
LECTURENOTES ON STATISTICAL
MECHANICS

IGOR BURMISTROV and ALEKSEY LUNKIN

Moscow, June 3, 2025



2



Contents

1 Basics of Statistical Mechanics 11
1.1 The Gibbs distribution in the quantum statistical mechanics . . . 12

1.1.1 Density matrix . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 The Gibbs distribution . . . . . . . . . . . . . . . . . . . 13
1.1.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.4 Maximal entropy principle . . . . . . . . . . . . . . . . 14
1.1.5 Relation with the thermodynamics . . . . . . . . . . . . 14
1.1.6 Systems with an arbitrary number of particles . . . . . . 16

1.2 The thermodynamic fluctuations . . . . . . . . . . . . . . . . . 19
1.2.1 The Gibbs approach to thermodynamic fluctuations . . . 19
1.2.2 Thermodynamic fluctuations of quantum system in an

external field . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 The Einstein approach to the thermodynamic fluctuations 21
1.2.4 Thermodynamic fluctuations in the grand canonical en-

semble . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Thermodynamics of an ideal Fermi gas . . . . . . . . . . . . . . 25

1.3.1 The Fermi-Dirac distribution . . . . . . . . . . . . . . . 25
1.3.2 Canonical partition function . . . . . . . . . . . . . . . . 27
1.3.3 Density of states . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Chemical potential and the Fermi energy . . . . . . . . . 29
1.3.5 Equation of state in d = 2 . . . . . . . . . . . . . . . . . 30
1.3.6 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.7 From an ideal Fermi to the Boltzmann gas . . . . . . . . 31

1.4 Thermodynamics of an ideal Bose gas . . . . . . . . . . . . . . . 35
1.4.1 The Bose-Einstein distribution . . . . . . . . . . . . . . 35
1.4.2 Canonical partition function . . . . . . . . . . . . . . . . 36
1.4.3 Chemical potential in d = 2 . . . . . . . . . . . . . . . . 37
1.4.4 Equation of state in d = 2 . . . . . . . . . . . . . . . . . 37
1.4.5 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.6 The Bose-Einstein condensation in d = 3 . . . . . . . . . 40

3



4 CONTENTS

2 Thermodynamics of quantum fluids 43
2.1 Weakly non-ideal Fermi gas . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.2 Thermodynamic potential . . . . . . . . . . . . . . . . . 44

2.2 Normal Fermi liquid . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Main assumptions . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Effective mass . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 The Landau f -function . . . . . . . . . . . . . . . . . . 49
2.2.4 Relation betweenm∗ andm . . . . . . . . . . . . . . . . 50
2.2.5 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Weakly non-ideal Bose gas . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 Condensate . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Unitary transformation of the Hamiltonian . . . . . . . 55
2.3.4 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.5 The number of particles in the condensate . . . . . . . . 57
2.3.6 The Gross–Pitaevskii equation . . . . . . . . . . . . . . 57

2.4 Superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.1 Criterion of superfluidity . . . . . . . . . . . . . . . . . 60
2.4.2 Density of the normal component . . . . . . . . . . . . . 61
2.4.3 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.1 The Cooper instability . . . . . . . . . . . . . . . . . . . 64
2.5.2 The mean-field solution of BCS Hamiltonian . . . . . . 65
2.5.3 The ground state . . . . . . . . . . . . . . . . . . . . . . 67
2.5.4 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . 68

2.6 The Luttinger liquid . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6.1 Bosonization of non-interacting spinless 1D fermions . . 70
2.6.2 The interacting fermions: g-ology . . . . . . . . . . . . . 72

3 Phase transitions and critical phenomena 75
3.1 One-dimensional Ising model . . . . . . . . . . . . . . . . . . . 76

3.1.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 Transfer matrix approach . . . . . . . . . . . . . . . . . 76
3.1.3 Periodic boundary conditions . . . . . . . . . . . . . . . 78
3.1.4 Twisted boundary conditions . . . . . . . . . . . . . . . 79

3.2 The Landau theory of phase transitions . . . . . . . . . . . . . . 81
3.2.1 The mean-field approximation . . . . . . . . . . . . . . 81
3.2.2 The Landau expansion . . . . . . . . . . . . . . . . . . . 82
3.2.3 Microscopic derivation of the Ginzburg-Landau theory . 84



CONTENTS 5

3.2.4 The Ginzburg-Landau theory and the Ginzburg-
Levanyuk criterion . . . . . . . . . . . . . . . . . . . . . 86

3.3 Scaling ideas and renormalization group . . . . . . . . . . . . . 89
3.3.1 Critical exponents . . . . . . . . . . . . . . . . . . . . . 89
3.3.2 The scale invariance and scaling laws . . . . . . . . . . . 90
3.3.3 The renormalization group . . . . . . . . . . . . . . . . 91
3.3.4 The 4− d expansion . . . . . . . . . . . . . . . . . . . . 92

3.4 One-dimensional Ising model in transverse field . . . . . . . . . 97
3.4.1 The Jordan-Wigner transformation . . . . . . . . . . . 97
3.4.2 Fermionic parity operator . . . . . . . . . . . . . . . . . 98
3.4.3 The spectrum of Jordan-Wigner fermions . . . . . . . . 99
3.4.4 The phase diagram and topology . . . . . . . . . . . . . 101

3.5 The Berezinskii-Kosterlitz-Thouless transition . . . . . . . . . . 106
3.5.1 Transitions beyond the Landau paradigm . . . . . . . . 106
3.5.2 Classical 2D XY model . . . . . . . . . . . . . . . . . . 106
3.5.3 The Villain model on the dual lattice . . . . . . . . . . . 109
3.5.4 The renormalization group analysis . . . . . . . . . . . . 110

4 Statistical mechanics of open systems 115
4.1 Fluctuation-dissipation theorem and the Kubo formula . . . . . 116

4.1.1 The generalized susceptibility . . . . . . . . . . . . . . . 116
4.1.2 The fluctuation dissipation theorem . . . . . . . . . . . . 117
4.1.3 The Kramers-Kronig relations . . . . . . . . . . . . . . 118
4.1.4 The Kubo formula . . . . . . . . . . . . . . . . . . . . . 119

4.2 The Gorini-Kossakowski-Sudarshan-Lindblad equation . . . . . 121
4.2.1 Helical 1D electrons coupled to a magnetic impurity . . 121
4.2.2 Perturbation theory for the reduced density matrix . . . 121
4.2.3 TheMarkov approximation and final form of the master

equation . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.4 The Gibbs distribution for the reduced density matrix . . 124

5 Thermalization of an isolated quantum system 127
5.1 The eigenstate thermalization hypothesis . . . . . . . . . . . . . 128

5.1.1 Ergodicity and chaos in classical mechanics . . . . . . . 128
5.1.2 Chaos in an isolated quantum system . . . . . . . . . . . 128
5.1.3 Eigenstate thermalization hypothesis . . . . . . . . . . . 129

6 Solution of problems for seminars 131
6.1 Seminar I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 Problems 1 and 2 . . . . . . . . . . . . . . . . . . . . . . 132
6.1.2 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . 133



6 CONTENTS

6.2 Seminar II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.1 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.2 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.3 Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Seminar III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.2 Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.3 Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.4 Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.5 Problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Seminar IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.1 Problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.2 Problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Seminar V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.1 Problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Seminar VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.6.1 Problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.6.2 Problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 Seminar VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7.1 Problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7.2 Problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.7.3 Problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Seminar VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.8.1 Problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.8.2 Problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.8.3 Problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.9 Seminar IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.9.1 Problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.9.2 Problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.10 Seminar X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.10.1 Problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.10.2 Problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.10.3 Problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.11 Seminar XI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.11.1 Problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.11.2 Problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.12 Seminar XII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.12.1 Problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.12.2 Problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.12.3 Problems 32 . . . . . . . . . . . . . . . . . . . . . . . . 159

6.13 Seminar XIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



CONTENTS 7

6.13.1 Problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.13.2 Problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.14 Seminar XIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.14.1 Problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.14.2 Problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.15 Seminar XV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.15.1 Problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.15.2 Problem 38 . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.15.3 Problem 39 . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.16 Seminar XVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.16.1 Problem 40 . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.16.2 Problem 41 . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.17 Seminar XVII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.17.1 Problem 42 . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.17.2 Problem 43 . . . . . . . . . . . . . . . . . . . . . . . . . 176



8 CONTENTS



Preface

The present notes have been written on the basis of lectures and seminars
given as an undergraduate course on StatisticalMechanics at theDepartment of
Physics ofNational ResearchUniversityHigher School of Economics in springs
2020-2024. The material of these notes is written for a reader familiar with the
traditional courses of classical thermodynamics and non-relativistic quantum
mechanics. The notes contain more than 40 problems with solutions; more than
80 problems for self-training are formulated. We are grateful to Asya Lyublin-
skaya, Dmitry Shapiro, and Igor Timoshuk who taught seminars for the course
in various years.

9



10 CONTENTS



Chapter 1

Basics of Statistical Mechanics

Introduction
In this chapter we give a brief introduction for foundations of statistical mechan-
ics and, then, apply the Gibbs method to the thermodynamics of ideal Fermi and
Bose gases. Describing the ideal Fermi and Bose gases, we avoid the second
quantization. In view of time limitations we do not discuss the thermodynamics
of the ideal Boltzmann gas in detail. For the additional aspects of this chapter,
we recommend the textbook [1].

11



12 CHAPTER 1. BASICS OF STATISTICAL MECHANICS

1.1 The Gibbs distribution in the quantum statisti-
cal mechanics

Introduction
In the this first lecture we formulate the thermodynamics for the quantum sys-
tem in terms of its density matrix. We discuss why the density matrix in the
Gibbs form is specific for the thermodynamics.

1.1.1 Density matrix
Let us start from the stationary Schrödinger equation for eigen energies Ea and
eigenstates |a〉 of the quantum mechanical Hamiltonian H :

H|a〉 = Ea|a〉. (1.1)

We assume that 〈a|a′〉 = δa,a′ . An arbitrary stationary normalizable quantum
state can be written as a linear combination of the eigenstates:

|ψ〉 =
∑
a

ca|a〉,
∑
a

|ca|2 = 1. (1.2)

The quantum mechanical average of operator A in the state |ψ〉 can be written
as

〈ψ|A|ψ〉 = Tr ρA (1.3)

where we have introduced the matrix

ρ = |ψ〉〈ψ| =
∑
a,b

cac
∗
b |a〉〈b|. (1.4)

The matrix ρ is the density matrix for a pure state, i.e., the state described by
the wave function. The density state of the pure state satisfies the following
relations: Tr ρ = 1 and ρ2 = ρ.

Now we extend the notion of the density matrix to a mixed state. Let us
define the latter as follows: the system can be found with a probability pj in a
state |ψj〉 where j = 1, . . . , K and

∑K
j=1 pj = 1. Then the quantum mechanical

average of an operatorA over the states |ψj〉 can naturally be defined as follows

A =
K∑
j=1

pj〈ψj|A|ψj〉 = Tr ρA, ρ =
K∑
j=1

pj|ψj〉〈ψj|. (1.5)

Although the density matrix constructed in this way satisfies the normalization
condition Tr ρ = 1, one has now that ρ2 6= ρ and Tr ρ2 < 1.
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To describe the dynamics of the density matrix, let us start from a pure state.
The state |ψ〉 obeys the time-dependent Schrödinger equation

i∂t|ψ(t)〉 = H|ψ(t)〉. (1.6)

This implies that |ψ(t)〉 = e−iHt|ψ(0)〉 and, consequently, the time-dependent
density matrix becomes ρ(t) = e−iHtρ(0)eiHt. Therefore, it satisfies the follow-
ing dynamical equation termed as the Liouville equation,

∂tρ = i[ρ,H]. (1.7)

The generic density matrix of the closed quantum system described by the
Hamiltonian H should satisfy the Liouville equation. The stationary density
matrix should commute with the Hamiltonian, [ρ,H] = 0, i.e., ρ should be a
function of Hamiltonian H .

1.1.2 The Gibbs distribution
For many isolated quantum systems, the stationary density matrix is described
by the so-called Gibbs distribution which can be written as

ρ = e−βH/Z, Z = Tr e−βH . (1.8)

Here β ⩾ 0 is a formal parameter with the dimensionality of inverse energy
and called the inverse temperature. The normalization factor Z is termed as the
partition function. Below with the exception of the last chapters, we will use the
Gibbs density matrix alone. The quantum mechanical and thermal averages of
some operator A are now defined according to 〈A〉 = Tr ρA. In particular, the
average energyE is given according toE = Tr ρH . Wemention that sometimes
the density matrix in the Gibbs form, (1.8), is termed as the canonical distribution.
The normalization factor Z is referred to as the canonical partition function.

The quantum systems with the Gibbs density matrix are said to be in the
thermal equilibrium. However, there is a number of isolated quantum systems
which stationary density matrix does not have the Gibbs distribution. This phe-
nomenon is termed as the absence of thermalization. The scenario of how it can
happen will be described in Chapter 5.

1.1.3 Entropy
In order to construct the complete thermodynamic description of the quantum
system, we need to introduce the notion of the entropy based on the density ma-
trix. The standard way, suggested by von Neumann, is as follows

S = −Tr ρ ln ρ. (1.9)
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We remind that the entropy is an extensive quantity similar to the energy. As for
the Gibbs distribution, there is no rigorous derivation of the von-Neumann en-
tropy. Below we provide two reasonings for the definition (1.9). The first moti-
vation is purely classical. Let us consider the system consisting ofK subsystems
each characterising by a probability pj . Then we expect that due to additivity,
the entropy of subsystem consisting of subsystems 1 and 2 will equal a sum of
entropies s1+s2 whereas the associated probability will be a product p12 = p1p2.
If we choose sj = ln 1/pj , then s12 = s1 + s2 = ln 1/p12. The average entropy
of the full system is given as S =

∑K
j=1 pjsj = −

∑K
j=1 pj ln pj . Since the eigen-

values λj of the density matrix has the properties analogous to classical proba-
bilities, we can define the entropy of the quantum system as S = −

∑
j λj lnλj

which is equivalent to Eq. (1.9).
We note that the von Neumann definition of the entropy encounters a prob-

lem with the second law of the thermodynamics which allows the entropy to
increase. However, for some density matrix which obeys the Liouville equation
(1.7), the entropy is conserved, S(t) = S(0). There are several ways of solv-
ing this problem which are discussed in the current scientific literature (see for
example, Ref. [2]).

1.1.4 Maximal entropy principle
The second motivation for the von Neumann definition of the entropy is associ-
ated with the maximal entropy principle. Alternatively, it can be considered as
a motivation for the Gibbs distribution. Let us maximize the entropy (1.9) over
all possible density matrices but under an additional condition Tr ρH = E =
const. In order to solve this maximization problem, let us introduce the La-
grange multiplier β and consider the functional −Tr ρ ln ρ + β(E − Tr ρH).
Varying it with respect to δρ (under condition Tr δρ = 0 due to the normaliza-
tion constraint Tr ρ = 1), we obtain

− Tr δρ
(
ln ρ+ βH

)
= 0 ⇒ ρ ∝ e−βH . (1.10)

Therefore, the maximal entropy principle for the von Neumann entropy results
in the Gibbs distribution. Thus we demonstrate consistency of the entropy def-
inition (1.9) with the Gibbs distribution.

1.1.5 Relation with the thermodynamics
Substituting the Gibbs distribution (1.8) into the definition of the vonNeumann
entropy (1.9), we find

S = βE + lnZ. (1.11)
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Alternatively, we can derive exactly the same expression for the entropy from
the partition function as (T = 1/β)

S =
∂(T lnZ)

∂T
. (1.12)

Let us define the free energy as F = −T lnZ. Then Eq. (1.11) can be rewritten in
the form of the standard thermodynamic relation between energy, free energy,
temperature, and entropy:

F = E − TS. (1.13)

Simultaneously, Eq. (1.12) acquires the form of the standard thermodynamic
relation between the entropy and the free energy:

S = −
(
∂F

∂T

)
V

. (1.14)

Here V denotes the volume and the subscript V indicates that the derivative is
taken under assumption of the constant volume.

Frankly speaking, above we did not discuss the volume occupied by the
quantum system. For the quantum system occupied a finite volume, the en-
ergy spectrum will depend on the volume. The simplest example to represent
this is a quantum particle in the cubic box of size L with the infinite potential
barrier. A quantum mechanical force acting on the box boundary in eigenstate
|a〉 is given as−∂Ea/∂L. Therefore, the average pressure in the Gibbs state (in
the thermal equilibrium) can be defined as

P = − 1

Z

∑
a

∂Ea

∂V
e−βEa = − 1

Z
Tr

∂H

∂V
e−βH = −

(
∂F

∂V

)
T

. (1.15)

The above results have the following important implications:

◦ the von Neumann entropy is equivalent to the thermodynamic entropy;

◦ the canonical partition function Z determines the free energy F ;

◦ the auxiliary parameter β−1 is the thermodynamic temperature T ;

◦ F is the function of T and V and determines the entropy and pressure in
the conventional thermodynamic way.
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1.1.6 Systems with an arbitrary number of particles
The discussion above assumes the constant number of particles in the quantum
system. Very often the quantum system interacts weakly with another system
which implies an exchange of particles. At the same time, in all other respects the
quantum system can be considered as isolated and in the thermal equilibrium.
To find the proper density matrix for such situation, we can use the maximal en-
tropy principle but now with two conditions: Tr ρH = E = const and Tr ρn =
N = const, where n denotes the operator of the number of particles and N is
the average number of particles. Then we introduce two Lagrange multipliers β
and µ, and consider the functional−Tr ρ ln ρ+β(E−Tr ρH)+βµ(Tr ρn−N).
Varying it with respect to δρ (under condition Tr δρ = 0 due to the normaliza-
tion constraint Tr ρ = 1), we obtain

− Tr δρ
(
ln ρ+ βH − βµn

)
= 0 ⇒ ρ ∝ e−βH+βµn. (1.16)

The density matrix

ρ = e−βH+βµn/Z, Z = Tr e−βH+βµn (1.17)

is termed as the grand canonical distribution. We note that now the symbol Tr in-
cludes the summation over many-body states with all possible particle numbers.
The grand partition function Z determines the thermodynamic potential:

Ω = −T lnZ. (1.18)

The thermodynamic potentialΩ is the function of T , V , and the chemical potential
µ. The average number of particles can be found as

N = Tr ρ n = −
(
∂Ω

∂µ

)
T,V

. (1.19)

Using Eq. (1.9), we find

S = βE − βµN − βΩ = −
(
∂Ω

∂T

)
V,µ

. (1.20)

In addition, since the quantum mechanical expression for the average force as a
derivative of the energy of the state is not distorted by the possibility of varying
the number of particles, the pressure can be found as

P = −
(
∂Ω

∂V

)
T,µ

. (1.21)
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Equation (1.20) relates the thermodynamic potential and the free energy (its
definition F = E−TS remains the same) as F = Ω+µN . Taking into account
Eq. (1.19), one can say that potentials Ω and F are related by the Legendre
transform such that F is the function of T, V , andN . Then the chemical poten-
tial is determined as

µ =

(
∂F

∂N

)
T,V

. (1.22)

Let us use the Legendre transform and introduce one more potential Φ = F +
PV . ThenΦ is a function of T , P andN . The potentialΦ should be an extensive
quantity but since T andP are not extensive quantities, we haveΦ = µ(T, P )N .
In other words, the chemical potential as a function of T and P is the potential
Φ per one particle. Therefore, we can write µN = F + PV . Comparing this
with the relation between F and Ω, we obtain a surprising relation between the
thermodynamic potential, the pressure, and the volume:

Ω = −PV. (1.23)

This equation together with Eq. (1.19) determines the equation of state for the
quantum system in the equilibrium, i.e., the relation between the pressure, the
volume, the number of particles and the temperature. The typical problem of
the statistical mechanics is to compute the thermodynamic potential Ω.

In addition to thermodynamic potentials E, Ω, F , and Φ, one can introduce
one more potential called the enthalpyW (S, P,N) = E + PV as a function of
entropy S, pressure P and the particle number N .

Problem for the seminar 1: Compute the free energy, the energy, and the
entropy for the system of N independent spins s = 1/2 in the magnetic
field.

Problem for the seminar 2: Find the chemical potential and the pressure for
the system of N independent spins s = 1/2 in the magnetic field.

Problem for the seminar 3: Using the Jacobian method, prove that CP >
CV provided (∂P/∂V )T < 0. Here CP and CV are the specific heats at
the fixed pressure and volume, respectively.

Exercise 1: Prove that the eigenvalues λm of the density matrix satisfy
the relations: 0 ⩽ λm ⩽ 1 and

∑
m λm = 1.
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Exercise 2: Demonstrate that the maximal value of the von Neumann
entropy (1.9) is given by dim ρ. Find the form of the density matrix
which maximizes the entropy.

Exercise 3: A stationary state of the spin S = 5/2 is described by the
following density matrix

ρ =


u −u −u 0 0 m
−u u u 0 0 −m
−u u u 0 0 −m
0 0 0 0 0 0
0 0 0 0 0 0
m −m −m 0 0 1− 3u


To find the region in the parameter space {u,m}where the abovematrix
satisfies all conditions imposed on the density matrix. When does the
above matrix describe a pure state? To find the maximal magnitude of
the vonNeumann entropy for the above density matrix. Does it realized
in the mixed or pure state?

Exercise 4: The average pressure can be defined as the trace of the aver-
age stress tensor, P = 〈Tjj〉/(dV ) where V is the volume and d is the
dimensionality of the space. The stress tensor operator of noninteract-
ing system is defined as Tjk = m(v̂j v̂k + v̂kv̂j)/2 where v̂j stands for
the velocity operator. For noninteracting system to prove the relation
P = 2E/(dV ).
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1.2 The thermodynamic fluctuations

Introduction
In the previous lecture we demonstrated that the approach based on the Gibbs
form of the density matrix and the von Neumann definition of the entropy pro-
duces the description of the quantum system in terms of the average physical
quantities equivalent to the traditional thermodynamics. In this lecture we will
demonstrate how the thermodynamic fluctuations can be incorporated into the
approach based on the Gibbs density matrix.

1.2.1 The Gibbs approach to thermodynamic fluctuations
Since the eigenvalues λj of the density matrix are within the range 0 ⩽ λj ⩽ 1,
one can interpret the Gibbs distribution (1.8) as a probability distribution for
the Hamiltonian H . Then one can calculate the variance of energy as

〈(∆E)2〉 = Tr ρH2 − (Tr ρH)2 =
∂2 lnZ
∂β2

= −∂E
∂β

. (1.24)

We note that in this approach to the thermodynamic fluctuations, the tempera-
ture (or β) is the fixed parameter (Lagrange multiplier) forbidden to fluctuate.
As in the previous lecture, the derivatives with respect to β (or T ) are taken
under natural assumption of constant volume V . Then, we find the following
relation between the variance of the energy and the specific heat at constant
volume:

〈(∆E)2〉V = T 2CV , CV = T

(
∂S

∂T

)
V

. (1.25)

The result (1.25) demonstrates the important property of the thermody-
namic fluctuations. Since the energy and entropy are extensive quantities, i.e.,
proportional to the number of particles N , the relative fluctuations of the en-
ergy are

√
〈(∆E)2〉V /E ∝ 1/

√
N . Therefore, the thermodynamic fluctuations

disappear in the thermodynamic limit N → ∞.
Similar to the energy variance we can determine the variance for pressure

fluctuations:

〈(∆P )2〉V =
1

Z

∑
a

e−βEa

(
∂Ea

∂V

)2

−

(
1

Z

∑
a

e−βEa
∂Ea

∂V

)2

= T

(
∂P

∂V

)
T

+ T Tr
(
∂2H

∂V 2
ρ

)
. (1.26)
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In general, the last term cannot be expressed in terms of the average thermody-
namic quantities and its derivatives. This is the well-known problem of applying
the Gibbs approach for calculating the pressure fluctuations [3].

