (3.6.8)

On the other hand, the quantity z′ is quite analogous to the spontaneous magnetization
(M0) in the classical Heisenberg ferromagnet. Write

z′ = zM0(X) (3.6.9)

then the following explicit form of M0(X) can be extracted

M0(X) = m0fz(X) (3.6.10)
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where

m0 = σγ0/β0(1)
xx

[
1 +

γ0β1(1) − γ1(1)β0(1)
β2

0(1)σxx

]
(3.6.11)

fz(X) ≈ (ln X)−γ0/β0(1)
(
1 − β1(1)γ0

β2
0(1)

ln lnX

−2β2
1(1)γ0

β3
0(1)

ln lnX

ln X

)
, X � 1. (3.6.12)

As we shall demonstrate in the next chapter these naive expectations are fundamen-
tally modified by the θ(νf ) dependence of the theory which is invisible in perturbative
expansions of the renormalization group β and γ functions in powers of 1/σxx. Notice
that on the basis of the Mirmin-Wagner-Coleman theorem one would expect that the
quantity fz(X), like fσ(X), vanishes in the regime of strong localization X � 1.

3.7 Conclusions

In this chapter we have completed the two-loop analysis of the Finkelstein theory
with the singlet interaction term. We have reported the detailed computations of
the conductivity which is technically the most difficult part of the analysis. We
have benefitted from the regularization procedure involving the h0 field, which has
substantially simplified the two-loop computations. Moreover, we have obtained a
general relation between the effective masses that are being induced by the h0 field
on the one hand, and the frequency ωn on the other. This enables one to re-express the
final answer in terms of finite frequencies and/or temperature, simply by a substitution
of the h0 regulating field.

By combining the concept of F invariance with technique of dimensional regular-
ization, we have extracted new physical information on the disordered electron gas
with Coulomb interactions in low dimensions. In particular, we now have a non-Fermi
liquid theory for the specific heat and dynamical scaling.

As it will be clear from the next chapter, the metal-insulator transition in 2 + ε
dimensions sets the stage for the plateau transitions in the quantum Hall regime.

3.A Computation of integrals

In this Appendix we present the final results for the various integrals listed in Eqs
(3.4.17)-(3.4.23). We shall follow the same methodology as used in the two-loop com-
putation of Ref. [33] and employ the standard representation for the momentum and
frequency integrals in terms of the Feynman variables x1, x2 and x3. [42] We classify
the different contributions in Eqs (3.4.17)-(3.4.23) in different categories, labelled A-
integrals, B-integrals etc. In total we have seven different categories, i.e. A, B, C,
D, H, S and T respectively, which are discussed separately in Sections 3.A.1-3.A.5 of
this Appendix. The last Section, 3.A.8, contains a list of abbreviations and a list of
symbols for those integrals that need not be computed explicitly because their various
contributions sum up to zero in the final answer.
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In Appendix 3.B we present the main computational steps for a specific example,
the so-called A10-integral. We show how the integral representation of hypergeometric
functions can be used to define both the ε expansion and the limit where α → 0.

3.A.1 The A - integrals

Definition

To set the notation, we consider the integral

Xν
ν,η = −21+ν(κ2zc)2+µ

σxxDν

∫
pq

p2ν
∑

k,m>0

mµDc
p+q(m)DDc

p(k)D1+µ+η
q (k + m). (3.A.1)

Here, the three indices µ, ν and η generally take on the values 0, 1. We shall only
need those quantities Xν

ν,η which have η = ν, however. Using the Feynman trick, one
can write (for the notation, see Section 3.A.5)

Xν
ν,η = −21+ν(κ2zc)2+µ

σxxDν

∫
pq

p2

∞∫
0

dm mµ

∞∫
0

dk
Γ(µ + η + 4)
Γ(µ + η + 1)

1∫
α

dz

∫
[] x2x

µ+η
3

×
[
h2

0 + q2x12 + p2x13 + 2p · qx1 + κ2zm(αx1 + x3) + κ2zk(zx2 + x3)
]−µ−η−4

(3.A.2)

Next, by shifting q → q − px1/x12, we can decouple the vector variables p and q in
the denominator. The integration over k,m, p and q then leads to an expression that
only involves the integral over z and the Feynman variables x1, x2 and x3. Write

Xν
ν,η =

2Ω2
Dh2ε

0

σxxε
Aν

µ,η (3.A.3)

then

Aν
µη =

1∫
α

dz

∫
[]

x2x
1+µ+η
3 (x1 + x2)ν(xixj)−1−ν−ε/2

(zx2 + x3)(αx1 + x3)1+µ
. (3.A.4)

To complete the list of A-integrals, we next define quantities that carry either two
indices µ, ν or only a single index µ. Like Aν

µη, they all describe contractions that
contain both momentum and frequency integrals. The results are all expressed in
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terms of integrals over z, x1, x2 and x3.

Aνµ =

1∫
α

dz(z − α)1+ν−µ

∫
[]

xµ
1x2+ν−µ

2 xµ
3 (x1 + x3)1−µ(xixj)−2−ε/2

(αx1 + x3)1+ν(zx2 + x3)
, (3.A.5)

A0 =

1∫
α

dz(z − α)
∫

[]
x2

2x1(xixj)−2−ε/2

(x3 + zx2)(zx2 + αx1 + 2x3)
, (3.A.6)

A1 =

1∫
α

dz(z − α)2
∫

[]
x3

2(x1 + x3)(x2 + x3)
(zx2 + x3)2

(xixj)−2−ε/2

×
[ 1
(αx1 + x3)2

− 1
(zx2 + αx1 + 2x3)2

]
, (3.A.7)

A2 =

1∫
α

dz(z − α)(1 − z)
∫

[]
x3

2(x1 + x3)(xixj)−2−ε/2

(zx2 + x3)(αx1 + x3)(zx2 + αx1 + 2x3)
, (3.A.8)

A3 =

1∫
α

dz(z − α)
∫

[]
x2

2(x1 + x3)(xixj)−2−ε/2

(αx1 + zx2 + 2x3)(zx2 + x3)
. (3.A.9)

ε expansion

The calculation of integrals is straightforward but tedious and lengthy. Here we only
present the final results of those quantities that are needed. The list does not contain
the final answer for the A0-integral because the various contributions to A0 sum up
to zero in the final answer. The same holds for some other integrals that are defined
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in Section 3.A.5 and that we do not specify any further.

A0
00 = − ln2 α

ε/2
+ ζ(3), (3.A.10)

A0
10 = − ln2 α + lnα

ε/2
− ln2 α

2
+

π2

6
+ ζ(3), (3.A.11)

A1
01 =

ln α

ε/2
− ln2 α

2
− 2 ln α − π2

3
+ 1, (3.A.12)

A1
11 =

ln α

ε/2
− ln2 α

2
− 2 ln α − π2

3
, (3.A.13)

A00 =
ln α

ε/2
+

ln2 α

2
+ 2 ln α +

π2

3
− 1, (3.A.14)

A10 = − 1
α
− 2 ln α + 3

ε/2
− ln2 α − 5 ln α − 2π2

3
+ 3, (3.A.15)

A01 = − ln α − π2

6
+ 1, (3.A.16)

A11 =
ln α + 2

ε/2
+

ln2 α

2
+ 3 ln α +

π2

2
, (3.A.17)

A1 = − 2
α

+
2 ln2 α + 4 ln α

ε/2
− 3 ln2 α + 8 ln 2 ln α − 17

2
ln α

+4K1(α) + 8J
′
3(α) − π2 − 2ζ(3) − 6 ln2 2 + 10 ln 2 − 1

2
, (3.A.18)

A2 = − ln2 α + 2 ln α

ε/2
− 2 ln α − 3 ln 2 ln α − J1(α) − K1(α) − 2J

′
3(α)

+A0 −
π2

6
+ 1 + ζ(3) + 3 ln2 2 − 3 ln 2 − 3 li2(1/2), (3.A.19)

A3 = A0 − 2 li2 (1/2) +
π2

6
. (3.A.20)

3.A.2 The B - integrals

Definition

The B-integrals are similarly defined in terms of the variables z, x1, x2 and x3.
However, they describe only those contractions that contain frequency sums and no
momentum integrals.

Bµ =

1∫
α

dz

zµ

∫
[]

xµ−1
1 x2x

−µ−ε/2
3 (x1 + x2)−µ−ε/2

(αx2 + zx3 + x1)
, (3.A.21)
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ε expansion

B1 =
ln α

ε/2
+

ln2 α

2
+ lnα, (3.A.22)

B2 = − 1
α

+
ln2 α

ε/2
+

2 ln α

ε/2
− 2 ln α − 2. (3.A.23)

3.A.3 The C - integrals

Definition

The C-integrals contain one additional integration over y, besides the ones over z
and the Feynman variables x1, x2 and x3. They originate from expressions involving
integrations over both frequencies and momenta. We distinguish between quantities
with two indices µ and ν

Cµν =

1∫
α

dzdy

∫
[]

xµ
1x2x3(x2 + x3)1−µ(xixj)−2−ε/2

(zx3 + x1)(yx2 + x1)ν(zx3 + yx2)1−ν
(3.A.24)

and those that carry only a single index ν

Cν =

1∫
α

dz(1 − z)ν

1∫
α

dy

∫
[]

x2−ν
2 x1+ν

3 (x1 + x2)ν(xixj)−2−ε/2

(zx3 + x1)(yx2 + x1)ν(zx3 + yx2 + 2x1)
. (3.A.25)

ε expansion

C00 =
ln α

ε/2
− ln2 α

2
− 2 ln α +

π2

4
ln 2 − π2

6
+

15
4

ζ(3)

−π4

24
− π2

6
ln2 2 +

1
6

ln4 2 +
7
2
ζ(3) ln 2 + 4 li4(

1
2
), (3.A.26)

C01 =
2 ln α

ε/2
− ln2 α − 4 ln α − 2 − ζ(3), (3.A.27)

C11 = ζ(3), (3.A.28)

C0 =
ln α

ε/2
− ln2 α

2
− 2 ln α − 1 − ζ(3) − C ′

0, (3.A.29)

C1 = 4 ln 2 ln α + 2J1(α) − C ′
0 − 2 − ζ(3)

2
− 4 ln 2 − π2

6
+ 4G, (3.A.30)

where the Catalan constant G = 0.916 . . . appears as the integral

G = −
∫ 1

0

du
ln u

1 + u2
. (3.A.31)
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3.A.4 The D-integrals

Definition

These are integrals over the Feynman variables only. They originate from the con-
tractions which contain sums over both momenta and frequencies.

Dν =
∫

[]
xν

3(x1 + x2)ν−1(xixj)−ν−ε/2

(αx1 + x3)(αx2 + x3)
. (3.A.32)

ε expansion

D1 = − ln2 α − π2

6
, (3.A.33)

D2 = −2 ln α. (3.A.34)

3.A.5 The H - integrals

Definition

The H-integrals involve the variable z and the Feynman variables. All of them origi-
nate from contractions with sums over both momenta and frequencies.

Hν =

1∫
α

dz(z − α)2ν

∫
[]

x2+ν
2 (x1 + x3)(xixj)−2−ε/2

(αx1 + zx2)(zx2 + x3)
. (3.A.35)

ε expansion

H0 = − ln α + 1, (3.A.36)
H1 = − ln α. (3.A.37)

3.A.6 The S - integrals

Definition

These are integrals over the Feynman variables only and they do not not contain
the parameter α. All of them originate from the expressions with sums over both
momenta and frequencies.

Sµν =
∫

[]
xµ

1x1+ν−µ
2 ((2 − ν − µ)x1 + x3)(xixj)−2−ε/2

(x2 + x3)1+ν
, (3.A.38)

Sν =
∫

[](x1 + x2)−1+2ν(xixj)−1−ν−ε/2. (3.A.39)
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ε expansion

S00 = −2
ε

+ 2, (3.A.40)

S01 = − 2
3ε

+
8
9
, (3.A.41)

S11 = − 1
3ε

+
1
9
, (3.A.42)

S0 = −2
ε

+ 2, (3.A.43)

S1 = −4
ε

+ 2. (3.A.44)

3.A.7 The T-integrals

Definition

The integrals are over the Feynman variables only. They come from the expressions
which only contain sums over frequency.

T η
µν =

(1 − α)η

αµ

∫
[]

x2−η
1 xµ+η−1

2 x
−1−µ−ε/2
3 (x1 + x2)−2−ε/2

(αx2 + ναx3 + x1)
, (3.A.45)

Tµν =
∫

[]
x2ν−2

1 (x1 + x2)−ν−ε(x1 + x3 + (α + µ)x2)

x
ν+ε/2
3 (αx2 + (1 + µ)x3 + x1)(x1 + x3 + αx2)

. (3.A.46)

ε expansion

T 0
10 = − 1

α
+ 1, (3.A.47)

T 0
11 = − 1

α
+

2
ε

+ lnα + 1, (3.A.48)

T 0
20 =

1
6α2

− 1
3α

− ln α − 11
12

, (3.A.49)

T 0
21 =

1
6α2

+
2
3α

+
ln α + 5/2

ε
+

ln2 α

2
+ 4 ln α +

17
12

, (3.A.50)

T 1
10 = − 1

α
− 2 ln α − 2, (3.A.51)

T01 =
ln α

ε/2
− ln2 α

2
, (3.A.52)

T02 =
2
ε
, (3.A.53)
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T12 = −3 ln α + 11/2
ε/2

+
3 ln2 α

2
+

9 ln α

2

−4 ln 2 ln α +
π2

6
− 4Li2(

1
2
) − 12 ln 2 +

27
4

. (3.A.54)

3.A.8 List of symbols and abbreviations

∫
[] =

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3 δ(x1 + x2 + x3 − 1), (3.A.55)

xij = xi + xj , (3.A.56)
xixj = x1x2 + x2x3 + x3x1. (3.A.57)

K1(α) =

1∫
α

dz

∫
[]

x2(x1(x2 + x3) + x2
3)(xixj)−2−ε/2

(zx2 + x3)(αx1 + zx2 + 2x3)
, (3.A.58)

J
′
3(α) = α

1∫
α

dz

z

∫
[]

x2(x1(x2 + x3) + x2
3)(xixj)−2−ε/2

(αx1 + zx2 + 2x3)2
, (3.A.59)

J1(α) =

1∫
α

dz

∫
[]

x1(x1 + x3)(x2 + x3)(xixj)−2−ε/2

(zx1 + x3)(zx1 + αx2 + 2x3)
, (3.A.60)

C ′
0 =

1∫
α

dzdy

∫
[]

x1x
2
2(xixj)−2−ε/2

(x3 + yx2)(zx1 + yx2 + 2x3)
. (3.A.61)

3.B Example of calculation for a typical integral

In this appendix we present the calculation of the integral A10 as a typical example.
We start with the integral

X10 = −32(κ2zc)3

σxxD

∫
pq

p2
∑

k,m>0

mDc
p+q(m)D3Dc

p(k)Dq(k + m). (3.B.1)

Using the Feynman trick, one can write

X10 = −16(κ2zc)3

σxxD

∫
pq

p2

∞∫
0

dmm

∞∫
0

dk Γ(6)

1∫
α

dz(z − α)2
∫

[]
[
h2

0 + q2x13

+p2x12 + 2p · qx1 + κ2zm(αx1 + x3) + κ2zk(zx2 + x3)
]−6

. (3.B.2)
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Shifting q → q−px1/x13, we can decouple p and q in the denominator. We are then
able to perform the integration over k,m, p and q, resulting in

X10 =
8Ω2

Dh2ε
0

σxxε
A10, (3.B.3)

where

A10 =

1∫
α

dz(z − α)2
∫

[]
x3

2(x1 + x3)(xixj)−2−ε/2

(zx2 + x3)(αx1 + x3)2
. (3.B.4)

Next we write the integral as a sum of four terms

A10 =

1∫
α

dz(z − α)2

z

∫
[]

x2(x1 + x3)(xixj)−1−ε

(αx1 + x3)2

{
1 − x1x3(xixj)−1

−x3(x1 + x3)(xixj)−1

z
+

x2
3(x1 + x3)(xixj)−1

z(zx2 + x3)

}
= I0 − I1 − I2 + I3. (3.B.5)

In what follows we retain the full ε dependence in the I0, I1 and I2 and it suffices to
put ε = 0 in the fourth piece I3. Introducing a change of variables

x1 =
u

s + 1
, x2 =

s

s + 1
, x3 =

1 − u

s + 1
, (3.B.6)

where 0 < s < ∞ and 0 < u < 1, then the four different pieces can be written as
follows

I0 =
(

1
2
− 2α

) 1∫
0

du

(αu + 1 − u)2

∞∫
0

ds
s(s + 1)ε

(s + u(1 − u))1+ε/2
, (3.B.7)

I1 =
1
2

1∫
0

du
u(1 − u)

(αu + 1 − u)2

∞∫
0

ds
s(s + 1)ε

(s + u(1 − u))2+ε/2
, (3.B.8)

I2 =

1∫
0

du
(1 − u)

(αu + 1 − u)2

∞∫
0

ds
s(s + 1)ε

(s + u(1 − u))2+ε/2
, (3.B.9)

I3 =

1∫
α

dz

(
z − α

z

)2
1∫

0

du
u(1 − u)2

(αu + 1 − u)2

×
∞∫
0

ds
(s + 1 − u)

(s + u(1 − u))2(αs + 1 − u)2
. (3.B.10)
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The integrals over s in Eqs (3.B.7)-(3.B.10) can now be recognized as integral repre-
sentations of the hypergeometric function 2F1. Write

I0 =
1 − 4α

2

1∫
0

du
[u(1 − u)]1−ε/2

(αu + 1 − u)2

[
−G0(u(1 − u))

1 + ε/2
+

G1(u(1 − u))
ε/2

]
,(3.B.11)

I1 = −1
2

1∫
0

du
[u(1 − u)]1−ε/2

(αu + 1 − u)2

[
G1(u(1 − u))

ε/2
− G2(u(1 − u))

1 − ε/2

]
, (3.B.12)

I2 = −
1∫

0

du
u−ε/2(1 − u)1−ε/2

(αu + 1 − u)2

[
G1(u(1 − u))

ε/2
− G2(u(1 − u))

1 − ε/2

]
, (3.B.13)

I3 =
1
4

1∫
α

dz

(
z − α

z

)2
1∫

0

du [2uH3(1 − αu) + (1 − u)H4(1 − αu)]
zu + 1 − u

, (3.B.14)

then, in the limit where ε → 0, we can identify the functions Gi and Hi as follows

G0(1 − z) = 2F1(1,−ε,−ε/2; z) → 1 + z

1 − z
, (3.B.15)

G1(1 − z) = 2F1(1,−ε, 1 − ε/2; z) → 1 + ε ln(1 − z), (3.B.16)
G2(1 − z) = 2F1(1,−ε, 2 − ε/2; z) → 1, (3.B.17)

and

H3(z) = 2F1(1, 2, 3; z) = − 2
z2

(ln(1 − z) + z) , (3.B.18)

H4(z) = 2F1(1, 2, 4; z) =
6
z3

(
(1 − z) ln(1 − z) + z − z2/2

)
. (3.B.19)

Using these results we obtain

I0 = − 1
α
− ln α + 2

ε/2
− ln2 α

2
− 2 ln α − π2

3
, (3.B.20)

I1 =
ln α + 2

ε/2
+

ln2 α

2
+ 2 ln α +

π2

3
, (3.B.21)

I2 =
ln α + 1

ε/2
+

ln2 α

2
+ 2 ln α +

π2

3
+ 1, (3.B.22)

I3 = − ln α. (3.B.23)

The final answer is therefore

A10 = − 1
α
− 2 ln α + 3

ε/2
− ln2 α − 5 ln α − 2π2

3
+ 3 (3.B.24)



Chapter 4

θ renormalization and
electron-electron interactions

4.1 Introduction

One of the long standing mysteries in the theory of the plateau transitions in the quan-
tum Hall regime is the apparently insignificant or subdominant role that is played by
the long range Coulomb interaction between the electrons. The pioneering experi-
ments on quantum criticality in the quantum Hall regimes by H. P. Wei et al., [23] for
example, are in many ways a carbon copy of the scaling predictions based on the field
theory of Anderson localization in strong magnetic fields. [22] The initial success of the
free electron theory has primarily led to a widely spread believe in Fermi liquid type
of ideas [100, 101, 102, 103, 104, 105] as well as an extended literature on scaling and
critical exponent phenomenology. [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]

Except for experimental considerations, however, there exists absolutely no valid
(microscopic) argument that would even remotely justify any of the different kinds
of free (or nearly free) electron scenarios that have frequently been proposed over the
years. In fact, Fermi liquid principles are fundamentally in conflict with the novel
insights that have more recently emerged from the development of a microscopic
theory on interaction effects. [32, 33, 35] These developments are naturally based on
the topological concept of an instanton vacuum [18] which is very well known to be
the fundamental mechanism by which the free electron gas de-localizes in two spatial
dimensions and in strong magnetic fields. [22] The outstanding and difficult problem
that one is faced with is whether or not the topological concepts in quantum field
theory retain their significance also when the electron-electron interactions are taken
into account. [31]

For a variety of reasons, however, it has taken a very long time before the subject
matter gained the physical clarity that it now has. [66] Perhaps the most awkward
obstacles were provided by the historical controversies [67] in QCD where the idea of
an instanton parameter θ arose first but its meaning remained rather obscure. [111]
These controversies have mainly set the stage for the wrong physical ideas and the

129
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wrong mathematical objectives. For example, in sharp contrast to the general expec-
tations in the field [112, 113, 114, 39, 40, 41] the fundamental problems do not reside in
the conventional aspects of disordered systems such as the replica method or “exact”
critical exponent values. A more fundamental issue has emerged, the massless chiral
edge excitations, [34] that dramatically change the way in which the θ parameter is
generally being perceived. [66] A detailed understanding of the physics of the edge
has resolved, amongst many other things, the long standing controversies that his-
torically have spanned the subject such as the quantization of topological charge, [37]
the meaning of instantons and instanton gases [37, 38] etc. As a result of all this we
can now state that the instanton angle θ generically displays all the basic features of
the quantum Hall effect, independent of the details such as the replica limit. This
includes not only the appearance of gapless excitations at θ = π but also the most
fundamental and much sought after aspect of the theory, the existence of robust topo-
logical quantum numbers that explain the precision and observability of the quantum
Hall effect. [66]

A second major complication in dealing with interaction effects is the notorious
complexity of the underlying theory. [30] Although Finkelstein’s original ideas in the
field have been very illuminating, it has nevertheless taken herculean efforts to un-
derstand how the generalized non-linear σ model approach can be studied as a field
theory. This includes not only the theory of perturbative expansions [33] but also such
basic aspects like the global symmetries of the problem (F invariance), electrodynamic
U(1) gauge invariance as well as the physical observables of the theory. [32] These
advances are absolutely necessary if one wants to extend the perturbative theory of
localization and interaction effects to include the highly non-trivial consequences of
the θ vacuum.

It obviously makes an enormously big difference to know that the instanton vac-
uum theory of the quantum Hall effect is NOT merely an isolated critical exponent
problem that exists in replica field theory or “super symmetric” extensions of free
electron approximations alone. Contrary to this widely spread misconception in the
literature the fundamental features of the quantum Hall effect actually reveal them-
selves as a super universal consequence of topological principles in quantum field
theory that until to date have not been well understood. The concept of super uni-
versality makes it easier and more natural to comprehend why the basic phenomena
of scaling are retained by the electron gas also when the Coulomb interaction be-
tween the electrons is taken into account. Moreover, it facilitates the development
of a unifying theory that includes completely different phenomena like the fractional
quantum Hall regime. Unlike Fermi liquid ideas, however, super universality does not
necessarily imply that the quantum critical details at θ = π remain the same. The
various different applications of the θ vacuum concept do in general have different
exponent values at θ = π and, hence, they belong to different universality classes.

In this Chapter we revisit the problem of topological excitations (instantons) and
θ renormalization [20, 21] in the theory of the interacting electron gas. The results of
an early analysis of instanton effects have been reported in a short paper by Pruisken
and Baranov. [31] However, much of the conceptual structure of the theory was not
known at that time, in particular the principle of F invariance and the appearance of
the massless edge excitations that together elucidate the fundamental aspects of the
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θ vacuum on the strong coupling side. [66] These novel insights unequivocally define
the physical observables (i.e. the conductance parameters σxx and σxy) that control
the dynamics of the θ vacuum at low energies. These physical observables should
therefore quite generally be regarded as some of the most fundamental quantities of
the theory.

A detailed knowledge of instanton effects on the physical observables of the theory
has fundamental significance since it bridges the gap that exists between the weak
coupling Goldstone singularities at short distances, and the super universal features
of the quantum Hall effect that generally appear at much larger distances only. The
theory of observable parameters, as it now stands, provides the general answer to the
“arena of bloody controversies” that historically arose because of a complete lack of
any physical objectives of the theory. A prominent and exactly solvable example of
these statements is given by the large N expansion of the CPN−1 model that, unlike
the previous expectations, sets the stage for all the non-perturbative features of the
θ parameter that one is interested in Ref. [66].