1.2.2 Thermodynamic fluctuations of quantum system in an
external field

Let us consider quantum system in the presence of external fieldφwhich couples
linearly to the operator q such that the full Hamiltonian becomes H = H0 −
qφ. Then the average value of the operator q can be found from the Gibbs
distribution

Q = Tr ρ q = −
(
∂F

∂φ

)
T,V

(1.27)

where F is the free energy depending on T , V , and φ. For example, in the
problem of spins in the magnetic field, it is the magnetic field that plays a role
of the external field. Now we can compute the variance of Q as

〈(∆Q)2〉 = Tr ρ q2 − (Tr ρ q)2 = TχQ(φ), χQ(φ) =

(
∂Q

∂φ

)
T,V

. (1.28)

The quantity χQ is called the static susceptibility for the physical observable Q.
We note that the validity of Eq. (1.28) for an arbitrary value of φ relies on the
linear dependence of the Hamiltonian H on φ. We emphasize that Eq. (1.28)
has the important implication for the variance ofQ in the absence of the external
field. The variance of Q at φ = 0 is determined by the static susceptibility
χQ(0). The computation ofχQ(0) requires only the knowledge of linear coupling
between the system and the external field. This situation is referred to as the
linear response.

Now let us develop scheme which will allow us to calculate the variance of
Q without the explicit knowledge of the Gibbs distribution. Let us introduce
the thermodynamic potential related to F (φ) via the Legendre transform:

F̃ (Q) = F (φ) +Qφ, φ =

(
∂F̃

∂Q

)
T,V

. (1.29)

We can consider F̃ as a formal function of the instantaneous value of Q. Then
we define the quantity termed as the minimal work for the fluctuations of the
thermodynamic variable Q according to

Umin = F̃ (Q+∆Q)− F̃ (Q)− φ(Q)∆Q. (1.30)
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We note that here φ is a function ofQ as prescribed by Eq. (1.29). The minimal
work Umin is a function of T , V , Q, and ∆Q. It has the following important
property: its expansion in ∆Q starts from the quadratic term:

Umin(∆Q) =
1

2χQ

(∆Q)2 +O
(
(∆Q)3

)
. (1.31)

Now, in order to reproduce the result (1.28), we can postulate that the distribu-
tion function governing the probability of the variable Q to be changed from Q
to Q+∆Q due to thermal fluctuations is given by the normal distribution:

PQ(∆Q) =

√
T√

2πχQ

e−Umin(∆Q)/T . (1.32)

Then we find

〈(∆Q)2〉 =
∞∫

−∞

dXX2PQ(X) = TχQ. (1.33)

We note that the statistics for the fluctuations of Q is not Gaussian in general.
Thus the normal distribution (1.32) is an approximation in essence.

1.2.3 The Einstein approach to the thermodynamic fluctua-
tions

As we have seen above, the thermodynamic fluctuations of the physical quan-
tities coupled to the external fields are determined by the static susceptibilities.
The latter can be calculated using the Gibbs statistical mechanics. Let us now
formulate the similar approach to computing the thermodynamic fluctuations of
the main physical parameters T , P , V , and S, which determine the thermody-
namic state of the system. Let us consider the case of the system connected to
the thermal reservoir keeping the temperature and pressure fixed in the system.
Then the entropy and the volume of the system are able to fluctuate. In the full
analogy with Eq. (1.30) we introduce the minimal work as

Umin = E(S +∆S, V +∆V )− E(S, V )− T∆S + P∆V. (1.34)

Expanding Umin to the second order in ∆S and ∆V , we find

Umin(∆S,∆V ) =
1

2

(
∂2E

∂S2

)
V

(∆S)2 +

(
∂2E

∂S∂V

)
∆S∆V

+
1

2

(
∂2E

∂V 2

)
S

(∆V )2 + . . . (1.35)
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In the same way as we have done in Eq. (1.32), we postulate that the joint
probability distribution that governs the fluctuations of ∆S and ∆V is propor-
tional to exp(−Umin(∆S,∆V )/T ). (Here it is necessary to take the normaliza-
tion factor into account.) We mention that, in order the probability distribution
to be normalizable, the minimal work Umin should be positive as a function of
its arguments ∆S and ∆V . This requirement yields a number of relations on
the derivatives of the thermodynamic quantities that coincide with the so-called
thermodynamic inequalities. One example is the relation CV > 0.

Equation (1.35) implies that the fluctuation of the entropy at the fixed vol-
ume becomes

〈(∆S)2〉V = T

(
∂S

∂T

)
V

= CV . (1.36)

We note that this result coincides with that derived above directly from the
Gibbs distribution.

For computing of the thermal fluctuations of other observables, it is conve-
nient to represent the expression for the minimal work (1.35) in the following
symmetric form:

Umin =
(
∆S∆T −∆P∆V

)
/2. (1.37)

Although we have derived this expression for the entropy and volume fluctua-
tions at the fixed temperature and pressure, one can use Eq. (1.37) for calculat-
ing the fluctuations of any pair of the thermodynamic variables. For example,
expanding ∆T and ∆V in Eq. (1.37) to first order in ∆P and ∆S, we find

〈(∆P )2〉 = −T
(
∂P

∂V

)
S

. (1.38)

It is worthwhile to mention that the result (1.26) of the Gibbs approach to the
pressure fluctuations differs from the result (1.38) of the Einstein approach.

Now we explain the origin of the term “the minimal work” for Umin. Let us
consider an isolated system consisting of thermal reservoir and subsystem. The
subsystem can perform a work on the body isolated from the subsystem and the
reservoir. We assume that the reservoir has the temperature T0 and pressure
P0 which are kept fixed since the effect of subsystem on the reservoir is neg-
ligible. The subsystem has the temperature T and the pressure P which can
differ from T0 and P0. In the absence of the reservoir the work U performed
by the body upon the subsystem during some process equals the energy differ-
ence ∆E of the subsystem in this process. In the presence of the reservoir we
should take into account the work P0∆V0 done by the reservoir and the heat
−T0∆S0 transferred from the reservoir to the subsystem. Eventually, we find
∆E = U−T0∆S0+P0∆V0. Assuming the conservation of volume of the system,
i.e., using the relation ∆V0 = −∆V , we find U = ∆E + T0∆S0 + P0∆V . Due
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to the second law of the thermodynamics the entropy variation of the isolated
system is not negative, ∆S0 + ∆S ⩾ 0. Therefore, we find that the minimal
value of the work is given as Umin = ∆E − T0∆S + P0∆V . For spontaneous
thermodynamic fluctuations, the reservoir is a large part of the very same sys-
temwith the same temperature and pressure as the small subsystem, i.e., T0 = T
and P0 = P . Then Umin is given by Eq. (1.34).

1.2.4 Thermodynamic fluctuations in the grand canonical en-
semble

In the grand canonical ensemble the number of particle can fluctuate. Using in
this case the Gibbs distribution (1.17), we find

〈(∆N)2〉T,V,µ = Tr ρ n2 − (Tr ρ n)2 = T

(
∂N

∂µ

)
T,V

. (1.39)

We emphasize the resemblance of this result with the general result (1.28). The
chemical potential plays a role of the external field conjugated to the number of
particles.

In the Einstein approach to the thermodynamic fluctuations the case of vary-
ing the number of particles does not require a special consideration. On can take
the extensive character of the volume into account and transform fluctuations of
the volume 〈(∆V )2〉T = −T (∂V /∂P )T into those for the number of particles.
In this way the expression (1.39) can be reproduced.

Wemention that the Einstein approach to the thermodynamic fluctuations is
limited to the Gaussian approximation. The higher cumulants of the thermody-
namic fluctuations must be computed from theGibbs distribution. For example,
the third cumulant of the number of particles,C(3)

N = 〈N3〉−3〈N2〉〈N〉+2〈N〉3,
is equal to C(3)

N = T 2(∂2N/∂µ2)T,V . In other words, the thermodynamic poten-
tial Ω(µ) is the cumulant generating function for the number of particles.

Problem for the seminar 4: For the system ofN independent spins s = 1/2
in the magnetic field, compute the thermodynamic fluctuations of the
energy and compare them with those for the specific heat.

Problem for the seminar 5: For the system ofN independent spins s = 1/2
in the magnetic field, calculate the spin susceptibility and thermody-
namic fluctuations of the magnetization. Check the validity of Eq.
(1.28).
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Problem for the seminar 6: Derive the expression for Umin as a func-
tion of ∆V and ∆T . Express in terms of T and V as independent
thermodynamic variables the following averages: 〈(∆T )2〉, 〈(∆V )2〉,
〈∆T∆V 〉, 〈(∆P )2〉, 〈(∆S)2〉, 〈∆T∆P 〉, 〈∆T∆S〉, 〈∆V∆P 〉, 〈∆S∆P 〉,
and 〈∆V∆S〉.

Exercise 5: Using the von Neumann definition of the entropy, prove that
the variance of entropy S is given by the specific heat at the fixed vol-
ume, 〈(∆S)2〉V = CV .

Exercise 6: For the system ofN independent spins s = 1 in the magnetic
field, calculate the thermodynamic fluctuations of the energy and the
magnetization. Compare the results with the expressions for the specific
heat and spin susceptibility, respectively.

Exercise 7: Derive the expression for Umin as a function of ∆S and
∆P . Express via P and S as independent thermodynamic variables the
following averages: 〈(∆T )2〉, 〈(∆V )2〉, 〈∆T∆V 〉, 〈(∆P )2〉, 〈(∆S)2〉,
〈∆T∆P 〉, 〈∆T∆S〉, 〈∆V∆P 〉, 〈∆S∆P 〉, and 〈∆V∆S〉.

Exercise 8: The pressure can be defined as the trace of the stress tensor,
P = 〈Tjj〉/(dV ) where V is the volume and d is the dimensionality of
the space. The stress tensor operator of noninteracting system is defined
as Tjk = m(v̂j v̂k+v̂kv̂j)/2where v̂j stands for the velocity operator. For
noninteracting system to express pressure fluctuation 〈(∆P )2〉 in terms
of the energy fluctuation 〈(∆E)2〉.
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1.3 Thermodynamics of an ideal Fermi gas

Introduction
In this lecture we discuss the thermodynamics of the simplest quantum system
– ideal Fermi gas. To make the final expressions to be more transparent we
consider the Fermi gas in two spatial dimensions. We note that such situation is
realized experimentally in semiconductor heterostructures and quantum wells.

1.3.1 The Fermi-Dirac distribution
We consider an ideal Fermi gas in the grand canonical ensemble, i.e., at the
given temperature and chemical potential. Our aim is to derive the general ex-
pression for the thermodynamic potential and the average number of fermions.
To simplify the derivation, for a moment we put nonzero spin of fermions aside.
From the physical viewpoint we consider the fully spin-polarized Fermi gas.

Let us start from the simplest situation of a single energy level ε1 which can
be populated by fermions. Due to the Pauli exclusion principle, this level can
be either empty or occupied. Therefore, the grand canonical partition function
acquires the following form: Z(1) = 1 + e−βε1+βµ. Now let us add another
level ε2. Again due to the Pauli exclusion principle, we can have four different
situations (see Fig. 1.1):

(i) both levels are empty,

(ii) level ε1 is occupied whereas level ε2 is empty,

(iii) level ε1 is empty whereas level ε2 is occupied,

(iv) both levels are occupied.

The grand canonical partition function becomes

Z(2) = 1 + e−βε1+βµ + e−βε2+βµ + e−β(ε1+ε2)+2βµ

=
(
1 + e−βε1+βµ

) (
1 + e−βε2+βµ

)
. (1.40)

As one can see, the grand partition function Z factorizes into the product of
independent factors for each energy level. The generalization to an arbitrary
number of levels is obvious:

Z = e−βΩ =
∏
a,σ

(
1 + e−βεa,σ+βµ

)
. (1.41)
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ϵ1

ϵ2

Figure 1.1: Four possible states for spin polarized fermions occupying two en-
ergy levels.

Here a enumerates the orbital degrees of freedom and σ stands for the z-
projection of the fermion spin. The number of particles can be extracted from
Eq. (1.41) as

N = −
(
∂Ω

∂µ

)
T,V

=
∑
a,σ

fF (εa,σ), fF (ε) =
1

eβ(ε−µ) + 1
. (1.42)

The function fF (ε) is called the Fermi-Dirac distribution function.
The Fermi-Dirac distribution function can be seen from another point of

view. Due to the Pauli exclusion principle, the given single particle state can
be empty or occupied by a fermion. Therefore, in order to describe a single
fermion, the density matrix of size 2× 2 is required. The result (1.41) suggests
that the density matrix for the fermion system can be written as a tensor product
of the 2 × 2 density matrices: ρ =

∏
a,σ

⊗ρa,σ where Tr ρa,σ = 1. Let us denote

the eigenvalues of ρa,σ as na,σ and 1− na,σ. Then the entropy can be written as
follows:

S = −
∑
a,σ

[
na,σ lnna,σ + (1− na,σ) ln(1− na,σ)

]
. (1.43)

The quantity na,σ is termed as the occupation number for an energy level εa,σ
and has a meaning of probability that the energy level is occupied. Then the
number of particles and the energy become

N =
∑
a,σ

na,σ, E =
∑
α,σ

εa,σna,σ. (1.44)

Now we can apply the maximal entropy principle: to maximize S over na,σ

under conditions thatN andE are kept as fixed. The variation procedure for the
functional S+βµN−βE over na,σ results in the optimal value of the occupation
number given by the Fermi-Dirac distribution function, i.e., na,σ = fF (εa,σ)
realizes the maximal entropy principle.
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1.3.2 Canonical partition function
Sometimes it is convenient towork at the fixed number of particles rather than at
the fixed chemical potential. In order to derive the expression for the canonical
partition function, let us first consider the case of two energy levels ε1 and ε2
(see Fig. 1.1). Then from the first line of Eq. (1.40) the canonical partition
functions can be read as

ZN=0 = 1, ZN=1 = e−βε1+e−βε2 , ZN=2 = e−β(ε1+ε2), ZN>2 = 0. (1.45)

In the general case, we can write the Darwin-Fowler integral for the canonical
partition function

ZN = e−βF =

2π∫
0

dθ

2π
e−iθN

∏
a,σ

(
1 + e−βεa,σ+iθ

)
=

2π∫
0

dθ

2π
e−iθN−βΩ(iTθ). (1.46)

For the large number of particles, one can perform the integral over angle θ by
means of the saddle point method. Then, if we denote the saddle point value of
the angle θ as θs = −iµ, it will satisfy the standard relation between the number
of particles and the chemical potential: N = −∂Ω(µ)/∂µ. The free energy will
also be given by the standard Legendre transform: F = Ω(µ) + µN . Below,
we usually employ the fixed chemical potential condition instead of the fixed
particle number one.

In addition to ZN it is convenient to introduce the following quantity

ZN(εa,σ) =

2π∫
0

dθ

2π
e−iθN

(
1 + e−βεa,σ+iθ

)−1
∏
b,σ′

(
1 + e−βεb,σ′+iθ

)
. (1.47)

It has the meaning of the partition function forN fermions occupying all energy
levels except the level εa,σ. Using ZN(εa,σ) one can determine the probability
that the energy level εa,σ is occupied,

f
(N)
F (εa,σ) = 1− ZN(εa,σ)

ZN

. (1.48)

One can demonstrate that f (N)
F (ε) transforms into fF (ε) as N → ∞ (see Fig.

1.2 and problems below).

1.3.3 Density of states
In order to compute the thermodynamic quantities of various fermion systems,
it is convenient to introduce the density of states:

g(ε) =
1

V

∑
a,σ

δ
(
ε− εa,σ

)
. (1.49)
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Figure 1.2: The comparison of fF (ε) and f
(N)
F (ε) for the free fermions with

equidistant spectrum εn = δn, n = 1, 2, . . . , for N = 25 and T/δ = 10. We
note that µ/T ' Nδ/T = 2.5.

Then the thermodynamic potential and the number of particles can be written
as follows:

Ω = −TV
∫
dε g(ε) ln

(
1 + e−βε+βµ

)
, N = V

∫
dε g(ε)fF (ε). (1.50)

Using the thermodynamic relation E = Ω+TS+µN , one finds the expression
for the energy in agreement with Eq. (1.44):

E = V

∫
dε g(ε) εfF (ε). (1.51)

This expression for the energy allows us to write down the result for the specific
heat:

C = V

∫
dε g(ε) ε

∂fF (ε)

∂T
(1.52)

where the derivative with respect to temperature is taken under fixed chemical
potential.

The density of states is determined by the energy spectrum of single-particle
problem. Let us consider a particle in the one-dimensional quantum well of size
L with the infinite walls. Then the eigen energies become εn =h̄2π2n2/(2mL2)
where m denotes the particle mass and n = 1, 2, 3, . . . It is instructive to com-
pute the density of states in the thermodynamic limit L→ ∞:

g(ε) =
gs
L

∞∑
n=1

δ
(
ε− εn

)
≈ gs
L

∞∫
0

dn δ
(
ε− εn

)
=
gs
√
m

πh̄
√
2ε

Θ(ε). (1.53)



1.3. THERMODYNAMICS OF AN IDEAL FERMI GAS 29

Here Θ(ε) stands for the Heaviside step function and gs = 2s + 1 is the num-
ber of projections for the spin s fermions. We note that the density of states is
independent of size L in the limit L→ ∞.

The result (1.53) can be derived in the different way. Let us consider free
particlewithmomentum p in one spatial dimension. Then, if wewrite the density
of states as follows:

g(ε) = gs

∞∫
−∞

dp

2πh̄
δ

(
ε− p2

2m

)
, (1.54)

we obtain exactly the same result as given by Eq. (1.53). The generalization of
Eq. (1.54) to the free motion of quantum particle in an arbitrary spatial dimen-
sion d reads

g(ε) = gs

∫
ddp

(2πh̄)d
δ

(
ε− p2

2m

)
. (1.55)

1.3.4 Chemical potential and the Fermi energy
As an instructive example simple in the mathematical treatment, we consider the
thermodynamical properties of two-dimensional ideal Fermi gas. Using Eqs.
(1.50) and (1.55), we find the number of particles as

N =
gsV m

2πh̄2

∞∫
0

dε

eβε−βµ + 1
=
gsmV T

2πh̄2
ln
(
1 + eβµ

)
. (1.56)

Solving this equation for µ, we obtain

µ(T ) = T ln
(
eEF /T − 1

)
, EF =

2πh̄2N

gsmV
. (1.57)

The only characteristic energy scale EF = µ(T = 0) is referred to as the Fermi
energy. The importance of the Fermi energy is due to the following observation:
at T = 0 the fermion occupation, fF (ε), for the state of energy ε equals 1 if
ε ⩽ EF and 0 otherwise. In other words, all the states below the Fermi energy
are occupied in ideal Fermi gas. Further we will discuss how this statement is
affected by the fermion-fermion interactions. It is convenient to introduce the
notion of the Fermi momentum equal to pF =

√
2mEF . Then at zero temperature

the states of ideal Fermi gas with momentum p ⩽ pF are occupied whereas the
states with p > pF are empty.

The dependence µ(T ) is shown in Fig. 1.3a. The chemical potential is the
monotonously decreasing function of temperature. This is not a common fea-
ture. For d < 2, the chemical potential µ(T ) is a non-monotonous function of
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temperature. In the degenerate regime, T � EF , the chemical potential can be
written as

µ(T ) = EF − Te−EF /T + . . . . (1.58)

We note that the temperature corrections to the zero temperature magnitude
of chemical potential are exponentially small. This is a specific feature for the
spatial d = 2 dimensions.

At temperature T0 = EF/ ln 2 the chemical potential vanishes, µ(T0) = 0.
In the high temperature regime, T � EF , the chemical potential is negative and
can be approximated by

µ(T ) = −T lnT/EF . (1.59)

1.3.5 Equation of state in d = 2

In order to find the equation of state for an ideal Fermi gas, we should calculate
the thermodynamic potential, cf. Eq. (1.50). Again, we consider the case of the
spatial d = 2 dimensions. Then, we obtain

P =
gsmT

2πh̄2

∞∫
0

dε ln
(
1 + eβµ−βε

)
= −gsmT

2

2πh̄2
li2
(
−eβµ

)
. (1.60)

Here we introduce the special function lik(z) =
∑∞

j=1 z
j/jk known as polylog-

arithm. Using (1.57), we find the equation of state for ideal Fermi gas in the
spatial d = 2 dimensions:

PV

NT
= − T

EF

li2
(
1− eEF /T

)
. (1.61)

Using the asymptotic expression li2(−z) = −(ln z)2/2−π2/6 at z � 1, we find
the pressure of an ideal degenerate Fermi gas at T � EF :

P =
NEF

2V

(
1 +

π2

3

T 2

E2
F

)
. (1.62)

In the opposite case of high temperatures, T � EF , we can use the asymptotic
expansion of the polylogarithm at z � 1: li2(z) = z + z2/4. Then, we obtain
the following equation of state at T � EF :

PV = NT

(
1 +

EF

4T

)
. (1.63)

As one can see, it resembles the equation of state for an ideal Boltzmann gas
with the correction corresponding to an additional pressure at a given temper-
ature. This correction is an effect of the Fermi-Dirac statistics due to quantum
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mechanical exchange effects (the Pauli exclusion principle, in essence). The
similarity of the equation of state at T � EF with that for the ideal Boltzmann
gas is not occasional. For T � EF , the Fermi-Dirac distribution function can
be approximated as fF (ε) ≈ exp(βµ−βε), i.e, it goes over the Boltzmann distri-
bution. The overall behavior of the pressure as the temperature varies is shown
in Fig. 1.3b. This behavior is not specific to the spatial d = 2 dimensions. In any
dimension, the pressure of the ideal Fermi gas at a given temperature is larger
than that for the ideal Boltzmann gas.

1.3.6 Specific heat
In order to determine the specific heat under the fixed volume we start from
calculating the free energy via the relation F = −PV + µN . In the spatial
d = 2 dimensions the explicit expression for the free energy reads:

F =
NT 2

EF

li2
(
1− eEF /T

)
+NT ln

(
eEF /T − 1

)
. (1.64)

As it is expected, the free energy is proportional to the number of particles
and depends on the single parameter T/EF . Using the results for the chemi-
cal potential and pressure in the degenerate regime, we find the free energy at
T � EF :

F =
NEF

2
− π2

6

NT 2

EF

. (1.65)

Therefore, the specific heat at T � EF in the spatial d = 2 dimensions becomes

CV = −T
(
∂2F

∂T 2

)
V

=
π2

3

NT

EF

. (1.66)

We emphasize that the specific heat is proportional to the temperature. This fact
is a direct consequence from existence of the Fermi sphere. At low temperatures
only a small fraction of fermions in the vicinity of the Fermi energy with energies
|ε− EF | ≲ T can participate in the heat transfer.

In the Boltzmann region, T � EF , using Eqs. (1.59) and (1.63), we repro-
duce the result for the specific heat of an ideal Boltzmann gas: CV = N . The
temperature behavior of the specific heat is shown in Fig. 1.3c.

1.3.7 From an ideal Fermi to the Boltzmann gas
As we have seen above, the thermodynamic quantities of the ideal Fermi gas
goes over to those of the ideal Boltzmann gas. Therefore, it is instructive to de-
rive the canonical partition function of an ideal Bolzmann gas directly from Eq.
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Figure 1.3: The temperature behavior of thermodynamic quantities in the two-
dimensional ideal Fermi gas: (a) chemical potential, (b) pressure, and (c) spe-
cific heat.

(1.46). Let us rewrite ZN as follows (here we assume that the energy spectrum
is independent of the spin degrees of freedom):

ZN = e−βµN

2π∫
0

dθ

2π
e−iθN exp

[
gs
∑
a

ln
(
1 + e−βεa+βµ+iθ

)]
. (1.67)

Now using the condition β|µ| � 1, in the thermodynamic limit we can expand
the logarithm to first order in its argument. Then, we find

ZN ≈ e−βµN

2π∫
0

dθ

2π
e−iθN exp

(
gs
∑
a

e−βεa+βµ+iθ

)
= e−βµN

2π∫
0

dθ

2π
e−iθN

×
∞∑
k=0

(
gs
∑
a

e−βεa+βµ

)k
eiθk

k!
=

1

N !

(∫
dε g(ε) e−βε

)N

. (1.68)

We mention the appearance of the factor 1/N ! in the above expression for ZN .
The physical meaning of this factor is to involve the identity of particles. We
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emphasize that this factor appears in the Fowler-Darwin formalism by its own
nature.

Problem for the seminar 7: Compute the density of states for the free quan-
tum particle in an arbitrary spatial dimension d, cf. Eq. (1.55).

Problem for the seminar 8: Compute the density of states of an ideal elec-
tron gas in the spatial d = 2 dimensions in the presence of the perpen-
dicular magnetic field.

Problem for the seminar 9: Calculate the temperature correction to the
chemical potential at T � EF for an ideal Fermi gas in d 6= 2 spatial
dimensions.

Problem for the seminar 10: Compute the specific heat of ideal degenerate
Fermi gas in an arbitrary spatial dimension.

Problem for the seminar 11: Compute the zero-field spin susceptibility of
ideal electron gas in the spatial d = 2 dimensions.

Problem for the seminar 12: Compute the magnetization of ideal electron
gas in the spatial d = 2 dimensions in the presence of the relatively
strong perpendicular magnetic field T � µBB � EF .

Exercise 9: Calculate the density of states for a quantum particle in the
three-dimensional box of size Lx×Ly ×Lz with the infinite walls in the
thermodynamic limit Lx, Ly, Lz → ∞.

Exercise 10: To prove the identity ZN = ZN(εa,σ) + e−βεa,σZN−1(εa,σ).
Using the above identity, to prove that (i)

∑
a,σ f

(N)
F (εa,σ) = N and (ii)

f
(N)
F (εa,σ) to fF (εa,σ) as N → ∞.
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Exercise 11: To prove the identity

ZN =
1

N

N∑
k=1

(−1)k+1ZN−k

∑
a

e−βkεa . (1.69)

Exercise 12: To find the change of the Fermi energy of an ideal gas of 3He
atoms after its full spin polarization by a magnetic field.

Exercise 13: Express the variance for the thermodynamic fluctuations of
the number of particles in an ideal degenerate Fermi gas via the density
of states at the Fermi energy, g(EF ).

Exercise 14: Find the temperature at which the chemical potential of ideal
electron gas in the spatial d = 2 dimensions vanishes in the presence of
parallel magnetic field µBB � EF . (Take only the Zeeman effect of a
magnetic field into account.)

Exercise 15: Compute the ratio (CP−CV )/CV for ideal degenerate Fermi
gas in the spatial d = 2 dimensions.

Exercise 16: To compute f (N)
F (ε) for the Boltzman gas, β|µ| � 1.



1.4. THERMODYNAMICS OF AN IDEAL BOSE GAS 35

1.4 Thermodynamics of an ideal Bose gas

Introduction
In this lecture we discuss the thermodynamics of the ideal Bose gas. We com-
pare its thermodynamics with that of the Fermi gas. Due to the quantum statis-
tics the ideal Nose gas undergoes the transition known as Bose-Einstein con-
densation. Recently, it has been measured in cold atom systems.

1.4.1 The Bose-Einstein distribution
We consider an ideal Bose gas in the grand canonical ensemble, i.e., at the given
temperature and chemical potential. Our aim is to derive the general expression
for the thermodynamic potential and the average number of bosons. In order to
simplify the derivation, we consider zero-spin bosons.

Let us start from simplest situation of a single energy level ε1 which can
be occupied by bosons. Due to the absence of the Pauli exclusion principle
for bosons, this level can be empty, occupied by a single boson, occupied by
two bosons, etc. Therefore, the grand canonical partition function acquires the
following form: Z(1) =

∑∞
n=0 e

−βε1n+βµn = (1−eβµ−βε1)−1. Now let us add one
more level ε2. Again due to the absence of the Pauli exclusion principle, we can
have the following situation: the level ε1 is occupied by n1 bosons whereas the
level ε2 is occupied by n2 bosons where n1,2 = 0, 1, 2, . . . . The grand canonical
partition function becomes

Z(2) =
∞∑

n1,2=0

eβµ(n1+n2)−β(ε1n1+ε2n2) =
(
1− eβµ−βε1

)−1 (
1− eβµ−βε2

)−1
.

(1.70)

As one can see, function Z factorizes as a product of the factors for each energy
level. The generalization to an arbitrary number of levels is obvious:

Z = e−βΩ =
∏
a,σ

(
1− e−βεa,σ+βµ

)−1
. (1.71)

Here a enumerates the orbital degrees of freedom and σ stands for the z-
projection of the spin of a boson. The number of particles can be extracted
from Eq. (1.71) as

N = −
(
∂Ω

∂µ

)
T,V

=
∑
a,σ

fB(εa,σ), fB(ε) =
1

eβ(ε−µ) − 1
. (1.72)

The function fB(ε) is called the Bose-Einstein distribution function.
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It is instructive to formulate the derivation of the Bose-Einstein distribution
function within the framework of the maximal entropy principle. Using the
expression for the grand canonical partition function (1.71), we can compute
the entropy as −(∂Ω/∂T )V,µ. The result can be expressed in terms of the Bose-
Einstein distribution function:

S =
∑
a,σ

[(
1 + fB(εa,σ)

)
ln
(
1 + fB(εa,σ)

)
− fB(εa,σ) ln fB(εa,σ)

]
. (1.73)

Based on this observation, we can write the entropy of bosons in terms of the
occupation number na,σ for an energy level εa,σ:

S = −
∑
α,σ

[
na,σ lnna,σ − (1 + na,σ) ln(1 + na,σ)

]
. (1.74)

Maximizing the entropy S over na,σ under the constant N and E, cf. (1.44),
results in the Bose-Einstein distribution.

Introducing the density of states g(ε), we can write the thermodynamic po-
tential and the number of particles for an ideal Bose gas as follows:

Ω = TV

∫
dε g(ε) ln

(
1− e−βε+βµ

)
, N = V

∫
dε g(ε)fB(ε). (1.75)

Using the thermodynamic relation E = Ω+TS+µN , one finds the expression
for the energy:

E = V

∫
dε g(ε) εfB(ε). (1.76)

This expression for the energy allows us to write down the following result for
the specific heat:

C = V

∫
dε g(ε) ε

∂fB(ε)

∂T
(1.77)

where the derivative with respect to temperature is taken under the fixed chem-
ical potential.

1.4.2 Canonical partition function
The canonical partition function for N bosons occupying the energy levels εa
can be written in the obvious way:

ZN =
∑

∑
α nα=N

∏
α

e−βεαnα . (1.78)
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As in the case of the Fermi gas, the canonical partition function can be related
with the grand canonical partition function via the Darwin-Fowler integral:

ZN = e−βF =

2π∫
0

dθ

2π
e−iθN

∏
a,σ

(
1− e−βεa,σ+iθ

)−1
=

2π∫
0

dθ

2π
e−iθN−βΩ(iTθ).

(1.79)
For the large number of particles N � 1, the saddle point method applied to
the integral over the angle θ provides us the standard relation F = Ω(µ) + µN
where N = −∂Ω(µ)/∂µ.

1.4.3 Chemical potential in d = 2

Let us now compute the chemical potential dependence of two-dimensional ideal
Bose gas as a function of temperature, particle number, and volume. Using Eqs.
(1.75), we obtain the following result for the number of particles:

N =
gsV m

2πh̄2

∞∫
0

dε

eβε−βµ − 1
= −gsmV T

2πh̄2
ln
(
1− eβµ

)
. (1.80)

Here gs involves the number of spin degenerate states of a boson. We emphasize
that the number of particles is finite provided that chemical potential is negative,
µ < 0. Solving the above equation for µ, we obtain

µ(T ) = T ln
(
1− e−E0/T

)
, E0 =

2πh̄2N

gsmV
. (1.81)

We note that the chemical potential of an ideal Bose gas in d = 2 vanishes at T =
0. Although the characteristic energy scale E0 has exactly the same expression
as the Fermi energy, it has no such physical meaning. The chemical potential
is the monotonously decreasing function of temperature (see Fig. 1.4a). In the
degenerate region, T � E0, the chemical potential can be written as

µ(T ) = −Te−E0/T + . . . . (1.82)

In the Boltzmann regime, T � E0, the chemical potential is negative and can
be approximated by

µ(T ) = −T lnT/E0. (1.83)

1.4.4 Equation of state in d = 2

In order to find the equation of state for an ideal Bose gas, we should calculate
the thermodynamic potential, cf. Eq. (1.75). Again, we consider the case of the
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spatial d = 2 dimensions. Then, we obtain

P = −gsmT
2πh̄2

∞∫
0

dε ln
(
1− eβµ−βε

)
=
gsmT

2

2πh̄2
li2
(
eβµ
)
. (1.84)

Using (1.81), we find the equation of state for the ideal Bose gas in the spatial
d = 2 dimensions:

PV

NT
=

T

E0

li2
(
1− e−E0/T

)
. (1.85)

We note that, contrary to the case of the ideal Fermi gas, the argument of the
polylogarithm is positive and smaller than unity. Expanding the argument of
the polylogarithm in exp(−E0/T ), we find the pressure of an ideal degenerate
Bose gas, T � E0:

P =
π2

6

NT 2

V E0

. (1.86)

In the opposite case of high temperatures, T � E0, we can use the asymptotic
expansion of the polylogarithm at z � 1: li2(z) = z + z2/4. Then, we obtain
the following equation of state at T � E0:

PV = NT

(
1− E0

4T

)
. (1.87)

As one can see, it resembles the equation of state for the ideal Boltzmann gas
with the correction describing the pressure drop at the given temperature. This
correction can be interpreted as a consequence of the effective attraction be-
tween bosons. The overall behavior of the pressure with varying the tempera-
ture is shown in Fig. 1.4b. This behavior is specific to the spatial d = 2 dimen-
sions.

1.4.5 Specific heat
In order to find the specific heat at a fixed volume, we can compute the free
energy via the relation F = −PV + µN . In the spatial d = 2 dimensions the
explicit expression for the free energy of ideal Bose gas reads:

F = −NT
2

E0

li2
(
1− e−E0/T

)
+NT ln

(
1− e−E0/T

)
. (1.88)

Like the case of fermions, the free energy of ideal Bose gas is proportional to the
number of particles and depends on a single parameter T/E0. Using the results
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Figure 1.4: The temperature behavior of thermodynamic quantities in the ideal
Bose gas: (a) chemical potential, (b) pressure, and (c) specific heat.

for the chemical potential and pressure in the degenerate regime, we find the
free energy at T � E0:

F = −π
2

6

NT 2

E0

. (1.89)

So, the specific heat of ideal Bose gas at T � E0 in the spatial d = 2 dimensions
becomes

CV = −T
(
∂2F

∂T 2

)
V

=
π2

3

NT

E0

. (1.90)

We note that this expression coincides with that for the Fermi gas. However,
contrary to the Fermi gas, the linear temperature dependence for the specific
heat in the ideal Bose gas takes place in the single d = 2 dimension.

In the Boltzmann regime, T � E0, we reproduce the same result for the
specific heat of ideal Boltzmann gas: CV = N . The temperature dependence of
the specific heat is shown in Fig. 1.4c.
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1.4.6 The Bose-Einstein condensation in d = 3

The ideal Bose gas in the spatial d = 3 dimensions has an interesting physical
phenomenon called Bose-Einstein condensation. Let us write the number of parti-
cles down:

N =
gsV (mT )3/2√

2π2h̄3

∞∫
0

dz
√
z

ez−βµ − 1
. (1.91)

Here we use the density of states of free particles g(ε) = gsm
3/2ε1/2/(

√
2π2h̄3) in

d = 3. This integral has an interesting property. At µ = 0 the right hand side of
Eq. (1.91) becomes smaller with decreasing the temperature T whereas the left
hand side, i.e., number of particles, remains unvaried. The chemical potential of
ideal Bose gas in d = 3 vanishes for T < TBEC. The Bose-Einstein condensation
temperature, TBEC, is determined from the integral in Eq. (1.91) at µ = 0:

TBEC =
2πh̄2

m

(
N

ζ(3/2)gsV

)2/3

. (1.92)

Here ζ(z) =
∑∞

k=1 k
−z denotes the Riemann zeta function. At T < TBEC the

finite fraction of bosons occupy the ground state. We say that these bosons are
condensed or settled in the condensate. The number of bosons in the condensate
is given as

N0 = N
[
1− (T/TBEC)

3/2
]
. (1.93)

Evaluating the thermodynamic potential at µ = 0, we obtain the following
result for the pressure at T < TBEC:

PV

NT
=
ζ(5/2)

ζ(3/2)

(
T

TBEC

)3/2

. (1.94)

The pressure behavior as a function of temperature in the d = 3 case is similar
that in the d = 2 case. In particular, the pressure is a continuous function of
temperature and has no singularity at T = TBEC. We mention that the pressure
is volume-independent at T < TBEC. This indicates that the specific heat at the
fixed pressure is infinite for T < TBEC.

The dependence of the specific heat of the three dimensional ideal Bose gas
on temperature is shown in Fig. 1.5. As one can see, CV has a cusp at T = TBEC.

Problem for the seminar 13: Find the dependence of the chemical potential
on the temperatures near the Bose-Einstein condensation temperature
TBEC in the spatial d = 3 dimensions.
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Figure 1.5: The temperature dependence of the specific heat of the three dimen-
sional ideal Bose gas.

Exercise 17: Compute the variance of the thermodynamic fluctuations
for the number of particles in the ideal degenerate Bose gas in the two-
dimensional case.

Exercise 18: Calculate the inverse compressibility (∂P/∂V )T of ideal de-
generate Bose gas in d = 2.

Exercise 19: Compute the specific heat at constant pressure of ideal Bose
gas in the spatial d = 2 dimensions.

Exercise 20: Compute the specific heat of ideal Bose gas at T < TBEC in
the spatial d = 3 dimensions.

Exercise 21: Compute the specific heat of ideal Bose gas at T > TBEC in
the spatial d = 3 dimensions.
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Exercise 22: Calculate the variance of the thermodynamic fluctuations
for the number of particles in the ideal Bose gas near the Bose-Einstein
condensation temperature TBEC in the spatial d = 3 dimensions.



Chapter 2

Thermodynamics of quantum fluids

Introduction
In this chapter we apply general idea of the Gibbs method to the thermodynam-
ics of non-ideal quantum Fermi and Bose systems. In order to compute thermo-
dynamic quantities we will extensively use the second quantization. In view of
time limitations we consider traditional examples of quantum fluids only. For
the additional aspects of this chapter, we recommend the textbook [4].

43
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2.1 Weakly non-ideal Fermi gas

Introduction
In this lecture we consider the simplest model of interacting fermions. We com-
pute the thermodynamic quantities to first order in the interaction strength. The
weakly interacting fermions are testbed for the ideas of Fermi liquid which will
be discussed in next lecture.

2.1.1 Hamiltonian
We consider the interacting fermion system in the spatial d = 3 dimensions. We
assume that fermions have spin s = 1/2 and interact via point-like interaction
U > 0. The many-body Hamiltonian has the following form, H = H0 + Hint,
where

H0 =
∑
p,σ

ε(0)(p)a†pσapσ, Hint =
U

V

∑
p1+p2=p3+p4

a†p1↑a
†
p2↓ap3↓ap4↑. (2.1)

Here ε(0)(p) denotes the bare spectrum which, we assume, to be quadratic,
ε(0)(p) = p2/2m. The operator a†pσ creates a fermion in a single particle state
with momentum p and spin projection σ =↑, ↓. The operator apσ annihilates
a fermion from a single particle state with momentum p and spin projection
σ. We remind that the creation and annihilation operators satisfy the following
anti-commutation relation:

a†pσap′σ′ + ap′σ′a†pσ = δpp′δσσ′ . (2.2)

Also the following identity holds for:

Tr a†pσap′σ′e−βH0+βµN
/
Tr e−βH0+βµN = fF

(
ε(0)(p)

)
δpp′δσσ′ , (2.3)

where N stands for the operator of the particle number: N =
∑

p,σ a
†
pσapσ.

2.1.2 Thermodynamic potential
Our aim is to calculate first order interaction correction to the thermodynamic
potential. We start from expanding the Gibbs weightS = exp(−βH +βµN )
in powers of interaction constant U . Let us differentiate S with respect to β.
Then we will find that it satisfies the following equation:

dS

dβ
= −

(
H − µN

)
S . (2.4)
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Now we seek for the solution of this equation as a power series in interaction
partHint,S = S0+S1+ . . . . Obviously,S0 = exp(−βH0+βµN )whereas
S1 satisfies the following equation:

dS1

dβ
= −

(
H0 − µN

)
S1 − HintS0. (2.5)

Its solution is given as

S1 = −e−βH0+βµN

β∫
0

dτ eτ(H0−µN )Hinte
−τ(H0−µN ). (2.6)

The combination under the integral sign on the right hand side of Eq. (2.6) is
very frequently used in the perturbation theory for themany-bodyHamiltonians
and is called the interaction representation.

Therefore, we obtain

e−βΩ = e−βΩ0 − Tr e−βH0+βµN

β∫
0

dτ eτ(H0−µN )Hinte
−τ(H0−µN ) + . . . (2.7)

Here Ω0 is the thermodynamic potential of the noninteracting system. Using
the cyclic properties of trace operation, we find that

Ω = Ω0 + 〈Hint〉+ . . . , (2.8)

where the average is taken with the Gibbs density matrix corresponding to the
noninteracting Hamiltonian H0. Using Eq. (2.3), we find

Ω(µ) = Ω0(µ) +
U

V

[∑
p

fF
(
ε(0)(p)

)]2
= Ω0(µ) +

UN2
0 (µ)

4V
(2.9)

where N0(µ) = −(∂Ω0(µ)/∂µ)T,V stands for the number of particles as a func-
tion of the chemical potential in the absence of interaction. In order to find the
total energy, we should express the chemical potential in terms of the number
of particles. Taking derivative with respect to µ for the both sides of Eq. (2.9)
at fixed T and V , we find

N = N0(µ)−
UN0(µ)

2V

∂N0(µ)

∂µ
≈ N0(µ0) +

∂N0(µ0)

∂µ0

(µ− µ0)

−UN0(µ0)

2V

∂N0(µ0)

∂µ0

+ . . . (2.10)
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Here µ0 is the chemical potential in the absence of interaction, corresponding
to the given number of particles: N = N0(µ0). Therefore, we find that the
interaction shifts the chemical potential already in first order of perturbation
theory:

µ = µ0(N) +
UN

2V
+ . . . (2.11)

Using the relation between the energy and the chemical potential, µ =
(∂E/∂N)S,V , we obtain the total energy:

E = E0(N) +
UN2

4V
+ . . . (2.12)

We note that the first-order correction to the energy is temperature-
independent. Therefore, in first order in the interaction U the result for the
specific heat remains the same as for an ideal Fermi gas.

It is instructive to introduce the scattering length a instead of the interaction
potential U . To lowest order in the interaction U , i.e., in the Born approxima-
tion, the scattering length is given as a = mU/(4πh̄2). Then using Eq. (2.12),
we can write the ground state energy as

E(T = 0) =
3p2FN

10m

[
1 +

10

9π

pFa

h̄
+ . . .

]
. (2.13)

This result indicates that the expansion of the thermodynamic quantities in pow-
ers of interaction potential is justified while pFa/h̄� 1.
For the further details onweakly non-ideal Fermi gas, one can read the book [4].

Problem for the seminar 14: Find the Pauli spin susceptibility of the fermion
system to first order in the interaction potential U . Express the result in
terms of the scattering length.

Exercise 23: Find Tr
[
a†p↑e

βε(p)a†p↑ap↑ap↑e
−βε(p)a†p↑ap↑

]
.

Exercise 24: Find the expression for S2.

Exercise 25: Express zero-temperature inverse compressibility ∂P/∂V
in terms of derivative ∂µ/∂N .
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Exercise 26: Find the pressure of the fermion system at zero temperature
to first order in the interaction potential U . Express the result in terms
of the scattering length.
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2.2 Normal Fermi liquid

Introduction
In the previous lecture we demonstrated that the system with the weak fermion-
fermion repulsive interaction is very similar to the ideal Fermi gas. Therefore,
it is natural to formulate the theory of the interacting fermions in the way anal-
ogous to the ideal degenerate Fermi gas. Such theory, termed as the Fermi liq-
uid theory, is developed by Lev Landau [5]. Although initially the Fermi liquid
theory was developed as phenomenological, it was later confirmed by the mi-
croscopic theory for the spatial d > 1 dimension. We note that there are some
subtleties in the spatial d = 2 dimension. In this lecture we consider the Fermi
liquid for the spin s = 1/2 fermions in the spatial d = 3 dimension.

2.2.1 Main assumptions
The Fermi liquid theory is based on the Hohenberg–Kohn theorem [6] which
states that the ground state energy can unambiguously be described by some
functional depending on the distribution function alone. The Fermi liquid the-
ory is the method to compute corrections of lowest order in temperature.

The Fermi liquid phenomenology is based on several assumptions:

(i) The theory is specified in terms of quasiparticles replacing the real particles.

(ii) The quasiparticle distribution function is a matrix in the spin space: n̂(p)
which is normalized by the condition:∫

d3p

(2πh̄)3
tr n̂(p) =

∑
σ=↑,↓

∫
d3p

(2πh̄)3
nσσ(p) =

N

V
. (2.14)

Here symbol tr stands for the trace in the spin space and the sym-
bol σ =↑, ↓ denotes the z-projection of the quasiparticle spin. We em-
phasize that N is the number of real fermions. The latter statement is an
essence of the Luttinger theorem.

(iii) The ground state of the Fermi liquid can be represented with the phys-
ical picture similar to that of ideal Fermi gas. In the momentum space
the quasiparticles occupy the states inside the Fermi sphere of radius pF .
The states outside the Fermi sphere with p > pF are unoccupied. The
Fermi momentum has the same magnitude as for the ideal gas of the same
number of real particles. In other words, the quasiparticle distribution
function for the ground state has the step-like behavior analogous that in
the ideal gas,

n
(0)
σσ′(p) = Θ(pF − p)δσσ′ . (2.15)
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In accordance with Eq. (2.14), the Fermi momentum is given by the re-
lation of ideal Fermi gas:

pF = (3π2h̄3N/V )1/3. (2.16)

Here N/V is the density of the Fermi liquid.

(iv) Due to external perturbations the Fermi liquid can be driven from its
ground state. Nevertheless, at zero temperature, T = 0, the energy E of
such Fermi liquid remains some functional of distribution function n̂(p)
as well. This is the statement of the Kohn-Sham theorem.