The main objective of the present chapter is to review the instanton methodology,
provide the technical details of the computation and extend the analysis in several
ways. Our study of the interacting electron gas primarily relies on the procedure of
spatially varying masses that has been applied in the context of the ordinary U(m +
n)/U(m) × U(n) non-linear σ model in Chapter 2. The important advantage of this
procedure is that it facilitates non-perturbative computations of the renormalization
group β and γ functions of the theory. These computations, together with the new
insights into the strong coupling features and symmetries of the problem, lay out the
complete phase and singularity structure of the disordered electron gas. The results
of this paper, which include the non-Fermi liquid behavior of the Coulomb interaction
problem, obviously cannot be obtained in any different manner.

This chapter is organized as follows. We start out in Section 2.2 with a brief
introduction to the formalism and recall the effective action procedure for massless
chiral edge excitations. In Section 4.2.2 we briefly elaborate on the general topological
principles that explain the robust quantization of the Hall conductance. The general
argument is deeply rooted in the methods of quantum field theory and relies on the
relation that exists between the conductances on the one hand, and the sensitivity of
the interacting electron gas to infinitesimal changes in the boundary conditions on the
other. The argument is furthermore based on the relation between Kubo formalism,
the background field methodology and the effective action for chiral edge excitations
which was described in Section 3.3.

In Section 3.2.3 we give the complete list of physical observables which then serves
as the basic starting point for the remainder of this paper. We show the general
relationship between the physical observables and the renormalization group β and γ
functions.

In Section 4.3 we recall the various different aspects associated with instanton
matrix field configurations and embark on the problem of quantum fluctuations. We
use the method of spatially varying masses described in Chapter 2 and end the Section
with the complete action for the quantum fluctuations in Tables 4.3 and 4.4.

In Section 4.4 together with Appendix 4.A we present the results of detailed com-
putations that deal, amongst many other things, with the technical difficulties asso-
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ciated with the theory in Pauli-Villars regularization, the replica method as well as
the infinite sums over Matsubara frequency indices that are inherent to the problem
of electron-electron interactions.

In Section 4.5 we address the various different aspects associated with the in-
tegration over zero modes and embark on the general problem of transforming the
Pauli-Villars masses in curved space back into flat space following the methodology
introduced by ’t Hooft. [44] This finally leads to the most important advances of
this paper, the renormalization-group β and γ functions which are evaluated at a
non-perturbative level. These final results provide a unified theory of the disordered
electron gas that includes the effects of both finite range electron-electron interactions
and infinite range interactions such as the Coulomb potential. We end this Chapter
with a discussion in Section 4.8.

4.2 Formalism

4.2.1 The action

For convenience of a reader we remind that the generalized replica non-linear sigma
model involves unitary matrix field variables Qαβ

nm(r) that obey the following con-
straints

Q = Q†, trQ = 0, Q2 = 1. (4.2.1)

The superscripts α, β = 1, . . . , Nr represent the replica indices and the subscripts
n,m are the indices of the Matsubara frequencies ωk = πT (2k + 1) with k = n,m. A
convenient representation in terms of unitary matrices T (r) is obtained by writing

Q(r) = T −1(r)ΛT (r), Λαβ
nm = sign(ωn)δαβδnm. (4.2.2)

The effective action for the two-dimensional interacting electron gas in the presence
of disorder and a perpendicular magnetic field can be written as follows [32]

Z =
∫

D[Q] exp S, S = Sσ + SF . (4.2.3)

Here, Sσ is the free electron action [19]

Sσ = −σxx

8

∫
dr tr(∇Q)2 +

σxy

8

∫
dr tr εabQ∇aQ∇bQ. (4.2.4)

The quantities σxx and σxy represent the meanfield values for the longitudinal and
Hall conductances in units e2/h respectively. The symbol εab = −εba stands for the
antisymmetric tensor. Next, SF contains the singlet interaction term [30, 32]

SF = πTz

∫
drOF [Q], (4.2.5)

where
OF [Q] = c

∑
αn

tr Iα
n Q tr Iα

−nQ + 4 tr ηQ − 6 tr ηΛ. (4.2.6)
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Here, z is the so-called singlet interaction amplitude, T the temperature and c the
crossover parameter which allows the theory be interpolated between the case of
electrons with Coulomb interaction (c = 1) and the free electron case (c = 0). The
singlet interaction term involves a matrix

(Iα
n )βγ

km = δαβδαγδk,n+m (4.2.7)

which is the Matsubara representation of the U(1) generator exp(−iωnτ) with τ being
imaginary time. Matrix

ηαβ
nm = nδαβδnm (4.2.8)

is used to represent the set of the Matsubara frequencies ωn. In what follows we shall
regulate of the infrared of the system by the finite size L rather than the infrared
regulator h2

0 that we have used in the previous Chapter.

4.2.2 Quantization of the Hall conductance

As it was shown in Chapter 2 the robust quantization of the Hall conductance can be
demonstrated on the basis of very general principles such as mass generation and the
fact that the conductances can be expressed in terms of the response of the system to
changes in the boundary conditions. Below we briefly repeat the arguments presented
in Chapter 2 for noninteracting electrons and extend it to the case of the Coulomb
interactions. The subtleties of the argument involve a novel and previously unexpected
ingredient of the instanton vacuum concept, however, which has been recognized very
recently only. The main problem resides in the σxy term in Eq. (4.2.4) which is
formally identified as the topological charge C[Q] associated with the matrix field
configuration Q. Assuming for simplicity the geometry of a square of size L×L then
we can express the topological charge in terms of both a bulk integral and an edge
integral as follows

C[Q] =
1

16πi

∫
dr tr εabQ∇aQ∇bQ =

1
4πi

∮
dx tr T ∇xT −1Λ. (4.2.9)

As we discussed in great details in Chapter 2 the remarkable thing that is usually
overlooked is that the matrix field Q generally splits up into distinctly different com-
ponents, each with a distinctly different topological significance and very different
physical properties. For this purpose we introduce a change of variables

Q = t−1Q0t. (4.2.10)

Here, the Q0 is an arbitrary matrix field with boundary conditions Q0 = Λ at the
edge (or, equivalently, T0 equals an arbitrary U(N) × U(N) gauge at the edge). The
fixed unitary matrix field t generally represents the fluctuations about the special
boundary conditions. This change of variables is just a formal way of splitting the
topological charge C[Q] of an arbitrary matrix field configuration Q into an integral
piece C[Q0] and a fractional piece C[q],

C[Q] = C[Q0] + C[q], q = t−1Λt. (4.2.11)
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Without a loss in generality we can write

C[Q0] ∈ Z, −1
2

< C[q] � 1
2
. (4.2.12)

The main new idea is that the matrix field t or q corresponding to all possible boundary
conditions for Q field should be taken as a dynamical variable in the problem, rather
than being a fixed quantity that one can choose freely. The reason is that one can
generally associate massless chiral edge excitations with the fluctuating matrix fields
q. These so-called edge modes q are distinctly different from the bulk modes Q0 which
usually (i.e. for arbitrary values of σxy) generate dynamically a mass gap in the bulk
of the system. These various statements immediately suggest that the low energy
dynamics of the strong coupling phase is described by an effective action of the matrix
field variable q obtained by formally eliminating the bulk modes Q0. This effective
action procedure is furthermore based on the fact that the mean field quantity σxy

(which is equal to the filling fraction νf of the Landau levels) can in general be split
into an integral edge part k(νf ) and a fractional bulk piece θ(νf ) as follows

σxy = νf = k(νf ) +
θ(νf )
2π

, (4.2.13)

where
k(νf ) ∈ Z, −π < θ(νf ) � π. (4.2.14)

In what follows we shall separately consider the theory with c = 0 (free particles)
and c = 1 (Coulomb interactions) both of which are invariant under the action of
renormalization group. [33]

Free particles (c = 0)

In the absence of external frequencies and at T = 0 we can write the action for the
free electron gas as follows

S = Sedge
σ [q] + Sbulk

σ [Q], (4.2.15)

where

Sedge
σ [q] = 2πik(νf )C[q], (4.2.16)

Sbulk
σ [Q] = −σxx

8

∫
dr tr(∇Q)2 + iθ(νf )C[Q]. (4.2.17)

Provided the matrix field variable t satisfies the classical equations of motion we can
obtain an effective action for q by eliminating the bulk matrix field Q0

Seff[q] = Sedge
σ [q] + Sbulk

eff [q], (4.2.18)

where

exp Sbulk
eff [q] =

∫
∂V

D[Q0] exp Sbulk
σ [t−1Q0t]. (4.2.19)
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Here the subscript ∂V indicates that the functional integral has to be performed
with Q0 = Λ at the edge. The effective action for the bulk can be written as (see
Section 2.2.3)

Sbulk
eff [q] = −σ′

xx

8

∫
dr tr(∇q)2 + iθ′C[q]. (4.2.20)

Here, σ′
xx = σxx(L) and θ′ = θ(L) play the role of response parameters that measure

the sensitivity of the system to an infinitesimal change in the boundary conditions.
For exponentially localized states these parameters are expected to vanish for large
enough L and the effective action is now given by the edge piece (4.2.16) alone. This
one dimensional action is known to describe massless chiral edge excitations. [34] To
obtain a suitably regulated action for the edge we may proceed by stacking many
blocks of size L × L on top of one another to form an infinite strip (see Fig. 4.1).
The action for the quantum Hall state is then defined along infinite edges and can be
written as [32]

Seff[q] =
k(νf )

2

∮
dx tr t∇xt−1Λ + πTρedge

∮
dx tr ηq. (4.2.21)

Here we have introduced a frequency term to regulate the infrared and σ′
xy = k(νf )

indicates that the Hall conductance is robustly quantized.
At this stage several remarks are in order. First of all, from an explicit (non-

perturbative) computation of the response parameters σ′
xx and θ′ we know that the

argument generally fails for θ(νf ) = θ′ = π where the mass gap vanishes and the
system is quantum critical. This happens at the center of the Landau bands where a
transition takes place between adjacent quantum Hall plateaus.

Secondly, it is important to keep in mind that the aforementioned argument for
an exact quantization of the Hall conductance is entirely based on the fact that the
edge modes q are massless. The beauty of the effective action procedure is that
it unequivocally demonstrates that the so-called spherical boundary conditions (i.e.
Q0 = Λ at the edge) are dynamically generated by the system itself, independent of
any weak coupling arguments such as finite action requirements and independent of Nr

and Nm. The bulk components Q0 have mathematically very interesting properties
in that they are a realization of the formal homotopy theory result

π2(SU(2N)/S(U(N) × U(N))) = π1(S(U(N) × U(N))) = Z. (4.2.22)

The integer Z is equal to the topological charge C[Q0] which is identified as the jaco-
bian for the mapping of the manifold U(2N)/U(N)×U(N) onto the two-dimensional
plane. Physically the quantization of C[Q0] represents the quantization of flux and
the integer k(νf )C[Q0] can be interpreted in terms of a discrete number of electrons
that have crossed the Fermi energy at the edge of the system.

Notice that except for the massless chiral edge modes there exists no compelling
reason to believe why the topological charge C[Q0] and, hence, the Hall conductance
is robustly quantized. In fact, the quantization of topological charge has been one
of the longstanding and controversial issues in quantum field theory [37] that have
fundamentally complicated the development of a microscopic theory of the quantum
Hall effect.



136 Chapter 4

Q0 Λ=

Q0 Λ=

Λ0Q =

=

Q0 =Λ

0Q Λ

L

L

Figure 4.1: Geometry of an infinite strip

Coulomb interaction (c = 1)

An extension of the effective action procedure to the problem with the long range
Coulomb interaction is by no means obvious. The argument relies, to a major ex-
tend, on the detailed knowledge obtained from an explicit analysis of the Finkelstein
approach which shows that the theory undergoes structural changes in the limit where
Nr → 0 and Nm → ∞. The action is more complicated and now given by

S = Sedge
σ [q] + Sbulk

σ [Q] + SF [Q], (4.2.23)

where c = 1 is inserted in the expression for SF [Q]. Elimination of the matrix field
variable Q0 leads to the definition of the effective action

exp Sbulk
eff [q] =

∫
∂V

D[Q0] exp
(
Sbulk

σ [t−1Q0t] + SF [t−1Q0t]
)
. (4.2.24)

On the basis of symmetries one can write down the following explicit result (see
Section 2.2.3)

Sbulk
eff [q] = −σ′

xx

8

∫
dr tr(∇q)2 + iθ′C[q] + O(T ). (4.2.25)

Here, the response parameters σ′
xx = σxx(L) and θ′ = θ(L) are evaluated in the

limit where T → 0. It is important to emphasize that SF cannot be omitted from
Eqs. (4.2.23)-(4.2.25). The reason is, as we already mentioned before, that this term
fundamentally affects the ultra violet singularity structure of the theory. [30, 33]
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The remaining part of the argument proceeds along similar lines as before. Pro-
vided the system with Coulomb interactions generates a mass gap, both parameters
σ′

xx and θ′ should vanish for L large enough. The complete action for the quantum
Hall state has been obtained previously but only for the much simpler case where
the Fermi energy is located in a Landau gap. The parameters σxx, θ as well as the
singlet interaction amplitude z are identically to zero from the start in this case and
the result is [34]

Seff[q] =
k(νf )

2

∮
dx tr t∇xt−1Λ +

π2

2
Tρedge

∮
dxOF [q]

− π

4
Tk(νf )

∮
dx

∮
dy tr Iα

−nq(x)veff(x − y) tr Iα
n q(y). (4.2.26)

As before we have σ′
xy = k(νf ). Here, the quantity veff(x − y) contains the Coulomb

interaction U0(x − y) = 1/|x − y|. The Fourier transform is given by

v−1
eff (px) =

k(νf )
2πρedge

[
1 + ρedge

∫
dpy U0

(√
p2

x + p2
y

)]
. (4.2.27)

It can been shown that Eq. (4.2.26) is equivalent to the action for k(νf ) chiral bosons
in 1 + 1 space time dimension [34]

Schiral = − i

4π

k(νf )∑
i=1

∫ 1/T

0

dτ

∮
dx ∂xφi

(
∂τ − i

k(νf )
2πρedge

∂x

)
φi

− 1
8π2

k(νf )∑
i,j=1

∫ 1/T

0

dτ

∮
dx

∮
dy ∂xφi(x)U0(x − y)∂yφj(x′). (4.2.28)

This result has been used as the starting point for a first principle derivation of the
complete Luttinger liquid theory of the edge for the abelian quantum Hall states. [35]

4.2.3 Physical observables

General remarks

The fundamental problem that one is faced with is how the interacting electron gas
manages to go from an ordinary metallic state at short distances to the quantum Hall
state described by Eqs (4.2.26) - (4.2.28) that one generally expects at much larger
distances only. Pursuing a satisfactory understanding of this phenomenon it is obvi-
ously the same thing as developing a microscopic theory for the observable parameters
σ′

xx, σ′
xy or θ′. We have seen that these transport parameters automatically appear as

an integral aspect of the effective action procedure of massless chiral edge excitations.
As we have shown in the previous Chapter that σ′

xx and σ′
xy can quite generally be

identified with the Kubo formulae for the conductances. One of the main difficulties,
however, is that a detailed knowledge of the transport parameters generally involves
a detailed knowledge the interaction terms that are linear in T . These terms, for all
practical purposes act, like unusual mass terms that affect the renormalization behav-
ior of the electron gas at T = 0. This means, amongst many other things, that the
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dynamic generation of the quantum Hall state is not merely a statement that is made
on the transport quantities σ′

xx and σ′
xy alone. In particular, the arguments of the

previous Section must be extended to also include the interactions terms indicated
by O(T ) in Eq. (4.2.25). Before one could even think of any attempt in this direction
it is absolutely necessary to first recapitulate the perturbative renormalization group
results obtained from the background field methodology which is a slight modification
of the effective action procedure. For computational purposes it is convenient to add
a U(N)×U(N) invariant mass term to Eq. (4.2.24) such that the effective action for
arbitrary values of c now becomes

eSbulk
eff [q] =

∫
D[Q] exp

(
Sbulk

σ [t−1Qt] + SF [t−1Qt] + h2

∫
dr tr ΛQ

)
. (4.2.29)

Provided the length scale induced by the h2 field is much smaller than the actual
sample size one can evaluate Sbulk

eff [q] in a systematic fashion by using the standard
methods for perturbative expansions in 2 + ε dimensions. Assuming that the “back-
ground field” t obeys the classical equations of motions of Sσ then an explicit com-
putation of Sbulk

eff [q] to lowest orders in an expansion in powers of both the gradients
and T leads to the following expression

Sbulk
eff [q] = −σ′

xx

8

∫
dr tr(∇q)2 + iθC[q]

+πTz′
∫

dr

(
c′
∑
αn

tr Iα
n q tr Iα

−nq + 4 tr ηq − 6 tr ηΛ

)
. (4.2.30)

Eq.(4.2.30) is of the same form as the original action except that the bare parameters
are now replaced by the “observable” ones that contain radiative corrections. Notice
that θ′ = θ which is a direct consequence of the fact that the θ term is invisible in
perturbative expansions. The results nevertheless indicate that besides the quantities
σ′

xx and θ′ one should generally extend the list of observable parameters to include
z′ and c′ as well. Eq. (4.2.30) is consistent with the results originally obtained by
Finkelstein in a different physical context. [30] Important for our purposes is the
fact the quantities σ′

xx, z′ and c′ depend on the h field only through an “induce”
momentum scale µ′ = µ′(h) � L−1. On the other hand, in the limit h → 0, the
infrared of Eq. (4.2.29) is regulated by the sample size L rather than h. Under these
circumstances one expects that the results of Eq. (4.2.30) are unchanged except that
the momentum scale µ′ is now fixed by L rather than h.

Kubo formula

The response quantities σ′
xx and θ′ for arbitrary values of c can be expressed in terms

of current-current correlations according to [21, 33] (see Eqs. (3.2.13) and (3.3.4))

σ′
xx = −σxx

4n

〈
tr[Iα

n , Q(r)][Iα
−n, Q(r)]

〉
+

σ2
xx

8n

∫
dr
〈
tr Iα

n Q(r)∇Q(r) tr Iα
−nQ(r′)∇Q(r′)

〉
, (4.2.31)

σ′
xy = σxy +

σ2
xx

8n

∫
drεab〈tr Iα

n Q(r)∇aQ(r) tr Iα
−nQ(r′)∇bQ(r′)〉. (4.2.32)
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Here and from now onward the expectations are defined with the respect to the theory
of Eq. (4.2.3)-(4.2.6) and we assume spherical boundary conditions.

Specific heat

A natural definition of the observable quantity z′ is obtained through the derivative
of the thermodynamic potential with respect to temperature which is directly related
to the specific heat of the electron gas. [33] Write

∂ ln Ω
∂ ln T

= πTz

∫
dr〈OF [Q]〉

= πTz′
∫

drOF [Λ] (4.2.33)

then the expression for z′ becomes (see Section 3.3)

z′ = z
〈OF [Q]〉
OF [Λ]

. (4.2.34)

The expression for remaining observable c′ is determined by the general condition
imposed on the static response of the system which says that the quantity zα = z(1−c)
remains unaffected by the quantum fluctuations. [30, 32, 33] The second equation
therefore reads as follows

z′(1 − c′) = z(1 − c) or z′α′ = zα. (4.2.35)

In the previous Chapter we have worked out the perturbative expressions for the
observable parameters. In what follows we proceed and employ Eqs. (4.2.34) and
(4.2.35) for non-perturbative computational purposes as well. A justification of this
procedure is given in Section 4.7 where we embark on the various different subtleties
associated with instanton calculus.

β and γ functions

The expressions of the previous Sections facilitate renormalization group studies that
include not only ordinary perturbative expansions but also the non-perturbative ef-
fects of instantons. Let µ′ denote the momentum scale associated with the observable
theory then the quantities σ′

xx = σxx(µ′), z′ = z(µ′) and c′ = c(µ′) can be expressed
in terms of the renormalization group β and γ functions according to (see chapter 3)

σ′
xx = σxx +

∫ µ′

µ0

dµ

µ
βσ(σxx, c), (4.2.36)

θ′ = θ +
∫ µ′

µ0

dµ

µ
βθ(σxx, c), (4.2.37)

z′ = z −
∫ µ′

µ0

dµ

µ
γz(σxx, c)z, (4.2.38)

z′α′ = zα. (4.2.39)

Here βθ and γz functions are given by Eqs. (3.2.22)-(3.2.23) and βθ = 0.
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4.2.4 Sensitivity to boundary conditions

Let us next come back to the background field procedure of Eqs (4.2.29) and (4.2.30)
and see how one in general can learn something about the problem on the strong
coupling side. We are, in particular, interested to see how the perturbative results
of the renormalization group can be reconciled with Thouless’ idea of exponential
localization. This means that upon entering the strong coupling phase the bulk of
the system renders insensitive to changes in the boundary conditions. We specialize
from now onward to the theory in two spatial dimensions and discard, for the time
being, θ term. We shall start the discussion with the Coulomb interaction problem
since it displays many of the features that are familiar from the ordinary non-linear
σ model. We then proceed with the less familiar aspects that are very specific to the
physics of the electron gas.

Weak versus strong coupling

Putting c = c′ = 1 then the effective action for the edge field variable q, Eqs (4.2.24)
and (4.2.25), can be written as follows

Sbulk
eff [q] = − σ′

xx

8

∫
dr tr(∇q)2

+
1
2
πTz′

∫
dr
∑
αn

′
tr[Iα

n , q][Iα
−n, q]. (4.2.40)

This result displays F invariance as it should. In terms of the effective action pro-
cedure for edge excitations one can say that upon approaching the strong coupling
insulating phase the bulk parts of the action generally vanish. More precisely, Sbulk

eff [q]
in Eq. (4.2.40) becomes invariant under the replacement of q by the following expres-
sion

q = t−1Λt → t−1T −1
0 ΛT0t. (4.2.41)

Here, T0 stands for an arbitrary unitary matrix field that reduces to a U(N)×U(N)
gauge at the edge of the system.

Coulomb interaction

If it were true that the electron gas behaves in all respects like an ordinary σ model
then the effective action procedure for edge excitations would precisely follow the
general expectations in quantum field theory and the discussion would be closed.
There are, however, important and well known differences that generally complicate
the matter. Technically speaking these differences arise as a peculiarity of the theory
in the replica limit where the Mirmin-Wagner-Coleman theorem no longer applies.
From a physical point of view these differences are a direct consequence of certain
general constraints that are deeply rooted in the theory of quantum transport.

First, in as far as the Coulomb interaction problem is concerned, it is important to
emphasize that there are higher dimensional terms in the action that one in general
cannot ignore. Besides the singlet interaction term SF one should include also the
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Coulomb term SU which can be written as [32]

SU [Q] = −πT

∫ ∑
αn

tr Iα
n Q(r)U(r − r′) tr Iα

−nQ(r′). (4.2.42)

The potential U in momentum space is given by

U(p) = ρ/(1 + U0(p)ρ) (4.2.43)

where ρ = ∂n/∂µ denotes the thermodynamic density of states and U0(p) ∝ |p|−1

is the Coulomb potential in two dimensions. Although “irrelevant” in the context of
weak coupling expansions, the Coulomb term is nevertheless important if one wishes to
describe the full dynamical response of the electron gas as well as the electrodynamic
U(1) gauge invariance of the theory.

The most remarkable feature of the Coulomb term, however, is that it generally
does not “renormalize”. This means that SU does not acquire any quantum or “ra-
diative” corrections. This important aspect of the problem can be demonstrated, just
like the statement made earlier on zα, on the basis of general principles of transport
theory. To see how these general statements complicate the idea of having “edge
excitations” in the strong coupling regime we next consider an extended background
field procedure that includes the effects of the Coulomb term SU . The results, when
fully written out, now become

Sbulk
eff [q] = − σ′

xx

8

∫
tr(∇q)2

+
1
2
πTz′

∫ ∑
αn

′
tr[Iα

n , q][Iα
−n, q]

− πT

∫ ∑
αn

tr Iα
n q(r)U(r − r′) tr Iα

−nq(r′). (4.2.44)

Since the last term in Eq. (4.2.44) is length scale independent the bulk part of the
action can no longer vanish as one increases the linear dimension of the system. In
different words, scaling results alone no longer indicate how the interacting electron
gas manages to render insensitive to boundary conditions as one enters into the strong
coupling phase.