2.2.2 Effective mass
In order to trace the similarities between the Fermi liquid and ideal Fermi gas,
it is convenient to introduce the quasiparticle excitation energy. This quantity can
be determined as a variation in the total energy of the the Fermi liquid if one
more quasiparticle is introduced into the liquid:

εσσ′ [nσ′σ(p)] =
1

V

δE

δnσ′σ(p)
. (2.17)

As stated in item (iv), the quasiparticle excitation energy is the functional of the
quasiparticle distribution function nσ′σ(p). Since, according to assumption (iii),
the quasiparticle distribution function in the ground state is uniquely determined
by the quasiparticle momentum, the quasiparticle excitation energy, ε(0)σσ′ , in the
ground state is a function of the momentum alone. Expanding this function near
p = pF , we find

ε
(0)
σσ′(p) = ε(0)(p)δσσ′ , ε(0)(p) =

[
εF + vF (p− pF )

]
+ . . . . (2.18)

Here εF denotes the magnitude of the quasiparticle energy at p = pF , εF =
ε(0)(pF ). Similarly to the ideal Fermi gas, coefficient vF determines the velocity
of quasiparticles at the Fermi level. This velocity is usually called the Fermi ve-
locity. It is also convenient to introduce the effective mass: m∗ = pF/vF . The
magnitude of effective mass differs from the mass of real fermions and depends
on the interaction between the particles in the liquid. As we will see below, the
Fermi liquid in plenty of aspects can be treated as a Fermi gas with the energy
spectrum p2/2m∗.

2.2.3 The Landau f -function
In order to describe various physical effects in the Fermi liquid state perturbed
from the ground state, we expand the total energy to second order in deviation
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of the quasiparticle distribution function from the nonperturbed step-like one,
δnσ1σ2(p) = nσ1σ2(p)− n

(0)
σ1σ2(p),

E = E0 + V
∑
σ

∫
d3p

(2πh̄)3
[ε(0)(p)− εF ]δnσσ(p) +

V

2

∑
σ1,σ2,σ3,σ4

∫
d3p

(2πh̄)3

×
∫

d3p′

(2πh̄)3
fσ1σ4,σ2σ3(p,p

′)δnσ2σ1(p)δnσ3σ4(p
′) + . . . , (2.19)

where E0 means the total ground state energy. Here the function
fσ1σ4,σ2σ3(p,p

′), called the Landau f -function, is the second variational deriva-
tive of the total energy at n̂ = n̂(0):

fσ1σ4,σ2σ3(p,p
′) =

1

V

δ2E

δnσ2σ1(p)δnσ3σ4(p
′)

=
δεσ1σ2(p)

δnσ3σ4(p
′)
. (2.20)

Since the Landau f -function is the second variational derivative of the total
energy, it has the symmetric property: fσ1σ4,σ2σ3(p,p

′) = fσ4σ1,σ3σ2(p
′,p) .

Equation (2.20) implies that the energy of quasiparticle depends on its mo-
mentum as

εσ1σ2(p) ≈
[
εF + vF (p− pF )

]
δσ1σ2 +

∫
d3p′

(2πh̄)3
fσ1σ4,σ2σ3(p,p

′)δnσ3σ4(p
′) + . . .

(2.21)

In what follows, we deal only with the small perturbations δn̂ of distribution
function. For this reason, the absolute magnitudes of momenta p and p′ can be
put equal to the Fermi momentum, i.e. p = p′ = pF . Thus, only the dependence
on the angle θ = ∠(p,p′) between the vectors p and p′ proves to be essential.
It is convenient to introduce the following parametrization,

g(εF )fσ1σ4,σ2σ3(p,p
′) = F (0)(θ)δσ1,σ2δσ3,σ4 + F (σ)(θ)σσ1,σ2σσ3,σ4 , (2.22)

where g(εF ) = pFm∗/(π
2h̄3) denotes the density of states at the Fermi energy

εF and σ = {σx, σy, σz} denotes the vector of the Pauli matrices.

2.2.4 Relation between m∗ and m
Surprisingly, the above assumptions and formulations are sufficient to derive the
first non-trivial result. We will express the effective mass m∗ of quasiparticles
via genuine massm of particles and the Landau parameter F1.

Let us consider total quasiparticle momentum. We recall the following two
points. First, the momentum of unit liquid volume equals the mass density flow.
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Second, the number of quasiparticles equals the number of genuine particles.
The total momentum of the liquid reads

P = V

∫
d3p

(2πh̄)3

∑
σ

pnσσ(p). (2.23)

Now we compute the total quasiparticle current

J = V

∫
d3p

(2πh̄)3

∑
σ,σ′

∂εσσ′(p)

∂p
nσ′σ(p). (2.24)

Since the total number of quasiparticles is exactly the same as the total number
of particlesN and due to the continuity equation, the total quasiparticle current
coincides with the total particle flow. Then we use the Galilean invariance re-
lating the total particle momentum and the total particle current as P = mJ .
This relation yields the following identity:

V

∫
d3p

(2πh̄)3

∑
σ

pnσσ(p) = mV

∫
d3p

(2πh̄)3

∑
σ,σ′

∂εσσ′(p)

∂p
nσ′σ(p). (2.25)

We note that, for an ideal Fermi gas with the quadratic spectrum, this identity
is trivial. However, for the Fermi liquid this will result in non-trivial relation
between m∗ and m. Varying both sides of Eq. (2.25) with respect to δnσσ′(p),
we obtain∫

d3p

(2πh̄)3

∑
σ

p δnσσ(p) = m

∫
d3p

(2πh̄)3

∑
σ,σ′

∂εσσ′(p)

∂p
δnσ′σ(p) +m

∫
d3p

(2πh̄)3

×
∑

σ,σ′,σ1,σ2

nσ′σ(p)
∂

∂p

∫
d3p′

(2πh̄)3
fσσ1,σ′σ2(p,p

′)δnσ2σ1(p
′). (2.26)

Since the above relation should hold for an arbitrary variation of the distribu-
tion function δnσσ′(p), we find using the symmetry properties of the Landau
f -function,

p

m
δσ1σ2 =

∂εσ1σ2(p)

∂p
−
∫

d3p′

(2πh̄)3

∑
σ,σ′

fσ1σ,σ2σ′(p,p′)
∂

∂p′nσ′σ(p
′) (2.27)

In the ground state we can use the relation ∂nσ′σ(p
′)/∂p′ = −p′δ(p′ −

pF )δσ′σ/p
′. Projecting Eq. (2.27) on the direction of p and choosing p = pF ,

we obtain

m∗

m
= 1 +

π∫
0

dθ sin θ
2

cos θ F (0)(θ). (2.28)
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It is convenient to expand F (0/σ)(θ) in a series in the Legendre polynomials:

F (0/σ)(θ) =
∞∑
l=0

(2l + 1)F
(0/σ)
l Pl(cos θ). (2.29)

Then we find
m∗

m
= 1 + F

(0)
1 . (2.30)

The thermodynamic stability implies that 1 + F
(0)
l > 0 [4], i.e., m∗ > 0. In

bulk 3He the magnitudes of the Fermi-liquid parameters are known to be equal
F

(σ)
0 ' −0.7, F (0)

0 ' 10.8, and F (0)
1 ' 2.08.

2.2.5 Specific heat
As usual, the specific heat is related with with changing the total energy in the
physical system as the temperature varies. The temperature variation results in
changing the distribution function. Thus, the corresponding change in the total
energy is determined by the quasiparticle energy, cf. Eq. (2.17). Therefore, at
T → 0 the specific heat of the Fermi liquid is given by the following expression,
see Eq. (2.19),

CV = V

∫
d3p

(2πh̄)3

∑
σ1,σ2

[
ε(0)σ1σ2

(p)− εF δσ1σ2

] ∂
∂T

δnσ2σ1(p). (2.31)

We mention that Eq. (2.31) can be derived from the expression of the entropy
of the Fermi gas. Using Eq. (1.43), we find

CV = V

∫
d3p

(2πh̄)3
tr
[
T
∂δn̂

∂T
ln

1− n̂(p)

n̂(p)

]
. (2.32)

Substituting distribution function n̂(p) in the Gibbs form, we obtain Eq. (2.31)
again.

Due to term ε
(0)
σ1σ2(p)−εF δσ1σ2 , the integral over momentum in Eq. (2.31) is

restricted with the close vicinity to the Fermi momentum. It is natural to assume
that the change of the distribution function due to temperature is similar to the
ideal Fermi gas, i.e., can be described by the Fermi-Dirac distribution with some
chemical potential variation ∆µ and temperature T . We note that the chemical
potential correction ∆µ appears as a result of keeping the number of particles
fixed (statement (ii)). Then, we can write

δnσ2σ1(p) = δσ2σ1

[
∆µ δ(ε(0)(p)− εF )−

π2T 2

6
δ′(ε(0)(p)− εF )

]
. (2.33)
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Here the dash denotes the derivative of the Dirac delta-function. We note that
the conservation of the number of particles implies that ∆µ = 0. Substituting
Eq. (2.33) into Eq. (2.31), we find [ξ = ε(0)(p)− εF ]

CV = −π
2

3
V g(εF )

∫
dξξ

∂

∂ξ
δ(ξ) =

π2

3
V g(εF )T =

V pFm∗

3h̄3
T (2.34)

where g(εF ) stands for the density of states at the Fermi momentum. We em-
phasize that result (2.34) is exactly the same as for the ideal Fermi gas on sub-
stitutingm→ m∗.

Problem for the seminar 15: To express ∂µ/∂N at zero temperature in
terms of the function F (0)(θ).

Problem for the seminar 16: To express the Pauli spin susceptibility of the
Fermi liquid in terms of the function F (σ)(θ).

Exercise 27: Using the results from the lecture onweakly non-ideal Fermi
gas, determine the functions F (0)(θ) and F (σ)(θ) to first order in the
interaction strength.

Exercise 28: Using the expression for the Landau f -function, determine
∂P/∂V to first order in interaction.

Exercise 29: Using the expression for the Landau f -function, determine
the variance for thermodynamic fluctuations of the number of particles,
〈(∆N)2〉 to first order in interaction at low temperatures.

Exercise 30: Using the following expression for the energy of electron
system in the magnetic field at T = 0,

E =
1

2
E0(N↑) +

1

2
E0(N↓) +

µBB

2
(N↑ −N↓) +

U

V
N↑N↓,

find the spin susceptibility ∂M/∂B where M = µB(N↑ − N↓)/2 and
E0(N) is the ideal Fermi gas energy.
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2.3 Weakly non-ideal Bose gas

Introduction
In this lecture we consider simplest model of interacting bosons. Themain ques-
tion of interest is how the repulsive interaction between bosons affects the Bose-
Einstein condensation.

2.3.1 Hamiltonian
We consider the three-dimensional spinless bosons interacting via the repulsive
contact interactionU > 0. The many-bodyHamiltonian has the following form:
H = H0 + Hint, where

H0 =
∑
p

ε(0)(p)b†pbp, Hint =
U

2V

∑
p1+p2=p3+p4

b†p1
b†p2
bp3bp4 . (2.35)

Here ε(0)(p) denotes the bare spectrum assumed to be quadratic, ε(0)(p) =
p2/2m. The operator b†p creates a boson in the single particle state with mo-
mentum p. The operator bpσ annihilates a boson from single particle state with
momentum p. We remind that the creation and annihilation operators satisfy
the following commutation relation,

bp′b†p − b†pbp′ = δpp′δσσ′ . (2.36)

Also the following identity holds for,

〈b†pbp′〉 = Tr b†pbp′e−βH0

/
Tr e−βH0 = fB

(
ε(0)(p)

)
δpp′ . (2.37)

Hereafter we deal with the canonical ensemble keeping the constant number
of particles N in mind.

2.3.2 Condensate
As we know, there is a phenomenon of Bose-Einstein condensation in the
three-dimensional ideal Bose gas. Before diagonalizing the Hamiltonian H ,
we should take an existence of condensate into account. This means that the
occupation number of the zero-momentum many-body state, p = 0, is macro-
scopically large, i.e., 〈b†0b0〉 = N0 ∼ N . The convenient way to take this fact
into account is to treat the creation and annihilation operators b†0 and b0 as real
numbers but operators. They satisfy the relation

b20 +
∑
p ̸=0

b†pbp = N. (2.38)
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Also we assume that the number of particles in the states with p > 0 is small.
Then, we can simplify the interaction Hamiltonian in the following way,

Hint → H (2)
int =

U

2V
b40 +

U

2V
b20
∑
p ̸=0

[
bpb−p + b†pb

†
−p + 4b†pbp

]
+ · · · = UN2

2V

+
UN

2V

∑
p ̸=0

[
bpb−p + b†pb

†
−p + 2b†pbp

]
+ . . . (2.39)

Here we neglect the terms that contain either one or zero b0. Also we have ex-
pressed b20 in terms of particle number N using the relation (2.38). Now the
total HamiltonianH0+H (2)

int is quadratic in the creation and annihilation oper-
ators. However, H (2)

int contains the terms which do not conserve the number of
bosons. This implies that H0 +H (2)

int is not diagonal in the initial single particle
basis.

2.3.3 Unitary transformation of the Hamiltonian

In order to diagonalize quadratic Hamiltonian H0 + H (2)
int , it is convenient to

perform the unitary canonical transformation called the Bogolubov transformation.
Let us introduce new creation and annihilation boson operators β†

p and βp sat-
isfying the commutation relation (2.36). Now we express the original boson
creation and annihilation operators via the linear combinations of new ones

bp = upβp + vpβ
†
−p, b†p = upβ

†
p + vpβ−p. (2.40)

Here up and vp are real functions of the momentum. To fix them, we impose two
conditions:

(i) operators b†p and bp satisfy the relation (2.36);

(ii) Hamiltonian H0 +H (2)
int expressed in terms of operators β†

p and βp does
not contain terms like β†

pβ
†
−p and βpβ−p.

The requirement (i) results in the constraint: u2p − v2p = 1. This can be satisfied
by an auxillary function θp such that up = cosh θp and vp = sinh θp. The second
requirement determines the function θp as

sinh 2θp = − UN

V ε(p)
, ε(p) =

√
(ε(0)(p) + UN/V )2 − (UN/V )2. (2.41)
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The quadratic Hamiltonian becomes

H0 + H (2)
int = E0 +

∑
p ̸=0

ε(p)β†
pβp,

E0 =
UN2

2V
+

1

2

∑
p ̸=0

[
ε(p)− ε(0)(p)− UN

V

]
. (2.42)

The form (2.42) of the quadratic Hamiltonian suggests that operatorsβ†
p creates

and operator βp annihilates the quasiparticles with the energy ε(p). The ground
state energy is given by E0. For the quadratic bare spectrum, ε(0)(p) = p2/2m,
the quasiparticle energy has the following dependence on the momentum,

ε(p) =

√
u2p2 +

(
p2

2m

)2

=

{
up, p�

√
aN/V

p2/(2m),
√
aN/V � p.

(2.43)

Here we introduce the scattering length a = mU/(4πh̄2). Therefore, the quasi-
particle spectrum at small momentum has acoustic phonon dispersion with the
sound velocity u =

√
4πaN/(m2V ). At large momentum the quasiparticle

spectrum is almost the same as the bare one.
The ground state energy (2.42) can be expressed via the scattering length

as [4]

E0 =
2πh̄2aN2

mV

[
1 +

128

15

(
a3N

πV

)1/2
]
. (2.44)

As one can see, the expansion in interaction is governed by the small parameter
a3N/V � 1. Differentiating the ground state energy E0 with respect to the
number of particles, we find the chemical potential at zero temperature:

µ(T = 0) =
4πh̄2aN

mV

[
1 +

32

3

(
a3N

πV

)1/2
]
. (2.45)

We emphasize that the chemical potential of non-ideal Bose at zero temperature
is positive. As we will see below, this implies that not all the particles are in the
condensate at zero temperature. Also we note that the small parameter of the
theory can be written as a ratio µ(T = 0)/TBEC ∼ a(N/V )1/3 � 1 (see Eq.
(1.92)).

2.3.4 Specific heat
Using Eq. (2.42), we can write the total energy in the following form,

E = E0 + V

∫
d3p

(2πh̄)3
ε(p)

eβε(p) − 1
. (2.46)
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Approximating the quasiparticle spectrum by its small momentum asymptote,
we find the total energy,

E = E0 +
π2

30

V T 4

u3
. (2.47)

The evaluation of the integral in such approximation requires the characteristic
thermal momentum T/u to be smaller than µ. This limits the applicability of
Eq. (2.47) with low temperatures, T � µ(T = 0). The specific heat can be
written as

CV =

(
∂E

∂T

)
V

=
2π2

15

V T 3

u3
. (2.48)

2.3.5 The number of particles in the condensate

Using the relation (2.38), we can express the average number of particles in the
condensate via the quasiparticle distribution function:

N0 = b20 = N − V

∫
d3p

(2πh̄)2

[
u2pfB(ε(p)) + v2p

(
fB(ε(p)) + 1

)]
. (2.49)

Replacing the distribution function fB with its zero magnitude at temperature
T = 0, we obtain the number of particles in the condensate at zero temperature,

N0(T = 0) = N − V

∫
d3p

(2πh̄)3
m2u2

2ε(p)[ε(p) + p2/(2m) +mu2]

= N

[
1− 8

3

(
a3N

πV

)1/2
]
. (2.50)

As we have mentioned above, due to interparticle interaction the number of
particles in the condensate at zero temperature is smaller than the total number
of particles N . This effect is called the depletion of condensate.

2.3.6 The Gross–Pitaevskii equation

In the absence of the translation invariance it is convenient to develop another
formulation of the theory of weakly non-ideal Bose gas at zero temperature.
Let us introduce the operator Ψ(r) =

∑
p bpe

ipr/
√
V . In the Heisenberg rep-

resentation the operator bp becomes time-dependent and satisfies the following
equation:

dbp
dt

= i[H − µN , bp]. (2.51)
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Using the commutation relation (2.36), we find

i
dbp
dt

=
(
ε(0)(p)− µ

)
bp +

U

V

∑
p+p2=p3+p4

b†p2
bp3bp4 . (2.52)

This equation can be rewritten as the following equation for the operator Ψ(r):

i
dΨ(r)

dt
=

(
−∇2

2m
− µ+ Vext(r)

)
Ψ(r) + UΨ†(r)Ψ2(r). (2.53)

Here we have used the quadratic bare spectrum and added the external con-
fining potential Vext(r). At low temperatures the operator Ψ(r) is dominated
by its condensate part which can approximately be treated as a usual numerical
variable Ψ0(r). The accurate consideration demonstrates that the interaction
potential U should be substituted by the scattering length. Then, we arrive at
the Gross-Pitaevskii equation for the condensate wave function

i
dΨ0(r)

dt
=

(
−∇2

2m
− µ+ Vext(r)

)
Ψ0(r) +

4πh̄2a

m
|Ψ0(r)|2Ψ0(r). (2.54)

In the absence of the external potential, the homogeneous solution Ψ0 exists
provided that the chemical potential equals 4πh̄2a|Ψ0|2/m. Comparing this ex-
pression with Eq. (2.45), we find that |Ψ0|2 is equal to the condensate density
N0/V .

Let us consider the inhomogeneous solution of Eq. (2.54) in the form Ψ =√
N0/V +A exp(−iωt+ipr)+B∗ exp(iωt−ipr). Substituting this solution into

Eq. (2.54) and expanding to the first order in A and B∗, we find the following
system of equations:(

ω − p2

2m
− µ −µ

−µ −ω − p2

2m
− µ

)(
A
B

)
= 0. (2.55)

This system of equations has nonzero solution for a provided the determinant
of the matrix vanishes. Hence we find the following condition for the frequency

ω2 =
p2

2m

(
p2

2m
+ 2µ

)
≡ ε2(p). (2.56)

Therefore, the quasiparticles obtained after the Bogolyubov transformation are
quanta of the weak modulation of the condensate described by the Gross-
Pitaevskii equation.

Problem for the seminar 17: Compute the ground state energy E0 given by
Eq. (2.42).
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Problem for the seminar 18: Compute the temperature dependence of the
number of particles in condensate at µ(0) � T � TBEC(an

1/3)1/4.

Problem for the seminar 19: Using the Gross-Pitaevskii equation, find the
solution for a vortex and determine its energy.

Exercise 31: Compute Tr
[
b†pe

−βε(p)b†pbp/2bpe
−βε(p)b†pbp/2

]
/Tr

[
e−βε(p)b†pbp

]
.

Exercise 32: Determine the pressure of non-ideal Bose gas at zero tem-
perature.

Exercise 33: Compute the zero-temperature sound velocity cs =√
−(V 2/(mN))∂P/∂V in non-ideal Bose gas. To find its deviation

from the velocity u.

Exercise 34: Find the dependence of the chemical potential on T at low
temperatures, T � µ(T = 0).

Exercise 35: Determine the dependence of the number of particles in the
condensate at low temperatures. To compare with the result for an ideal
Bose gas.

Exercise 36: Using the Gross-Pitaevskii equation, determine the spec-
trum of weak modulation of the condensate wave function.
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2.4 Superfluidity

Introduction

In this lecture we consider the phenomenon of superfluidity. This phenomenon
can occur both in Bose and Fermi systems. The example of the former is the
superfluidity in 4He while the example of the latter is the superfluidity in 3He.
We will discuss the theory of superfluidity as the phenomenological one. More
details on the theory of the superfluidity can be found in the book [7].

2.4.1 Criterion of superfluidity

The shape of the quasiparticle spectrum in liquid helium has been suggested
by Lev Landau (see Fig. 2.1). For the small magnitudes of momentum, the
spectrum is phonon-like and similar to the spectrum of non-ideal Bose gas, i.e.
εph(p) = up. In contrast to the non-ideal Bose gas the spectrum in Fig. 2.1 has
the minimum at nonzero momentum p0. Near the minimum the quasiparticle
spectrum can be approximated as εrot(p) = ∆ + (p − p0)

2/(2mr). The corre-
sponding segment of the spectrum is called the roton spectrum. For the liquid
helium, the parameters of the phonon and roton spectra are known to be as
follows: u ≈ 240 m/s, ∆ ≈ 8.6 K,mr ≈ 0.14m4He, and p0/h̄ ≈ 1.9 · 108 cm−1.

Let us consider liquid helium flowing with some velocity in a capillary at
zero temperature. The energyE and momentumP are related to the energyE0

and momentum P0 in the coordinate frame where the liquid helium is at rest in
the following way:

E = E0 + P0v +Mv2/2, P = P0 +Mv. (2.57)

HereM denotes the total mass of the liquid helium. Let us imagine that a quasi-
particle with momentum p is created in the frame where the fluid is at rest. Then
the energy and momentum of the liquid are equal toE0 = ε(p) and P0 = p. Cor-
respondingly, the energy of the fluid flowing with velocity v in the presence of
a single quasiparticle is given as E = ε(p) + pv +Mv2/2. Hence we can con-
clude that the energy of a quasiparticle in the fluid flowing at velocity v becomes
ε(p) + pv. If this quantity is positive, the creation of quasiparticles is energet-
ically unfavorable. Consequently, a quasiparticle in the flowing fluid can be
created if its velocity v is larger than ε(p)/p at least at some nonzero value of
the momentum p. Therefore, there is no quasiparticle production in the fluid
flowing at the velocities below the critical velocity,

v < vcr = min
p
[ε(p)/p]. (2.58)
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Figure 2.1: Sketch of the quasiparticle spectrum in the liquid helium. The linear
part at p→ 0 corresponds to the phonon branch. The vicinity of the momentum
p0 describes the roton branch.

The absence of quasiparticles at zero temperature suggests that the liquid
can experience the frictionless flow, demonstrating the phenomenon of superflu-
idity.

2.4.2 Density of the normal component
At nonzero temperature there is a finite number of excitations in the liquid.
However, if condition (2.58) is fulfilled, there are no additional excitations
which can be created. Let us assume that the fluid flows as a whole with veloc-
ity vs whereas the gas of quasiparticles move at velocity vn. In the coordinate
frame in which the liquid is at rest the quasiparticles move at velocity vn − vs.
The quasiparticle with energy ε(p) in the frame where the fluid is at rest can
be produced with the probability fB(ε(p)− p(vn − vs)) since the probability is
equal to fB(ε) for the quasiparticles at rest. Therefore, the total momentum of
quasiparticles per unit volume becomes

P =

∫
d3p

(2πh̄)3
p fB

(
ε(p)− p(vn − vs)

)
. (2.59)

On the other hand, the total momentum can be written as the momentum per
unit volume in the coordinate frame at which the liquid is at rest: P = j − ρvs.
Here ρ stands for the total density of the liquid and j denotes the momentum in
the laboratory frame, so-called mass flow. In order to construct the expression
for j, we should take the following physical constraints into account:

(i) momentum P depends on the difference vn − vs;
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(ii) mass flow j is a vector and should be a function of two vectors vn and vs.

The only possibility is to set j = ρnvn + ρsvs where ρ = ρn + ρs; ρn and ρs
are called the density of the normal component and the superfluid density, respectively.
We note that, in general, the densities ρn and ρs are some scalar functions of the
relative or counterflow velocityw = vn − vs. Expanding the right hand side of
Eq. (2.59) in the limit w → 0, we find

ρn =
1

3

∫
d3p

(2πh̄)3
p2
(
−∂fB(ε)

∂ε

)
ε=ε(p)

. (2.60)

The phase transition to the superfluid state from the normal state occurs at the
so-called λ–point at which ρs = ρ− ρn vanishes. The normal-superfluid transi-
tion temperature for the liquid helium is 2.17 K at zero pressure. In the super-
fluid phase, ρs > 0 and ρs = ρ at T = 0.

2.4.3 Specific heat

Thermodynamics of superfluid liquid is determined by the quasiparticle excita-
tions. Their free energy can be written as

Fqp = TV

∫
d3p

(2πh̄)3
ln
[
1− e−β(ε(p)−pw)

]
. (2.61)

The following remark is in order here. The right hand side of the expression for
Fqp resembles the thermodynamic potential of the Bose gas with zero chemical
potential. This is not occasionally. The number of quasiparticles is determined
by the extremum of their energy, i.e., the chemical potential of quasiparticles in
the thermal equilibrium is zero, µqp = ∂Eqp/∂Nqp = 0. In the case of weakly
non-ideal Bose gas we have checked it by the direct computation of the energy.
For zero chemical potential, the thermodynamic potential and the free energy
coincide. The energy of quasiparticles can be written as

Eqp = V

∫
d3p

(2πh̄)3
ε(p)− pw

eβ(ε(p)−pw) − 1
. (2.62)

At zero relative velocity, w = 0, the phonon contribution to the energy is the
same as in the non-ideal Bose gas, cf. Eq. (2.47).

Problem for the seminar 20: Show that the critical velocity to produce two
excitations in superfluid exceeds that for the single one.
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Problem for the seminar 21: Find the contributions to the normal density
ρn from the phonon and roton parts of the spectrum.

Problem for the seminar 22: Calculate the roton contribution to specific
heat at zero relative velocity.

Exercise 37: Show that the critical velocity is smaller than∆/p0. Use the
condition ∆ � p20/m.

Exercise 38: Find the critical velocity for a non-ideal Bose gas.

Exercise 39: Determine how the normal density depends on the relative
velocity w, resulting from the sound segment of excitation spectrum.

Exercise 40: Determine how the normal density depends on the relative
velocity w, resulting from the roton segment of excitation spectrum.

Exercise 41: Calculate the phonon contribution to specific heat as a func-
tion of relative velocity.
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2.5 Superconductivity

Introduction
In this lecture we discuss the Bardeen–Cooper–Schrieffer (BCS) model and
thermodynamic aspects of the superconductivity phenomenon. This phe-
nomenon occurs in the weakly interacting Fermi gas due to the attractive nature
of the interaction. Superconductivity is an example of breaking of the assump-
tions for the Fermi liquid theory. More details on the superconducting proper-
ties of materials can be found in the book [8].

2.5.1 The Cooper instability
Let us consider two electrons with the opposite spins and with the attraction
between them in the vicinity of the Fermi surface. The two-particle Schrödinger
equation reads[

− h̄2

2m

(
∇2

1 +∇2
2

)
+ U(r1 − r2)

]
ψ(r1, r2) =

(
δϵ+

p2F
m

)
ψ(r1, r2). (2.63)

We assume that the electrons have the opposite momenta p and −p such that
the electron pair as a whole is at rest. Let two electrons are above the Fermi
surface, i.e., the momentum corresponding to their relative motion satisfies the
inequality, p > pF . Also we assume that the attraction potential is constant,
U(r1−r2) = −λδ(r1−r2)with λ > 0. It is convenient to introduce the center-
of-mass coordinate R = (r1 + r2)/2 and the relative coordinate r = r1 − r2.
Then the Schrödinger equation for the Fourier transform of the wave function,
ψ̃(p) =

∫
d3re−ipr/h̄ψ(r), that describes the relative motion, can be written as

follows,
p2

m
ψ̃(p)− λ

V

∑
p′

ψ̃(p′) =

(
δϵ+

p2F
m

)
ψ̃(p). (2.64)

To have nontrivial solution of the equation, the following relation should be
fulfilled

1 =
∑
p

λ/V

p2/m− p2F/m− δϵ
=
λg(EF )

4

εΛ∫
0

dε

ε− δϵ/2
=
λg(EF )

4
ln

εΛ
−δϵ/2

.

(2.65)
Here g(EF ) = pFm/(π2h̄3) denotes the density of states at the Fermi energy.
We have here introduced the high energy cut-off εΛ to regularize the integral
over energies. On the whole, we obtain that a pair of electrons with attraction
has the negative binding energy δϵ = −2εΛ exp(−4/[λg(εF )]). This implies that
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an arbitrary weak attraction favors the creation of electron pairs with momenta
p and −p near the Fermi surface. This phenomenon is referred to as Cooper
instability and is analogous to the formation of a bound state in an arbitrary
weak one-dimensional potential well.

2.5.2 The mean-field solution of BCS Hamiltonian
Motivated by the Cooper instability phenomenon, we simplify the Hamiltonian
(2.1) and consider the following many-body Hamiltonian (it is known as the
Bardeen-Cooper-Schrieffer Hamiltonian): HBCS = H0 + Hint, where

H0 =
∑
p,σ

ε(0)(p)a†pσapσ, Hint = − λ

V

∑
p1,p2

a†p1↑a
†
−p1↓ap2↓a−p2↑. (2.66)

Here ε(0)(p) denotes the bare electron spectrum assume to be quadratic,
ε(0)(p) = p2/2m. The operator a†pσ creates a fermion in a single particle state
with momentum p and spin projection σ =↑, ↓. The operator apσ annihilates a
fermion from the single particle state with momentum p and spin projection σ.
The positive constant λ = 4πh̄2|a|/m governs the magnitude of the attraction
between the fermions and a stands for the negative scattering length.

Let us perform the canonical transformation of the fermion annihilation op-
erators:

ap,↑ = upαp,↑ + vpα
†
−p,↓, ap,↓ = upαp,↓ − vpα

†
−p,↑. (2.67)

The creation operators transform accordingly. New operators α†
p,σ and αp,σ

satisfy the proper anti-commutation relations provided the following relation
should hold for

u2p + v2p = 1. (2.68)

In order to resolve this constraint, we can use the parametrization: up = cos θp
and vp = sin θp. Then we find

H − µN = 2
∑
p

ξpv
2
p +

∑
p,σ

ξp(u
2
p − v2p)α

†
p,σαp,σ + 2

∑
p

ξpupvp
(
α†

p,↑α
†
−p,↓

+α−p,↓αp,↑
)
− λ

V

∑
p1,p2

A †
p1

Ap2 , (2.69)

where ξp = ε(0)(p)− µ and

Ap = u2pα−p,↓αp,↑ − v2pα
†
p,↑α

†
−p,↓ + upvp

(
α−p,↓α

†
−p,↓ −α†

p,↑αp,↑
)
. (2.70)

Now we assume that new operators α†
p,σ and αp,σ describe annihilation

and creation of non-interacting quasiparticles with some energies εσ(p), i.e.
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〈α†
p1,σ1

αp2,σ2 = nσ1(p1)δp1,p2δσ1,σ2 . Then we find the following average

〈H − µN 〉 = 2
∑
p

ξpv
2
p +

∑
p,σ

ξp(u
2
p − v2p)nσ(p)−∆2V /λ, (2.71)

where
∆ =

λ

V

∑
p

upvp
(
1− n↑(p)− n↓(p)

)
. (2.72)

Here we use that
∑

p1,p2
〈A †

p1
Ap2〉 can be approximated in the thermodynamics

limit V → ∞ as
∑

p1,p2
〈A †

p1
〉〈Ap2〉. Next we minimize 〈H − µN 〉 over θp at

the fixed values of nσ(p) (i.e., at the constant entropy),

δθp〈H − µN 〉 = 2
∑
p

(
ξp sin 2θp −∆ cos 2θp)

(
1− n↑(p)− n↓(p)

)
δθp.

(2.73)

Therefore, the minimum of 〈H − µN 〉 corresponds to tan 2θp = ∆/ξp, i.e. to
the following values of up and vp:

u2p =
1

2

(
1 +

ξp√
∆2 + ξ2p

)
, v2p =

1

2

(
1− ξp√

∆2 + ξ2p

)
. (2.74)

For these values of up and vp, the Hamiltonian (2.69) becomes

H − µN = E0 + H (0)
qp + H (int)

qp , (2.75)

where

H (0)
qp =

∑
p,σ

√
∆2 + ξ2p α

†
p,σαp,σ,

E0 =
∑
p

(
ξp −

√
∆2 + ξ2p

)
+
∑
p

∆2

2
√
∆2 + ξ2p

(
1− n↑(p)− n↓(p)

)
. (2.76)

The quadratic Hamiltonian H (0)
qp suggests that the distribution functions of

the quasiparticles are given as n↑(p) = n↓(p) = fF
(
ε(p)

)
, where the quasi-

particle spectrum is equal to ε(p) =
√
∆2 + ξ2p . The Hamiltonian H (int)

qp =

−(λ/V )
∑

p1,p2

(
A †

p1
−〈A †

p1
〉
)(

Ap2 −〈Ap2〉
)
describes the interaction of quasi-

particles. It can safely be neglected in the thermodynamic limit V → ∞.
The parameter ∆ determines the gap in the quasiparticle spectrum (see Fig.

2.2) and satisfies the self-consistent equation (cf. Eq. (2.72)):

∆ =
λ

V

∑
p

∆

2ε(p)
tanh

ε(p)

2T
, ε(p) =

√
∆2 + ξ2p . (2.77)
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Figure 2.2: (a) Sketch of the quasiparticle spectrum in the superconductor. (b)
Sketch of the density of states for quasiparticles in the superconductor.

Equations (2.76) and (2.77) constitute the mean–field solution of the BCS
Hamiltonian. We mention that the BCS Hamiltonian can formally be solved
exactly via the Bethe anzats method [9]. We note that the self-consistent equa-
tion can be written as ∆ = −(λ/V )

∑
p〈ap↑a−p↓〉. The average 〈ap↑a−p↓〉 is

referred to as the anomalous average.

2.5.3 The ground state

The self-consistent gap equation, Eq. (2.77), has an obvious solution∆ = 0. At
the same time it has non-trivial solution as well. Let us find non-trivial solution
at T = 0. Then the gap equation becomes

1 =
λ

2

∫
d3p

(2πh̄)3
1√

∆2 + ξ2p
. (2.78)

Linearizing the bare spectrum near the Fermi energy, we can use approximation
ξp = vF (p − pF ). Introducing the high energy cut-off εΛ � ∆ for the integral
over momentum, we find

1 =
λg(EF )

2

εΛ∫
0

dξp√
∆2 + ξ2p

=
λg(EF )

2
ln
[εΛ
∆

+

√
1 +

ε2Λ
∆2

]
→ ∆(T = 0) = ∆0 ' 2εΛe

−2/[λg(EF )]. (2.79)

In order to determine which solution ∆ = 0 or ∆ = ∆0 is realized, we should
find a difference in the ground state energy for these solutions. This difference
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is called the condensation energy. The latter is given by

Econd = E0[∆0]− E0[0] =
∑
p

(
∆2

0

2ε(p)
− ∆2

0

ε(p) + |ξp|

)
= −V g(EF )∆

2
0

2

×
∞∫
0

dx(
√
x2 + 1− x)√

x2 + 1(
√
x2 + 1 + x)

= −V g(EF )∆
2
0

4
. (2.80)

Therefore, one can see that at T = 0 it is more energetically favorable to open
the gap∆0 at the Fermi energy in the quasiparticle spectrum. One can demon-
strate that the condensation energy decreases with increasing the temperature
and vanishes at the critical temperature Tc.

We note that the quasiparticle spectrum ε(p) =
√

∆2 + ξ2p has nonzero
critical velocity. Therefore, superfluidity is possible in the Fermi gas with at-
traction. Because of electron charge the superfluid properties affect the tem-
perature behavior of the electrical resistivity. Below the critical temperature Tc
the resistivity vanishes. This phenomenon is termed as superconductivity.

2.5.4 Specific heat
Using Eq. (2.76), the total energy can be written as

E = E0 + 2
∑
p

ε(p)fF
(
ε(p)

)
. (2.81)

The specific heat can be obtained as follows

CV = 2
∑
p

ε(p)
∂fF

(
ε(p)

)
∂T

. (2.82)

At low temperatures, T � ∆0, we can approximate the quasiparticle spec-
trum as ε(p) ≈ ∆0+ξ

2
p/(2∆0) and substitute the Fermi-Dirac distribution func-

tion by the Boltzmann distribution. Then we obtain

CV = V g(EF )∆0
∂

∂T

∞∫
0

dξpe
−∆0/T−ξ2p/(2∆0T ) = V g(EF )

√
2π3∆5

0

T 3
e−∆0/T .

(2.83)

Problem for the seminar 23: Find the temperature behavior of the gap and
the condensation free energy near Tc.
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Problem for the seminar 24: Find the magnitude of the jump in the specific
heat at the transition temperature.

Exercise 42: Find the density of states of quasiparticles with the spectrum√
∆2 + ξ2p .

Exercise 43: Find the temperature behavior of the gap at low tempera-
tures, T � ∆0.

Exercise 44: Show that Eq. (2.82) follows from ∂E/∂T as a result of the
self-consistent equation.

Exercise 45: Find the critical velocity for the spectrum ε(p) =
√
∆2 + ξ2p .

Exercise 46: Express the normal density in terms of the gap. Determine
the behavior of the normal density at T → 0 and T → Tc.
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2.6 The Luttinger liquid

Introduction

In this lecture we discuss the model of strongly interacting one-dimensional
fermions which can be rewritten in the boson representation and, then, can ex-
actly be solved. The additional details can be found in Refs. [10, 11].

2.6.1 Bosonization of non-interacting spinless 1D fermions

In the spatial d = 1 dimension the Fermi surface reduces to the two points
p = ±pF alone. One can describe the fermions near the Fermi point p = pF
(p = −pF ) as the particles moving to the ‘right’ (‘left’). The corresponding
Hamiltonian for spinless fermions (for the spin effects, see Refs. [10, 11]) can
be written as

H − µN = vF
∑
p,η=±

(
ηp− pF )a

†
η,paη,p. (2.84)

Here the operators a†+,p and a
†
−,p create the right and left movers with momen-

tum p, respectively. We emphasize that the Hamiltonian (2.84) is unbounded:
there are states with arbitrary large negative energy. This unphysical assump-
tion makes the model solvable by means of bosonisation. However, the unbound-
ness of the spectrum can lead to divergences in some intermediate results. In
order to treat them, we assume the cutoff momentum p

(+)
Λ < pF for the right

movers such that all fermionic states with p < p
(+)
Λ are occupied and p(−)

Λ > −pF
for the left movers such that all fermionic states with p > p

(−)
Λ are occupied (see

Fig. 2.3). At the end of all calculations the momentum p
(η)
Λ should be put equal

to −η∞.
Let us now consider the density operator ρη(q) =

∑
p a

†
η,p+qaη,p. Its com-

mutation relations can straightforwardly be calculated as

[
ρη1(q1), ρη2(q2)

]
= δη1,η2

∑
p1,p2

[
δp1,p2+q2a

†
η1,p1+q1aη1,p2 − δp2,p1+q1a

†
η1,p2+q2aη1,p1

]
= δη1,η2

[∑
p2

a†η1,p2+q1+q2aη1,p2 −
∑
p1

a†η1,p1+q1+q2aη1,p1

]
= 0. (2.85)

This result that two density operators commute is obtained as a subtraction of
two quantities. In the case q1 = −q2 the expectation value of each of two quan-
tities is formally infinite. Therefore, special care to treat this case is necessary.
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Figure 2.3: Sketch of the 1D fermion spectrum. The states between p(−)
Λ < p <

p
(+)
Λ are always occupied by fermions.

We find (for q > 0)[
ρ+(−q), ρ+(q)

]
=
∑
p1,p2

(
a†+,p1−qa+,p1a

†
+,p2+qa+,p2 − a†+,p2+qa+,p2a

†
+,p1−qa+,p1

)
=
∑
p1,p2

δp2,p1−q

(
a†+,p1−qa+,p2 − a†+,p2+qa+,p1

)
=
∑
p1

(
n+,p1−q − n+,p1

)
, (2.86)

where nη,p = a†η,paη,p. To proceed further, let us consider how the operator∑
p1

(
n+,p1−q − n+,p1

)
acts on the vacuum state |vac〉,

∑
p1

(
n+,p1−q − n+,p1

)
|vac〉 =

∑
p
(+)
Λ ⩽p<p

(+)
Λ +q

1|vac〉 = qL

2πh̄
|vac〉, (2.87)

where L denotes the length of the system. As one can check, the same result
holds for the state with an arbitrary number of quasiparticles. Therefore, we
derive the following commutation relation,[

ρ+(−q), ρ+(q)
]
=

qL

2πh̄
. (2.88)

In the similar way, one can compute the commutation relation for the left moving
fermions. Finally, we can summarize the commutation relations as (for q2 > 0),[

ρη1(q1), ρη2(q2)
]
= δη1,η2δ−q1,q2

η2q2L

2πh̄
. (2.89)

We note that ρη(−q) = [ρη(q)]
†. Similarly, we can find (for q > 0),[

H , ρη(q)
]
= ηvF qρη(q),

[
H , ρη(−q)

]
= −ηvF qρη(−q). (2.90)
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The commutation relations (2.88) and (2.90) suggest that the density operators
can be viewed as bosonic creation and annihilation operators (for q > 0):

ρ+(q) =

√
qL

2π
b†+,q, ρ+(−q) =

√
qL

2π
b+,q ,

ρ−(−q) =
√
qL

2π
b†−,q, ρ−(q) =

√
qL

2π
b−,q ,

(2.91)

with the proper bosonic commutation relation [bη,q, b
†
η′,q′ ] = δηη′δq,q′ . Hamilto-

nian can be expressed as

H − µN =
∑
η,q>0

vF qb
†
η,qbη,q. (2.92)

2.6.2 The interacting fermions: g-ology
Let us consider now the interaction between fermions. It has the standard form,

Hint =

∫
dx1dx2 U(x1 − x2)ψ

†(x1)ψ(x1)ψ
†(x2)ψ(x2). (2.93)

Here the real-space fermion creation and annihilation operators can be ex-
pressed in terms of a†η,p and aη,p:

ψ†(x) =
∑
η,p

ei(ηpF+p)x/h̄a†η,p, ψ(x) =
∑
η,p

e−i(ηpF+p)x/h̄aη,p. (2.94)

Then we find that the operator corresponding to the electron density reads

ψ†(x)ψ(x) ≈
∑
η,q

eiqx/h̄ρη(q). (2.95)

Therefore the Hamiltonian Hint can be rewritten in terms of the density opera-
tors. We make the further simplification and consider the following interaction
Hamiltonian,

H (g)
int =

πg2
L

∑
η,q>0

ρη(q)ρ−η(−q) +
πg4
L

∑
η,q>0

ρη(q)ρη(−q), (2.96)

where we assume g2 and g4 to be independent of transferred momentum. Fi-
nally, the Hamiltonian for the Luttinger liquid model written in terms of boson
operators acquires the following form,

HLL =
∑
η,q>0

(
vF + g4)q b

†
η,qbη,q +

g2
2

∑
η,q>0

q
(
b†η,qb

†
−η,q + bη,qb−η,q

)
. (2.97)
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This quadratic bosonic Hamiltonian can be diagonalized using the canonical
transformation,

b†η,q = cosh θqβ†
η,q + sinh θqβ−η,q, bη,q = cosh θqβη,q + sinh θqβ†

−η,q. (2.98)

Expressing the Hamiltonian HLL in terms of new bosonic operators β†
η,q and

βη,q, we can find θq from the condition that the non-diagonal terms β†
η,qβ

†
−η,q

and βη,qβ−η,q are canceled. The value of such θq is given as follows,

cosh 2θq =
vF + g4

u
, sinh 2θq = −g2

u
, u =

√
(vF + g4)2 − g22. (2.99)

In terms of the new operators, the Hamiltonian reads

HLL = EG +
∑
η,q>0

uq β†
η,qβη,q, EG =

1

2

∑
q>0

(u− vF − g4)q. (2.100)

Therefore, the interacting 1D fermions transform into the non-interacting
bosonic quasiparticles moving at the renormalized velocity due to interaction.

In the Luttinger liquid theory the important parameter, termed as the Lut-
tinger liquid parameter, is usually introduced. It is related with the parameter θq
as follows

K = e2θq =

√
vF + g4 − g2
vF + g4 + g2

. (2.101)

The case K = 1 corresponds to the noninteracting fermions.

Problem for the seminar 25: Prove the following identity for non-
interacting bosons with spectrum ωq:

〈e
∑

q>0(αqbq+βqb
†
q)〉 = e

∑
q>0⟨(αqbq+βqb

†
q)

2⟩/2 = exp

(
1

2

∑
q>0

αqβq coth
h̄ωq

2T

)
.

Problem for the seminar 26: Demonstrate that the annihilation operator
for a right-side moving electron at a spatial point x can be written as
ψR(x) ∼ eiϕR(x), where

ϕR(x) = ϕR,0 +
NRx

L
+ i
∑
q>0

√
2π

qL

(
e−iqxb†+,q − eiqxb+,q

)
.

To determine the commutation relation between ϕR,0 and NR.
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Problem for the seminar 27: Diagonalize the Luttinger liquid Hamiltonian
(2.97) in which the boson field has a spin s = 1/2 projection index:

HLL =
∑

η,σ,σ′q>0

[(
δσ,σ′vF+g4)q b

†
ησ,qbησ′,q+

g2
2
q
(
b†ησ,qb

†
−ησ′,q+bησ,qb−ησ′,q

)]
.

Exercise 47: Compute the commutation relation
[
H , ρη(q)

]
where

ρη(q) =
∑

p a
†
η,p+qaη,p and H = vF

∑
p,η=± ηpa

†
η,paη,p.

Exercise 48: Compute the specific heat of one-dimensional bosons with
the Hamiltonian H =

∑
q>0,η=± vF qb

†
η,qbη,q and compare it with the

specific heat of ideal one-dimensional Fermi gas at T � EF .

Exercise 49: Demonstrate that the spatial representation of the density
operator of electrons moving to the right side has the following form:

ρR(x) =
∑
q>0

√
qL

2π

[
eiqxb†+,q + e−iqxb+,q

]
+

NR

L
.

where NR is the operator of the total number of right movers.

Exercise 50: Compute the specific heat for the Luttinger liquid described
by the Hamiltonian

HLL =
∑

η,σ,σ′q>0

[(
δσ,σ′vF+g4)q b

†
ησ,qbησ′,q+

g2
2
q
(
b†ησ,qb

†
−ησ′,q+bησ,qb−ησ′,q

)]
.