Free particles

This conflict between the scaling results of the theory and the invariance statement
made on the strong coupling phase, Eq. (4.2.41), becomes only more pronounced in
the problem with finite range interactions 0 < c, c′ < 1. This problem lies in the
domain of attraction of the Fermi liquid line c = c′ = 0 in which case the effective
action Sbulk

eff [q] can be written as

Sbulk
eff [q] = −σ′

xx

8

∫
dr tr(∇q)2 + πTz

∫
dr (4 tr ηq − 6 tr ηΛ) . (4.2.45)

The scaling behavior of the quantity σ′
xx in Eq. (4.2.45) is very similar to the results

obtained for the Coulomb interaction problem, Eqs. (3.6.4) - (3.6.12). On the other
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hand, the quantity z′ = z now is length scale independent. This well known result
for free particles is intimately related to the existence of anomalously broad density
distributions (multi-fractality), a phenomenon that is absent in the problem with
infinitely ranged interactions such as the Coulomb potential. [118]

Effective action for the edge.

It is in general not difficult to see how the result of Eq. (4.2.45) can in general
be consistent with the existence of a strong coupling phase and, in particular, the
invariance statement made in Eq. (4.2.41). For this purpose we consider the classical
equations of motion

σ′
xx∇j(q∇jq) + 2πTz[η, q] = 0 (4.2.46)

which must be satisfied everywhere except precisely at the edge of the system. As
long as we work in the regime where σ′

xx is large we can neglect the second term in
this equation and proceed by treating all the terms in Sbulk

eff [q] that are linear and
higher order in T as a perturbation. The solutions to Eq. (4.2.46) are then quite
generally determined by the matrix field variable q at the edge of the system which
therefore can be taken as independent degrees of freedom. As one approaches the
strong coupling phase, however, the value of σ′

xx decreases and eventually renders
exponentially small for large enough system sizes L. Under these circumstances one
can no longer discard the frequency term in Eq. (4.2.46) since it now becomes the
dominant one. Therefore, upon increasing the linear dimension of the system the
saddle point structure of the theory changes such that eventually, as one enters into
the strong coupling regime, the frequency term in Eq. (4.2.45) gets replaced by

πTz

∫
dr (4 tr ηq − 6 tr ηΛ) →

πTz

(
−2
∫

dr tr ηΛ + ∆
∮

dx tr ηq

)
(4.2.47)

where ∆ is a phenomenological constant that otherwise depends on the microscopic
details of the edge.

To summarize the results of the previous Sections one can say that there are gen-
erally distinctly different mechanisms at work by which the effective action procedure
for disordered metals as defined in Eqs (4.2.19) and (4.2.24) eventually turns into a
proper one dimensional action for edge excitations. It is next of interest to complete
the argument and digress on the type of edge excitations that one would normally
expect on the basis of the perturbative theory of localization and interaction effects
alone. For example, the most general action for the edge for free electrons that is
consistent with the symmetries of the problem as well as the invariance statement of
Eq. (4.2.41) reads as follows (discarding constants)

Seff[q] = g

∮
dx tr(∇xq)2 + πTz∆

∮
dx tr ηq (4.2.48)

where g, like ∆, is a phenomenological quantity. This action defines an Anderson
localization problem in one dimension and indicates that the mass gap of “edge exci-
tations” is even larger than that of “bulk excitations”.
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It is clear that these naive expectations are fundamentally modified by the presence
of the θ(ν) term in the action which is invisible in perturbative expansions.

Armed with the insights obtained from the perturbative renormalization group we
next embark - for the remainder of this paper - on the problem of instantons.

4.3 Instantons

In this Section we recapitulate the instanton analysis for the Grassmannian non-linear
σ model (Sections 4.3.1 and 2.4). Following the methodology of Chapter 2 we use the
spatially varying masses which essentially adapts the interaction part of the action
SF to the metric of a sphere (Section 4.3.3). In Section 4.3.4 we derive the complete
action for the small oscillator problem that will be used as a starting point for the
remainder of this paper.

4.3.1 Introduction

The action Sσ

On the basis of the Polyakov-Schwartz inequality [20]

1
8

∫
dr tr(∇Q)2 � 2π|C[Q]| (4.3.1)

one can construct stable matrix field configurations (instantons) for each of the dis-
crete topological sectors labelled by the integer C[Q]. The classical action Sσ is finite

Sinst
σ = −2πσxx|C[Q]| + iθC[Q]. (4.3.2)

The single instanton configuration with the topological charge C[Q] = ±1 which is of
interest to us can be represented as follows [20, 31]

Qinst(r) = T −1
0 Λinst(r)T0, Λinst(r) = Λ + ρ(r). (4.3.3)

Here, the matrix ραβ
nm(r) has four non-zero matrix elements only

ρ11
00 = −ρ11

−1−1 = − 2λ2

|z − z0|2 + λ2
, (4.3.4)

ρ11
0−1 = ρ̄11

−10 =
2λ(z − z0)

|z − z0|2 + λ2
,

with z = x + iy. The manifold of instanton parameters consists the quantity z0

denoting the position of the instanton, the parameter λ which equals the scale size
as well as the global unitary rotation T0 which describes the orientation in the coset
space U(2N)/U(N)×U(N). These parameters do not change the value of the classical
action Sinst

σ . The anti-instanton with C[Q] = −1 is simply obtained by complex
conjugation.
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The action SF

In the presence of mass terms like the singlet interaction term SF the idea of sta-
ble topologically non-trivial field configurations becomes generally more complicated.
The minimum action requirement, for example, immediately tells us that the global
matrix T0 is now restricted to run over the subgroup U(N) × U(N) only. Instead of
Eq. (4.3.3) we therefore write

Qinst(r) = U−1Λinst(r)U = Λ + U−1ρ(r)U (4.3.5)

with U ∈ U(N) × U(N). Next, by substituting Eq. (4.3.5) into Eq.(4.2.5) one can
split SF into a topologically trivial piece and an instanton peace as follows

SF [Qinst] = SF [Λ] + Sinst
F , (4.3.6)

where
SF [Λ] = −2πTz

∫
dr tr ηΛ, (4.3.7)

and

Sinst
F [U ] = πTz

∫
dr
[
c
∑
αn

tr Iα
n U−1ρU tr Iα

−nU−1ρU + 4 tr ηU−1ρU
]
. (4.3.8)

Similarly we can write the classical contribution to the thermodynamic potential as
the sum of two pieces

Ωclass = Ωclass
0 + Ωclass

inst , (4.3.9)
where Ωclass

0 is the contribution of the trivial vacuum

Ωclass
0 = SF [Λ] = −2πTz

∫
dr tr ηΛ (4.3.10)

and Ωinst is the instanton piece

Ωclass
inst =

∫
inst

exp
(
−2πσxx ± iθ + Sinst

F [U ]
)
. (4.3.11)

The subscript “inst” indicates that the integral is over the manifold of instanton
parameters z0, λ and U .

One of the main complications next is that the action Sinst
F [U ] is not finite but,

rather, it diverges logarithmically in the size of the system. Although these and other
complications associated with mass terms are quite well known, the resolution that
has been proposed is formal at best and useless for practical purposes. [45] There is
in this respect a true advantage to be gained if one follows up on the idea of spatially
varying masses which has been introduced and analyzed in great detail in Chapter 2.
This methodology not only extends the formalism developed for the massless theory
in a natural fashion, but also lends itself to a non-perturbative analysis of the renor-
malization group β and γ functions of the theory. Before embarking on the specific
problem of the interacting electron gas it is necessary to first recapitulate some of the
main results obtained in Chapter 2 for the ordinary Grassmannian manifold. This will
be done in the Sections below where we generalize the harmonic oscillator problem
to include an arbitrary range of Matsubara frequencies. The most important results
are written in Tables 4.3 and 4.4 which contains the complete action of quantum
fluctuations about the single instanton.
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4.3.2 Quantum fluctuations

Preliminaries

To obtain the most general matrix field variable Q with topological charge equal to
unity we first rewrite the instanton solution Λinst in Eqs. (4.3.4) and (4.3.5) as a
unitary rotation R about the trivial vacuum Λ

Λinst = R−1ΛR. (4.3.12)

From now onward we use the following notation for an arbitrary matrix A

Aαβ
mn =

⎛⎝Aαβ
n1n3

Aαβ
n1n2

Aαβ
n2n1

Aαβ
n2n4

⎞⎠ . (4.3.13)

Here, the ni with odd subscripts i denote the indices for positive Matsubara frequen-
cies. Similarly, the even subscripts i refer to the negative Matsubara frequencies.
Hence, the indices n1 and n3 run over the set of non-negative integers {0, 1, 2, . . . }.
The indices n2 and n4 run over the set of negative integers {−1,−2,−3, . . . }. Fully
written out the different frequency blocks of the unitary matrix Rαβ

mn now become

Rαβ
n1n3

= δαβδn1n3

[
1 + (ē1 − 1)δα1δn1,0

]
(4.3.14)

Rαβ
n2n4

= δαβδn2n4

[
1 + (e1 − 1)δα1δn2,−1

]
(4.3.15)

Rαβ
n1n2

= δαβδα1δn1,0δn2,−1 [e0] (4.3.16)

Rαβ
n2n1

= δαβδα1δn1,0δn2,−1 [−e0] = −Rαβ
n1n2

(4.3.17)

where the quantities e0 and e1 are defined by

e0 =
λ√

|z − z0|2 + λ2
(4.3.18)

e1 =
z − z0√

|z − z0|2 + λ2
. (4.3.19)

The structure of the matrix Rαβ
mn is illustrated in Fig. 4.2. It is a simple matter next

to generalize Eq. (4.3.12) and the result is

Q = T −1
0 R−1V R T0. (4.3.20)

Here, T0 denotes a global U(2N) rotation and the matrix V with V2 = 1 represents
the small fluctuations about the one instanton. Write

V = w + Λ
√

1 − w2 (4.3.21)

with

w =
(

0 v
v† 0

)
(4.3.22)

then the matrix V can formally be written as a series expansion in powers of the
N × N complex matrices v, v† which are taken as the independent field variables in
the problem.
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Figure 4.2: The instanton matrix R.

Stereographic projection

Eq. (4.3.20) lends itself to an exact analysis of the small oscillator problem. First we
recall the results obtained for the free electron theory (Section 2.4)

σxx

8

∫
dr tr(∇jQ)2 =

σxx

8

∫
dr tr[∇j + Aj ,V]2, (4.3.23)

where the matrix Aj contains the instanton degrees of freedom

Aj = RT0∇jT −1
0 R−1 = R∇jR

−1. (4.3.24)
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By expanding the V in Eq. (4.3.23) to quadratic order in the quantum fluctuations
v, v† we obtain the following results

σxx

8

∫
dr tr[∇j + Aj ,V]2 =

σxx

4

∫
drµ2(r)

[
Nr∑

α=2

Nr∑
β=2

∑
n1n2

vαβ
n1n2

O(0)v†βα
n2n1

+
Nr∑

α=2

(∑
n1n2

′′
v1α

n1n2
O(0)v†α1

n2n1
+
∑
n1n2

′′
vα1

n1n2
O(0)v†1α

n2n1
+
∑
n1

′
v1α

n1,−1O
(0)v†α1

−1,n1

+
∑
n2

′
vα1
0,n2

O(0)v†1α
n2,0 +

∑
n1

vα1
n1,−1O

(1)v†1α
−1,n1

+
∑
n2

v1α
0,n2

O(1)v†α1
n2,0

)
+
∑
n1n2

′′
v11

n1n2
O(0)v†11

n2n1
+
∑
n1

′
v11

n1,−1O
(1)v†11

−1,n1
+
∑
n2

′
v11
0,n2

O(1)v†11
n2,0

+v11
0,−1O

(2)v†11
−1,0

]
(4.3.25)

The “prime” on the summation signs are defined as follows

∑
n1

′
=

Nm−1∑
n1=1

,
∑
n2

′
=

−Nm∑
n2=−2

. (4.3.26)

The three different operators O(a) with a = 0, 1, 2 are given as

O(a) =
(r2 + λ2)2

4λ2

[
∇j +

ia

r2 + λ2
εjkrk

]2
+

a

2
. (4.3.27)

The introduction of a measure µ2(r) for the spatial integration in Eq. (4.3.25),

µ(r) =
2λ

r2 + λ2
, (4.3.28)

indicates that the quantum fluctuation problem is naturally defined on a sphere with
radius λ. It is convenient to employ the stereographic projection

η =
r2 − λ2

r2 + λ2
, −1 < η < 1 (4.3.29)

θ = tan−1 y

x
, 0 � θ < 2π. (4.3.30)

In terms of η, θ the integration can be written as∫
drµ2(r) =

∫
dηdθ. (4.3.31)

Moreover,

e0 =

√
1 − η

2
, e1 =

√
1 + η

2
eiθ, (4.3.32)
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Table 4.1: Counting the total number of zero modes

Operator Number of fields vαβ
n1n2

Degeneracy

O(0) (N − 1)2 1

O(1) 2(N − 1) 2

O(2) 1 3

and the operators become

O(a) =
∂

∂η

[
(1 − η2)

∂

∂η

]
+

1
1 − η2

∂2

∂2θ
− ia

1 − η

∂

∂θ
− a2

4
1 + η

1 − η
+

a

2
, (4.3.33)

with a = 0, 1, 2. Finally, using Eq.(4.3.25) we can count the total number of fields
vαβ on which each of the operators O(a) act. The results are listed in Table 4.1.

Energy spectrum

We are interested in the eigenvalue problem

O(a)Φ(a)(η, θ) = E(a)Φ(a)(η, θ), (4.3.34)

where the set of eigenfunctions Φ(a) are taken to be orthonormal with respect to the
scalar product

(Φ̄(a)
1 ,Φ(a)

2 ) =
∫

dηdθ Φ̄(a)
1 (η, θ)Φ(a)

2 (η, θ). (4.3.35)

The Hilbert space of square integrable eigenfunctions is given in terms of Jacobi
polynomials,

Pα,β
n (η) =

(−1)n

2nn!
(1 − η)−α(1 + η)−β dn

dηn
(1 − η)n+α(1 + η)n+β . (4.3.36)

Introducing the quantum number J to denote the discrete energy levels

E
(0)
J = J(J + 1), J = 0, 1, . . .

E
(1)
J = (J − 1)(J + 1), J = 1, 2, . . .

E
(2)
J = (J − 1)(J + 2), J = 1, 2, . . .

(4.3.37)

then the eigenfunctions are labelled by (J,M) and can be written as follows

Φ(0)
J,M = C

(0)
J,MeiMθ

√
(1 − η2)MPM,M

J−M (η), M = −J, · · · , J

Φ(1)
J,M = C

(1)
J,MeiMθ

√
(1 − η2)M

√
1 − ηPM+1,M

J−M−1 (η), M = −J, · · · , J − 1
Φ(2)

J,M = C
(2)
J,MeiMθ

√
(1 − η2)M (1 − η)PM+2,M

J−M−1 (η), M = −J − 1, · · · , J − 1
(4.3.38)
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where the normalization constants equal

C
(0)
J,M =

√
Γ(J − M + 1)Γ(J + M + 1)(2J + 1)

2M+1
√

πΓ(J + 1)
,

C
(1)
J,M =

√
Γ(J − M)Γ(J + M + 1)

2M+1
√

πΓ(J)
,

C
(2)
J,M =

√
Γ(J − M)Γ(J + M + 2)(2J + 1)

2M+2
√

πΓ(J)
√

J(J + 1)
.

(4.3.39)

Zero modes

From Eq. (4.3.37) we see that the operators O(0) has a zero frequency mode E
(0)
J = 0

for J = 0. Similarly, we have E
(1)
J = E

(2)
J = 0 for J = 1. The corresponding

eigenfunctions can be written as follows

O(0) =⇒ Φ(0)
0,0 = 1,

O(1) =⇒ Φ(1)
1,−1 =

1√
2π

ē1, Φ(1)
1,0 =

1√
2π

e0,

O(2) =⇒ Φ(2)
1,−2 =

√
3
4π

ē2
1, Φ(2)

1,−1 =

√
3
2π

e0ē1,

Φ(2)
1,0 =

√
3
4π

e2
0.

(4.3.40)

Here, the quantities e0 and e1 are defined in Eqs. (4.3.18) and (4.3.19) (see also
Eq. (4.3.32)). The number of the zero modes of each O(a) is listed in Table 4.1. The
total we find 2(N2 + 2N) zero modes in the problem.

Next, it is important to show that these zero modes precisely correspond to all
the instanton degrees of freedom contained in the matrices R and T0 of Eq. (4.3.20).
For this purpose we write the instanton solution as follows

Qinst(ξi) = U−1
inst(ξi)ΛUinst(ξi). (4.3.41)

Here, Uinst = R T0 and the ξi stand for the parameters z0, λ and the generators of
T0. An infinitesimal change in the instanton parameters ξi → ξi + εi can be written
in the form of Eq.(4.3.20) as follows

Qinst(ξi + εi) = U−1
inst(ξi)VεUinst(ξi), (4.3.42)

where to linear order in εi we can write

Vε = Λ − εi

[
Uinst∂iU

−1
inst,Λ

]
=

(
1 2εi

[
Uinst∂iU

−1
inst

]αβ

n1n2

−2εi

[
Uinst∂iU

−1
inst

]αβ

n2n1
−1

)
.

(4.3.43)
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Table 4.2: Zero energy modes

α β n1 n2 O(0) O(1) O(2)

α > 1, β > 1 n1 � 0, n2 � −1 2itαβ
n1n2

Φ
(0)
0,0

α > 1, β = 1 n1 � 0, n2 = −1 2i
√

2πtα1
n1,−1Φ

(1)
1,−1

−2i
√

2πtα1
n1,0Φ

(1)
1,0

n1 � 0, n2 < −1 2itα1
n1n2

Φ
(0)
0,0

α = 1, β > 1 n1 > 0, n2 � −1 2it1β
n1n2

Φ
(0)
0,0

n1 = 0, n2 � −1 2i
√

2πt1β
0,n2

Φ
(1)
1,−1

+2i
√

2πt1β
−1,n2

Φ
(1)
1,0

α = 1, β = 1 n1 > 0, n2 < −1 2itαβ
n1n2

Φ
(0)
0,0

n1 = 0, n2 < −1 2i
√

2πt110,n2
Φ

(1)
1,−1

+2i
√

2πt11−1,n2
Φ

(1)
1,0

n1 > 0, n2 = −1 2i
√

2πt11n1,−1Φ
(1)
1,−1

−2i
√

2πt11n1,0Φ
(1)
1,0

n1 = 0, n2 = −1 4i
√

π√
3

t11−1,0Φ
(2)
1,−2

+4i
√

π√
6

t11−1,−1Φ
(2)
1,−1

−4i
√

π√
6

t110,0Φ
(2)
1,−1

−4
√

π√
6

δλ
λ Φ

(2)
1,−1

−4i
√

π√
3

t110,−1Φ
(2)
1,0

+4i
√

π√
3

δz̄0
λ Φ

(2)
1,0
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Figure 4.3: The hierarchy of symmetry breaking by the instanton solution

We have written ∂i = ∂/∂ξi. By comparing this expression with Eq.(4.3.20) we see
that the fluctuations tangential to the instanton manifold can be expressed in terms
of the matrix field variables v, v† according to

vαβ
n1n2

= 2εi

[
Uinst∂iU

−1
inst

]αβ

n1n2
, (4.3.44)[

v†]αβ

n2n1
= −2εi

[
Uinst∂iU

−1
inst

]αβ

n2n1
. (4.3.45)

To obtain explicit expressions it suffices to expand T0 about unity

T0 = 1 + i t (4.3.46)

and write
R(λ + δλ, z0 + δz0) = R(λ, z0) + δλ ∂λR + δz0 ∂z0R. (4.3.47)

The expression for v now becomes

vαβ
n1n2

= 2i
[
RtR−1

]αβ

n1n2
+ 2δλ

[
R∂λR−1

]αβ

n1n2

+2δz0

[
R∂z0R

−1
]αβ

n1n2
. (4.3.48)

Notice that v† is just the hermitian conjugate of v as it should be. In Table 4.2 we
present the complete list of zero energy modes vαβ

n1n2
written in terms of tαβ

mn, δλ and
δz0 as well as the eigenfunctions Φ(a)

JM .
In these expressions tαβ

n1n2
and tαβ

n2n1
denote the generators of U(2N)/U(N)×U(N).

The tα1
n1,0 and t1α

0,n1
with n1 �= 0 and α = 1 are the generators of a U(N)/U(N − 1)×
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U(1) rotation. The same holds for tα1
n2,−1 and t1α

−1,n2
with n2 �= −1 and α = 1.

Finally, t110,0 − t11−1,−1 denotes the U(1) generator corresponding to rotations of the
O(3) instanton in the xy plane. The number of instanton degrees of freedom adds up
to 2(N2 + 2N) which is that same as the number of zero modes in the problem. The
various different generators t of the instanton manifold is illustrated in Fig. 4.3.

4.3.3 Spatially varying masses

In the previous Section we have seen that the instanton problem naturally acquires
the geometry of a sphere. This clearly complicates the problem of mass terms in the
theory which are usually written in flat space. To deal with this problem we shall
follow the root established in Chapter 2 and shall modify the definition of the singlet
interaction term and introduce a spatially varying momentum scale µ(r) as follows

z → zµ2(r), zc → zcµ2(r), (4.3.49)

such that the action SF is now finite and can be written as

SF [Q] → πTz

∫
drµ2(r)

(
c
∑
αn

tr Iα
n Q tr Iα

−nQ + 4 tr ηQ − 6 tr ηΛ
)
. (4.3.50)

As we shall show below, in Sections 4.4 and 4.5.1, the introduction of a spatially vary-
ing momentum scale µ(r) permits the development of a complete quantum theory of
the interacting electron gas that is defined on a sphere. Although the philosophy
sofar proceeds along similar lines as those employed in the ordinary Grassmannian
model in Chapter 2, it is important to keep in mind that the presence of SF is itself
affecting the ultraviolet singularity structure of the theory. This means that both
the physics and the conceptual structure of the problem with interactions are funda-
mentally different from what one is used to. Moreover, in view of the mathematical
peculiarities of the theory, in particular those associated with the limits Nr → 0 and
Nm → ∞, it must be shown explicitly that instantons are well defined at a quantum
level and that the aforementioned ultraviolet behavior of the interacting electron gas
does not depend on the specific geometry that one chooses, i.e. the introduction of
µ(r) in Eq. (4.3.50). In this respect, we shall in what follows greatly benefit from
our theory of observable parameters since it provides the appropriate framework for
a general understanding of the theory at short distances. To study the ultraviolet we
first address the problem of quantum fluctuations for the special case where unitary
matrix T0 in Eq. (4.3.20) is equal to unity. We will come back to the general case
not until Section 4.5 where embark on the infrared of the system, notably the various
different steps that are needed in order to change the geometry of the system from
curved space to flat space.

4.3.4 Action for the quantum fluctuations

Keeping the remarks of the previous Section in mind we obtain the complete action
as the sum of a classical part Sinst and a quantum part δS as follows

S = SF [Λ] + Sinst + δS, (4.3.51)
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where
Sinst = −2πσxx + iθ + Sinst

F . (4.3.52)

and
δS = δS(0) + δS(1) + δS(2) + δS

(2)
linear. (4.3.53)

Here Sinst
F stands for the classical action of the modified singlet interaction term,

Eq. (4.3.8), with W = 1 and is given by

Sinst
F = πTz

∫
drµ2(r)

(
c
∑
αn

tr Iα
n ρ tr Iα

−nρ + 4 tr ηρ

)
= 16π2Tz

( c

3
− 1
)
. (4.3.54)

Next, the results for δS in Eq. (4.3.53) are classified in four different parts. The
complete list of contributions is presented in Tables 4.3 and 4.4. As before we shall
use the following notations n12 = n1 − n2 and κ2 = 8πT/σxx from now onward. We
shall first briefly comment on the different parts of δS.

δS(0)

This term contains all the fluctuations vαβ
mn with replica indices α, β > 1 that do not

couple to the instanton. δS(0) has therefore the same form as the fluctuations about
the trivial vacuum.

δS(1), δS(2)

The terms δS(1) and δS(2) contain all the fluctuations vαβ
mn with either α = 1 or

β = 1. δS(2) only contains the fluctuations in the first replica channel v11
mn and the

remaining contributions are collected in δS(1). In both δS(1) and δS(2) we distinguish
between the “diagonal” contributions that mainly originate from Sσ (first four lines
in Tables 4.3 and 4.4) and the “off-diagonal” ones originating from SF (fifth and
subsequent lines).

δS
(2)
linear

The contributions linear in v and v† originate from the singlet interaction term SF

and are written in the bottom line of Table 4.3. They can be written in terms of the
eigenfunctions Φ(a)

JM as follows∫
dηdθ

(
e2
0ē1v

11
0,−2 + e2

0e1v
†11
−2,0

)
∝

∫
dηdθ

(
Φ̄(1)

2,1v
11
0,−2 + Φ(1)

2,1v
†11
−2,0

)
, (4.3.55)∫

dηdθ
(
e2
0ē1v

11
1,−1 + e2

0e1v
11
−1,1

)
∝

∫
dηdθ

(
Φ̄(1)

2,1v
11
1,−1 + Φ(1)

2,1v
†11
−1,1

)
, (4.3.56)∫

dηdθ
(
e3
0ē1v

11
0,−1 + e3

0e1v
†11
−1,0

)
∝

∫
dηdθ

(
Φ̄(2)

2,1v
11
0,−1 + Φ(2)

2,1v
†11
−1,0

)
. (4.3.57)

Since the Φ(1)
2,1 and Φ(2)

2,1 do not correspond to the zero modes of the operators O(1)

and O(2) one can eliminate these terms by performing a simple shift in v, v†. This



154 Chapter 4

Table 4.3: Quantum fluctuations on the Gaussian level. The δS(0), δS(1) and δS
(2)
linear

contributions.

δS(0) = − σxx

4

∫
dηdθ

Nr∑
α,β=2

∑
n1···n4

δn12,n34

×vαβ
n1n2

[
(O(0) + κ2zn12)δn1n3 − κ2zcδαβ

]
v†βα

n4n3

δS(1) = − σxx

4

∫
dηdθ

Nr∑
α=2

{ ∑
n1n2

′′
v1α

n1n2
(O(0) + κ2zn12)v†α1

n2n1

+
∑

n1n2

′′
vα1

n1n2
(O(0) + κ2zn12)v†1α

n2n1

+
∑
n1

′
v1α

n1,−1(O
(0) + κ2z(n1 + 1))v†α1

−1,n1
+
∑
n2

′
vα1
0n2

(O(0) − κ2zn2)v
†1α
n20

+
∑
n1

vα1
n1,−1

(
O(1) + κ2z(n1 + 1) + κ2zce2

0

(
2|e1|2 − 1

c

))
v†1α
−1,n1

+
∑
n2

v1α
0n2

(
O(1) − κ2zn2 + κ2zce2

0

(
2|e1|2 − 1

c

))
v†α1

n20

}

− σxx

4 κ2zc
∫

dηdθ
Nr∑

α=2

{ ∑
n1,n2

′′
e0

[
ē1v

1α
n1+1,n2

v†α1
n2n1

+ e1v
1α
n1n2

v†α1
n2,n1+1

− ē1v
α1
n1,n2−1v

†1α
n2n1

− e1v
α1
n1n2

v†1α
n2−1,n1

]
+

∑
n1

′
[
e0ē1v

1α
n1+1,−1v

†α1
−1,n1

+ e0e1v
1α
n1,−1v

†α1
−1,n1+1

]
−

∑
n2

′
[
e0ē1v

α1
0,n2−1v

†1α
n2,0 +0 e1v

α1
0,n2

v†1α
n2−1,0

]
+

∑
n2

′
[
e0e

2
1v

1α
1,n2

v†α1
n2,0 + e0ē

2
1v

1α
0,n2

v†α1
n2,1

]
−

∑
n1

′
[
e0e

2
1v

α1
n1,−2v

†1α
−1,n1

+ e0ē
2
1v

α1
n1,−1v

†1α
−2,n1

]}

δS
(2)
linear = σxx

2 κ2zc
∫

dηdθ

{
e2
0(ē1v

11
0,−2 + e1v

†11
−2,0 − ē1v

11
1,−1 − e1v

†11
−1,1)

+ e0(1 − 2e2
0)(ē1v

11
0,−1 + e1v

†11
−1,0)

}
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Table 4.4: Quantum fluctuations on the Gaussian level. The δS(2) contributions.

δS(2) = − σxx

4

∫
dηdθ

×
{ ∑

n1···n4

′′′′
v11

n1n2

(
(O(0) + κ2zn12)δn1n3δn2n4 − κ2zcδn12,n34

)
v†11

n4n3

+
∑
n1

′
v11

n1,−1

(
O(1) + κ2z(n1 + 1) − κ2zc + κ2zce2

0

(
2|e1|2 − 1

c

))
v†11
−1,n1

+
∑
n2

′
v11
0n2

(
O(1) − κ2zn2 − κ2zc + κ2zce2

0

(
2|e1|2 − 1

c

))
v†11

n20

+ v11
0,−1

(
O(2) + κ2z(1 − c) + 2κ2zce2

0

(
3|e1|2 − 1

c

))
v†11
−1,0

}

− σxx

4 κ2zc
∫

dηdθ

{ ∑
n1,n2

′′
[
e0ē1v

11
n1+1,n2

v†11
n2n1

+ e0e1v
11
n1n2

v†11
n2,n1+1

− e0ē1v
11
n1,n2−1v

†11
n2n1

− e0e1v
11
n1n2

v†11
n2−1,n1

]
−

∑
n1···n3

′′′
v11

n1n2

[
ē1δn12,n3+1 − e0δn12,n3

]
v†11
−1,n3

−
∑

n1···n3

′′′
v11

n3,−1

[
e1δn12,n3+1 − e0δn12,n3

]
v†11

n2,n1

−
∑

n2···n4

′′′
v11

n3n2

[
ē1δn32,−n4 + e0δn32,1−n4

]
v†11

n4,0

−
∑

n2···n4

′′′
v11
0,n4

[
e1δn32,−n4 + e0δn32,1−n4

]
v†11

n2n3

− e0

∑
n1

′
[
ē2
1v

11
n1,−2v

†11
−1,n1

+ e2
1v

11
n1,−1v

†11
−2,n1

]
+ e0

∑
n2

′
[
ē2
1v

11
1,n2

v†11
n2,0 + e2

1v
11
0,n2

v†11
n2,1

]
+ 2

∑
n1

′
[
e0ē1v

11
n1+1,−1v

†11
−1,n1

+ e0e1v
11
n1,−1v

†11
−1,n1+1

]
− 2

∑
n2

′
[
e0ē1v

11
0,n2−1v

†11
n2,0 + e0e1v

11
0,n2

v†11
n2−1,0

]
− (1 − 2e2

0)
∑
n1

′
[
v11

n1,−1v
†11
−n1−1,0 + v11

0,−n1−1v
†11
−1,n1

]
+ e0(ē1 − e1)

∑
n1

′
[
v11

n1,−1v
†11
−n1,0 − v11

0,−n1
v†11
−1,n1

]
+ e0(ē2

1v
11
1,−1v

11
0,−1 + e2

1v
†11
−1,1v

†11
−1,0 − ē2

1v
11
0,−2v

11
0,−1 − e2

1v
†11
−2,0v

†11
−1,0)

+ e2
0

[
e2
1v

†11
−1,0v

†11
−1,0 + ē2

1v
11
0,−1v

11
0,−1

]}
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leads to an insignificant contribution to the classical action of the order O(T 2). Next,∫
dηdθ

(
e0ē1v

11
0,−1 + e0e1v

†11
−1,0

)
∝
∫

dηdθ
(
Φ̄(2)

1,−1v
11
0,−1 + Φ(2)

1,−1v
†11
−1,0

)
∝ δλ

λ
. (4.3.58)

This means that the fluctuations tangential to the instanton parameter λ are the
only unstable fluctuations in the problem. As will be discussed further below, these
fluctuations will be treated separately and we will proceed by formally evaluating the
quantum theory to first order in the temperature T only.

Trivial vacuum

For completeness we give the expression for the quantum fluctuations about the trivial
vacuum. The result can be written as follows

S0 = SF [Λ] + δS0, (4.3.59)

where

δS0 = − σxx

4

∫
dηdθ

Nr∑
α,β=1

∑
n1···n4

δn12,n34v
αβ
n1n2

×
[
(O(0) + κ2zn12)δn1n3 − κ2zcδαβ

]
v†βα

n4n3
. (4.3.60)

4.4 Details of computations

In this Section we present the detailed computations of the harmonic oscillator prob-
lem. In the first part we address the thermodynamic potential which is in many ways
standard. The complications primarily arise from the infinite sums over Matsub-
ara frequencies which fundamentally alter the ultraviolet singularity structure of the
theory. We set up a systematic series expansion of the thermodynamic potential in
powers of the temperature T . To perform the algebra we make use of the complete set
of eigenvalues and eigenfunctions obtained in the previous Section as well as certain
mathematical identities that are all listed in Appendix 2.A. In the second part of
this Section we show that the ultraviolet singularity structure of the small oscillator
problem is identically the same as the one computed on the basis of the theory of
observable parameters. These important computations and results, which are briefly
summarized in Appendix 4.A, permit one to proceed in an unambiguous manner and
develop - in the remaining part of this paper - a non-perturbative analysis of the
observable quantities of the theory.

4.4.1 Pauli-Villars regulators

Introduction

Recall that after integration over the quantum fluctuations one is in general left
with two sources of divergences. First, there are the ultraviolet singularities which
eventually result in a renormalization of the coupling constant or σxx. At present
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we wish to extend the analysis to include the renormalization of the z and zc fields.
The ultraviolet of the theory can be dealt with in a standard manner by employing
Pauli-Villars regulator fields with masses Mf (f = 0, 1, . . . ,K) and an alternating
metric ef . [94, 44, 72, 20] We assume e0 = 1, M0 = 0 and large masses Mf � 1 for
f > 1. The following constraints are imposed

K∑
f=0

efMk
f = 0, 0 � k < K, (4.4.1)

K∑
f=1

ef lnMf = − lnM. (4.4.2)

The regularized theory is then defined as

δSreg = δS0 +
K∑

f=1

efδSf . (4.4.3)

Here, action δSf is the same as δS except that the operators O(a) are all replaced by
O(a) +M2

f . Our task is to evaluate Eq. (4.4.3) to lowest orders in a series expansion
in powers of T . This expansion still formally diverges due to the zero modes of the
operators O(a). These zero modes, however, shall be treated separately by employing
the collective coordinate formalism introduced in Ref. [20].

To simplify the notation we will next present the results while omitting the al-
ternating metric and the Pauli-Villars masses. This can be done since in each case
we consider one easily recognizes how the metric and masses should be included.
Consider the ratio

Zinst

Z0
=
∫
D[v, v†] exp S∫
D[v, v†] exp S0

= exp
[
−2πσxx + iθ + Sinst

F + ∆Sσ + ∆SF

]
. (4.4.4)

Here, the quantum corrections denoted by ∆Sσ and ∆SF can be expressed in terms
of the propagators

Ga(ω) =
1

O(a) + ω
=

∑
JM

|JM〉(a)(a)〈JM |
E

(a)
J + ω

, (4.4.5)

Gc
a(ω) =

1
O(a) + αω

=
∑
JM

|JM〉(a)(a)〈JM |
E

(a)
J + αω

, (4.4.6)

where a = 0, 1, 2. These expressions are directly analogous to those that appear in
flat space (see Eq. (3.4.4)). It is important to emphasize that even at a Gaussian
level the integration over the field variables v, v† in Eq. (4.4.4) is not simple and
straight forward. The main reason is that some of the frequency sums can be written
as an integral in the limit T → 0 and, along with that, they absorb a factor of T .
It is therefore not always obvious how the series expansion in powers of T should
be evaluated. The simplest way to proceed is to expand the functional integrals of
Eq. (4.4.4) in non-diagonal elements which are proportional to κ2 ∼ T . By inspection
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one can then convince oneself that in the replica limit Nr → 0, the expansion in
the non-diagonal terms can be truncated beyond third order only. We shall next
summarize the various different contributions to ∆Sσ as well as ∆SF .

∆Sσ

The quantum correction ∆Sσ is obtained by expanding the non-diagonal terms of
Tables 4.3 and 4.4 up to the second order. The results in the limit T → 0, Nr → 0
and Nm → ∞ can be written as follows

∆Sσ = 2 tr[lnG1(0) − lnG0(0)] − tr[lnG2(0) − lnG0(0)]

+ 2c

∞∫
0

dω tr[G1(ω) − G0(ω)] (4.4.7)

+ 2c2

∞∫
0

dω ω tr[ē1Gc
0(ω)e1G1(ω) + e0Gc

0(ω)e0G1(ω) − Gc
0(ω)G0(ω)]. (4.4.8)

In these expressions the trace is taken with respect to the complete set of eigenfunc-
tions of the operators O(a). To evaluate these expressions we need the help of the
identities (2.A.4) and (2.A.7) of Appendix 2.A. After elementary algebra we obtain

∆Sσ = 2αD(1) − D(2) − 2c
(
H(1) ln α − H(2) − cH(3)

)
. (4.4.9)

Here the quantities

D(r) =
∞∑

J=1

(2J + r − 1) ln E
(r)
J −

∞∑
J=0

(2J + 1) ln E
(0)
J , (4.4.10)

with r = 1, 2 originate from Eq. (4.4.7). The quantities H(i) originate from Eq. (4.4.8)
and are defined by

H(1) =
∞∑

J=0

J+1∑
J1=J

J1

E
(0)
J − E

(1)
J1

E
(0)
J − αE

(1)
J1

, (4.4.11)

H(2) =
∞∑

J=0

ln E
(0)
J

J+1∑
J1=J

J1

E
(0)
J − E

(1)
J1

E
(0)
J − αE

(1)
J1

, (4.4.12)

H(3) =
∞∑

J=0

J+1∑
J1=J

J1

E
(1)
J1

ln E
(1)
J1

E
(0)
J − αE

(1)
J1

. (4.4.13)

∆SF

To obtain the quantum correction ∆SF we need to carry out the expansion in the non-
diagonal terms of Tables 4.3 and 4.4 up to the third order. By taking the appropriate
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limits as discussed earlier we find the following results

∆SF = 2κ2z

{
tr
[
(α + c2)(G1(0) − G0(0)) − α

2
(G2(0) − G0(0))

]
(4.4.14.1)

+ tr
[
α(2c|e1|2 − 1)e2

0 G1(0)] − (3c|e1|2 − 1)e2
0G2(0) − 2c2e2

0G1(0)
]
(4.4.14.2)

+ c3

∫ ∞

0

dω ω tr
[
ē1Gc

0(ω)e1G2
1(ω) + e0Gc

0(ω)e0G2
1(ω)

−Gc
0(ω)G2

0(ω)
]

(4.4.14.3)

− c2

∫ ∞

0

dω ω tr
[
ē1Gc

0(ω)e1G1(ω)e2
0(2c|e1|2 − 1)G1(ω)

+e0Gc
0(ω)e0G1(ω)e2

0(2c|e1|2 − 1)G1(ω)
]

(4.4.14.4)

+ 2c2

∫ ∞

0

dω tr
[
e2
0G1(ω)e2

0G1(ω)
]

(4.4.14.5)

+ 5c2

∫ ∞

0

dω tr
[
e0e1G1(ω)e0ē1G1(ω)

]
(4.4.14.6)

− c2

∫ ∞

0

dω tr
[
e0e1G0(ω)e0ē1G0(ω)

]
(4.4.14.7)

− c2

∫ ∞

0

dω ω tr
[
e0Gc

0(ω)e0G2
1(ω)

]
(4.4.14.8)

− 4c3

∫ ∞

0

dω ω tr
[
e0e1G1(ω)e0Gc

0(ω)ē1G1(ω)
]}

. (4.4.14.9)

To evaluate these expressions we use the identities (2.A.8)-(2.A.17) (see Ap-
pendix 2.A). After some algebra we find

∆SF = 2κ2z2
9∑

i=1

B(i). (4.4.15)

Here, the nine contributions B(i), i = 1, . . . , 9 correspond to the nine equations
(4.4.14.1)-(4.4.14.9). The first two of them are given by

B(1) = (α + c2)(Y (1) − Y (0)) − α

2
(Y (2) − Y (0)), (4.4.16)

B(2) =
α

2

(
2c

3
− 1
)

Y (1) +
α

2
Y (2) − c2Y (1), (4.4.17)

where we have introduced

Y (s) =
∞∑

J=1

2J + (s − 1)2

E
(r)
J

, s = 0, 1, 2. (4.4.18)

The next two terms can be written as

B(3) = c3
∞∑

J=0

J+1∑
J1=J

J1Kα(E(0)
J , E

(1)
J1

) − c3
∞∑

J=0

(2J + 1)Kα(E(0)
J , E

(0)
J ) (4.4.19)
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and

B(4) = −c2

2

(
2c

3
− 1
) ∞∑

J=0

J+1∑
J1=J

J1Kα(E(0)
J , E

(1)
J1

). (4.4.20)

The function Kα(x, y) is defined as

Kα(x, y) =
x

(x − αy)2
ln

x

αy
− 1

x − αy
. (4.4.21)

Notice that Kα(x, x) = − ln(α + c)/(c2x). The next three terms are given by

B(5) = 2c2
∞∑

J=1

[
J(6J2 − 1)
3(4J2 − 1)

1

E
(1)
J

+
J(J + 1)
3(2J + 1)

L(E(1)
J , E

(1)
J+1)

]
, (4.4.22)

B(6) =
5c2

3

∞∑
J=1

[
J

4J2 − 1
1

E
(1)
J

+ 2
J(J + 1)
2J + 1

L(E(1)
J , E

(1)
J+1)

]
, (4.4.23)

B(7) = −c2

3

∞∑
J=0

(J + 1)L(E(1)
J , E

(1)
J+1). (4.4.24)

We have introduced the function

L(x, y) =
ln x − ln y

x − y
, (4.4.25)

such that L(x, x) = 1/x. Finally, the last to terms are

B(8) = −c2

2

∞∑
J=0

J+1∑
J1=J

J1Kα(E(0)
J , E

(1)
J1

) (4.4.26)

and

B(9) =
c3

3

∞∑
J=0

(2J + 1)2 + 2
2J + 1

Fα(E(0)
J , E

(1)
J , E

1)
J+1). (4.4.27)

Here the function Fα(x, y, z) is defined as follows

Fα(x, y, z) =
1

y − z

[
y

x − αy
ln

x

αy
− z

x − αz
ln

x

αz

]
. (4.4.28)

such that Fα(x, y, y) = Kα(x, y).

4.4.2 Regularized expressions

To obtain the regularized theory one has to include the alternating metric ef and
add the masses Mf to the energies E

(a)
J in the expressions for D(r), H(i), Y (s) and

B(i) respectively. We will proceed by discussing the regularization of ∆Sσ and ∆SF

separately.
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∆Sσ

To start let us define the function

Φ(Λ)(p) =
Λ∑

J=p

2J ln(J2 − p2). (4.4.29)

According to Eq. (4.4.3) the regularized function Φ(Λ)
reg (p) is

Φ(Λ)
reg (p) =

K∑
f=1

ef

Λ∑
J=p

2J ln(J2 − p2 + M2
f )

Λ∑
J=p+1

2J ln(J2 − p2). (4.4.30)

where we assume that the cut-off Λ is much larger than Mf . In the presence of a
large mass Mf we may consider the logarithm to be a slowly varying function of the
discrete variable J . We may therefore approximate the summation by means of the
Euler-Maclaurin formula

Λ∑
J=p+1

g(J) =

Λ∫
p

g(x)dx +
1
2
g(x)

∣∣∣Λ
p

+
1
12

g′(x)
∣∣∣Λ
p
. (4.4.31)

After some algebra we find that Eq.(4.4.30) can be written as follows [20]

Φ(Λ)
reg (p) = −2Λ(Λ + 1) ln Λ + Λ2 − ln eΛ

3
+ 4

Λ∑
J=1

J lnJ

+
1 − 6p

3
lnM + 2p2 − 2

2p∑
J=1

(J − p) ln J. (4.4.32)

The regularized expression for D(r) can now be obtained as

D(r)
reg = lim

Λ→∞

[
Φ(Λ)

reg

(
1 + r

2

)
− Φ(Λ)

reg

(
1
2

)]
. (4.4.33)

The final results are obtained as follows

D(1)
reg = − lnM +

3
2
− 2 ln 2 (4.4.34)

D(2)
reg = −2 lnM + 4 − 3 ln 3 − ln 2. (4.4.35)

The evaluation of H
(i)
reg is somewhat more subtle but proceeds along similar lines. The

results can be written as follows

H(1)
reg = − α

c2

[
2 lnM + 1 − ψ

(
3c − 1

c

)
− ψ

(
1
c

)]
. (4.4.36)
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The Euler digamma function ψ(z) appears as a result of the following summation∑∞
J=0

[
(J + 1)−1 − (J + z)−1

]
= ψ(z) − ψ(1). Similarly we find

H(2)
reg = − lim

Λ→∞
Φ(Λ)

reg

(
1
2

)
− α

c2

[
2 lnM + 1 + 2 ln2 M

+ 4γS + f
(α

c

)
+ f
(
1 − α

c

)]
, (4.4.37)

H(3)
reg =

1
c

lim
Λ→∞

Φ(Λ)
reg (1) +

1
c3

(2 lnM + 1) +
α

c3

[
2 ln2 M

+ 4γS + f

(
1
c

)
+ f
(
1 − α

c

)
− 2c2 ln 2

1 − 2α

]
. (4.4.38)

where γS ≈ −0.0728 is the Stieltjes constant and

f(z) = 2z2
∞∑

J=2

ln J

J(J2 − z2)
. (4.4.39)

We finally have the following total result for the quantum correction ∆Sσ

exp ∆Sreg
σ =

27
8
D̃(c) exp

[
4
(

1 +
α ln α

c

)
lnM + 1

]
, (4.4.40)

where

ln D̃(c) = −2
α

c

{[
ψ

(
3c − 1

c

)
+ ψ

(
1
c

)
− 1
]

ln α

− f

(
1 − c

c

)
+ f

(
1
c

)
− 2 ln 2

c2

2c − 1

}
. (4.4.41)

Notice that according to Eq. (4.4.41) the quantity D̃(c) depends on the crossover
parameter c in a highly non-trivial fashion. Some of contributions diverge at the
points ck = 1/k with k = 1, 2, 3, . . . but the final total answer remains finite for all
values of c in the interval 0 � c � 1 ranging from D̃(0) = e−2 to D̃(1) = 1. A plot of
the function D̃(c) with varying c is shown in Fig. 4.4.

∆SF

Notice that in contrast to the expression for ∆Sreg
σ where the numerical constants

play an important role, the expression for ∆Sreg
F can only be determined up to the

logarithmic singularity in the Pauli-Villars mass M. In the latter case the constant
terms should actually be considered to be of order 1/σxx which is beyond the level
of approximation as considered in this paper. Keeping this in mind we proceed and
define the following function

Y (Λ)(p) =
Λ∑

J=p

2J

J2 − p2
. (4.4.42)
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Figure 4.4: The plot of the function D̃(c)

According to Eq. (4.4.3) the regularized function Y
(Λ)
reg (p) is given by

Y (Λ)
reg (p) =

K∑
f=1

ef

Λ∑
J=p

2J

J2 − p2 + M2
f

+
Λ∑

J=p+1

2J

J2 − p2
(4.4.43)

where as before we assume that Λ � Mf . Proceeding along similar lines as discussed
earlier we now find

Y (Λ)
reg (p) = 2 lnM + 2γE −

2p∑
J=1

1
J

(4.4.44)

where, we remind, γE ≈ 0.577 is the Euler constant. The regularized expressions for
Y (s) can be written as

Y (s)
reg = lim

Λ→∞
Y (Λ)

reg

(
1 + s

2

)
. (4.4.45)

We finally obtain

Y (s)
reg = 2 lnM + 2γE − 1 −

s+1∑
J=2

1
J

. (4.4.46)

Within the same logarithmic accuracy we can substitute Kα(x, x) for the functions
Kα(x, y) and Fα(x, y, z) in Eqs. (4.4.19)-(4.4.22) and (4.4.27). Similarly we write
L(x, x) for L(x, y) in Eqs. (4.4.23)-(4.4.26). With the help of Eq. (4.4.46) we then
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find

B(1) = 0 lnM, (4.4.47)

B(2) =
(

2c(1 − c)
3

− 2c2

)
lnM, (4.4.48)

B(3) = 0 lnM, (4.4.49)

B(4) =
(

2c

3
− 1
)

(ln α + c) lnM, (4.4.50)

B(5) =
4c2

3
lnM, (4.4.51)

B(6) =
5c2

3
lnM, (4.4.52)

B(7) = −c2

3
lnM, (4.4.53)

B(8) = (ln α + c) lnM, (4.4.54)

B(9) = −2c

3
(ln α + c) lnM. (4.4.55)

The final total result for ∆Sreg
F can now be written as follows

∆Sreg
F =

32
3σxx

πTzc(lnMeγE−1/2 + const). (4.4.56)

Regularized Zinst/Z0

We next collect the various different contributions together and obtain the following
result for the instanton contribution to the thermodynamic potential

ln
[
Zinst

Z0

]reg
= 3 ln 3 − 7 ln 2 − lnπ + lnD(c) + iθ (4.4.57)

− 2πσxx

[
1 − 2

πσxx

(
1 +

α

c
ln α
)

lnMeγE

]
(4.4.58)

+
16π2

3
Tzc
[
1 − 1

πσxx
lnMeγE−1/2

]
(4.4.59)

− 16π2Tz
[
1 − c

πσxx
lnMeγE−1/2

]
. (4.4.60)

We have introduced new function D(c) which is defined as

D(c) = 16πD̃(c) exp
[
1 − 4

(
1 +

α

c
ln α
)
γE

]
. (4.4.61)

A plot of D(c) with varying c is shown in Fig. 4.5.