Chapter 3

Phase transitions and critical
phenomena

Introduction
In this chapter we give a brief introduction for the statistical mechanics meth-
ods used for description of the critical phenomena at phase transitions. Mainly,
we will consider the second-oder phase transitions that fall into the Landau
paradigm of the spontaneous symmetry breaking and existence of the order
parameter. As example, of the phase transition beyond the Landau paradigm
we discuss the Berezinskii-Kosterlitz-Thouless transition. For the additional
aspects of this chapter, we recommend the textbooks [4, 12, 13] and original
papers [14, 15, 16].
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3.1 One-dimensional Ising model

Introduction
In this lecture we consider consider the one-dimensional Ising model as simplest
example of the analytically solvable model. More details on the analytically solv-
able models can be found in the book by R. Baxter [12].

3.1.1 Hamiltonian
We consider a chain of N interacting spins s = 1/2 in the magnetic field. We
assume that the pairwise spin interaction involves the spin projection along the
magnetic field. Then the Hamiltonian can be written as

H = −
N−1∑
i=1

(
Jσiσi+1 + h

σi + σi+1

2

)
(3.1)

where (1/2)σi is the z component of the i-th spin. Since Hamiltonian H in-
volves the z components of the spin operators, we can treat σi as numbers that
can be equal to ±1. The constants J > 0 and h play the role of ferromagnetic
exchange interaction and magnetic field, respectively.

Before evaluating the partition function, the first question that should be
addressed is that about the boundary conditions. The first type of the boundary
conditions is the so-called the periodic boundary conditions:

σN = σ1. (3.2)

The periodic boundary conditions correspond to the system on a circle.
For the system determined on a segment, another type of boundary condi-

tions is used, so-called the free boundary conditions. This conditions imply that
spins σ1 and σN can acquire all possible values ±1.

Sometimes it is also convenient to use the so-called the twisted boundary con-
ditions

σN = eiασ1, (3.3)

where α is a free parameter.
In general, the properties of the system should be insensitive to the boundary

conditions in the thermodynamic limitN → ∞with the exception of the systems
with the infinite correlation length (see below).

3.1.2 Transfer matrix approach
The partition function of the model can be written as a sum of the Gibbs factors
over all possible spin configurations {σi}: Z =

∑
{σi} e

−βH . The number of
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such configurations is 2N . Let us fix two neighboring spins at sites i and i + 1:
σi = σ and σi+1 = σ′. Then they enter the expression for the partition function
as follows

Z =
∑

σσ′=±1

∑
{σz

j }′
eβJσ1σ2+

βh
2
(σ1+σ2) . . . eβJσi−1σ+

βh
2
(σi−1+σ)

(
eβJ+βh e−βJ

e−βJ eβJ−βh

)
σσ′

×eβJσ′σi+2+
βh
2
(σ′+σi+2) . . . eβJσN−1σN+βh

2
(σN−1+σN ). (3.4)

Here the dash in the sum means that the sites i and i + 1 are elliminated. Now
repeating the procedure, we find the following representation for the partition
function:

Z =
∑
σ1,σN

(T L)σ1σN
. (3.5)

Here L = N − 1 is the dimensionless length of the system and the matrix

T =

(
eβJ+βh e−βJ

e−βJ eβJ−βh

)
= eβJ

(
cosh βh+ τz sinh βh+ τxe

−2βJ
)

(3.6)

is referred to as the transfer matrix. Here τj are the Pauli matrices. We note that
the summation over σ1 and σN in Eq. (3.5) depends on the type of the boundary
conditions chosen.

The representation (3.5) for the partition function in terms of the transfer
matrix T simplifies the problem significantly. In order to evaluate the matrix
product T N , it is convenient to diagonalize the transfer matrix T . This can be
done by the orthogonal rotation

U = eiϕτy , ϕ =
1

2
arcsin

e−2βJ√
sinh2(βh) + e−4βJ

(3.7)

such that
T = U −1ΛU , Λ = diag {λ+, λ−}. (3.8)

The eigenvalues of the transfer matrix becomes

λ± = eβJ
(
cosh(βh)±

√
sinh2(βh) + e−4βJ

)
. (3.9)

We note that λ+ ⩾ λ−.
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3.1.3 Periodic boundary conditions
Let us start from the periodic boundary conditions (3.2). Then the partition
function is given as

Zper = trT L = λL+ + λL−. (3.10)

The free energy Fper = −T lnZper in the thermodynamic limitN → ∞ becomes

Fper

L
= −T

[
lnλ+ +

1

L
ln
(
1 + (λ−/λ+)

L
)] L→∞−−−→ f = −J

−T ln
(
cosh(βh) +

√
sinh2(βh) + e−4βJ

)
. (3.11)

Now we can find the magnetization per site

m =
M

L
= − 1

L

∂Fper

∂h
=

sinh(βh)√
sinh2(βh) + e−4βJ

. (3.12)

The magnetization has non-analytic dependence at zero magnetic field h = 0
and zero temperature:

M(h→ 0+)/L =

{
0 T > 0,

1 T = 0.
(3.13)

This result indicates that the one-dimensional Ising model at zero magnetic field
is always in the paramagnetic state at T > 0. At T = 0 the system goes over
into the ferromagnetic state. This is a particular example of the Mermin—Wagner
theorem.

At T = 0 the free energy is given as

Fper(T = 0) = −L(J + |h|). (3.14)

At h = 0 the free energy as a function of h has a cusp meaning the first-order
phase transition between the phases with M > 0 and M < 0. The phase dia-
gram of the Ising 1D model is shown in Fig. 3.1 .

For the finite-sized system, the correction to the free energy in the thermo-
dynamic limit can be found by expanding the logarithm in Eq. (3.11) under
assumption λ− < λ+. Then we find

Fper = fL− Te−L/ξ, ξ =
1

ln(λ+/λ−)
. (3.15)

The length scale ξ can be associated with the correlation length. At h = 0 it
diverges in the limit T → 0: ξ = exp(2βJ)/2.
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Figure 3.1: Sketch of the phase diagram of one-dimensional Ising model. The
order phase exists at T = 0 only.

3.1.4 Twisted boundary conditions
Now let us compute the partition function of the one-dimensional Ising model
with the twisted boundary conditions (3.3) with α = π:

Ztwist = trT Lτx. (3.16)

By using the relation U τxU −1 = sin 2ϕτz + cos 2ϕτx, we find

Ztwist = sin 2ϕ(λL+ − λL−). (3.17)

We mention that in zero magnetic field at T → 0 and finite L the partition
function is Ztwist = 0 (since λ+ = λ−).

The free energy with the twisted boundary conditions becomes

Ftwist

L
= −T lnλ+ − T

L
ln
[
sin 2ϕ

(
1− (λ−/λ+)

L
)] L→∞−−−→ f

−T
L
ln sin 2ϕ+

T

L
e−L/ξ. (3.18)

In the case of the twisted boundary conditions, on the contrary to the case of
periodic boundary conditions, the finite size corrections to the free energy are
not exponentially small.

Finally, we note that the transition between paramagnetic and ferromagnetic
phases in the Ising 2D and 3D model occurs at the finite temperature. The 2D
Ising model can be solved analytically.

Problem for the seminar 28: Compute the density of the domain walls. To
discuss the result at h = 0.
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Problem for the seminar 29: Find the correlation function 〈σjσj+n〉 =
Tr[σjσj+ne

−βH ]/Tr e−βH in the thermodynamic limit.

Exercise 51: Compute the spin susceptibility in the thermodynamic limit.

Exercise 52: Find the entropy and specific heat at h = 0 in the thermo-
dynamic limit.

Exercise 53: Compute the variance of the thermodynamic fluctuations of
the magnetization.

Exercise 54: Compute the free energy F̃ as a function of the magneti-
zation per spin, m = M/L which is related with F via the Legendre
transform.
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3.2 The Landau theory of phase transitions

Introduction
In this lecture we discuss the mean field approach to description of the phase
transitions. This method has been suggested by Lev Landau and now is known
as the Landau theory of phase transitions. Although being approximate it pro-
vides qualitative understanding of physics near a phase transition of the second
order.

3.2.1 The mean-field approximation
Let us now consider the Ising model on the square lattice in the d dimensions. In
order to treat the problem, we will use the mean-field approximation assuming
the weak fluctuation limit. In particular, let us suppose that the average mag-
netic moment per spin is m = 〈σi〉. Then, we can rewrite the interaction term
in the Hamiltonian as

J

2

∑
i

2d∑
k=1

σiσi+k = −J
2

∑
i

2d∑
k=1

〈σi〉〈σi+k〉+
J

2

∑
i

2d∑
k=1

(
σi〈σi+k〉+ 〈σi〉σi+k

)
+
J

2

∑
i

2d∑
k=1

(
σi − 〈σi〉

)(
σi+k − 〈σi+k〉

)
≈ −dNJm2 + 2dJm

∑
i

σi. (3.19)

Here in the last line we neglect the fluctuations of spin σi from its average value
〈σi〉. Then the Hamiltonian of the Ising model is reduced to the spin Hamilto-
nian in some effective magnetic field

HMF = dNJm2 −
∑
i

(
2dJm+ h

)
σi. (3.20)

The partition function and, consequently, the free energy can readily be com-
puted as

FMF = dNJm2 −NT ln
[
2 cosh β

(
2dJm+ h

)]
. (3.21)

Using the above expression for FMF, we can calculate the magnetization per
spin,

m = 〈σi〉 = − 1

N

∂FMF

∂h
= tanh

[
β
(
2dJm+ h

)]
. (3.22)

We note that exactly the same equation can be obtained from the condition of
extremum of FMF as a function ofm. At zero magnetic field, h = 0, the solution
of the self-consistent equation is temperature-dependent. There is the only so-
lutionm = 0 for T > Tc = 2dJ . For T < Tc, the other non-zero solutions exist
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Figure 3.2: The graphical solution of Eq. (3.22) at h = 0. The solid (dashed)
curve corresponds to the right hand side of Eq. (3.22) for T < Tc (T > Tc).

(see Fig. 3.2). The non-zero solutionm = ±m0 is more energetically favorable
than the trivial solution with m = 0. At T → 0 the non-trivial solution tends
to unity, m0 → 1. At T close to Tc we can expand the right hand side of Eq.
(3.22) in powers ofm:

m =
Tcm

T
− 1

3

(
Tcm

T

)3

+ . . . ⇒ m = ±m0, m0 =
√
3
(
1− T/Tc

)1/2
.

(3.23)
Therefore, we have a second-order phase transition at the Curie temperature Tc
between the paramagnetic phase at T > Tc and the ferromagnetic phase at
T < Tc.

In the presence of magnetic field, just at the transition point T = Tc, the
magnetization has a non-analytic behavior with h:

m0(T = Tc) =
(
3h/Tc

)1/3
. (3.24)

3.2.2 The Landau expansion
Let us consider a ferromagnet near the Curie temperature where the second-
order phase transition to paramagnetic state occurs. The ferromagnetic state is
characterized by the finite magnetizationM whereas in the paramagnetic state
it vanishes. In the thermodynamic equilibrium the magnitude of magnetization
M (we consider isotropic ferromagnet) is determined by the minimum of the
Gibbs free energy Φ(T, P,M). In addition to magnetization M we character-
ize the ferromagnetic phase by temperature and pressure. Taking into account
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that magnetization M changes continuously across the transition, we expand
Φ(T, P,M) in a power series inM :

Φ(T, P,M) = Φ0(T, P ) +
1

2
A(T, P )M2 +

1

4
B(T, P )M4 + . . . (3.25)

There are no terms of odd powers inM due to the time reversal symmetry. We
assume that the coefficient B is always positive. If it is negative, one should
perform expansion to the next order, i.e., to take the termM6 into account.

The magnitude of magnetization M can be found from the extremum con-
dition for Φ(T, P,M):

∂Φ(T, P,M)

∂M
= A(T, P )M +B(T, P )M3 = 0. (3.26)

This equation has a trivial solution M = 0. In the case A > 0 this is the only
minimum, i.e., the paramagnetic phase alone is realized. In the case A < 0 the
other minimum is possible with M = ±M0, where M0 =

√
|A|/B. The ther-

modynamic potential at this minimum is negative, Φ(T, P,M) − Φ0(T, P ) =
−A2/(4B). Therefore, for A < 0 the ferromagnetic phase is more energeti-
cally favorable. The simplest conjecture, which one can make, is that coefficient
A(T, P ) is a regular function of T − Tc where the Curie temperature Tc is de-
termined by the condition A(Tc, P ) = 0, i.e., we can write

A(T, P ) = a(P )(T − Tc), a > 0. (3.27)

At the same time we can approximate the function B(T, P ) by its value at the
transition point: B(T, P ) ≈ B(Tc, P ) ≡ B(P ). Then the temperature depen-
dence of the magnetization in the ferromagnet is given as

M0 =

{√
a/B

√
Tc − T , T < Tc,

0, T ⩾ Tc.
(3.28)

We emphasize that the M0(T ) dependence reproduces that found in the mean
field treatment of the Ising model.

Let us consider the magnetization in the magnetic field h. For definiteness,
the ferromagnet is an infinite cylinder placed in the magnetic field parallel to the
cylindrical axis. The free energy in the presence of an external magnetic field is
given as:

F (T, P,M, h) = Φ(T, P,M)−Mh− h2

8π
. (3.29)

Now the equilibrium magnetization M is determined by the extremum of
F (T, P,M, h),

∂Φ(T, P,M)

∂M
= h. (3.30)
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It is worthwhile to mention that the free energy F (T, P,M, h) satisfies the rela-
tion (∂F/∂h)M = −b/(4π) where b = h+ 4πM is the magnetic induction.

We note that the magnetization in the magnetic field h becomes non-zero at
T > Tc. It can be found from the equation

a(T − Tc)M +BM3 − h = 0. (3.31)

At T < Tc theM(h) dependence has a hysteresis. For T = Tc, we find

M = (h/B)1/3 . (3.32)

Again, we emphasize that this dependence is the same one obtained in the mean-
field analysis of the Ising model. Comparing Eq. (3.32) with the expression for
M0, we find the characteristic magnetic field h ∼ B[a(Tc − T )/B]3/2.

3.2.3 Microscopic derivation of the Ginzburg-Landau theory
Let us consider the Ising model in the d dimensions on the crystalline lattice
with coordination number z. (In the case of square lattice one finds z = 2d.)
The Hamiltonian is given as

H = −1

2

∑
ij

Jijσiσj (3.33)

where the symmetric matrix Jij describes the exchange interaction between
spins σi = ±1. Let us use the identity N∏

i=1

∞∫
−∞

dxi

 exp

[
−1

4

∑
ij

xi(K
−1)ijxj +

∑
i

xiai

]

= (2
√
π)N

√
detK exp

(∑
ij

aiKijaj

)
. (3.34)

ChoosingKij = βJij/2, we can express the partition function of the Ising model
as follows

Z =
(4π)−N/2

√
detK

 N∏
i=1

∞∫
−∞

dxi

 exp

[
−1

4

∑
ij

xi(K
−1)ijxj +

∑
i

ln
(
2 coshxi

)]
.

(3.35)

We can interpret xj as the local magnetic field conjugated to the local magneti-
zation σj . We note that being local variable, generically, xj fluctuates strongly.
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Let us introduce new variable ϕi =
∑

j(K
−1)ijxj/2 which is a weighted sum

of many local fields. One might expect that ϕi is weakly fluctuating. Now we
expand the term ln

(
2 coshxi

)
in powers of ϕi. Then we obtain the approximate

expression for the partition function

Z ≈ 2N/2
√
detK

∫
D[ϕ] e−βHeff[ϕ],

∫
D[ϕ] ≡

N∏
i=1

∞∫
−∞

dϕi√
π

(3.36)

where the effective Hamiltonian reads

Heff[ϕ] =
1

2

∑
ij

ϕi

[
Jij − β(J2)ij

]
ϕj +

β3

12

∑
ijklm

JijJikJilJimϕjϕkϕlϕm + . . .

(3.37)

For the sake of definiteness, we consider now a square lattice in the d dimen-
sions and assume that the exchange interaction is non-zero for the neighboring
spins alone. Then the Fourier transform of Jij becomes

Jq =
∑
j

Jjke
iq(rj−rk) = 2J

d∑
α=1

cos(qαa) ≈ J(2d− q2a2) + . . . (3.38)

Here rj is the vector from the origin to the position of the j-th spin and a is the
lattice spacing. Introducing the Fourier transform for the variable ϕj :

ϕj =
∑
q

ϕqe
−iqrj , (3.39)

we rewrite the effective Hamiltonian in the following form:

Heff =
1

2

∑
q

(
Jq − βJ2

q

)
|ϕq|2 +

β3

12

∑
q1,q2,q3

Jq1Jq2Jq3J−q1−q2−q3ϕq1ϕq2

×ϕq3ϕ−q1−q2−q3 . (3.40)

Herewe use the relation ϕ−q = ϕ∗
q. Using the expansion of Jq at small momenta,

cf. Eq. (3.38), we obtain the effective Hamiltonian near T = Tc = 2dJ :

Heff =
1

2

∑
q

(
T − Tc + Jq2a2

)
|ϕq|2 +

2dJ

12

∑
q1,q2,q3

ϕq1ϕq2ϕq3ϕ−q1−q2−q3 .

(3.41)
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Transforming into the real space representation, we write the effective Hamil-
tonian in terms of the continuous variable φ(r) = a−d/2

∑
q ϕq exp(iqr):

Heff =
1

2

∫
ddr
[(
T − Tc

)
φ2(r) + b

(
∇φ
)2

+
λ

2
φ4(r)

]
, (3.42)

where b = Ja2 and λ = dJad/3. Now in order to compute the partition function
for the Ising model, one should integrate over all possible configurations of the
field φ(r), i.e., to compute the functional integral,

Z =

∫
D[φ] e−Heff/T . (3.43)

Integrating the spatially independent configurations φ, we find that lnZ ≈
−Φ(T, P,M)/T where Φ(T, P,M) is given by the Landau expansion (3.25).

3.2.4 The Ginzburg-Landau theory and the Ginzburg-
Levanyuk criterion

Contrary to the Landau theory, the partition function is determined as a sum
over all configurations φ(r), cf. Eq. (3.43). This description is valid in vicin-
ity of the transition temperature, |T − Tc| � Tc. Approximating the functional
integral by its saddle point value, we obtain that the partition function is deter-
mined by the thermodynamic potential Φ coinciding formally with Heff. In the
external magnetic field h(r) the minimum of Φ is given by the solution of the
corresponding Euler-Lagrange equation:

(T − Tc)φ− b∇2φ+ λφ3 = h. (3.44)

The comparison of the first and second terms in the left hand side of this equation
implies an existence of the length scale ξ ∝

√
b/|T − Tc| called the correlation

length. The correlation length diverges at the transition point.
At T > Tc we can neglect the third-order term in Eq. (3.44). Then, we find

the linear relation between the magnetization and the magnetic field

φ(r) =

∫
ddr′Gχ(r − r′)h(r′) (3.45)

where the spin-spin correlation function is given as

Gχ(r) =

∫
ddk

(2π)d
Gχ(k)e

−ikr, Gχ(k) =
1

T − Tc + bk2
. (3.46)



3.2. THE LANDAU THEORY OF PHASE TRANSITIONS 87

We note that the spin susceptibility, discussed above, corresponds to χ =
Gχ(k = 0). Evaluating the integral over k, one finds that the spin suscepti-
bility can be written as Gχ(r) = b−1ξ2−dX (r/ξ) where ξ =

√
b/(T − Tc) and

X (z) ∝ exp(−z) at z � 1.

Let us estimate the contribution to thermodynamic potential Φ from an in-
homogeneous fluctuation of size φ0 ∼

√
|Tc − T |/λ and of spatial extent of the

order of the correlation length ξ: Φinhom ∼ bξdφ2
0/ξ

2 ∼ b2ξd−4/λ. This energy
scale should be larger than the temperature in order to have the functional inte-
gral for the partition function governed by the saddle-point approximation. We
note that at d > 4 this energy scale Φinhom increases as we approach the tran-
sition temperature since ξ diverges. Therefore, at d > 4 the Ginzburg-Landau
theory is the ultimate theory of the second-order phase transition. The latter
has the mean-field character. The dimension d = 4 is termed as the upper critical
dimension. For d ⩽ 4, we find the so-called the Ginzburg-Levanyuk criterion for
applicability of the Ginzburg-Landau theory:

ξ−1 � (λTc/b
2)1/(4−d) ⇒ |T − Tc|

Tc
� b

Tc

(
λTc
b2

) 2
4−d

∼
(
J

Tc

) 2−d
4−d

.

(3.47)
Since Tc = 2dJ for d = 2 and d = 3, the Ginzburg-Landau theory has no
parametric range of its applicability for the Ising model.

We note that the Ginzburg-Landau theory can be developed for describ-
ing the superconducting transition in conventional superconductors with the
anomalous average playing the role of the order parameter. In this case the re-
gion of applicability is wider. The fluctuation region is controlled by the small
parameter Tc/EF � 1.

Problem for the seminar 30: Find parallel spin susceptibility in zero mag-
netic field near the Curie temperature for the easy axis antiferromagnet.

Problem for the seminar 31: Compute the fluctuation correction to the spe-
cific heat above the transition, T > Tc.

Problem for the seminar 32: Find the variance for the fluctuations of the
order parameter at T > Tc.
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Exercise 55: Find the zero-field spin susceptibility χ = lim
h→0

m/h in the
paramagnetic phase close to Tc.

Exercise 56: Describe the hysteresis inm(h) at T < Tc.

Exercise 57: Find the magnitude of the jump of the specific heat under
constant pressure, CP , at the transition temperature.

Exercise 58: Compute the spin susceptibility χ = ∂M
∂H

at zero magnetic
field above and below Tc.

Exercise 59: Find the spin susceptibility and the correlation length at
T < Tc.
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3.3 Scaling ideas and renormalization group

Introduction
In this lecture we discuss the theory of phase transitions beyond the mean field
approximation. It was understood that the improved theory for the phase tran-
sitions just below the upper critical dimension can be constructed. Although
it has typically no practical relevance (in terms of available experimental sys-
tems), nevertheless, it improves our understanding of physics of strong critical
fluctuations existing in the vicinity of a phase transition. More details on the
methods discussed in this lecture can be found in the book [13].

3.3.1 Critical exponents
Although the Ginzburg-Landau theory is not applicable for describing the
ferromagnetic–to–paramagnetic phase transition in the Ising model at d < 4
dimensions, it provides us the correct physical picture of the transition. The
most important prediction is an existence of the divergent correlation length,
ξ(T → Tc) → ∞. This fact implies the absence of any length scale at the
phase transition and, as a consequence, power–law spatial behavior of correla-
tion functions.

Let us formally define the following set of eight critical exponents:

(i) the correlation length exponents ν and µ which control the behavior of ξ
in the absence of magnetic field: ξ ∼ |t|−ν where t = (T − Tc)/Tc, and at
the transition point T = Tc in the magnetic field : ξ ∼ h−µ;

(ii) the order parameter exponents β and δ governing the behavior of the or-
der parameter at h = 0: φ ∼ (−t)β , and at T = Tc: φ ∼ h1/δ;

(iii) the specific heat exponents α and ε which control the contribution to the
specific heat due to fluctuations at h = 0: CP ∼ |t|−α, and at T = Tc:
CP ∼ h−ε;

(v) the spin susceptibility exponent γ determing the behavior of χ at h = 0:
χ ∼ |t|−γ ;

(vi) the exponent ζ which controls the behavior of the spin-spin correlation
function at T = Tc and h = 0: Gχ(r) ∼ r2−d−ζ .

The Ginzburg-Landau theory predicts the following values of the exponents:
ν = 1/2, µ = 1/3, β = 1/2, δ = 3, α = 0, ε = 0, γ = 1, ζ = 0.

Remarkably, there is a set of general relations between the eight critical ex-
ponents. As in the Landau theory let us try to find the characteristic magnetic
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field which separates the regions of weak and strong magnetic field. Compar-
ing φ ∼ (−t)β with χh ∼ |t|−γh, we find that the characteristic magnetic field
behaves as ht ∼ |t|β+γ . The similar estimate can be done by comparison of
φ ∼ h1/δ with φ ∼ (−t)β . However, the latter estimate leads to ht ∼ |t|δβ .
Assuming that there is only a single characteristic magnetic field in the prob-
lem, we obtain the relation between the critical exponents known as theWidom
relation:

δβ = β + γ. (3.48)

Next, substituting ht ∼ |t|β+γ into the field-dependent expression for the cor-
relation length and the specific heat and comparing the results with the temper-
ature behavior, we obtain two more relations:

µ(β + γ) = ν, ε(β + γ) = α. (3.49)

Now we can estimate the specific heat as CP ∼ V φht/t
2 ∼ |t|2β+γ−2. By

comparing this behavior with the behavior CP ∼ |t|−α, we obtain the so-called
Essam-Fisher relation:

α + 2β + γ = 2. (3.50)

Let us now estimate the spin susceptibility from the spin-spin correlation func-
tion: χ ∼

∫
ddrGχ(r). As we will see above, the function Gχ(r) ∼ exp(−r/ξ)

for r � ξ. Therefore, we can expect that only the region r < ξ contributes
to the integral. Then, we find χ ∼ ξ2−ζ ∼ |t|−ν(2−ζ). Hence we find the fifth
relation

γ = ν(2− ζ). (3.51)

We note that the above five relations set three critical exponents unspecified.
Also we mention that the critical exponents of the Ginzburg–Landau theory
satisfy these five relations.

3.3.2 The scale invariance and scaling laws
Let us assume that the correlation length ξ is the single length scale in the fluc-
tuation region of second-order phase transition. This assumption is termed as
the hypothesis of scale invariance and is introduced by Kadanoff, Patashinskii, and
Pokrovsky in 1966. In particular, this hypothesis implies that upon rescaling
r → r/u, one can change the temperature t to tu∆t , magnetic field h to hu∆h

and the order parameter φ to φu∆φ . Since the correlation length is the single
length scale, it should transform in the same way as the length: ξ → ξ/u. Since
ξ(tu∆t) ∼ |t|−νu−ν∆t , we find that the exponent ∆t = 1/ν. In the similar way,
one finds ∆h = 1/µ. Also, the thermodynamic potential should be invariant
with respect to the scale transformation. Estimating Φ as V φh, we find the re-
lation ∆φ = d−∆h = d− 1/µ.
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The scale invariance suggests the following relation for the order parameter
φ(t, h) = u−∆φφ(tu1/ν , hu1/µ). Now let us choose the specific magnidute of the
scale transformation parameter, u = h−µ. Then we find

φ(t, h) = hµd−1φ
(
th−µ/ν , 1

)
. (3.52)

Setting t = 0, we obtain new relation between critical exponents:

µd− 1 = 1/δ (3.53)

which can be transformed into the relation

νd = 2− α. (3.54)

We note that this relation (contrary to the five relations derived above) is not
satisfied within the Ginzburg-Landau theory due to lack of scale invariance in
this theory. Next we can rewrite Eq. (3.52) in the following scaling form:

φ(t, h) = h1/δFφ

(
t/h1/(βδ)

)
. (3.55)

In the presence of non-zero h there is no reason to expect non-analytic behavior
in t. Therefore, the functionFφ(X) is a regular function of its scaling argument.
To be consistent with the behavior in weak magnetic fields, the function Fφ(X)
should have the following asymptotic behavior:

Fφ(X) ∼

{
(−X)β, X → −∞,

X−γ, X → ∞.
(3.56)

For the two-dimensional Ising model, the set of critical exponents is known ex-
actly: α = ε = 0, ν = 1, µ = 8/15, γ = 7/4, β = 1/8, δ = 15, and ζ = 1/4. As
one can check, they satisfy all the six relations.

3.3.3 The renormalization group
The hypothesis of the scale invariance allows us to establish the scaling form of
all physical quantities. However, it does not permit to determine the values of
the critical exponents. Using the property of the scale invariance, we can ask a
question how the effective Hamiltonian

Heff[φ] =
1

2

∫
ddr
[
τφ2(r) +

(
∇φ
)2

+
λ

2
φ4(r)

]
(3.57)

is transformed under the scale transformation with u = el where l → 0. We
note that τ plays the role of dimensionless temperature. To answer this question,
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we should perform several steps. We note that we changed a definition of the
variable φ in comparison with one used in Eq. (3.42).

Firstly, let us split the variable φ(r) into two parts:

φ(r) = φ(r) + φ(r) (3.58)

where

φ(r) =

∫
0<k<Λ/u

ddk

(2π)d
φke

−ikr, φ(r) =

∫
Λ/u⩽k<Λ

ddk

(2π)d
φke

−ikr. (3.59)

Here Λ is the ultra-violet cutoff of the order of inverse lattice spacing, Λ ∼ 1/a.
The contributions φ(r) and φ(r) are termed as slow or long wave component and
fast or short wave component, respectively.

Secondly, we integrate out the fast components of the field and define new
effective Hamiltonian

H ′
eff[φ] = −T ln

∫
D[φ]e−βHeff[φ+φ]. (3.60)

Since the momenta in definition of φ are restricted within the range 0 < k <
Λ/u, we introduce the rescaled momentum k = uk and rescaled field φ̃(k) =
u−ρφ(k). We note that in the real space this transformation corresponds to r →
r = r/u and φ(r) → φ̃(r) = ud−ρφ(r). Then, we expect that H ′

eff[φ] has
exactly the same form asHeff[φ̃] but with τ and λ substituted by some functions
τ(l) and λ(l). Repeating the procedure of integration over fast modes, onemight
be able to find the functions τ(l) and λ(l). Such step-by-step integration of the
fast modes and reformulation of the theory is known as the renormalization group.
This method has been used by L. Kadanoff and K. Wilson for describing the
critical phenomena near the upper critical dimension.

In order to demonstrate what we can gain from this renormalization pro-
cedure, let us consider the spin susceptibility. Since the latter is the spin-spin
correlation function at k = 0, we, on the one hand, can calculate it from the
initial effective Hamiltonian and, on the other hand, from the effective Hamilto-
nianH ′

eff[φ]. Then using the relation between the susceptibility and the variance
for the variable φ, cf. Eq. (1.33), 〈φ2〉 = Tχ/V , we find

χ(τ, λ) = u2ρ−dχ(τ(l), λ(l)). (3.61)

3.3.4 The 4− d expansion
For the further progress, one should determine the functions τ(l) and λ(l). Near
the upper critical dimension there is a systematic way to compute them. We
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write

Heff[φ+ φ] = Heff[φ] +
1

2

∫
ddr
{
τ [φ(r)]2 + [∇φ(r)]2 + 3λ[φ(r)]2

×[φ(r)]2 + 2λφ(r)[φ(r)]3 +
λ

2
[φ(r)]4

}
. (3.62)

Then we find H ′
eff[φ] as a formal expansion in λ. We obtain to the second order

in λ,

H ′
eff[φ] = Heff[φ] +

3λ

2

∫
ddr[φ(r)]2〈[φ(r)]2〉 − 9λ2β

8

∫
ddr

∫
ddr′[φ(r)φ(r′)]2

×〈〈[φ(r)]2[φ(r′)]2〉〉+ λ2β

2

∫
ddrφ(r)

∫
ddr′φ(r′)〈[φ(r)]3[φ(r′)]3〉

+
3λ2β

4

∫
ddr[φ(r)]2

∫
ddr′〈〈[φ(r)]2[φ(r′)]4〉〉 (3.63)

where 〈〈AB〉〉 = 〈AB〉 − 〈A〉〈B〉. The brackets 〈. . . 〉 mean averaging with the
effective Hamiltonian at λ = 0:

〈O[φ]〉 =
∫
D[φ]O[φ]e−βH

(0)
eff [φ]

/∫
D[φ]e−βH

(0)
eff [φ],

H (0)
eff [φ] =

1

2

∫
ddr
{
τ [φ(r)]2 + [∇φ(r)]2

}
. (3.64)

Now let us perform rescaling Λ/u → Λ by changing k → k = uk and φ(k) →
φ̃(k) = u−ρφ(k). To fix the magnitude of ρ, we impose the condition remaining
the gradient term,

∫
ddr[∇φ(r)]2 = u−d−2+2ρ

∫
ddr[∇φ̃(r)]2, (3.65)

unvaried under such transformation, i.e., ρ = (d+2)/2. Performing such rescal-
ing in the other terms, we find that H ′

eff[φ] acquires the form of Heff[φ̃] with

τ → τ(l) = e2lτ + 3λe2l〈[φ(r)]2〉,

λ→ λ(l) = e(4−d)lλ− 9λ2e(4−d)l

2T

∫
ddr′〈〈[φ(r)]2[φ(r′)]2〉〉, (3.66)
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to lowest order in λ. The averages in the above equations can be calculated as
follows

〈[φ(r)]2〉 =
∫

Λ/u<k<Λ

ddk

(2π)d
T

τ + k2
=
SdΛ

d

(2π)d
T

τ + Λ2
l,

∫
ddr′〈〈[φ(r)]2[φ(r′)]2〉〉 = 2

∫
Λ/u<k<Λ

ddk

(2π)d
T 2

(τ + k2)2
= 2

SdΛ
d

(2π)d
T 2

(τ + Λ2)2
l,

(3.67)

where Sd denotes the area of the unit sphere in the d-dimensional space. It
is convenient to introduce the dimensionless variables: τ̃ = τ/Λ2 and λ̃ =
λΛd−4SdT/(2π)

d. Then expanding to the lowest order in l, we find the following
relations:

τ̃(l) = τ̃ +

(
2τ̃ +

3λ̃

1 + τ̃

)
l, λ̃(l) = λ̃+

(
(4− d)λ̃− 9λ̃2

(1 + τ̃)2

)
l. (3.68)

These results obtained in the limit l → 0 can be recast in the form of the differ-
ential equations:

dτ̃

dl
= 2τ̃ +

3λ̃

1 + τ̃
,

dλ̃

dl
= ϵλ̃− 9λ̃2

(1 + τ̃)2
,

(3.69)

where ϵ = 4−d. For ϵ < 0, the only fixed point is at λ̃ = τ̃ = 0which is stable in
the infra-red (at l → ∞). This fixed point corresponds to the Ginzburg-Landau
theory. For ϵ > 0, the fixed point at λ̃ = τ̃ = 0 becomes unstable in the infra-
red. There is a partially unstable fixed point at τ̃∗ = −ϵ/6 and λ̃∗ = ϵ/9 (see
Fig. 3.3(a)). The smallness of values λ̃∗ and τ̃∗ for ϵ� 1 justifies the expansion
in λ which we have performed. Expanding the right hand side of Eq. (3.69)
near this fixed point, we obtain (δτ̃ = τ̃ − τ̃∗ and δλ̃ = λ̃− λ̃∗):

dt

dl
= x+t,

dδλ̃

dl
= x−δλ̃, (3.70)

where x+ = 2 − ϵ/3, x− = −ϵ, and t = δτ̃ + (3/2 − ϵ/2)δλ̃. The above equa-
tions imply that variable t corresponds to the relevant direction and measures
the distance from the critical line. Then we find that Eq. (3.61) acquires the
following form: χ = u2χ

(
tux+

)
. This implies that the correlation length ex-

ponent is ν = 1/x+ = 1/2 + ϵ/12. Choosing u = t−ν , we find χ ∼ t−2ν , i.e.
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Figure 3.3: (a) The renormalization group flow. The arrows indicates the direc-
tion towards the infra-red, l → ∞. The fixed points are marked by green dots.
We choose ϵ = 0.2. (b) The dependence of the correlation length exponent on
d for the Ising model.

ζ = O(ϵ2). Using the relations between the critical exponents, we can determine
all the other exponents.

Taking into account the exact analytical value of ν = 1 for two-dimensional
Ising model and the numerical result ν = 0.629971(4) [17, 18] for three-
dimensional Ising model, we can obtain the overall behavior of the correlation
length exponent with d (see Fig. 3.3(b)). We note that the renormalization
group prediction with ϵ = 1 yields reasonable value 0.58 for ν at d = 3.

Problem for the seminar 33: Derive the scaling form of the thermodynamic
potential and the relations between critical exponents.

Problem for the seminar 34: Derive RG equations for τ and λ in the case
of n-component field φ.

Exercise 60: Find behavior of Gχ(k) at k → 0 for T = Tc and h = 0.

Exercise 61: Derive the relations µ(β + γ) = ν and ε(β + γ) = α.
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Exercise 62: Derive the scaling form of the specific heat, the correlation
length, and the spin-spin correlation function.

Exercise 63: Using the relations between critical exponents, compute the
critical exponents α, ε, µ, γ, β, and δ to first order in ϵ.

Exercise 64: To find separatrices of the renormalization group equations,
Eqs. (3.69), for |τ̃ | � 1.
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3.4 One-dimensional Ising model in transverse
field

Introduction
In this lecture we consider the generalization of one-dimensional Ising model
in the transverse magnetic field. This model provides an example of a quantum
phase transition, i.e. the transitionwhich occurs at T = 0 strictly. The educational
review of the solution of the transverse field Ising model can be found in Ref.
[16].

3.4.1 The Jordan-Wigner transformation
Let us consider the spin 1/2 chain with the Ising-type ferromagnetic interaction
(J > 0) in the transverse magnetic field h > 0:

H = −J
N∑
i=1

σx
i σ

x
i+1 − h

N∑
i=1

σz
i . (3.71)

Here (1/2)σx
i and (1/2)σz

i are the operators for the x and z projections of the
spin 1/2 at site i. There is a crucial difference between Hamiltonians (3.71)
and (3.1). The spin operators (1/2)σx,z

i do not commute with the Hamiltonian.
Therefore, we cannot apply the method of the transfer matrix for computing the
partition function for Hamiltonian (3.71).

As we discuss in the case of the classical Ising model, the result for the par-
tition function Z at finite N depends on the choice of the boundary conditions.
In this lecture we employ the periodic boundary conditions:

σx,y,z
N+1 = σx,y,z

1 . (3.72)

To solve the Hamiltonian (3.71), it is convenient to use the relation between
the spin 1/2 operators and fermionic operators. Let us introduce fermionic op-
erators a†i and ai at each site. Then, we can use the following representation
(referred to as the Jordan-Wigner transformation):

σx
j = Kj(a

†
j + aj), σy

j = iKj(a
†
j − aj),

σz
j = 1− 2a†jaj = 1− 2nj, Kj =

j−1∏
k=1

(1− 2nk). (3.73)

We emphasize that the transformation from fermions to spins is non-local. It in-
volves the so-called string operatorKj . The operator has the following property:
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K2
j = 1, i.e. its eigenvalues are ±1. Using the fermionic commutation relations

for the operators a†j and aj , one can show that the spin operators defined in Eq.
(3.73) satisfy the proper commutation relations [σa

j , σ
b
k] = 2iϵabcδjkσ

c
j .

Next we use the following exact relation (for 1 ⩽ j < N)

σx
j σ

x
j+1 = a†jaj+1 + a†ja

†
j+1 + h.c. (3.74)

We note that the string operators drop out from the above expression. For the
last term σx

Nσ
x
N+1, it is not so:

σx
Nσ

x
N+1 = σx

Nσ
x
1 = KNa

†
Na1 +KNa

†
Na

†
1 + h.c. (3.75)

Therefore, we obtain the exact fermionic representation of Hamiltonian (3.71)

H=−J
N−1∑
j=1

(a†jaj+1+a
†
ja

†
j+1+h.c)−J(KNa

†
Na1+KNa

†
Na

†
1+h.c)

+h
N∑
j=1

(2a†jaj−1). (3.76)

The Jordan-Wigner transformation helps us to formulate the transverse Ising
model as a model of free fermions hopping on the one-dimensional lattice. The
transverse magnetic field becomes the potential energy. There exist also su-
perconducting correlations describing by the term a†ja

†
j+1. We note that the

fermionic model (3.76) is equivalent to the one-dimensional Kitaev model.

3.4.2 Fermionic parity operator

The presence of terms a†ja
†
j+1 in Hamiltonian (3.76) indicates that the number

of fermionsNF =
∑N

j=1 nj is not conserved, i.e. [NF ,H] 6= 0. Let us define the
fermionic parity operator as

PF = (−1)NF = eiπ
∑N

j=1 nj =
N∏
j=1

(1− 2nj) =
N∏
j=1

σz
j . (3.77)

Using the obvious relations PFσ
x,y
j PF = −σx,y

j , it is readily to show that the
fermionic parity operator commutes with the Hamiltonian, [PF ,H] = 0. Phys-
ically, it corresponds to changing the sign of σx operators at all sites simultane-
ously. Since P2

F = 1, its eigenvalues are equal to ±1. Therefore, the Hamilto-
nianH can be thought as a block diagonal matrix in the eigen basis of PF . The
symmetry is related with the operator PF is termed as Z2 symmetry. As we will
discuss below it can spontaneously be broken.
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Using the relation KNa
†
N = −PFa

†
N , the Hamiltonian (3.76) can be explic-

itly rewritten as

H = −J
N−1∑
j=1

(a†jaj+1 + a†ja
†
j+1 + h.c) + J(PFa

†
Na1 + PFa

†
Na

†
1 + h.c)

+h
N∑
j=1

(2a†jaj − 1). (3.78)

Let us introduce projection operators onto the sectors with the even and
odd number of fermions (correspondingly +1 and −1 eigenvalues of the parity
operator PF ):

Pe/o = (1± PF ) /2. (3.79)

With the help of the projection operators we define the Hamiltonians in the
sectors with the even and odd number of fermions

He/o = Pe/oHPe/o = −J
N−1∑
j=1

(a†jaj+1 + a†ja
†
j+1 + h.c) + h

N∑
j=1

(2a†jaj − 1)

+pe/oJ(a
†
Na1 + a†Na

†
1 + h.c), (3.80)

where pe/o = ±1. We note that for the even number of fermions, He corre-
sponds to the anti-periodic boundary conditions aN+1 = −a1, whereas for the
odd number of fermions, Ho corresponds to the periodic boundary conditions
aN+1 = a1. Therefore, the operator PF plays an important role in the refor-
mulation of the periodic boundary conditions (3.72) in terms of the fermionic
operators.

As is mentioned above, the original Hamiltonian can be written in the block-
diagonal form

H =

(
He 0
0 Ho

)
. (3.81)

We emphasize that, for each block, the boundary conditions are different.

3.4.3 The spectrum of Jordan-Wigner fermions

In order to diagonalize the Hamiltonian (3.81) we rewrite it in the momentum
space. Let us start from the sector with odd number of fermions, Ho, and peri-
odic boundary conditions. Let us define the fermionic operators in the momen-
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tum space as

ap =
1√
N

N∑
j=1

e−ipjaj, aj =
1√
N

∑
p

eipjap,

a†p =
1√
N

N∑
j=1

eipja†j, a†j =
1√
N

∑
p

e−ipja†p. (3.82)

Here p = 2πn/N with n = −N/2 + 1, . . . , 0, . . . , N/2 in order to preserve the
periodic boundary condition: exp(ipN) = 1. We assume that the number of
sitesN is even. Herewe used the normalization condition (1/N)

∑N
j=1 exp[i(p−

p′)j] = δp,p′ . Then we obtain

Ho =
∑
p ̸=0,π

[
2(h− J cos p)a†pap − J(eipa†pa

†
−p + e−ipa−pap)

]
+2(h− J)n0 + 2(h+ J)nπ − hN. (3.83)

Here we have used that a−π ≡ aπ. We note that, in the first line of Eq. (3.83)
for each p > 0, there is a term with −p in the sum. Let us use this symmetry
explicitly,

Ho =
∑

0<p<π

(
a†p a−p

)(2h− 2J cos p −2iJ sin p
2iJ sin p −2h+ 2J cos p

)(
ap
a†−p

)
+
∑

0<p<π

2(h− J cos p) + 2(h− J)n0 + 2(h+ J)nπ − hN. (3.84)

Now in order to diagonalize HamiltonianHo we employ the Bogoliubov trans-
formation for fermions with 0 < p < π:

a†p = cos θpα†
p + i sin θpα−p, a−p = cos θ−pα−p − i sin θ−pα

†
p. (3.85)

We note that it corresponds to the rotation of the matrix in Eq. (3.84). The
corresponding matrix is referred to as the Bogoliubov-de Gennes Hamiltonian.
We take the angle θp to satisfy the following relation:

cos 2θp =
2h− 2J cos p

Ep

, sin 2θp = −2J sin p
Ep

,

Ep = 2
√

(h− J cos p)2 + J2 sin2 p, (3.86)

and we transform the Hamiltonian (3.84) as

Ho = Eo +
∑

−π<p<π

p ̸=0

Epα
†
pαp + 2(h− J)n0 + 2(h+ J)nπ. (3.87)
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Here as usual, Ep is the energy of excitations (see Fig. 3.4) while the constant
term Eo may be interpreted as the ground state energy (see next subsection)

Eo = 2
∑

0<p<π

[
h− J cos p−

√
(h− J cos p)2 + J2 sin2 p

]
− hN. (3.88)

In the case of the even number of fermions the procedure of diagonalization
of He is similar. The antiperiodic boundary condition, aN+1 = −a1 implies
exp(ipN) = −1. To satisfy it, we put p = ±(2n− 1)π/N with n = 1, . . . , N/2.
We again assume N to be even. Then, we find

He = Ee +
∑

−π<p<π

Epα
†
pαp. (3.89)

Here the constant term Ee can be interpreted as the ground state energy

Ee = 2
∑

0<p<π

[
h− J cos p−

√
(h− J cos p)2 + J2 sin2 p

]
− hN. (3.90)

We emphasize that the excitation spectrum Ep has the gap equal to 2|h− J |
(see Fig. 3.4). However, at h = J the gap is closed and the spectrum becomes
linear at small p. Usually, such behavior of the excitation spectrum suggests a
phase transition.

3.4.4 The phase diagram and topology
Let us start from the ground state of the system. In the sector with the even
number of fermions the ground state is the vacuum in which the quasiparticles
αp are absent, αp|vac〉 = 0. Then the energy of the corresponding ground state
is given as

E (g)
e = Ee = −2

N/2∑
n=1

√
h2 + J2 − 2Jh cos[(2n− 1)π/N ], (3.91)

where we use
∑N/2

n=1 cos[(2n−1)π/N ] = 0. In the sector with the odd number of
fermions the ground state is given as a†0|vac〉 (for J > 0), i.e. the single fermion
state at p = 0 is occupied. The corresponding ground state energy reads

E (g)
o = Ee + 2(h− J) = −2J − 2

N/2−1∑
n=1

√
h2 + J2 − 2Jh cos[2nπ/N ], (3.92)
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Figure 3.4: The quasiparticle spectrum Ep at the different values of ratio h/J .

where we used
∑N/2−1

n=1 cos[2nπ/N ] = 0. In the limit N → ∞ we find the
difference between two ground state energies (see Fig. 3.5(a))

lim
N→∞

[E (g)
o − E (g)

e ] =

{
0, h ⩽ J,

2(h− J), h > J.
(3.93)

Therefore, there is a quantum phase transition, i.e. phase transition at T = 0,
between the double degenerate ground state, E (g)

o = E (g)
e , for h < J and the

ground state with the energy E (g)
e < E (g)

o .
The physics of these phases can be understood from the limiting cases of

h = 0 and h = ∞. At h = 0 we have one dimensional Ising model with the
ferromagnetic exchange. It has the ferromagnetic ground state with 〈σx

j 〉 = 1
for all 1 ⩽ j ⩽ N (or with 〈σx

j 〉 = −1). At h = ∞ we have the independent
spins in the magnetic field. The ground state corresponds to 〈σz

j 〉 = 1 for all
1 ⩽ j ⩽ N . Consequently, at h = ∞ the average spin projection along the x
direction vanishes, 〈σx

j 〉 = 0. Therefore, we can expect that the magnetization
along x direction, 〈σx

j 〉, can serve as an order parameter for the quantum phase
transition. Indeed, one can show that at N → ∞ and T = 0 (see Fig. 3.5(b)):

〈σx
j 〉 =

{
(1− h2/J2)1/8, h ⩽ J,

0, h > J.
(3.94)
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Figure 3.5: (a) The dependence of difference E (g)
o −E (g)

e on the transverse mag-
netic field h for N = 2000. (b) Dependence of the magnetization per site along
the x direction at N → ∞. (c) Evolution of unit vector {cos 2θp, sin 2θp} with
changing p from −π to π for h < J (green curve) and h > J (red curve). The
arrows show the direction of evolutions.