4.4.3 Observable theory in Pauli-Villars regularization

The most important result next is that the quantum corrections to the parameters σxx,
zc, and z in Eqs. (4.4.58)-(4.4.60) are all identically the same as those obtained from
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Figure 4.5: The functions D(c) and Dγ(c).

a perturbative expansion of the observable parameters σxx, z′c′, and z′ introduced in
Section 4.2.3. In Appendix 4.A we give the details of the computation. Denoting the
results for σ′

xx, z′ and c′ by σxx(M), z(M) and c(M) respectively then we have

σxx(M) = σxx

[
1 − β0(c)

σxx
lnMeγE

]
, (4.4.62)

z(M)c(M) = zc

[
1 +

γ0

σxx
lnMeγE−1/2

]
, (4.4.63)

z(M) = z

[
1 +

cγ0

σxx
lnMeγE−1/2

]
. (4.4.64)

The results of Eqs. (4.4.57)-(4.4.60) can therefore be written as follows[
Zinst

Z0

]reg
=

27D(c)
128π

exp
(
−2πσxx(M) + iθ + Šinst

F [ρ]
)
, (4.4.65)

where

Šinst
F [ρ] = πTz(M)

∫
drµ2(r)

(
c(M)

∑
αn

tr Iα
n ρ tr Iα

−nρ + 4 tr ηρ
)
. (4.4.66)

Notice that the expression in the exponent is similar to the classical action with the
rotation matrix T0 put equal to unity. The main difference is in the expressions for
σxx(M), z(M)c(M) as well as z(M) which are all precisely the radiative corrections
as obtained from the observable theory.
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At this stage of the analysis several remarks are in order. First of all, it is impor-
tant to stress that our result for the observable theory, Eq. (4.4.62), uniquely fixes
the amplitude D(c) of the thermodynamic potential which is left unresolved other-
wise. This aspect of the problem is going to play a significant role when extracting
the non-perturbative renormalization behavior of the theory. In fact, we shall see
later on, in Section 4.5.4, that the most important features of the theory, notably the
values of D(c) at c = 0 and c = 1 respectively, are universal in the sense independent
of they are independent of the specific regularization scheme that one uses to define
the renormalized theory. Secondly, our results demonstrate that the idea of spatially
varying masses does not alter the ultraviolet singularity structure of the instanton
theory. In particular, Eqs. (4.4.57)-(4.4.66) display exactly the same logarithms as
found previously in flat space and by employing dimensional regularization. [33] The
detailed computations of Appendix 4.A provide a deeper understanding of this aspect
of the problem, especially where it says that the Pauli-Villars regularization scheme
generally retains translational invariance of the electron gas. These extremely impor-
tant results permit one to proceed and decipher the consequences of our theory of
curved space in terms of flat space.

4.5 Transformation from curved space to flat space

4.5.1 Instanton manifold

Integration over zero frequency modes

We are now in a position to extend the results for the thermodynamic potential to
include the integration over the zero modes. The complete expression for Zinst/Z0

can be written as follows [20][
Zinst

Z0

]reg
→ Ainst

A0

∫
D[Qinst]∫
D[Q0]

[
Zinst[Qinst]

Z0[Q0]

]reg
. (4.5.1)

The meaning of the symbols is as follows.[
Zinst[Qinst]

Z0[Q0]

]reg
=

27D(c)
128π

e−2πσxx(M)+iθ

+
e

z(M)
∫

dηdθ

(
c(M)

∑
αn

tr Iα
n Qinst tr Iα

−nQinst+4 tr ηQinst

)

e
z(M)

∫
dηdθ

(
c(M)

∑
αn

tr Iα
n Q0 tr Iα

−nQ0+4 tr ηQ0

) . (4.5.2)

Here, Qinst denotes the manifold of the instanton parameters as is illustrated in
Fig. 4.3 ∫

D[Qinst] =
∫

dr0

∫
dλ

λ3

∫
D[T0]. (4.5.3)

Here, the integral over T0 can be decomposed according to∫
D[T0] =

∫
D[t0]

∫
D[U ], (4.5.4)
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where schematically we can write∫
D[t0] =

∫
D
[

U(2N)
U(N) × U(N)

]
, (4.5.5)∫

D[U ] =
∫

D
[

U(N)
U(1) × U(N − 1)

]
×
∫

D
[

U(N)
U(1) × U(N − 1)

]
×
∫

D [U(1)] . (4.5.6)

On the other hand, the Q0 are the zero modes associated with the trivial vacuum∫
D[Q0] =

∫
D
[

U(2N)
U(N) × U(N)

]
. (4.5.7)

The numerical factors Ainst and A0 are given by

Ainst = 〈e4
0〉〈|e1|4〉〈e2

0|e1|2〉
(
〈e2

0〉〈|e1|2〉
)2N−2 〈1〉(N−1)(N−1)π−N2−2N (4.5.8)

A0 = 〈1〉N2
π−N2

(4.5.9)

where the average 〈. . . 〉 is with respect to the surface of a sphere

〈f〉 = σxx

1∫
−1

dη

2π∫
0

dθf(η, θ). (4.5.10)

U rotation

We have already mentioned earlier that the fluctuations in the Goldstone modes
t0, Q0 ∈ U(2N)/U(N) × U(N) have an infinite action in flat space and eventually
drop out. Keeping this in mind we can write the result of Eq. (4.5.1) as follows[

Zinst

Z0

]reg
=

27
128π

∫
dr0

∫
dλ

λ3

∫
D[U ]

AinstD(c)
A0

eS′
inst . (4.5.11)

Here,
S′

inst = −2πσxx(M) ± iθ + Šinst
F [U−1ρU ] (4.5.12)

with ŠF defined by Eq. (4.4.66). Next, by making use of the identity [20]∫
D
[

U(k)
U(1) × U(k − 1)

]
=

πk−1

Γ(k)
, (4.5.13)

we can write the result for the thermodynamic potential in the limit Nr → 0 in a
more compact fashion as follows[

Zinst

Z0

]reg
=

N2

8π2

∫
dr0

∫
dλ

λ3
D(c)〈eS′

inst〉U , (4.5.14)
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where the average is defined according to

〈X〉U =
∫
D[U ]X∫
D[U ]

. (4.5.15)

Curved space versus flat space

Our final result of Eq. (4.5.14) still involves a spatially varying momentum scale µ(r)
and our task next is to express the final answer in quantities that are defined in flat
space, rather than curved space. The first step is to rewrite the integral

∫
dηdθ in

S̃inst
F as an integral over flat space following the substitution∫

dηdθ =
∫

drµ2(r) →
∫

dr. (4.5.16)

The expression for S̃inst
F now reads

S̃inst
F [U−1ρU ] = πT

∫ ′
drz(M)

[
c(M)

∑
αn

tr Iα
n U−1ρU tr Iα

−nU−1ρU + 4 tr ηU−1ρU
]
,

(4.5.17)
where the “prime” on the integral sign reminds us of the fact that the expression for
S̃inst

F , as it now stands, still diverges logarithmically in the sample size. What remains,
however, is to perform the next step which is to express the Pauli-Villars masses M in
terms of the appropriate quantities that are defined in flat space. Notice hereto that
M actually describes a spatially varying momentum scale µ(r)M. In Section 4.5.3
below as well as in the remainder of this paper we will embark on the general problem
of how to translate a momentum scale in curved space into a quantity µ0 that is
defined in flat space. As an extremely important consequence of this procedure we
shall show in what follows that the final expression for the interaction term S̃inst

F is
finite in the infrared. This remarkable result is the primary reason as to why one can
proceed and obtain the non-perturbative corrections to the renormalization of the
quantities z and c.

4.5.2 Physical observables

Linear response

Our results for the thermodynamic potential are easily extended to include the quan-
tities σ′

xx and θ′ defined by Eqs. (4.2.31) and (4.2.32). To leading order in σxx we
obtain the following result (see also Ref. [21])

σ′
xx = σxx(M) +

∫
dλ

λ
D(c)

〈(
Jxx[Qinst]eiθ + c.c.

)
e−2πσxx(M)+S̃inst

F

〉
U

, (4.5.18)

θ′

2π
=

θ

2π
+
∫

dλ

λ
D(c)

〈(
Jxy[Qinst]eiθ + c.c.

)
e−2πσxx(M)+S̃inst

F

〉
U

. (4.5.19)

Here, we have introduced the quantity Jab[Qinst] which is given as

Jab[Qinst] = N2 σ2
xx

32π2nλ2

∫
dr tr Iα

n Uρ∇aρU−1

∫
dr′ tr Iα

−nUρ∇bρU−1. (4.5.20)
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The interaction term S̃inst
F in Eqs. (4.5.18) and (4.5.19) does not contribute in the

limit T → 0 and can be dropped. By using normalization conditions∑
n1,α

(U−1)1α
0,n1

(U)α1
n1,0 = 1, (4.5.21)

∑
n2,α

(U−1)1α
−1,n2

(U)α1
n2,−1 = 1, (4.5.22)

we find the following results for the expressions bilinear in the U〈
(U)α1

n1,0(U
−1)1β

0,n3

〉
=

1
N

δn1n3δ
αβ , (4.5.23)〈

(U)α1
n2,−1(U

−1)1β
−1,n4

〉
=

1
N

δn3n4δ
αβ . (4.5.24)

For the quartic combinations we find〈
(U)α1

n1,0(U
−1)1β

0,n3
(U)γ1

n5,0(U
−1)1δ

0,n7

〉
=

δαβ
n1n3

δγδ
n5n7

+ δαδ
n1n7

δγβ
n5n3

N(1 + N)
, (4.5.25)〈

(U)α1
n2,−1(U

−1)1β
−1,n4

(U)γ1
n6,−1(U

−1)1δ
−1,n8

〉
=

δαβ
n2n4

δγδ
n6n8

+ δαδ
n2n8

δγβ
n4n6

N(1 + N)
. (4.5.26)

We have used the shorthand notation δαβ
n1n3

≡ δn1n3δ
αβ . In the limit where Nr → 0

we obtain

〈Jab[Qinst]〉U =
σ2

xx

32π2λ2

∫
dr(ρ∇aρ)11−1,0

∫
dr′(ρ∇bρ)110,−1 =

σ2
xx

2
(δab − iεab) .

(4.5.27)
The expressions for σ′

xx and θ′ can now be written as follows

σ′
xx = σxx(M) −

∫ ′ dλ

λ
D(c)σ2

xxe−2πσxx(M) cos θ, (4.5.28)

θ′

2π
=

θ

2π
−
∫ ′ dλ

λ
D(c)σ2

xxe−2πσxx(M) sin θ. (4.5.29)

Specific heat

By using definitions in Section 4.2.3 we obtain the following results for the parameters
z′ and z′c′

z′ = z(M) −
∫ ′ dλ

λ
D(c)e−2πσxx(M) cos θ

N2

8π3λ2T tr ηΛ
〈S̃F [U ]〉U , (4.5.30)

z′c′ = z(M)c(M) −
∫ ′ dλ

λ
D(c)e−2πσxx(M) cos θ

N2

8π3λ2T tr ηΛ
〈S̃F [U ]〉U . (4.5.31)

The expectations can be evaluated along the same lines as was done in the previous
Section and the result is〈

S̃F [U ]
〉

U
=

2πT

N2

∫
drz(M)c(M)|ρ11

00(r)| tr ηΛ. (4.5.32)
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Eqs. (4.5.31) and (4.5.30) therefore greatly simplify and we obtain

z′ = z(M) +
γ0

4π

∫ ′ dλ

λ
D(c)e−2πσxx(M) cos θ

∫ ′ dr
λ

z(M)c(M)µ(r),

(4.5.33)

z′c′ = z(M)c(M) +
γ0

4π

∫ ′ dλ

λ
D(c)e−2πσxx(M) cos θ

∫ ′ dr
λ

z(M)c(M)µ(r).

(4.5.34)

The most important feature of these results is that the non-perturbative contributions
to the observable parameters σ′

xx, θ′, c′ and z′ are all unambiguously expressed in
terms of the perturbative quantities σxx(M), θ(νf ), c(M) and z(M).

4.5.3 Transformation µ2(r)M → µ0

As a last step in the development of a quantum theory we next wish to express the
Pauli-Villars masses which carry the metric of a sphere µ2(r)M2 in terms of a mass
or momentum scale in flat space, say µ2

0. By changing the momentum scale from
µ(r)M to µ0 one changes the renormalized theory according to

σxx(M) → σxx(M)
[
1 +

β0(c)
σxx

ln
µ(r)M

µ0

]
= σxx

[
1 − β0(c)

σxx
ln

µ0

µ(r)
eγE

]
= σxx(µ(r)), (4.5.35)

c(M) → c(M)
[
1 + α

γ0

σxx
ln

µ(r)M
µ0

]
= c

[
1 − α

γ0

σxx
ln

µ0

µ(r)
eγE−1/2

]
= c(µ(r)), (4.5.36)

z(M) → z(M)
[
1 + c

γ0

σxx
ln

µ(r)M
µ0

]
= z

[
1 − c

γ0

σxx
ln

µ0

µ(r)
eγE−1/2

]
= z(µ(r)). (4.5.37)

The introduction of spatially varying parameters σxx(µ(r)), c(µ(r)) and z(µ(r)) means
that the action S′

inst gets modified according to the prescription

S′
inst → −

∫
drσxx(µ(r)) tr(∇Qinst(r))2 ± iθ + ŜF [U ], (4.5.38)

where

ŜF [U ] = πT

∫ ′
drz(µ(r))

[
c(µ(r))

∑
αn

tr Iα
n U−1ρU tr Iα

−nU−1ρU + 4 tr ηU−1ρU
]
.

(4.5.39)
Notice that in these expressions the instanton quantity ρ depends explicitly on r and
should be read as ρ = ρ(r).
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4.5.4 The quantities σxx and σ′
xx in flat space

Transformation

Let us first evaluate the first spatial integral in Eq. (4.5.38) which can be written as∫
drσxx(µ(r)) tr(∇Qinst(r))2 =

∫
drµ2(r)σxx(µ(r)) = 2πσxx(ζλ), (4.5.40)

where
σxx(ζλ) = σxx − β0(c) ln ζλµ0e

γE , ζ = e2/4. (4.5.41)

Notice that the expression for σxx(ζλ) can simply be obtained from σxx(M) by re-
placing the Pauli-Villars mass M according to

M → ζλµ0. (4.5.42)

By using this result we can write the expression for σ′
xx as follows

σ′
xx = σxx(M) −

∫ ′ dλ

λ
D(c)σ2

xxe−2πσxx(ζλ) cos θ. (4.5.43)

This expression for σ′
xx still contains the Pauli-Villars mass M. To complete the

transformation from curved space to flat space we first change the momentum scale
of the observable theory from µ′(r)M to µ0. Write

σ′
xx(M) → σ′

xx(µ′(r)),

then completely analogous to the definition of Eq. (4.5.40) we obtain the observable
parameter σ′

xx in flat space according to the prescription

σ′
xx(ζλ′) =

1
2π

∫
dr(µ′(r))2σ′

xx(µ′(r)). (4.5.44)

One can think of the µ′(r) = 2λ′/(r2 + λ′2) as being a background instanton with a
large scale size λ′. The expressions for σ′

xx and θ′ in flat space can now be written as
follows

σ′
xx(ζλ′) = σxx(ζλ′) −

∫ ′ d[ζλ]
ζλ

D(c)σ2
xxe−2πσxx(ζλ) cos θ, (4.5.45)

θ′(ζλ′) = θ − 2π

∫ ′ d[ζλ]
ζλ

D(c)σ2
xxe−2πσxx(ζλ) sin θ. (4.5.46)

Integration over scale sizes λ

Notice that the expression for σxx(ζλ′) has precisely the same meaning as Eq. (4.5.41)
with λ replaced by λ′. Next, by writing σxx(ζλ′) as an integral over scale sizes

σxx(ζλ′) = σ0
xx −

∫ ′

1/µ0eγE

d[ζλ]
ζλ

β0(c) (4.5.47)
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where σ0
xx = σxx(1/µ0e

γE ) we obtain a natural general expression for the observable
theory

σ′
xx(ζλ′) = σ0

xx −
∫ ′

1/µ0eγE

d[ζλ]
ζλ

[
β0(c) + D(c)σ2

xxe−2πσxx(ζλ) cos θ
]

(4.5.48)

θ′(ζλ′) = θ − 2π

∫ ′

1/µ0eγE

d[ζλ]
ζλ

[
0 + D(c)σ2

xxe−2πσxx(ζλ) sin θ
]
. (4.5.49)

Notice that the contributions from instantons are finite in the ultraviolet and the
limit µ0 → ∞ was taken implicitly in the computation of the original expressions
of Eqs. (4.5.45) and (4.5.46). Comparison of Eqs. (4.5.47)-(4.5.49) with the results
obtained from the theory in dimensional regularization, Eq. (3.2.19), clearly shows
that the integral over scale sizes λ has exactly the same significance as the integral over
momentum scales that generally defines the relation between to the observable theory
and the renormalization group β functions. Hence, we have found the natural meaning
of the instanton scale size λ. This meaning can only be found on the basis of the
theory of observable parameters and clearly does not arise from the usual free energy
considerations that historically has left the subject matter largely obscure. [115, 116]

In the absence of the instanton contributions the observable theory of Eqs. (4.5.48)
and (4.5.49) and the renormalized theory of Eq. (4.5.47) are identically the same. At
a perturbative level we have θ′ = θ which are arbitrary length scale independent pa-
rameters. Eqs. (4.5.48) and (4.5.49) indicate, however, that instantons are important
in order to correctly describe the infrared of the system. The observable parame-
ter θ′, unlike θ, now becomes length scale dependent and following the discussion in
Section 4.2.2 we have found the fundamental mechanism by which the system dynam-
ically generates the quantization of the Hall conductance. Before embarking on the
renormalization of the theory we shall first address the various difficulties associated
with the observable parameters z′ and z′c′. This will be done in the Sections below
and we will come back to the β and γ functions of the theory in Section 4.6.

4.5.5 The quantities z, zc and z′, z′c′ in flat space

In this Section we wish to extend the various steps of Eqs. (4.5.40)-(4.5.44) and
translate the parameters z(M) and z′(M) as well as z(M)c(M) and z′(M)c′(M)
into the appropriate quantities in flat space. As an important check on the procedure
we compare the results with those previously obtained from the theory in dimensional
regularization. At the same time we will have to make sure that at each step of the
analysis the relation z′α′ = zα is satisfied. For the main part, however, the analysis
of the present Section proceeds along the same lines as the one in Chapter 2 for the
ordinary Grassmannian theory.
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Transformation

Let us first introduce the spatially varying momentum scales µ(r) and µ′(r) according
to Eqs. (4.5.36) and (4.5.37)

z′ = z(µ′(r)) +
γ0

4π

∫ ′ dλ

λ
D(c)A1e

−2πσxx(ζλ′) cos θ, (4.5.50)

z′c′ = z(µ′(r))c(µ′(r)) +
γ0

4π

∫ ′ dλ

λ
D(c)A1e

−2πσxx(ζλ′) cos θ, (4.5.51)

where the amplitude A1 is given as

A1 =
∫ ′

dr
µ(r)
λ

z(µ(r))c(µ(r)). (4.5.52)

Next, by using exactly the same procedure as in Eqs. (4.5.40) and (4.5.44) we wish
to express the quantities z(µ(r)) and z(µ(r))c(µ(r)) in the amplitude A1 in terms of
z(ζλ) and z(ζλ)c(ζλ) respectively according to

z(ζλ) =
1
2π

∫
drµ2(r)z(µ(r)), (4.5.53)

z(ζλ)c(ζλ) =
1
2π

∫
drµ2(r)z(µ(r))c(µ(r)). (4.5.54)

From this one obtains

z(ζλ) = z

[
1 − cγ0

σxx
ln ζλµ0e

γE−1/2

]
, (4.5.55)

z(ζλ)c(ζλ) = zc

[
1 − γ0

σxx
ln ζλµ0e

γE−1/2

]
. (4.5.56)

These expressions for the renormalized parameters as well as the σxx(ζλ) obtained in
the previous Section are precisely consistent with those of the theory in dimensional
regularization. Although these quantities are clearly the ones of interest to us, it
is not quite obvious in what manner the amplitude A1 can be expressed in terms of
Eqs. (4.5.55) and (4.5.56). Recall that the classical expression for Eq. (4.5.52) diverges
logarithmically in the sample size. In the Sections below, however, we will show
that the amplitude A1 is finite at a quantum level. On the other hand, completely
analogous to Eq. (4.5.44) we write the observable theory as follows

z′(ζλ′) = z(ζλ′) +
γ0

4π

∫ ′ dλ

λ
D(c)A1e

−2πσxx(ζλ′) cos θ, (4.5.57)

z′c′(ζλ′) = z(ζλ′)c(ζλ′) +
γ0

4π

∫ ′ dλ

λ
D(c)A1e

−2πσxx(ζλ′) cos θ, (4.5.58)

where z(ζλ′) and z(ζλ′)c(ζλ′) are defined by Eqs. (4.5.55) and (4.5.56). Notice that
the results so far are consistent with the statements made on z′α′ and zα.
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Amplitude A1

To evaluate A1 further it is convenient to introduce the quantity M1(r) according to

A1 = z(µ(0))c(µ(0))M1, (4.5.59)

M1 = −2π

∫ µ(L
′
)

µ(0)

d[ln µ(r)]M1(r), (4.5.60)

M1(r) =
z(µ(r))c(µ(r))
z(µ(0))c(µ(0))

. (4.5.61)

Since the anomalous dimension γzc = γz/c is negative the quantity M1(r) is in all
respects like a spatially varying spontaneous magnetization in the classical Heisenberg
ferromagnet. The associated momentum scale µ(r) strongly varies from large values
O(λ−1) at short distances (|r| � λ) to small values O(λ/|r|2) at very large distances
(|r| � λ). This means that at distances sufficiently far from the center of the instan-
ton the system is effectively in the symmetric or strong coupling phase where M1(r)
vanishes. Hence we expect the amplitude M1 to remain finite as |r| → ∞. This is in
spite of the fact that the amplitude A1 diverges at a classical level.

Details of computation

The expression for M1 can be written in terms of the γzc function as follows

M1 = −2π

∫ ln µ(L′)

ln µ(0)

d[lnµ(r)] exp
{
−
∫ ln µ(r)

ln µ(0)

d[lnµ]γzc

}
. (4.5.62)

Taking the derivative with respect to lnλ we find that M1 obeys the following differ-
ential equation (

− d

d ln λ
+ γzc

)
M1 = 2π (1 + M1(L′)) . (4.5.63)

We can safely take the limit L′ = ∞ and put M1(L′) = 0 from now onward. At
the same time one can solve Eq. (4.5.63) in the weak coupling limit where λ → 0,
µ(0) → ∞ and σxx(µ(0)) → ∞. Under these circumstances it suffices to insert the
perturbative expressions of Eqs. (3.2.22), (3.2.23) and (3.6.2) for the γzc, βσ and βc

functions such that the quantity M1 = M1(σxx(µ(0)), c(µ(0))) is obtained as the
solution of the differential equation(

βσ
∂

∂σxx
+ βc

∂

∂c
+ γzc

)
M1 = 2π, (4.5.64)

where to leading order βσ = β0(c), βc = c(1 − c)γ0/σxx and γzc = −γ0/σxx. The
result for M1 can generally be expanded in powers of σ−1

xx (µ(0))

M1 = 2π2σxxm
(1)
1 (c) + m

(1)
0 (c) + σ−1

xx m
(1)
−1(c) + . . . (4.5.65)

We are interested in the leading order quantity m
(1)
1 (c) which obeys the following

differential equation(
−γ0c(1 − c)

d

dc
+ (β0(c) − γ0)

)
m

(1)
1 (c) =

1
π

. (4.5.66)
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The solution can be written as

m
(1)
1 (c) =

α

c
exp
[
2
c

ln α

] ∫ c

0

ds(1 − s)−2−2/s. (4.5.67)

The quantity m
(1)
1 (c) varies between the Fermi liquid value m

(1)
1 (0) and the Coulomb

interaction value m
(1)
1 (1) which are obtained as

m
(1)
1 (0) = 1, m

(1)
1 (1) = 1/3. (4.5.68)

The result for A1 becomes

A1 = −2π2z(µ(0))c(µ(0))σxx(µ(0))m(1)
1 (c(µ(0))). (4.5.69)

As a final step we wish to express σxx(µ(0)), c(µ(0)) and z(µ(0)) in terms of the
spatially flat quantities σxx(ζλ), c(ζλ) and z(ζλ) respectively. The following relations
are obtained

σxx(µ(0)) = σxx(ζλ)
[
1 +

β0(c)
σxx(ζλ)

ln 2ζ
]

, (4.5.70)

c(µ(0)) = c(ζλ)
[
1 +

αγ0

σxx(ζλ)
ln 2ζ

]
, (4.5.71)

z(µ(0)) = z(ζλ)
[
1 +

cγ0

σxx(ζλ)
ln 2ζ

]
. (4.5.72)

For our purposes the correction terms O(σ−1
xx ) are unimportant. Using these results we

have finally solved the problem stated at the outset which is to express the amplitude
A1 in terms of the quantities σxx(ζλ), c(ζλ) and z(ζλ), i.e.

A1 = 2π2z(ζλ)c(ζλ)σxx(ζλ)m(1)
1 (c(ζλ)) (4.5.73)

with the function m1(c) given by Eq. (4.5.67). The complete expressions for the
quantities z′ and z′c′ are as follows

z′(ζλ′) = z(ζλ′) −
∫ ′ d[ζλ]

ζλ
zcDγ(c)σxxe−2πσxx cos θ, (4.5.74)

z′(ζλ′)c′(ζλ′) = z(ζλ′)c(ζλ′) −
∫ ′ d[ζλ]

ζλ
zcDγ(c)σxxe−2πσxx cos θ. (4.5.75)

where the quantities σxx, z and c under the integral sign are defined for length scale
ζλ and

Dγ(c) = −γ0π

2
D(c)m1(c). (4.5.76)

In Fig. 4.5 we plot the function Dγ(c) with varying c. It has the Fermi-liquid value
Dγ(0) = D(0)/2 and the Coulomb interaction value Dγ(1) = D(1)/6.
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Table 4.5: Regularization schemes

Pauli-Villars Pauli-Villars Dimensional
regularization regularization regularization
(curved space) (flat space)

σ′
xx σxx − β0(c) ln Xe1/2 σxx − β0(c) ln Xe1/2 σxx − β0(c) ln Xe1/2

z′ z
(
1 − cγ0

σxx
ln X

)
z
(
1 − cγ0

σxx
ln X

)
z
(
1 − cγ0

σxx
ln X

)

z′c′ zc
(
1 − γ0

σxx
ln X

)
zc
(
1 − γ0

σxx
ln X

)
zc
(
1 − γ0

σxx
ln X

)
X MeγE−1/2 ζλµ0e

γE−1/2 µ0µ
−1e−1/2

Integration over scale sizes λ

As before we can write the renormalized parameters z(ζλ′) and z(ζλ′)c(ζλ′) as an
integral over scale sizes. This leads to the more general expression for the observable
theory

z′(ζλ′) = z0 +
∫ ′

1/µ0eγE

d[ζλ]
ζλ

zc

(
γ0

σxx
−Dγ(c)σxxe−2πσxx cos θ

)
, (4.5.77)

z′(ζλ′)c′(ζλ′) = z0c0 +
∫ ′

1/µ0eγE

d[ζλ]
ζλ

zc

(
γ0

σxx
−Dγ(c)σxxe−2πσxx cos θ

)
,(4.5.78)

where the parameters z0 and z0c0 are defined for a fixed microscopic length scale
1/µ0e

γE . Again we compare the results with those obtained from the theory in
dimensional regularization, Eqs. (3.2.20) and (3.2.21). This, then, completes the
statement made earlier which says that the significance of the instanton scale size
λ should primarily be found in the fundamental relation that exists between the
observable theory on the one hand, and the renormalization group β and γ functions
on the other. We will elaborate further on this point in Section 4.6.
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4.6 The β′ and γ′ functions

4.6.1 Observable and renormalized theories

Next, introducing an arbitrary scale size λ0 we can write Eqs. (4.5.45), (4.5.46),
(4.5.74) and (4.5.75) as follows

σ′
xx(ζλ′) = σ′

xx(ζλ0) −
∫ ζλ′

ζλ0

d[ζλ]
ζλ

β′
σ(σxx, θ, c), (4.6.1)

θ′(ζλ′) = θ′(ζλ0) −
∫ ζλ′

ζλ0

d[ζλ]
ζλ

β′
θ(σxx, θ, c), (4.6.2)

z′(ζλ′) = z′(ζλ0) +
∫ ζλ′

ζλ0

d[ζλ]
ζλ

z′γ′
z(σxx, θ, c, c′), (4.6.3)

z′(ζλ′)c′(ζλ′) = z′(ζλ0)c′(ζλ0) +
∫ ζλ′

ζλ0

d[ζλ]
ζλ

z′c′γ′
zc(σxx, θ, c, c′), (4.6.4)

where

β′
σ(σxx, θ, c) = − dσ′

xx

d ln λ
= β0(c) + D(c)σ2

xxe−2πσxx cos θ, (4.6.5)

β′
θ(σxx, θ, c) = − dθ′

d ln λ
= 2πD(c)σ2

xxe−2πσxx sin θ, (4.6.6)

γ′
z(σxx, θ, c, c′) =

d ln z′

d ln λ
=

(1 − c′)c
1 − c

[ γ0

σxx
−Dγ(c)σxxe−2πσxx cos θ

]
, (4.6.7)

γ′
zc(σxx, θ, c, c′) =

d ln z′c′

d ln λ
=

(1 − c′)c
(1 − c)c′

[ γ0

σxx
−Dγ(c)σxxe−2πσxx cos θ

]
. (4.6.8)

The difference between the observable theory σ′
xx, θ′, c′ and z′ and the renormalized

theory σxx, θ, c and z can be expressed in terms of the renormalization group functions
as follows

βσ(σxx, c) ⇔ β′
σ(σxx, θ, c), (4.6.9)

βθ = 0 ⇔ β′
θ(σxx, θ, c), (4.6.10)

γz(σxx, c) ⇔ γ′
z(σxx, θ, c, c′), (4.6.11)

γzc(σxx, c) ⇔ γ′
zc(σxx, θ, c, c′). (4.6.12)

What clearly remains is to express the β′
σ, β′

θ, γ′
zc and γ′

z functions in terms of the
observable parameters σ′

xx, θ′ and c′ alone, rather than the renormalized quantities
σxx, θ and c. To ensure that this can be done without introducing any unwanted
singularities into the problem we proceed as follows. It is important to notice, first of
all, that the following general relations hold

γz(σxx, c) = cγz(σxx, c), (4.6.13)
γ′

z(σxx, θ, c, c′) = c′γ′
zc(σxx, θ, c, c′). (4.6.14)
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This means that both quantities zα and z′α′ are unrenormalized as it should be.
Next, we compare the renormalization behavior of the quantities c and c′

βc(σxx, c) = − dc

d ln λ
= (1 − c)cγzc(σxx, c), (4.6.15)

β′
c(σxx, θ, c, c′) = − dc′

d ln λ
= (1 − c′)c′γ′

zc(σxx, θ, c, c′). (4.6.16)

We see that the Fermi liquid plane c = c′ = 0 and the Coulomb interaction plane
c = c′ = 1 correspond to zero’s of both the βc and β′

c functions provided the γ′
zc is

well behaved.

4.6.2 The β′ and γ′ functions

The relation between the observable and renormalized theories can be obtained by
solving the following differential equations

βσ(σxx, c)
∂σ′

xx

∂σxx
+ βc(σxx, c)

∂σ′
xx

∂c
= β′

σ(σxx, θ, c), (4.6.17)

βσ(σxx, c)
∂θ′

∂σxx
+ βc(σxx, c)

∂θ′

∂c
= β′

θ(σxx, θ, c), (4.6.18)

βσ(σxx, c)
∂c′

∂σxx
+ βc(σxx, c)

∂c′

∂c
= β′

c(σxx, θ, c, c′). (4.6.19)

To obtain solutions that are meaningful in the entire range 0 � c � 1 we must work
with the two loop results for the βσ function as in Eq. (3.2.22). It is next a matter of
simple algebra to show that the results can be expressed in terms of an infinite double
series in powers of exp(−2πσ′

xx) and the trigonometric functions of θ′. The first few
terms in the series can be written as follows

β′
σ(σ′

xx, θ′, c′) =
{

βσ(σ′
xx, c′) + F ′

0e
−4πσ′

xx

}
+

{
D(c′) (σ′

xx)2 e−2πσ′
xx

}
cos θ′

+
{

F ′
2e

−4πσ′
xx

}
cos 2θ′ + . . . ,

(4.6.20)

β′
θ(σ

′
xx, θ′, c′) =

{
D(c′) (σ′

xx)2 e−2πσ′
xx

}
sin θ′

+
{

F ′
2e

−4πσ′
xx

}
sin 2θ′ + . . . ,

(4.6.21)

γ′
zc(σ

′
xx, θ′, c′) =

{
γzc(σ′

xx, c′) + H ′
0e

−4πσ′
xx

}
+

{
Dγ(c′)σ′

xxe−2πσ′
xx

}
cos θ′

+
{

H ′
2e

−4πσ′
xx

}
cos 2θ′ + . . . ,

(4.6.22)
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where the F ′, and H ′ are rational functions in σ′
xx and to leading order are given by

F ′
0 = − (σ′

xx)4

βσ(σ′
xx, c′)

D2(c′), (4.6.23)

F ′
2 =

(σ′
xx)3

2πβσ(σ′
xx, c′)

D(c′)
[
D(c′) +

1
2
c′(1 − c′)Dγ(c′)∂c′Dγ(c′)

]
, (4.6.24)

H ′
0 = − (σ′

xx)3

βσ(σ′
xx, c′)

Dγ(c′)D(c′), (4.6.25)

H ′
2 =

(σ′
xx)2

4πβσ(σ′
xx, c′)

Dγ(c′) [D(c′) + Dγ(c′) + c′(1 − c′)∂c′Dγ(c′)] . (4.6.26)

We see that the renormalization group β′ and γ′ functions are formally given as a
sum over all topological sectors of the theory. This is in spite of the fact that we
started out the computation with single instanton only. The final answer smoothly
interpolates between the Coulomb interaction problem at c = 1 and the free electron
theory c = 0 where the one-loop result β0(c = 0) of βσ vanishes but the two-loop
result β1(c = 0) is finite. We end this Section with several remarks. First of all, on
the basis of Eq. (4.6.22) we obtain the desired result for the remaining renormalization
group functions of Eqs. (4.6.14) and (4.6.16)

γ′
z(σ

′
xx, θ′, c′) = c′γ′

zc(σ
′
xx, θ′, c′), (4.6.27)

β′
c(σ

′
xx, θ′, c′) = (1 − c′)c′γ′

zc(σ
′
xx, θ′, c′). (4.6.28)

Since the γ′
zc is generally well behaved we have verified the statement which says

that the combination z′α′ is unrenormalized. At the same time we conclude that the
planes c′ = 0 and c′ = 1 map unto themselves under the action of the renormalization
group as it should be.

Secondly, it is clear that the terms with the exponential factors exp(−4πσ′
xx)

in Eqs. (4.6.20) and (4.6.22) correspond to higher order contributions that be-
come important when multi - instanton configurations are taken into account. For
example, the correction O(exp(−4πσ′

xx)) in the first term of Eq. (4.6.20), i.e.
{βσ(σ′

xx, c′) + F ′
0 exp(−4πσ′

xx)}, clearly indicates that the topologically trivial vac-
uum is generally affected by instanton and anti instanton combinations. It is easy to
see that the quantity F ′

0 exp(−4πσ′
xx) actually arises from instantons and anti instan-

tons that either are widely separated or have vastly different scale sizes. It therefore
is natural to interpret the perturbative βσ(σ′

xx, c′) function in terms of tightly bound
instanton - anti instanton pairs with equal sizes. Similarly, the terms proportional
to F ′

2, G′
2 and H ′

2 in Eqs. (4.6.20) and (4.6.22) are recognized as the disconnected
pieces that appear in the contributions from instantons of topological charge ±2. A
complete multi-instanton analysis is beyond the scope of the present paper and likely
involves the effects of merons. [117] Keeping these remarks in mind we conclude that
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the observable theory can be generally expressed as follows

σ′
xx(ζλ′) = σ′

xx(ζλ0) −
∫ ζλ′

ζλ0

d[ζλ]
ζλ

β′
σ(σ′

xx, θ′, c′), (4.6.29)

θ′(ζλ′) = θ′(ζλ0) −
∫ ζλ′

ζλ0

d[ζλ]
ζλ

β′
θ(σ

′
xx, θ′, c′), (4.6.30)

c′(ζλ′) = c′(ζλ0) −
∫ ζλ′

ζλ0

d[ζλ]
ζλ

β′
c(σ

′
xx, θ′, c′), (4.6.31)

z′(ζλ′) = z′(ζλ0) +
∫ ζλ′

ζλ0

d[ζλ]
ζλ

z′γ′
z(σ

′
xx, θ′, c′), (4.6.32)

z′(ζλ′)α′(ζλ′) = z′(ζλ0)α′(ζλ0). (4.6.33)

Here, β′
σ, β′

θ, β′
c and γ′

z are given to the appropriate order by Eqs. (4.6.20)-(4.6.22).
For convenience of a reader we summarize the results for β′

σ, β′
θ, β′

c and γ′
z as follows

β′
σ = β0(c′) +

β1(c′)
σ′

xx

+ D(c′)σ′2
xxe−2πσ′

xx cos θ′, (4.6.34)

β′
θ = 2πD(c′)σ′2

xxe−2πσ′
xx sin θ′, (4.6.35)

β′
c = (1 − c′)c′

(
− 1

πσ′
xx

− βc
1(c

′)
σ′2

xx

−Dγ(c′)σ′
xxe−2πσ′

xx cos θ′
)

, (4.6.36)

γ′
z = c′

(
− 1

πσ′
xx

− βc
1(c

′)
σ′2

xx

−Dγ(c′)σ′
xxe−2πσ′

xx cos θ′
)

. (4.6.37)

Here, we remind, one and two loop results are given as

β0(c′) =
2
π

[
1 +

1 − c′

c′
ln(1 − c′)

]
,

β1(c′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2π2

c′ = 0,

4π−2
[
50 +

1
6
− 3π2 +

19
2

ζ(3) + 16 ln2 2

−44 ln 2 +
π2

2
ln 2 + 16G +

π4

12
+

π2

3
ln2 2

−1
3

ln4 2 − 7ζ(3) ln 2 − 8 li4(1/2)
] c′ = 1,

βc
1(c

′) =

⎧⎨⎩0 c′ = 0,
3
π2

+
1
6

c′ = 1.
(4.6.38)
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The amplitudes of instanton contributions are given as

D(c′) = 16πe1−2πγEβ0(c
′) exp

{
−2

1 − c′

c′

[[
ψ

(
3 − 1

c′

)
+ ψ

(
1
c′

)
− 1
]

ln(1 − c′)

−f

(
1
c′

− 1
)

+ f

(
1
c′

)
− 2c′2 ln 2

2c′ − 1

]}
, (4.6.39)

Dγ(c′) =
D(c′)
2c′

(1 − c′)1+2/c′
∫ c′

0

ds (1 − s)−2−2/s, (4.6.40)

where f(z) = 2z2
∑∞

J=2 J−1(J2 − z2)−1 ln J . These final results generalize those
previously obtained on the basis of perturbative expansions, Eqs. (3.2.19)-(3.2.21).

4.7 Effective action for the edge

Sofar we have completed the weak coupling analysis of the observable parameters of
the theory that were introduced in Section 3.2.3. We have shown how the theory of
ordinary radiative corrections can be extended to include the non-perturbatve effects
of instantons. As an important general check on the consistency of the results we
next focus the attention on the thermodynamic potential Ω of the electron gas. A
major objective of this Section is to explicitly verify the statement z′α′ = zα at a
non-perturbative level that until now we have assumed to be valid. This will be
done in Sections 4.7.1 - 4.7.3 below where we address the various different steps that
eventually lead to a systematic expansions of Ω in powers of T . A second major
goal of this Section is to extend the effective action procedure of the massless chiral
edge excitations to include the lowest order terms in T . The extended action can
then be used to investigate whether and how the theory of topological excitations
(instantons) facilitate a microscopic understanding of the quantum Hall regime. This
will be the main topic of Sections 4.7.3 and 4.7.4 where we embark on the strong
coupling consequences of our results.

4.7.1 Thermodynamic potential

We start out from the instanton contribution Ωinst as given by Eq. (4.5.14)

Ωinst =
[
Zinst

Z0

]reg
=

N2

4π2
Re
∫

dr0

∫
dλ

λ3
D(c)〈eS′

inst〉U

=
N2

4π2

∫
dr0

∫
dλ

λ3
D(c)e−2πσxx(ζλ) cos θ

× 〈eSinst
F [U ]〉U . (4.7.1)

Here, the sum over the instanton and anti-instanton sectors is understood. We have
made use of the results for S′

inst as given by Eqs (4.5.38) and (4.5.40). The expression
for the singlet interaction term Ŝinst

F [U ] as given by Eq. (4.5.12) still contains the
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spatially varying momentum scale µ(r). Introducing the matrices Λ̂ and 1̂

Λ̂αβ
nm = δα1δβ1δnm[δn0 − δn,−1] (4.7.2)

1̂αβ
nm = δα1δβ1δnm[δn0 + δn,−1]. (4.7.3)

then the expression for Ŝinst
F [U ] (Eq. (4.5.12)) can be written in a more compact

fashion as follows
ŜF (U) = Ŝi(U) + Ŝη(U) (4.7.4)

where

Ŝi[U ] = −π

2
Tλ2

(
A1 −

5
2
A2

)∑
αn

tr Iα
n U−1Λ̂UIα

−nU−1Λ̂U

+
π

2
Tλ2

(
A1 −

1
2
A2

)∑
αn

tr Iα
n U−11̂UIα

−nU−11̂U (4.7.5)

Ŝη[U ] = −4πTλ2A3 tr ηU−1Λ̂U. (4.7.6)

The spatial integrals are all absorbed in the three different amplitudes Ai which are
given by

A1 =
∫ ′

dr
µ(r)
λ

z(µ(r))c(µ(r)) (4.7.7)

A2 =
∫ ′

drµ2(r)z(µ(r))c(µ(r)) (4.7.8)

A3 =
∫ ′

dr
µ(r)
λ

z(µ(r)). (4.7.9)

Notice that A1 is identically the same as in Eq. (4.5.52). When written in this form
it is of interest to compare the results of the quantum theory with those obtained in
Section 4.3 for the classical theory. In this latter case one finds the same expressions
as in Eqs (4.7.4) - (4.7.6) except that the Ai are replaced by the classical amplitudes
Ainst

i

Ainst
1 = zc

∫ ′
dr

µ(r)
λ

(4.7.10)

Ainst
2 = zc

∫ ′
drµ2(r) (4.7.11)

Ainst
3 = z

∫ ′
dr

µ(r)
λ

. (4.7.12)

We have already noticed in Section 4.3 that the classical results for Sinst
F [U ], in par-

ticular the amplitudes Ainst
1 and Ainst

3 , are logarithmically divergent in the sample
size. Remarkably, however, these infrared troubles have disappeared in the quantum
theory. By following a similar procedure as the one discussed in Section 4.5.5 we find
that the amplitudes of Eqs (4.7.7) - (4.7.9) are generally finite. Whereas the result
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Figure 4.6: m(3)(c) versus c, see text.

for A1 is given by Eq. (4.5.73) the final expressions for the amplitudes A2 and A3 are
obtained as follows

A2 = −2πz(ζλ) (4.7.13)

A3 = −2π2z(ζλ)σxx(ζλ)m(3)
1 (c(ζλ)) (4.7.14)

where

m
(3)
1 (c) = α exp

[2
c

ln α
] c∫

0

ds

s(1 − s)2
exp
[
−2

s
ln(1 − s)

]
. (4.7.15)

In Fig. 4.6 we plot of the function m
(3)
1 (c) with varying c. We see that m

(3)
1 (c) diverges

as c tends to 0. This means that for c = 0 the leading term in A3 is proportional
to σ2

xx rather than σxx. Furthermore, the results indicate that we can neglect the
amplitude A2 which is one order in σxx smaller than A1 as well as A3. Keeping
these remarks in mind we can write the instanton contribution to the thermodynamic
potential as follows

Ωinst =
N2

4π2

∫
dr0

∫ ′ dλ

λ3
D(c(ζλ))e−2πσxx(ζλ) cos θ〈eŜi(U)+Ŝη(U)〉U (4.7.16)

where Ŝη[U ] is given by Eq. (4.7.6) and Ŝi[U ] can be written as

Ŝi[U ] = −π

4
Tλ2A1

∑
αn

tr
(
[Iα

n , U−1Λ̂U ][Iα
−n, U−1Λ̂U ] − [Iα

n , U−11̂U ][Iα
−n, U−11̂U ]

)
(4.7.17)
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4.7.2 Expansion in T

Next, in a naive expansion of the thermodynamic potential Ω to lowest orders T one
would proceed by computing the expectation of Ŝi(U) and Ŝη(U) with respect to the
matrix U . In the limit where N = NrNm → 0 this expectation is given by

〈Ŝi(U)〉U =
2πλ2TA1

N2
tr ηΛ (4.7.18)

〈Ŝη(U)〉U = −4πλ2TA3

N
tr ηΛ. (4.7.19)

Hence, only the quantity 〈Ŝi(U)〉U survives in Eq. (4.7.16) whereas the term 〈Ŝη(U)〉U
vanishes in the limit where N → 0. We have already mentioned, however, that the
expectation of SF , in particular Eq. (4.7.18), is complicated and cut-off dependent.
These as well as other complications disappear once it is recognized that the frequency
term Ŝη(U) in the action is actually not a perturbative quantity at all and should
generally be retained in the exponential of Ωinst. The correct series expansion in
powers of T therefore has the following general form

Ωinst =
N2

4π2

∫
dr0

∫ ′ dλ

λ3
D(c(ζλ))e−2πσxx(ζλ) cos θ

×〈eŜη(U)(1 + Ŝi(U) + . . . )〉U . (4.7.20)

The problem that remains is to evaluate expectations of the type

〈X〉ε = 〈Xe−ε tr ηU−1Λ̂U 〉U (4.7.21)

where we have written ε = 4πλ2TA3. For our purposes the only expectations that
we shall need are the following results which are valid in the limit N → 0〈

(U−1Λ̂U)αβ
nm

〉
ε

=
1
N

Λαβ
nme−ε|n| (4.7.22)〈

(U−11̂U)αβ
nm

〉
ε

=
1
N

1αβ
nme−ε|n|. (4.7.23)

We see that the main effect of ε is to exponentially suppress the large Matsubara
frequency components. To justify Eqs. (4.7.22) and (4.7.23) we proceed as follows.
Since the averaging over positive and negative frequency blocks is independent of
one another we first introduce for brevity the symbol Pα

n = (U−11̂U)αα
nn where n is

limited to, say, positive frequency indices only. Eqs (4.7.22) and (4.7.23) can then be
expressed in terms of an infinite series expansion in powers of ε with coefficients of
the type

〈P β1
m1

. . . P βk
mk

〉U . (4.7.24)

The lowest order coefficients we already have, in particular

〈Pα
n1
〉U =

1
N

, 〈Pα
n1

P β
n3
〉U =

1
N

δαβ
n1n3

+ 1
1 + N

. (4.7.25)
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The second of these equations simplifies in the limit Nr → 0 and can be replaced by
the following expression

〈Pα
n1

P β
n3
〉U =

1
N

δαβ
n1n3

. (4.7.26)

Here we have neglected unity in comparison with δαβ
n1n3

due to the following reasons.
In expansion of Eq. (4.7.23) the term of the first order in ε is given as

−ε
∑

m1,β1

m1〈Pα
n1

P β1
m1

〉U = − ε

N

(
n1 + Nr

∑
m1

m1

)
→ − ε

N
n1 (4.7.27)

where the last term in the brackets in the first line of Eq. (4.7.27) have been left out
because of being higher order in Nr and therefore insignificant. The result (4.7.27)
corresponds exactly to the expression (4.7.26) for the average 〈Pα

n1
P β

n3
〉U .

Proceeding along the same lines one can prove by induction that the general
expression can be written as

〈P β1
m1

. . . P βk
mk

〉U =
1
N

δβ1...βkδm1...mk
. (4.7.28)

Using this result one can re-exponentiate the series in powers of ε and the result can
be written as follows〈

Pα
n exp

⎛⎝−ε
∑

β,m>0

mP β
m

⎞⎠〉 =
1
N

exp(−ε|n|). (4.7.29)

This, then, directly leads to the result of Eqs. (4.7.22) and (4.7.23).
On the basis of Eqs. (4.7.22) and (4.7.23) one can write the expectation 〈Ŝi(U)〉ε

as follows

〈Ŝi(U)〉ε = −π

2
Tλ2A1

∑
αn

tr
〈
[Iα

n , U−1Λ̂U ]
〉

ε

〈
[Iα

−n, U−1Λ̂U ]
〉

ε
. (4.7.30)

Explicitly written out we now have

〈Ŝi(U)〉ε =
2πλ2TA1

N2

∑
αn

|n|e−ε|n| =
2πλ2TA1

N2
tr
(
ηΛe−εηΛ

)
. (4.7.31)

It is important to emphasize that a finite value of ε not only suppresses the large
frequency components in the sum over n but also makes the result of Eq. (4.7.31)
independent of the arbitrary frequency cut-off Nm that one generally imposes on
the size of matrices appearing in Eq. (4.7.30). Eq. (4.7.31) therefore resolves the
aforementioned ambiguities in Eq. (4.7.18) that were obtained by putting ε strictly
equal to zero.

4.7.3 Background field q0

We are now in a position to carry the analysis one step further and evaluate the
thermodynamic potential Ωinst in the presence of a global background matrix field
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t0 ∈ U(2N)/U(N)×U(N). It is not difficult to see that this amounts to a replacement
of Eq. (4.7.20) by the following expression

Ωinst[t0] =
N2

4π2

∫
dr0

∫ ′ dλ

λ3
D(c(ζλ))e−2πσxx(ζλ) cos θ

×(1 +
〈
Ŝi(Ut0)

〉
ε
+ . . . ) (4.7.32)

where instead of Eq. (4.7.30) we now have

〈Ŝi(Ut0)〉ε = −π

2
Tλ2A1

∑
αn

tr
〈
[Iα

n , t−1
0 U−1Λ̂Ut0]

〉
ε

×
〈
[Iα

−n, t−1
0 U−1Λ̂Ut0]

〉
ε
. (4.7.33)

The expectations are defined by Eq. (4.7.21) as before. According to the rules of F
algebra [32] one should think of the matrix t0 as being a “small” unitary rotation
that is embedded in the space of much “larger” matrices of size 2N × 2N . More
specifically, we take t0 ∈ U(2n)/U(n) × U(n) with n = Nrnm being much “smaller”
than N = NrNm. One is ultimately interested in the theory where the various
different frequency cut-offs nm, ε−1 and Nm are being sent off to infinity. This,
however, should be done according to the general prescription nm � ε−1 � Nm →
∞. [33]

Using Eqs. (4.7.22) and (4.7.23) we obtain Eq. (4.7.33) explicitly as follows

〈Ŝi(Ut0)〉ε = −πλ2TA1

2N2
Γ[t0] (4.7.34)

where
Γ[t0] =

∑
αn

tr[Iα
n , t−1

0 Λe−εηΛt0][Iα
−n, t−1

0 Λe−εηΛt0]. (4.7.35)

Next, by keeping the constraints on the different frequency cut-offs in mind and after
some subtle but elementary F algebra [32] one finds the following simple expression
for Γ[t0]

Γ[t0] = Γ[q0] =
∑
αn

e−ε|n| tr[Iα
n , q0][Iα

−n, q0] (4.7.36)

where
q0 = t−1

0 Λt0. (4.7.37)

This final result is manifestly U(N) × U(N) invariant as it should be. Moreover,
Eq. (4.7.36) is F invariant which means that it is invariant under electrodynamic
U(1) gauge transformations. [32] For all practical purposes we can replace the result
of Eq. (4.7.36) by the more conventional expression [32]

Γ[q0] =
∑
αn

′
tr[Iα

n , q0][Iα
−n, q0]. (4.7.38)
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Here, the q0 ∈ U(2n)/U(n)×U(n) is embedded in a “large” matrix space of fixed size,
say, 2Ñ ×2Ñ with Ñ = NrÑm and Ñm = O(ε−1). The prime on the summation sign
indicates that the sum over n is restricted to −Ñm � n � Ñm. Both Eqs (4.7.36) and
(4.7.38) can be re-expressed as a statement made on the space of “small” matrices
alone according to [32]

Γ[q0] = 2

(∑
αn

tr Iα
n q0 tr Iα

−nq0 + 4 tr ηq0 − 6 tr ηΛ

)
.

(4.7.39)

To summarize the results of this Section we write thermodynamic potential,
Eq. (4.7.32), in the following manner

Ωinst[q0] = Ωinst + Sinst
eff [q0]. (4.7.40)

Here, Ωinst denotes the T = 0 piece

Ωinst =
N2

4π2

∫
dr0

∫ ′ dλ

λ3
D(c)e−2πσxx(ζλ) cos θ. (4.7.41)

The Sinst
eff denotes the T �= 0 piece that contains the background matrix field q0

Sinst
eff [q0] = T (z′c′)inst

∫
dr0Γ[q0] + O(T 2) (4.7.42)

where

(z′c′)inst =
1
2π

∫ ′ dλ

λ
D(c)A1e

−2πσxx(ζλ) cos θ . (4.7.43)

Finally, to obtain the complete expression for the effective action in q0 we have to
add to the instanton expression of Eq. (4.7.42) the result S0

eff[q0] corresponding to the
topologically trivial vacuum. This is written in Eq. (4.2.30) and the final answer can
be expressed as follows

Seff[q0] = S0
eff[q0] + Sinst

eff [q0] (4.7.44)

= T (z′c′)
∫

dr0

∑
αn

′
tr[Iα

n , q0][Iα
−n, q0]

+ Tzα

∫
dr0 (4 tr ηq0 − 6 tr ηΛ) . (4.7.45)

Here, (z′c′) contains the contributions from both perturbation theory and instantons
whereas the quantity zα = z(1 − c) is un-renormalized. We have therefore explicitly
verified the T dependent pieces of the effective action for massless chiral edge excita-
tions and the final answer retains the general form as obtained using the back field
methodology, Eq. (4.2.30). Most importantly, we have verified the general statement
made in the beginning of this paper which says that the quantity zα does not acquire
any quantum corrections, neither from perturbative expansions nor from instantons.
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4.7.4 Effective action

We next generalize the result of the previous Section and obtain the complete effective
action for the massless chiral edge excitations Seff[q] for spatially varying matrix fields
q(r) rather than a global one q0. By making use of Eq. (4.7.45) as well as Eq. (3.3.18)
of Appendix 3.3 we obtain the final total expression for Seff[q] valid for 0 � c, c′ � 1
(cf. Eq. (4.2.44))

Seff[q] = Sedge
σ [q] + Sbulk

σ [q] + Sbulk
F [q] (4.7.46)

where

Sedge
σ [q] =

k(νf )
2

∮
dx tr t∇xt−1Λ (4.7.47)

Sbulk
σ [q] = −σ′

xx

8

∫
dr tr(∇q)2

+
θ′

16π

∫
dr tr εjkq∇jq∇kq. (4.7.48)

On the other hand, we obtain directly from Eq. (4.7.45)

Sbulk
F [q] = Si[q] + Sη[q] (4.7.49)

Si[q] =
1
2
πTz′c′

∫
dr
∑
αn

′
tr[Iα

n , q][Iα
−n, q] (4.7.50)

Sη[q] = πTz′α′
∫

dr (4 tr ηq − 6 tr ηΛ) (4.7.51)

with z′α′ = zα. Eqs (4.7.49) - (4.7.51) are the terms of order O(T ) for arbitrary
values of c that have been discarded in Eq. (4.2.25).

Let us next see how these results can be reconciled with the fixed point action for
the quantum Hall state as formulated in Section 4.2.2. As illustrated in Fig. 5.1, our
renormalization group results indicate that the strong coupling phases are controlled
by the stable fixed points σ′

xx = θ′ = 0 in the c = 1 and c = 0 planes respectively.
Our results indicate furthermore that for the F invariant theory c = 1 the singlet
interaction amplitude z′ scales to zero as well. Since the z′ is completely analogous to
the spontaneous magnetization in the classical Heisenberg ferromagnet, we conclude
that the Coulomb interaction problem behaves in many ways like a conventional
problem with a continuous symmetry. Our results are therefore completely consistent
with the statements made in Section 4.2.2 which say that in the strong coupling
quantum Hall phase the Coulomb interaction system renders insensitive to changes
in the boundary conditions.

The situation is slightly different for the problem with finite ranged interactions
0 < c < 1. The Fermi liquid fixed point σ′

xx = θ′ = 0 with c = 0 is stable in the
infrared but the quantity zα in Sη is not renormalized and, hence, generally does not
vanish. Eq. (4.7.51) therefore seems to be in conflict with the strong coupling phase
where the action Seff should generally become invariant under the replacement

q = t−1Λt → t−1T−1
0 ΛT0t (4.7.52)
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for an arbitrary matrix field T0 that reduces to a U(N) × U(N) gauge at the edge
of the system. What happens in this case, however, is that the classical equations
of motion for the matrix field variable q are going to change as one approaches the
quantum Hall fixed point. For example, for c = 0 these equations of motion are

σ′
xx

2
∇j(q∇jq) + πTz[η, q] = 0 (4.7.53)

except at the edge of the system. As long as σ′
xx is large we can treat the term linear

in T as a perturbation and the solution to Eq. (4.7.53) is then determined by value of
the matrix field q at the edge of the system. This value is precisely the independent
degree of freedom of the edge of the electron gas. Next, upon increasing the linear
dimension of the system the value of σ′

xx eventually renders exponentially small and
the term linear in T in Eq. (4.7.53) now becomes the dominating one. The solution
to Eq. (4.7.53) is now given by q = Λ in the bulk of the system. This, however, does
not affect the matrix field q at the edge and Eq. (4.7.51) in the strong coupling phase
therefore replaced by

Sη[q] → πTzα

(
−2
∫

dr tr ηΛ + ∆
∮

dx tr ηq

)
(4.7.54)

with ∆ denoting a phenomenological quantity that depends on the microscopic details
of the edge.

4.8 Conclusions

In this chapter we have extended the perturbative theory of localization and inter-
action effects presented in chapter 3 to include the highly non-trivial effects of the
θ term. The analysis that we have presented is an important technical as well as
conceptual advance since it permits us to answer, for the first time, some of the long
standing problems of the interacting electron gas on the strong coupling side.

We have seen, first of all, that the appearance of massless chiral edge excitations
has important consequences for the low energy dynamics of the instanton vacuum
and can be used, amongst many other things, to formulate a Thouless-like criterion
for the quantum Hall effect. The introduction of an effective action for the edge
excitations completely resolves the previously encountered ambiguities in the Kubo
formulae and renormalization group such as the choice of boundary conditions, quan-
tization of topological charge etc. The effective action procedure for edge excitations
uniquely defines the response parameters or physical observables σ′

xx and θ′. More-
over, the differences between the edge excitations and bulk excitations fundamentally
explain the various different aspects of symmetry in the problem such as particle-hole
symmetry, periodicity in σ′

xy etc. Furthermore, the conditions for the quantum Hall
effect can now quite generally be expressed by saying that σ′

xx = θ′ = 0 which means
that the bulk of the system renders insensitive to changes in the boundary conditions.
This generally happens when the bulk excitations of the system generate a mass gap.

These general statements have motivated us to develop, in the main part of this
Chapter, a unified microscopic theory for the physical observables σ′

xx and θ′ of the
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electron gas in the presence of electron-electron interactions. The complete list of
observable parameters includes also the parameter c′ which distinguishes between
finite range electron-electron interactions (0 < c′ < 1) and infinite range interactions
(c′ = 1), as well as the parameter z′ which controls the temperature and frequency
dependence of the system. The most important results of this Chapter are given by
Eqs. (4.6.29) -(4.6.31) expressing how the observable parameters are related to the
renormalization group β′ and γ′ functions of the theory (Eqs (4.6.34)-(4.6.37)). The
closed set of renormalization group functions β′

σ, β′
θ and β′

c that we have obtained
(Eqs. (4.6.20)-(4.6.22)) controls the low energy dynamics of the electron gas at T = 0
and zero external frequency.

4.A Quantum corrections of trivial vacuum in
Pauli-Villars regularization

The σxx renormalization

In order to find the renormalization of the σxx conductivity we should compute the
average in Eq. (4.2.31). Using the parameterization Q = U−1

0 VU0 with the global
unitary matrix U0 ∈ U(N) × U(N) and expanding the V to the second order in w,
we obtain

σ′
xx = σxx +

σ2
xx

2n

∫
dr∇2〈tr Iα

n v(r)∇v†(r) tr Iα
−nv(r′)∇v†(r′)〉, (4.A.1)

where a point r′ can be chosen arbitrary since the averages are depend only on the
difference of the coordinates. Now by going from (x, y) to (η, θ) coordinates and
performing the averages, we find

σ′
xx = σxx − 4c

∫
ηθ

O(0)

∞∫
0

dωG0(ω; ηθ; η′θ′)Gα
0 (ω; η′θ′; ηθ), (4.A.2)

where

Gα
a (ω) =

1
(O(a) + ω)(O(a) + αω)

=
∑
JM

|JM〉(a)(a)〈JM |
(E(a)

J + ω)(E(a)
J + αω)

, (4.A.3)

Integrating over η, θ and ω and introducing the Pauli-Villars masses as above, we
leads to the following result

σ′
xx = σxx − 2πβ0(c)

[ K∑
f=1

êf

∞∑
J=0

E
(0)
J

(E(0)
J + M2

f )2
+

∞∑
J=1

1

E
(0)
J

]

×
J∑

M=−J

Φ(0)
JM (η′, θ′)Φ̄(0)

JM (η′, θ′). (4.A.4)
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It is worth mentioning that the Jacobi polynomial PM,M
J−M (η) is proportional to the

Gegenbauer polynomial C
M+1/2
J−M (η). By using the summation theorem [98]

Cλ
J (cos φ cos φ′ + z sin φ sin φ′) =

Γ(2λ − 1)
Γ2(λ)

J∑
M=0

22MΓ(J − M + 1)
Γ(J + M + 2λ)

Γ2(M + λ)

×(2M + 2λ − 1) sinM φ sinM φ′CM+λ
J−M (cos φ)CM+λ

J−M (cos φ′)Cλ−1/2
M (z) (4.A.5)

with z = 1 and λ = 1/2, we find that the projection operator

J∑
M=−J

Φ(0)
JM (cos φ, θ)Φ̄(0)

JM (cos φ′, θ) =
2J + 1

4π
C

1/2
J (cos(φ − φ′)) . (4.A.6)

Since C
1/2
J (1) = 1, we obtain

σ′
xx = σxx−

β0(c)
2

lim
Λ→∞

[
Λ∑

J=3/2

2J(J2 − 1
4 )

(J2 − 1
4 )2

+
K∑

f=1

êf

Λ∑
J=1/2

2J(J2 − 1
4 )

(J2 − 1
4 + M2

f )2

]
. (4.A.7)

Finally, evaluation of the sums above yields

σ′
xx = σxx − β0(c)

2

(
Y (0)

reg + 1
)

= σxx

(
1 − β0(c)

σxx
lnMeγE

)
. (4.A.8)

The zc renormalization

Using the parameterization Q = U−1
0 VU0 with the global unitary matrix U0 ∈ U(N)×

U(N) and expanding V to the second order in w, we find

z′c′ = zc

(
1 − 1

tr ηΛ

∑
α,n>0

〈tr Iα
n v tr Iα

−nv†〉
)

. (4.A.9)

The averages yield

z′c′ = zc

(
1 +

2πγ0

σxx
Gc

0(0; ηθ; ηθ)
)

(4.A.10)

By using Eq.(4.A.6), we find

z′c′ = zc

(
1 +

γ0

2σxx
Y (0)

reg

)
. (4.A.11)

With a help of the result (4.4.46) for the Y
(0)
reg we finally obtain

z′c′ = zc

(
1 +

γ0

σxx
lnMeγE−1/2

)
. (4.A.12)





Chapter 5

Non-Fermi liquid criticality
and super universality

5.1 Introduction

The results (4.6.34)-(4.6.37) indicates that the electron-electron interaction enhances
the perturbative corrections to the βσ function and suppresses the instanton contri-
butions. Contrary to the case of non-interacting electrons, in the presence of the
Coulomb interaction (c′ = 1) one instanton approximation is not enough to produce
the zero of the renormalization group βσ function at θ′ = π. By adjusting the value
of D(1) we can conjecture the following three dimensional renormalization group flow
diagram as sketched in Fig. 5.1. We emphasize that this three dimensional renor-
malization group flow diagram is in agreement with experiments on plateau-plateau
transitions in the quantum Hall regime. [54, 53] The regime of finite range electron-
electron interactions 0 < c < 1, like the theory in 2 + ε dimensions, lies the domain
of attraction of the Fermi liquid plane c = 0 which is stable in the infrared. These
results are in accordance with the principle of F invariance which states the distinctly
different problems of the Coulomb interaction c = 1 and finite range electron-electrons
interactions 0 � c < 1 are preserved separately under the action of the renormalization
group.

5.2 Robust quantization of Hall conductance

We are now in a position to elaborate on the quantum Hall effect which is represented
in Fig. 5.1 by the infrared fixed points located at precise values of σ′

xy = k(νf ) or
θ′ = 0 and σ′

xx = 0. For this purpose let us consider the renormalization group
equations along the lines σ′

xy ≈ k(νf ) or θ′ ≈ 0. Specializing to the most interesting

193
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Π
2ΠΘ'

Σxx'

0

c’

Figure 5.1: Sketch of renormalization group flow diagram in the parameter space σ′
xx,

θ′ and c′. The arrows indicate the direction toward the infrared

case c = 1 then we can write

d ln σ′
xx

d ln λ
= β̃σ(σ′

xx) = − 2
πσ′

xx

− β1(1)
(σ′

xx)2
−D(1)σ′

xxe−2πσ′
xx , (5.2.1)

d ln |θ′|
d ln λ

= β̃θ(σ′
xx) = −2πD(1)σ′2

xxe−2πσ′
xx . (5.2.2)

These results are clearly consistent with the Thouless-like criterion presented in Sec-
tion 4.2.2 of the previous Chapter which tells us that along the lines θ′ ≈ 0 both
quantities σ′

xx and θ′ should vanish for large scale sizes λ. To see the meaning of the
various different terms we recall from the discussion in Section 3.6 (see Chapter 3)
that the perturbative β̃σ function naively indicates that the response parameter σ′

xx

scales from −(2/π) ln(λ/ξ) for small values of λ to exp(−λ/ξ) for large values of
λ. Here, ξ is the dynamically generated correlation length (localization length), see
Eqs. (3.6.6) and (3.6.7). From Eq. (5.2.1) we see that the instanton contribution
generally enhances the tendency of the electron gas to localize at large distances. In
Fig. 5.2 we sketch the overall behavior of the β̃σ function which is given by the weak
coupling result of Eq. (5.2.1) for large values of σ′

xx and the strong coupling result

β̃σ = lnσ′
xx (5.2.3)

as σ′
xx goes to zero. These results for the dissipative conductance give rise to the

well known scaling scenario of localization in two spatial dimensions. [12] However,
Eq. (5.2.2) indicates that |θ′| decreases at a much slower (exponential) rate with
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Figure 5.2: Sketches of the renormalization group functions β̃σ and β̃θ/a for θ = 0.

increasing values of λ indicating that the quantum Hall effect is generally confined
to the regime of “bad conductors” σ′

xx � 1 only. The most important feature of
the asymptotic expressions of Eqs. (5.2.1) and (5.2.2) is that they are universal in
the sense that they are independent of the specific regularization scheme that defines
the theory at short distances. On the other hand, the exact exponential form with
which |θ′| vanishes in the strong coupling regime generally depends on the specific
application of the instanton vacuum that one is interested in. The experiments on the
quantum Hall effect, [53] for example, indicate that θ′ ∝ (σ′

xx)a with some positive
value for the exponent a which is presumably equal to two. The same behavior has
been found in closely related two dimensional models of the instanton vacuum. [48]
Analogous to Eq. (5.2.3) one therefore expects that

β̃θ = a ln σ′
xx (5.2.4)

in the limit where σ′
xx goes to zero. In Fig. 5.2 we compare the scaling results for the

Hall conductance β̃θ with those for the longitudinal conductance β̃σ. These scaling
results are very similar for the free electron case c = 0 which means that the quan-
tization phenomenon is a (super) universal strong coupling feature of the instanton
vacuum concept, independent of the presence of electron-electron interactions.

5.3 Scaling results

5.3.1 Scaling equations for the observables

The physical idea that complicates the comparison between the theory presented
in the previous Chapters and the experiment is that the macroscopic conductances
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measured at finite T can in general be very different from ensemble averaged con-
ductances at T = 0 (σ′

xx and σ′
xy) that we have used for theoretical purposes. The

concept of conductance fluctuations implies, for example, that a complete knowledge
of the macroscopic conductances at finite T necessarily involves a detailed knowledge
of the complete conductance distributions at T = 0. [119] The general scaling behavior
of macroscopic quantities is obtained by using well known methods of quantum field
theory (method of characteristics). [42, 93] To distinguish the measured conductances
at finite T from the ensemble averaged quantities σ′

xx and θ′ we denote the former as
Gjk = Gxx, Gxy. Compared to the case of non-interacting electrons we have also to
introduce the quantity U , the measured crossover parameter at finite T . Finally we
introduce the measured “magnetization” M . They all obey the following differential
equations [

−βσ
∂

∂σxx
− βθ

∂

∂θ
+ (2 + γz)Tz

∂

∂Tz
+ (1 − c)γz

∂

∂c

]
Gjk = 0, (5.3.1)[

−βσ
∂

∂σxx
− βθ

∂

∂θ
+ (2 + γz)Tz

∂

∂Tz
+ (1 − c)γz

∂

∂c

]
U = 0, (5.3.2)[

−βσ
∂

∂σxx
− βθ

∂

∂θ
+ (2 + γz)Tz

∂

∂Tz
+ (1 − c)γz

∂

∂c
+ γz

]
M = 0. (5.3.3)

It is worthwhile to mention that if we computed the temperature dependence of the
observable parameters σ′

jk, c′ and z′ then the results would satisfy Eqs (5.3.1)-(5.3.3).
Below we shall use the Eqs. (5.3.1)-(5.3.3) to make some predictions and comparisons
with the experiments.

5.3.2 Scaling results in weak coupling regime, σxx � 1

Recently, it became possible to study the instanton effects experimentally. In Ref. [55]
the magneto resistance data taken from samples with heavily Si-doped GaAs layers
at low temperatures have been investigated. However, the comparison of the exper-
imental data with the theory developed above has been performed in a wrong way.
The main physical idea that has been overlooked in Ref. [55] is that the macroscopic
conductances Gjk are in general very different from zero temperature ensemble aver-
aged conductances σ′

jk. In what follows we shall specialize to the Coulomb interaction
case c′ = 1 which was realized in the experiment.

In the weak coupling regime σxx � 1 we can find the solutions of Eq. (5.3.1) in
the following form

Gxx ≈ g0 − gc cos θ, (5.3.4)

Gxy ≈ θ

2π
− gs sin θ, (5.3.5)

M ≈ m0(h0 − hc cos θ), (5.3.6)

where the functions g0,c,s and h0,c depend on T only through the scaling variable X

X = zTξ2m0. (5.3.7)
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Figure 5.3: Variations ∆Gjk = Gjk(T ) − Gjk(T0) for T0 = 4.2K as a functions of
G0

xy ≡ Gxy(T0). The digits near curves indicate temperature T . After Ref. [55].

g
0

f
f

�
�

,

Figure 5.4: The dependence of functions fσ,θ on g0 for four samples. The solid curve
is 7.6 exp(−2πg0). After Ref. [55].
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Here, the correlation length ξ and magnetization m0 are defined in Eqs. (3.6.6) and
(3.6.11) respectively. The functions g0 = g0(X) and h0 = h0(X) are arbitrary regular
functions of X whereas

gc = [fσ(g0(X)) − πf∞(σxx)]X
dg0(X)

dX
, (5.3.8)

gs = fθ(g0(X)) − f∞(σxx), (5.3.9)

hc = [fM (g0(X)) − πf∞(σxx)]X
dh0(X)

dX
(5.3.10)

with fσ,θ,M being unspecified regular functions of the variable X and

f∞(σxx) =
[
D(1)

4
σ2

xx + O(σxx)
]

e−2πσxx . (5.3.11)

In the limit σxx � 1 one expects that (see Eqs. (3.6.7) and (3.6.12))

g0(X) ≈ 1
π

ln X, (5.3.12)

h0(X) ≈
(

1
π

ln X

)1/2

, (5.3.13)

but no first principle computation of fσ,θ,M (g0) exists now. Experimentally [55] Gxx ≈
g0 = O(1) such that both the convergence of the series in σ−1

xx (see Chapter 3 and
the occurrence of broad conductance distributions [119] now complicate the problem.
These complications are clearly reflected by the fact that the g0(X) data in the range
of experimental temperatures [55] do not truly display the asymptotic behavior in X
given by Eq. (5.3.12). Subtracting Eq. (5.3.5) for two different temperatures T and
T0 we find for the Hall conductance

Gxy(T ) ≈ Gxy(T0) − [fθ(g0(T )) − fθ(g0(T0))] sin[2πGxy(T0)]. (5.3.14)

Assuming that the function g0(X) is determined by the asymptotic expression (5.3.12)
and applying the same trick as above for Eq. (5.3.4) we obtain

Gxx(T ) ≈ Gxx(T0) − [fσ(g0(T )) − fσ(g0(T0))] cos[2πGxy(T0)]. (5.3.15)

Now if we choose temperature T0 be relatively high such that the oscillations in
Gxx(T0) are absent then g0(T0) ≈ Gxx(T0). Eqs (5.3.14) and (5.3.15) are very general
results that is predicted by the theory.

In Ref. [55] the magneto resistance has been measured in relatively narrow range
of g0 = 1.4 − 1.9. The results (5.3.14) and (5.3.15) have been confirmed and it was
found that (see Figures 5.3 and 5.4)

fσ(g0) ≈ 7.6e−2πg0 , fθ(g0) ≈ 7.6e−2πg0 . (5.3.16)

It is worthwhile to mention that the exponential dependence exp(−2πg0) observed in
experiment [55] is typical for the instanton effects.
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We mention that Eq. (5.3.6) can be used to extract the temperature behavior of
the specific heat of the electron system. We use the expression (see Eq. (3.5.9))

cv =
∂

∂T

∫ ∞

0

dω
ωρqp(ω)
eω/T − 1

(5.3.17)

where the density of states of bosonic quasiparticles given as

ρqp(ω) ∝ Re[h0(iωX/T ) − hc(iωX/T ) cos θ]. (5.3.18)

Hence, we obtain that
cv ∝ T [H0(X) − Hc(X) cos θ] (5.3.19)

where

H0,c(X) = Re
∫ ∞

0

du
u2

sinh2(u/2)
h0,c(iuX) (5.3.20)

We emphasize that the specific heat of electrons should oscillate as a function of θ.
At σxx � 1 we find H0(X) ∝ (ln X)1/2 that results in the following non-Fermi

liquid behavior of the specific heat

cv ∝ T
√
| ln T |. (5.3.21)

5.3.3 Plateau transitions in the quantum Hall regime. Short-
ranged interaction (c′ < 1)

The most important features of the strong coupling regime (σ′
xx ∼ 1) are the quantum

critical fixed points that are located at θ = π or half-integer values of σxy. Fig. 5.1
indicates that the Fermi liquid fixed point located at c′ = 0 is distinctly different from
the Coulomb interaction fixed point at c′ = 1. Like the mobility edge problem in 2+ ε
dimensions considered in Chapter 3, the quantum critical behavior of the transitions
between adjacent quantum Hall plateaus is very different for finite range electron-
electron interactions and the Coulomb potential, each involving different exponent
values as well as a fundamentally different dynamical behavior.

We start the scaling analysis from the Fermi liquid fixed point at c′ = 0, θ′ = π
and σ′

xx = σ�
xx ≈ 0.88 (see Fig. 5.1). Near the Fermi-liquid fixed point (c′ � 1) it is

convenient to introduce the following variables

∆θ = θ − π, ∆σ =
σxx − σ�

xx

σ�
xx

+
xc

yσ − γ�
zc

c (5.3.22)

where the critical exponents yσ, γ�
zc and quantity xc can be formally obtained from

the βσ, βθ and γzc functions at the Fermi liquid fixed point as

yσ = − ∂βσ

∂σxx

∣∣∣∣∣
FP

≈ −0.17, (5.3.23)

γ�
zc = γzc

∣∣∣∣∣
FP

≈ −0.36, (5.3.24)

xc = −∂βσ

∂c

∣∣∣∣∣
FP

≈ −0.19. (5.3.25)
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Thence the scaling equations (5.3.1)-(5.3.3) becomes[
yσ∆σ

∂

∂∆σ
+ ν−1∆θ

∂

∂∆θ
+ 2Tz

∂

∂Tz
+
(

2
p
− 2
)

c
∂

∂c

]
Gjk = 0, (5.3.26)[

yσ∆σ
∂

∂∆σ
+ ν−1∆θ

∂

∂∆θ
+ 2Tz

∂

∂Tz
+
(

2
p
− 2
)

c
∂

∂c

]
U = 0, (5.3.27)[

yσ∆σ
∂

∂∆σ
+ ν−1∆θ

∂

∂∆θ
+ 2Tz

∂

∂Tz
+
(

2
p
− 2
)

c
∂

∂c

]
M = 0. (5.3.28)

Here we have introduce two more exponents

ν−1 = −∂βθ

∂θ

∣∣∣∣∣
FP

≈ 0.36, (5.3.29)

p =
2

2 + γ�
zc

≈ 1.22. (5.3.30)

Next from the method of characteristics we obtain the scaling behavior as follows

Gjk = Fjk (X,Y,Z) ,

U = FU (X,Y,Z), (5.3.31)
M = FM (X,Y,Z).

Here Fjk, FU and FM are unspecified regular functions, whereas

X = (zcT )−κ∆θ, κ =
p

2ν
≈ 0.22, (5.3.32)

denotes the relevant scaling variable and

Y = (zcT )µσ∆σ, µσ = −pyσ

2
≈ 0.10, (5.3.33)

Z = (zcT )µcc, µc = p − 1 ≈ 0.22, (5.3.34)

are the irrelevant ones. It is worthwhile to mention that temperature involves in the
scaling relations (5.3.31) only in the combination zcT . This substantial fact can be
obtained on the basis of the microscopic theory (Finkelstein non-linear sigma model)
only. On the basis of a phenomenological approach alone [120] one would choose the
combination X/Zβ with arbitrary exponent β for the relevant variable. The main
fault of Ref. [120] was that the value β = (1 − γ�

zc)/2ν was taken on the basis of
plausible phenomenological arguments whereas the microscopic theory implies that
β = 0!

The relevant scaling variable X can be written in the following way

X =
(

Lφ

ξ

)1/ν

(5.3.35)

where ξ ∝ |∆θ|−ν is the divergent correlation length and

Lφ ∝ (zcT )−p/2 (5.3.36)
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is the dephasing length introduced by the electron-electron interaction.
Eqs.(5.3.31)-(5.3.34) imply that the “magnetization” is constant at the Fermi-

liquid fixed point, M = const. Thence, the quasiparticle density of states ρqp(ω) =
const and we obtain the Fermi-liquid scaling behavior for the specific heat

cv ∝ T. (5.3.37)

The best estimates for the exponent values known from numerical works [76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] lie in the range ν = 2.30 − 2.38,
p = 1.22 − 1.48 and yσ = −(0.34 − 0.42). It yields the following estimates for the
Fermi liquid exponents

κ = 0.29 ± 0.04, (5.3.38)
µσ = 0.26 ± 0.05, (5.3.39)
µc = 0.35 ± 0.15 (5.3.40)

that are clearly in conflict with the experimental results obtained recently for the
critical exponents in the plateau-plateau and plateau-insulator transitions [53, 54]

κ = 0.42 ± 0.01, µσ = 2.5 ± 0.5. (5.3.41)

Therefore we can conclude that the present experimental results on the scaling [53, 54]
fall into the non-Fermi liquid universality class. The results obtained above completely
invalidate the attempt made in Ref. [54] to explain the experimentally observed ex-
ponent value κ = 0.42 ± 0.01 on the basis of phenomenological Fermi liquid type of
ideas introduced in the field long ago. [22]

5.3.4 Plateau transitions in the quantum Hall regime.
Coulomb interaction (c′ = 1)

We next focus on the consequences of the non-Fermi liquid fixed point located at
c′ = 1, θ′ = π and σ′

xx = σ�
xx in Fig. 5.1. Unfortunately, the instantons analysis carried

out in the previous chapter are not enough to produce the quantitative estimates for
the critical exponents in the non-Fermi liquid fixed point. We perform therefore the
scaling analysis based on the general grounds.

The non-perturbative renormalization group equations (4.6.34)-(4.6.37) suggest to
introduce the following variables near non-Fermi liquid fixed point at c′ = 1

∆θ = θ − π, ∆σ =
σxx − σ�

xx

σ�
xx

+
xc

yσ + γ�
zc

ζ, ζ = (1 − c) ln(1 − c) (5.3.42)

where the critical exponents yσ, γ�
zc and quantity xc can be formally obtained from
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the βσ, βθ and γzc functions at the Fermi liquid fixed point as

yσ = − ∂βσ

∂σxx

∣∣∣∣∣
FP

, (5.3.43)

γ�
zc = γzc

∣∣∣∣∣
FP

, (5.3.44)

xc = −∂βσ

∂ζ

∣∣∣∣∣
FP

. (5.3.45)

Thence the scaling equations (5.3.1)-(5.3.3) becomes[
yσ∆σ

∂

∂∆σ
+ ν−1∆θ

∂

∂∆θ
+

2
p
Tz

∂

∂Tz
+
(

2 − 2
p

)
ζ

∂

∂ζ

]
Gjk = 0, (5.3.46)[

yσ∆σ
∂

∂∆σ
+ ν−1∆θ

∂

∂∆θ
+

2
p
Tz

∂

∂Tz
+
(

2 − 2
p

)
ζ
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Here we have introduce two more exponents

ν−1 = −∂βθ

∂θ

∣∣∣∣∣
FP

, (5.3.49)

p =
2

2 + γ�
zc

. (5.3.50)

Next from the method of characteristics we obtain the scaling behavior as follows

Gjk = Fjk (X,Y,Z) ,

U = FU (X,Y,Z), (5.3.51)
M = (zT )µcFM (X,Y,Z).

Here Fjk, FU and FM are unspecified regular functions, whereas

X = (zT )−κ∆θ, κ =
p

2ν
, (5.3.52)

Y = (zT )−µcζ, µc = p − 1 (5.3.53)

denotes the relevant scaling variables and

Z = (zT )µσ∆σ, µσ = −pyσ

2
, (5.3.54)

is the irrelevant one. It is worthwhile to mention that now temperature involves in
the scaling relations (5.3.51) only in the combination zT .
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In the case of Coulomb interaction when c′ = 1 from the outset the only relevant
scaling variable that remains is the X. It can be written also as

X =
(

Lφ

ξ

)1/ν

(5.3.55)

where ξ ∝ |∆θ|−ν is the divergent correlation length and

Lφ ∝ (zT )−p/2 (5.3.56)

is the dephasing length introduced by the Coulomb interaction. We mention that
the results for the divergent correlation length and dephasing length are very similar
(except the precise values of critical exponents) to what we had in the Fermi-liquid
fixed point.

As one can see from Eqs.(5.3.51)-(5.3.54) at the non-Fermi liquid fixed point the
“magnetization” scales with temperature as

M ∝ (zT )µc . (5.3.57)

Thence, the quasiparticle density of states

ρqp(ω) ∝ ωµc (5.3.58)

that yields the non-Fermi liquid behavior of the specific heat

cv ∝ T p. (5.3.59)

We qualify it as a non-Fermi liquid behavior because the exponent p > 1. The
result (5.3.59) implies that the physical observable, associated with the “dephasing
length” exponent p in the quantum Hall systems, is none other than the specific heat
of the electron gas. A measurement of cv should therefore provide the ultimate test
on the consistency of the theory. This information is not present as of yet.

5.4 Conclusions

To understand the fundamental differences between Fermi liquid theory and the
Coulomb interaction problem in the quantum Hall regime, a deeper understanding of
the theory in 2 + ε spatial dimensions is absolutely essential. As we see in Chapter 3
the main reason is that the mobility edge problem in 2 + ε dimensions is the only
place where the various different aspects of dynamical scaling of the electron gas can
be established and evaluated explicitly. This includes not only the theory of quan-
tum transport but also fundamental aspects such as the specific heat, the multifractal
singularity spectrum of the electron gas [118] etc. that one usually do not probe
in the experiments on the quantum Hall effect. In fact, the long standing problems
associated with the theory of electron-electron interactions have in many ways turned
out to be an outstanding laboratory for advanced methods in quantum field theory
that cannot be studied in any different manner.
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Finally, we can say that the results of this and previous Chapter explain why the
scaling behavior of the non-interacting electron gas or electron gas with short-ranged
interaction and the Coulomb interaction problem in strong magnetic fields looks so
similar. In spite of the fact that the underlying theories are fundamentally different
they have nevertheless important features in common such as asymptotic freedom,
instantons, massless edge excitations etc. Since in both cases the topological con-
cepts are the same it is natural to expect that the basic phenomena are the same,
in particular the existence of robust topological quantum numbers that explain the
observability and precision of the quantum Hall effect, as well as quantum critical-
ity at θ = π that generally facilitates a transition to take place between different
quantum Hall plateaus. Finally, by recognizing the fact that quantum Hall physics
actually reveals itself as a generic, super universal feature of the instanton vacuum
in asymptotically free field theory one has essentially laid the foundation for a more
ambitious unifying theory that includes - besides integral quantum Hall physics - also
the scaling behavior of the abelian quantum Hall states.
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[43] E. Brézin and J. Zinn-Justin, Spontaneous breakdown of continuous symmetries
near two dimensions, Phys. Rev. B 14, 3110 (1976).

[44] G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseu-
doparticle, Phys. Rev. D 14, 3432 (1976).

[45] I. Affleck, On constrained instantons, Nucl. Phys. B 191, 429 (1981); M. Nielsen
and N. K. Nielsen, Explicit construction of constrained instantons, Phys. Rev. D
61, 105020 (2000) and references therein.



208 References

[46] A. M.M. Pruisken, M.A. Baranov, and M. Voropaev, The large N theory ex-
actly reveals the quantum Hall effect and θ renormalization, arXiv: cond-
mat/0101003 (unpublished).

[47] A. M.M. Pruisken, I. S. Burmistrov, and R. Shankar, Massless excitations at θ =
π in the CPN−1 model with large values of N , arXiv: cond-mat/0602653.

[48] A. M.M. Pruisken, R. Shankar and N. Surendran, General topological features
and instanton vacuum in quantum Hall and spin liquids, Phys. Rev. B 72,
035329 (2005).

[49] V. Ambegaokar, U. Eckern, G. Schön, Phys. Rev. Lett. 48, 1745 (1982).

[50] I. S. Burmistrov and A. M. M.Pruisken, in preparation.

[51] J. P. Eisenstein and H. L. Störmer, The fractional quantum Hall effect, Science
248, 1510 (1990).

[52] B. Karmakar, M. R. Gokhale, A. P. Shah, B. M. Arora, D. T. N. de Lang,
A. de Visser, L. A. Ponomarenko, A. M.M. Pruisken, The effects of macroscopic
inhomogeneities on the magnetotransport properties of the electron gas in two
dimensions, Physica E 24, 187 (2004).

[53] A. M.M. Pruisken, D.T. N. de Lang, L. A. Ponomarenko, A. de Visser, Quantum
criticality, particle-hole symmetry, and duality of the plateau-insulator transi-
tion in the quantum Hall regime, arXiv: cond-mat/0109043 (unpublished).
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Summary

The original ideas of an instanton parameter θ in the theory of the quantum Hall effect
go back as far as twenty years ago. In spite of more than two decades of research, the
subject matter is still far from being finished. New discoveries have been made, in
particular the existence of massless chiral edge excitations, which clearly demonstrate
that the quantum Hall effect is a generic feature of the θ vacuum in asymptotically free
field theory in general. These discoveries have furthermore led to a complete revision
of certain prevailing ideas in the field, in particular those regarding the meaning of
instantons, the replica method etc. These ideas have primarily been motivated by
incorrect historical results on the large N expansion of the CPN−1 model that for
many years have been dramatically mistaken for “exact results”.

In this thesis I revisit the instanton methodology in the theory of the quantum
Hall effect and extend this methodology in many ways. The results of this thesis can
generally be regarded as an integral part of a new concept which states the basic
aspects of the quantum Hall effect are super universal features of the instanton angle
θ in scale invariant theories.

The main physical objective of this thesis is quantum criticality of the disordered
electron gas in strong magnetic fields, both in the presence and absence of electron-
electron interactions. To establish the general meaning of θ renormalization by in-
stantons I first consider the case of electrons without interactions and next the case
of the interacting electron gas but without a strong magnetic field. Finally I consider
the combined effects of electron-electron interactions and strong magnetic fields.

In Chapter 2 I study the Grassmanian U(m + n)/U(m) × U(n) non-linear sigma
model in two dimensions. This theory in the limit m = n = 0 is known to describe
the low energy dynamics of free electrons in the presence of a random potential and
strong magnetic fields. This theory furthermore permits general discussions on the
topological significance of the massless chiral edge excitations in the problem as well
as the closely related topic of physical observables or conductances σxx and σxy. The
remainder of this Chapter is devoted to the technical details of instanton calculus
and the specific manner in which the non-perturbative contributions to the renor-
malization group β and γ functions of the theory can be extracted. The detailed
predictions of the instanton methodology for the theory with m = n = 0 are next
being compared with the numerical exponent values obtained from computer simula-
tions on the free electron gas. A remarkable agreement is found. The results of this
Chapter provides the theoretical platform for Chapter 4 where I address the problem
of electron-electron interactions.
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214 Summary

In Chapter 3 I turn to the theory with Coulomb interaction introduced in Refs [32,
33, 34]. The technical details are being presented of the mobility edge problem in a
systematic expansion in 2 + ε dimensions to order ε2. The complete non-Fermi liquid
scaling behavior is obtained for the conductivity and specific heat of the electron gas
with varying temperature, external frequency as well as electron density.

Finally, in Chapters 4 and 5 I make use of the advances reported in all the previous
Chapters and embark on the main topic of this thesis which is the θ dependence of
the general unifying theory incorporating the effects of electron-electron interactions.
Technically speaking, the Chapter 4 represents one of the most interesting applica-
tions of the instanton methodology in general, and the procedure of spatially varying
masses in particular. The reason being that the (singlet) interaction term, unlike or-
dinary mass terms, completely alters the ultraviolet singularity structure of the theory
which is just one of the many peculiar features of the problem with electron-electron
interactions. In spite of the herculean efforts that are needed to control the extraor-
dinary amount of technical and analytical detail, what is truly remarkable is that an
elegant simplicity is shining through at the end of all computations. The most impor-
tant results of this Chapter are represented by a three dimensional renormalization
group flow diagram with the conductance parameters σxx and σxy along two of the
axes and only a single parameter c, representing the range of the electron-electron
interaction, in the third direction. To understand the physical meaning of this flow
diagram and, in particular, the non-Fermi liquid behavior of the Coulomb interaction
problem, one is furthermore helped by the underlying symmetries such as F invari-
ance. Moreover, by using the standard principles of the renormalization group one
immediately extracts the general scaling forms for the conductances from this dia-
gram with varying temperature, external frequency and magnetic field. These scaling
forms are the principle objectives for experimental research on quantum criticality in
the quantum Hall regime.

In summary, by employing the quantum Hall effect as a laboratory for investigat-
ing and exploring the instanton angle θ, important new insights have emerged that
could not have been discovered otherwise. I mention in particular the various different
aspects of super universality of the θ vacuum concept that were previously unrecog-
nized. These new insights are in many ways an onslaught on the historical “arena of
bloody controversies” and I can now say that much of these historical controversies
were actually borne out of a complete lack of physical objectives. The results of this
thesis are therefore likely to have interesting consequences for QCD where the issue of
a θ parameter arose first and the algebra is the same, but experiments are impossible.



Samenvatting

Het oorspronkelijke idee van een instantonparameter θ in de theorie van het quantum-
Hall-effect gaat terug tot twintig jaar geleden. Ondanks meer dan twee decennia
onderzoek is het onderwerp nog verre van af. Nieuwe ontdekkingen, in het bijzon-
der het bestaan van massaloze chirale randexcitaties, tonen duidelijk aan dat het
quantum-Hall-effect in het algemeen een generieke eigenschap is van het θ-vacuum in
een asymptotisch vrije veldentheorie. Deze ontdekkingen hebben verder geleid tot een
volledige herziening van bepaalde overheersende ideeën in het veld, in het bijzonder
die met betrekking tot de betekenis van instantons, de replicamethode, enz. Deze
ideeën zijn oorspronkelijk ontstaan op grond van onjuiste historische werken aan het
CPN−1-model met grote waarden van N . Deze werken zijn vele jaren lang verkeerd
aangezien voor “exacte analyses”.

In dit proefschrift ga ik opnieuw in op de instanton-methodologie in de theorie
van het quantum-Hall-effect en breid ik deze methodologie op veel manieren uit. De
resultaten in dit proefschrift kunnen in het algemeen gezien worden als een integraal
onderdeel van een nieuw concept, dat stelt dat de basisaspecten van het quantum-
Halleffect super-universele eigenschappen zijn van de instantonparameter θ in schaal-
invariante theorieën.

Het fysisch hoofddoel van dit proefschrift is het beschrijven van de quantum-
critische eigenschappen van het ongeordende elektronengas in twee ruimtelijke dimen-
sies en in sterke magnetische velden, zowel in aan- als in afwezigheid van elektron-
elektroninteracties. Om de algemene betekenis van θ-renormalisatie door instantons
vast te stellen beschouw ik eerst het geval van elektronen zonder interacties en vervol-
gens het geval van het wisselwerkende elektronengas, maar zonder sterk magnetisch
veld. Ten slotte beschouw ik het gecombineerde effect van elektron-elektroninteracties
en sterke magnetische velden.

In hoofdstuk 2 bestudeer ik het niet-lineaire sigmamodel gedefinieerd op het Grass-
mann manifold U(m+n)/U(m)×U(n) en in twee dimensies. Het is bekend dat deze
theorie in de limiet m = n = 0 de lage-energiedynamica van vrije elektronen in aan-
wezigheid van ”random impurities” en sterke magnetische velden beschrijft. Voorts
laat deze theorie algemene besprekingen toe van zowel de topologische betekenis van
de massaloze chirale randexcitaties in het probleem als het naverwante onderwerp
van fysische observabelen, met name de electrische geleidingen σxx en σxy. De rest
van dit hoofdstuk is gewijd aan de technische details van instantonberekeningen en de
specifieke wijze waarop de niet-perturbatieve bijdragen aan de β- en γ-functies van de
renormalisatiegroep afgeleid kunnen worden. De gedetailleerde voorspellingen van de
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instanton-methodologie voor de theorie met m = n = 0 worden vervolgens vergeleken
met numerieke waarden voor de critische exponenten verkregen uit computersimu-
laties van het vrije elektronengas, wat tot een opmerkelijke overeenkomst leidt. De
resultaten in dit hoofdstuk leveren de theoretische grondslag voor hoofdstuk 4, waarin
ik inga op het probleem van elektron-elektroninteracties.

In de hoofdstukken 4 en 5 maak ik gebruik van de resultaten die in de eerdere
hoofdstukken zijn geboekt en snijd het hoofdonderwerp van dit proefschrift aan: de
θ-afhankelijkheid van de algemene, onderliggende theorie met inbegrip van de effecten
van elektron-elektroninteracties. Technisch gesproken vertegenwoordigt hoofdstuk 4
een van de interessantste toepassingen van de instantonmethodologie in het algemeen,
en de procedure van ruimtelijk variërende massa’s in het bijzonder. De reden is dat de
(singlet-)interactieterm, anders dan gewone massatermen, de singuliere structuur van
de theorie op kleine afstanden compleet verandert, hetgeen slechts een van de vele
merkwaardige eigenschappen is van het probleem met elektron-elektroninteracties.
Het is waarlijk opmerkelijk dat, ondanks de herculische inspanning die nodig is om de
buitengewone hoeveelheid technisch en analytisch detail in bedwang te houden, aan
het eind van de berekening een elegante eenvoud zichtbaar wordt. De belangrijkste
resultaten van dit hoofdstuk worden samengevat door een renormalisatiegroepdia-
gram in drie dimensies die bestaan uit de geleidingsparameters σxx en σxy en een
enkele parameter c, die de “range” van de elektron-elektroninteractie vertegenwo-
ordigt. Om de fysische betekenis van dit stromingsdiagram en, in het bijzonder,
het niet-Fermi-vloeistofgedrag van het Coulomb-interactieprobleem te begrijpen zijn
de onderliggende symmetrieën zoals F-invariantie van groot belang. Bovendien kan
men, op basis van de renormalisatiegroep, onmiddellijk het algemene schaalgedrag
van de macroscopische geleidingen uit dit diagram afleiden, als functie van de tem-
peratuur, externe frequentie en magnetisch veld. Deze schaalfuncties zijn de belan-
grijkste doelstellingen van het experimenteel onderzoek aan de plateau-overgangen in
het quantum-Hall-regime.

Samenvattend zijn, door het quantum-Hall-effect als fysische toepassing van de
instantonparameter θ te benutten, belangrijke nieuwe inzichten bovengekomen die op
andere wijze niet ontdekt zouden kunnen zijn. In het bijzonder noem ik de verschil-
lende aspecten van super-universaliteit die voorheen niet gezien werden. Deze nieuwe
inzichten zijn op velerlei wijze een aanval op de historische “arena van bloedige con-
troverses” in quantumveldentheorie en ik kan nu stellen dat veel van deze historische
controverses geboren zijn uit een volstrekt gebrek aan fysische doelstellingen. Daarom
is het waarschijnlijk dat de resultaten van dit proefschrift interessante gevolgen hebben
voor QCD, waar het concept van een θ-parameter het eerst opkwam en waar de al-
gebra hetzelfde is, maar experimenten onmogelijk zijn.
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