We note the exponent 1/8 is not occasional. It reflects the fact that the quantum
critical point at h = J describes the same critical theory as a critical point in the
two-dimensional classical Ising model.

The difference between phases at h < J and h > J can be comprehended
from the topological point of view. Let us consider the evolution of unit vector
{cos 2θp, sin 2θp} while p changes from −π to π (see Fig. 3.5(c)). For h < J ,
the vector starts at the direction along the x axis, {1,+0}, for p = −π. Then
it makes full counter clockwise rotation around the origin, becoming {1,−0} at
p = π. Therefore, the unit vector makes the single winding around the origin,
W = −1. The minus sign indicates that the winding is counterclockwise. For
h > J , the vector starts at the direction along the x axis, {1,+0}, at p = −π.
Then it rotates counterclockwise until p = − arccos(J/h). At that point the
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vector changes the direction of its rotation and starts to rotate clockwise until
p = arccos(J/h). Then again the vector changes the direction of its rotation and
becomes to rotate counterclockwise arriving at {1,−0} for p = π. Therefore,
on the whole, there is no winding of unit vector around the origin,W = 0.

The free energy can be written in the standard form

F = E (g)
e − 2T

∑
0<p<π

ln(1 + e−βEp), (3.95)

where we remind p = (2n − 1)π/N with n = 1, . . . N/2. In particular, we
obtain the average magnetization in the z direction per site

〈σz
j 〉 = − 1

N

∂F

∂h
=

4

N

∑
0<p<π

h− J cos p
Ep

tanh
Ep

2T

N→∞−→
π∫

0

dp

π

h− J cos p√
h2 + J2 − 2hJ cos p

tanh
√
h2 + J2 − 2hJ cos p

T
. (3.96)

At T = 0 the integral over p can be evaluated in the terms of the elliptic integrals

〈σz
j 〉 =

h− J

πh
K

(
4hJ

(h+ J)2

)
+
h+ J

πh
E

(
4hJ

(h+ J)2

)
, (3.97)

where K(m) =
∫ π/2

0
dϕ/
√

1−m sin2 ϕ and E(m) =
∫ π/2

0
dϕ
√

1−m sin2 ϕ.
The behavior of 〈σz

j 〉 as a function of h is shown in Fig. 3.6. We emphasize that
〈σz

j 〉 is nonzero for all h > 0 and tends to unity as h → ∞. There is a cusp at
h = J for T = 0, indicating the quantum phase transition. At T > 0 the cusp
in 〈σz

j 〉 disappears. It indicates the absence of the phase transition at T > 0.
Finally, we note that the one-dimensional Ising model in the transverse field

describes magnetic properties of CoNb2O6.

Problem for the seminar 35: Derive Eq. (3.93).

Problem for the seminar 36: Derive Eq. (3.94).

Exercise 65: Check that representation (3.73) results in the proper com-
mutation relations for the spin operators, [σa

j , σ
b
k] = 2iϵabcδjkσ

c
j .

Exercise 66: Compute E (g)
o − E (g)

e at the critical point h = J for N � 1.
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Figure 3.6: The dependence of 〈σz
j 〉 on h at different temperatures. The solid

curve is for T = 0. The dashed curve is for J = 0.7T .

Exercise 67: Compute the specific heat at T � |h− J | � h.

Exercise 68: Compute the specific heat at h = J .
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3.5 The Berezinskii-Kosterlitz-Thouless transition

Introduction
In this lecture we discuss the classical XY model in two dimensions. This classi-
cal model has the phase transition known as the Berezinskii-Kosterlitz-Thouless
transition. The importance of this transition is that it is beyond the Landau
paradigm of phase transitions. More details on the subject of this lecture can be
found in the original works by Berezinskii [14, 15] and in a recent review by
Kosterlitz [19].

3.5.1 Transitions beyond the Landau paradigm
As is discussed in the previous lectures, the paradigm of the Landau expansion
assumes an existence of the order parameter in the phase of lower symmetry (at
T < Tc). In particular, this implies the following relations for the correlation
function of the order parameter field:

lim
|r−r′|→∞

〈φ(r)φ(r′)〉 ∼

{
exp(−|r − r′|/ξ), T > Tc

〈φ(r)〉2, T < Tc.
(3.98)

The presence of nonzero 〈φ(r)〉 at T < Tc breaks the corresponding symmetry
down, e.g. SU(2) symmetry in the case of the paramagnet–to–ferromagnet tran-
sition. However, this is not the only possible scenario. The alternative paradigm
reads

lim
|r−r′|→∞

〈φ(r)φ(r′)〉 ∼

{
exp(−|r − r′|/ξ), T > TBKT,

|r − r′|−η, T < TBKT,
(3.99)

without changing the symmetry. Although 〈φ(r)〉 vanishes above and below
TBKT, i.e., the long-range order is absent, the phases are different due to various
behavior of the correlation functions. The corresponding transition is referred
to as the Berezinskii-Kosterlitz-Thouless transition.

3.5.2 Classical 2D XY model
Let us consider classical 2D XY model described by the Hamiltonian

H = J
∑
<jk>

(
1− njnk

)
(3.100)

wherenj is the unit 2D vector associated with the site j at the 2D square lattice.
The symbol<jk> denotes summation over all neighboring sites. It is convenient
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to parameterize the unit vector as n = {cos θ, sin θ}. Then the Hamiltonian
reads

H = J
∑
<jk>

[
1− cos(θj − θk)

]
. (3.101)

The correlation function which behavior reveals the BKT transition can be
chosen as follows

〈cos(θj − θk)〉 =

∏
l

2π∫
0

dθl
2π

 cos(θj − θk)e
−βH

/∏
l

2π∫
0

dθl
2π

 e−βH .

(3.102)
From the above definitionwe see directly that there is a single parameter govern-
ing the physics of the model, namely, J/T . At high temperatures the correlation
function (3.102) can be computed perturbatively, by expanding exp(−βH ) in

a series in powers J/T . Since
2π∫
0

dθl exp(iθl) = 0, one should first find the min-

imal power n such that the term (βH )n contains the angles θj and θk one time,
as well as the minimal number of angles on the sites belonging to the path con-
necting the sites j and k (see Fig. 3.7). Then in the continuous limit we find the
following result for T � J

〈cos(θj − θk)〉 ∼ e−|rj−rk|/ξ, ξ =
a

ln(2T/J)
, (3.103)

where a is the lattice constant.
In the opposite case of low temperatures, T � J , we can assume that direc-

tions of unit vectorsnj on the neighboring sites are close to each other (similar to
the case of the ferromagnetic state). Then, we can expand the difference θj − θk
to lowest order in the lattice constant and find the following continuous version
of the Hamiltonian (3.101):

H = (J/2)

∫
d2r(∇θ)2. (3.104)

The correlation function (3.102) can be written as

〈cos(θj − θk)〉 =
1

Z

∫
D[θ]eiθ(rj)−iθ(rk)e−(βJ/2)

∫
d2r(∇θ)2 ,

Z =

∫
D[θ]e−(βJ/2)

∫
d2r(∇θ)2 . (3.105)

In order to find the correlation function, it is convenient to introduce the Fourier
transform θq =

∫
d2rθ(r) exp(−iqr) and rewrite the exponent in the right hand
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�

�

Figure 3.7: Example of the shortest path between sites j and k on the square
lattice.

side of the above equation as

−βJ
2

∫
d2r(∇θ)2 + iθ(rj)− iθ(rk) = −βJ

2

∫
d2q

(2π)2
q2(θq + γq)(θ−q + γ−q)

+
βJ

2

∫
d2q

(2π)2
q2γqγ−q, (3.106)

where γq = (e−iqrk − e−iqrj)/(iβJq2). Introducing new variable θ̃q = θq + γq,
we find

〈cos(θj − θk)〉 = exp
(
− T

2J

∫
d2q

(2π)2
|1− eiq(rj−rk)|2

q2

)
× 1

Z

∫
D[θ̃]e−(βJ/2)

∫
d2r(∇θ̃)2 (3.107)

The factors in the second line of the above equation cancel each other, and after
integration over q we obtain for T � J :

〈cos(θj − θk)〉 ∼ |rj − rk|−T/(2πJ). (3.108)

The different asymptotic behavior of the correlation function, 〈cos(θj−θk)〉,
at low and high temperatures suggests an existence of the transition at T ∼ J .
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3.5.3 The Villain model on the dual lattice
In the low temperature analysis above we have ignored the 2π-periodicity of the
Hamiltonian with substituting angle θj with θj + 2π. As we will see below, this
periodicity is crucial for an accurate description of the BKT transition.

Let us introduce the function Ṽ (s) defined as follows

e−βJ(1−cos θ) =
∞∑

s=−∞

eisθ+Ṽ (s), eṼ (s) =

2π∫
0

dθ

2π
e−βJ(1−cos θ)−isθ = e−βJIs(βJ)

(3.109)
where Is(z) denotes the modified Bessel function. Introducing variable s for
each link of a square lattice and using the Fourier representation (3.109), we
can integrate over angles θl, cf. Eq. (3.102), in the partition function. Such
integration for a given site l induces the constraint sx + sy = s−x + s−y, see
Fig. 3.8. From physical point of view an existence of such constraints is related
with the following. The number of initial variables (angles) equals the number
of sites M . The number of variables s is the same as the number of links, i.e.,
it equals 2M . TheM constraints conserve the number of degrees of freedom in
new representation. In order to resolve this constraint, it is useful to introduce
new set of integers associated with the center of each square {s̃}. They are
related with the initial ones as follows (see Fig. 3.8), sx = s̃A− s̃B, sy = s̃D− s̃A,
s−x = s̃D− s̃C , and s−y = s̃C− s̃B. We note that the center of squares composes
the dual lattice with respect to the original one. Finally, the partition function on
the dual lattice can be written as

Z =
∑
{s̃l}

exp
[∑
<ll′>

Ṽ (s̃l − s̃l′)
]
. (3.110)

Using the Poisson resummation formula

∞∑
s=−∞

g(s) =
∞∑

m=−∞

∞∫
−∞

dϕ g(ϕ)e2πimϕ, (3.111)

we express the partition function as

Z =
∑
{ml}

∏
l

 ∞∫
−∞

dϕl

 exp
[∑
<ll′>

Ṽ (ϕl − ϕl′) + 2πi
∑
l

mlϕl

]
. (3.112)

Here ϕl is a variable that corresponds to sl in the Poisson formula (3.111).
Using the asymptotic expression of Ṽ (ϕ) at low temperatures T � J ,

exp
[
Ṽ (ϕ)

]
≈ exp[−ϕ2/(2βJ)]/

√
2πβJ, (3.113)
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Figure 3.8: Sketch of the original square lattice with variables sx, sy associated
with links and of the dual lattice with variables s̃A,B,C,D associated with its sites.

we have obtained the partition function of the so-called the Villain model on the
dual lattice:

Z =
∑
{ml}

∏
l

 ∞∫
−∞

dθ̃l

 exp
[
−βJ

2

∑
<ll′>

(θ̃l − θ̃l′)
2 + 2πiβJ

∑
l

mlθ̃l

]
. (3.114)

Here we have introduced θ̃l = ϕl/(βJ) and omitted the insignificant constant
factor.

3.5.4 The renormalization group analysis
Let us now consider the partition function of the so-called generalized Villain
model:

Z =
∑
{ml}

∏
l

 ∞∫
−∞

dθl y
m2

l e2πiβJθlml

 exp
[
−βJ

2

∑
<ll′>

(θl − θl′)
2
]
. (3.115)

Here we have omitted the tilde sign in θl and introduced the so-called fugac-
ity y. The fugacity appears due to logarithmic interaction between the integer
numbers ml that represent vortices. This logarithmic interaction is ill-defined
at small scales of the order of the lattice spacing. Therefore, it is necessary to in-
troduce the termwith the fugacity including the information about microscopics
of the model. One can estimate the magnitude of the fugacity as ln y ∼ −βJ .
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In what follows, we assume that fugacity is small, y � 1. Then, summing
over integersml, we arrive at

Z =
∏
l

 ∞∫
−∞

dθl ϑ3

(
πβJθl, y

) exp
[
−βJ

2

∑
<ll′>

(θl − θl′)
2
]

(3.116)

where ϑ3(u, y) denotes the elliptic theta-function. Using the asymptotic result
lnϑ3(u, y) = 2y cos(2u) at y → 0, we obtain the following partition function in
the continuum limit (lattice spacing a → 0):

Z =

∫
D[θ] exp(−βHeff[θ]) (3.117)

where
Heff =

J

2

∫
d2r(∇θ)2 − 2ỹ

∫
d2r cos

[
2πβJθ] (3.118)

and ỹ = y/a2. Comparing this equation with Eq. (3.105), one can see that
the presence of vortices results in appearing an additional term in the effective
Hamiltonian. Since Heff[θ] is non-linear in θ, we can apply the renormalization
group method to analyze it. Under assumption of y � 1, one can derive the
following renormalization group equations:

dȳ

dl
= −ȳx, dx

dl
= −ȳ2. (3.119)

Here we introduce x = πβJ − 2 and ȳ = 16
√
2y/(aΛ) where Λ ∼ 1/a denotes

the ultra-violet cutoff. These renormalization group equations are valid at |x| �
1 and ȳ � 1 and demonstrate an interesting behavior.

At x > 0 there is a line of fixed points ȳ = 0 (since ȳ > 0 by definition)
stable in the infra-red. At x < 0 there is a line of fixed points ȳ = 0 unstable
in the infra-red. The fixed point (x = 0, ȳ = 0) separates lines of stable and
unstable fixed points. There are two separatrices x = ±ȳ. The renormalization
group flow is shown in Fig. 3.9. Since large x corresponds to low temperatures,
the line of stable fixed points corresponds to the low temperature phase of the
2D XY model. The existence of the line of fixed points explains the power law
behavior of the correlation functions typical for the fixed points. The transition
temperature is determined by the position of separatrix x = y or in terms of the
temperature: TBKT = (2 + ȳ0)J/π, where ȳ0 is the initial magnitude of the fu-
gacity. The appearance of the correction due to fugacity corresponds physically
to the interaction of the spin waves.

For T > TBKT and y > x, the fugacity finally flows in the direction of large
magnitudes. The condition ȳ(l ∼ ln ξ) ∼ 1 determines the correlation length.
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x

y

Figure 3.9: Renormalization group flow corresponding to Eqs. (3.119). Arrows
indicate flow towards infrared.

The solution of Eqs. (3.119) leads to very unusual behavior of the correlation
length: ln ξ ∼

√
TBKT/(T − TBKT ).

Problem for the seminar 37: Derive Eq. (3.103).

Problem for the seminar 38: Integrate over θ̃ and demonstrate that the inte-
ger numbers ml satisfy the constraint

∑
lml = 0. In addition, demon-

strate the logarithmic interaction between the integer numbersml.

Problem for the seminar 39: Derive the renormalization group equations
for the BKT transition, cf. Eqs. (3.119).

Exercise 69: Compute the correlation function 〈cos3(θj − θk)〉 within ex-
ponential accuracy at T � J .

Exercise 70: Compute the integral∫
d2q

(2π)2
|1− exp(iqR)|2

q2
.
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Exercise 71: Find the correlation function 〈cos(3(θj − θk))〉 at low tem-
peratures T � J .

Exercise 72: Estimate the fugacity ln y ∼ −βJ from the logarithmic in-
teraction between vortices.

Exercise 73: Find the temperature behavior of correlation length for T −
TBKT � TBKT .
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Chapter 4

Statistical mechanics of open
systems

Introduction
In this chapter we discuss how to probe the system in equilibrium and describe
the system coupled to thermal reservoir or thermostat. We will demonstrate
that the response of the system in equilibrium to external weak perturbation is
determined by the equilibrium properties.

115
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4.1 Fluctuation-dissipation theorem and the Kubo
formula

Introduction
In this lecture we discuss the powerful tool used to describe the linear response
of the equilibrium systems to an external perturbation. Surprisingly, such a
linear response is intimately related with thermodynamic fluctuations.

4.1.1 The generalized susceptibility
Let us consider time-dependent perturbation V = −X f(t). Here f(t) is some
given classical time-dependent force and X denotes a certain (many-body) op-
erator. The total Hamiltonian becomes H = H0 + V . Then the quantum
mechanical and thermal average of X (t) are determined as follows

〈X (t)〉 = Tr
[
U−1(t)X U(t)e−βH0

]/
Tr e−βH0 , (4.1)

the evolution operator being

U(t) = T exp

−i t∫
−∞

dt′H (t′)

 . (4.2)

We note that the operator X couples directly to the external classical force f .
This implies that the operator should obey the bosonic commutation relations.
As an example, the force can be an external electric field coupling the product
of creation and annihilation fermionic operators.

For simplicity, we assume that the average 〈X (t)〉 vanishes, 〈X (t)〉f=0 = 0,
in the absence of perturbation, f = 0. Then in the limit of f → 0, i.e., in the
linear response regime, the average 〈X (t)〉 should be proportional to f :

〈X (t)〉 =
t∫

−∞

dτf(τ)αX (t− τ). (4.3)

The function αX (t) is termed as the generalized susceptibility.
Let us consider the harmonic force f(t) = (fωe

−iωt+f−ωe
iωt)/2with f−ω =

f ∗
ω to ensure that f(t) is a real function. Then we find

〈X (t)〉 = 1

2
〈X (t)〉ωe−iωt +

1

2
〈X (t)〉−ωe

iωt,

〈X (t)〉ω = αX (ω)fω, αX (ω) =

∞∫
0

dt αX (t)eiωt. (4.4)
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The imaginary part of the generalized susceptibility determines the energy dis-
sipation rate averaged in time

Q =
dE

dt
=

〈
∂H

∂t

〉
= −〈X (t)〉df

dt
=
ω

2
ImαX (ω)|fω|2. (4.5)

Here we used the following definition of the energy E(t) = Tr[ρ(t)H (t)]. The
condition Q > 0 implies that ImαX (ω) ∝ sgnω.

4.1.2 The fluctuation dissipation theorem
Let us compute the energy dissipation rateQwithin the framework of quantum
mechanics. The HamiltonianH0 has eigen energiesEa and eigenstates |a〉. The
time-dependent perturbation results in the transitions between the unperturbed
states. The transition probability from a state |a〉 to a state |b〉 is given by the
Fermi golden rule as

wa→b =
π|fω|2

2

∣∣〈a|X |b〉
∣∣2[δ(ω + Eb − Ea) + δ(ω + Ea − Eb)

]
. (4.6)

Then energy dissipation rate Q becomes

Q =
∑
ab

ρawa→b(Eb − Ea) =
πω|fω|2

2

∑
ab

∣∣〈a|X |b〉
∣∣2δ(ω + Ea − Eb)

×
[
ρa − ρb

]
(4.7)

where ρa = exp(−βEa)/Z is the density matrix in the energy representation.
Comparing Eqs. (4.5) and (4.7), we find the following result for the imaginary
part of the generalized susceptibility:

ImαX (ω) = π
(
1− e−βω

)∑
ab

ρa
∣∣〈a|X |b〉

∣∣2δ(ω + Ea − Eb). (4.8)

Let us turn now to variance for X which is a different quantity on the first
sight:

〈X 2〉 = Tr ρX 2 =
∑
a

ρa〈a|X 2|a〉 =
∑
ab

ρa
∣∣〈a|X |b〉

∣∣2. (4.9)

It is convenient to rewrite 〈X 2〉 formally as follows

〈X 2〉 =
∞∫

−∞

dω

2π
〈X 2〉ω (4.10)
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where

〈X 2〉ω = π
(
1 + e−βω

)∑
ab

ρa
∣∣〈a|X |b〉

∣∣2δ(ω + Ea − Eb). (4.11)

Comparing Eqs. (4.11) and (4.8), we obtain the fluctuation dissipation theorem
derived originally by H. Callen and T. Welton [20] ,

〈X 2〉ω = ImαX (ω) coth
ω

2T
, 〈X 2〉 =

∞∫
0

dω

π
ImαX (ω) coth

ω

2T
. (4.12)

In conclusion, we draw attention to this remarkable relation connecting the fluc-
tuations in the thermally equilibrium system with the linear response to some
time-dependent perturbation and, as a consequence, to energy dissipation.

4.1.3 The Kramers-Kronig relations
Let us consider the generalized susceptibility αX (ω) as a function of the fre-
quency ω in the complex plane, ω = ω′ + iω′′. Since αX (t) is finite, the gener-
alized susceptibility αX (ω) is also finite for ω′′ > 0. This implies that αX (ω) is
analytic function in the upper half-plane ofω, i.e., it has no poles. Such functions
in physics are referred as retarded functions. Taking Eq. (4.8) into account, we
can construct the expression for the retarded function αX (ω) in the following
form:

αX (ω) =
∑
ab

(
ρb − ρa

) ∣∣〈a|X |b〉
∣∣2

ω + Ea − Eb + i0
. (4.13)

Herewe have used the relation (x+i0)−1 = p.v. x−1−πδ(x), where p.v. denotes
the Cauchy principal value.

Using Eq. (4.8), we find the following relation

p.v.
∞∫

−∞

dΩ

π

ImαX (Ω)

Ω− ω
= ReαX (ω). (4.14)

Similarly, we obtain with the help of Eq. (4.13),

p.v.
∞∫

−∞

dΩ

π

ReαX (Ω)

Ω− ω
= − ImαX (ω). (4.15)

The relations (4.14) and (4.15) are known as the Kramers-Kronig relations. In
mathematics they are known as the Sokhotski—Plemelj theorem and Hilbert
transform.
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We note that, using Eq. (4.14), we can reproduce the result (1.33) from the
fluctuation-dissipation relation. Provided that the characteristic frequencies in
the generalized susceptibility are much smaller than the temperature, we find

〈X 2〉 ≈ 2T

∞∫
0

dω

π

ImαX (ω)

ω
= T ReαX (0). (4.16)

4.1.4 The Kubo formula
Let us consider the two–time correlation function

〈X (t)X (t′)〉 = Tr
[
ρ e−iH0tX eiH0(t−t′)X eiH0t′

]
=
∑
ab

ρa
∣∣〈a|X |b〉

∣∣2ei(Eb−Ea)(t−t′). (4.17)

Then one can check that

αX (ω) = αR
X (ω) = i

∞∫
0

dt ei(ω+i0)t Tr
([

X (t),X (0)
]
ρ
)
. (4.18)

This relation is referred to as theKubo formula. It is a practical tool of calculating
the generalized susceptibilities.

In the similar way one can check that the following relation holds for

〈X 2〉ω =
1

2i
αK

X (ω), αK
X (ω) = i

∞∫
−∞

dt eiωt Tr
({

X (t),X (0)
}
ρ
)
. (4.19)

The functionαK
X (ω) is termed as theKeldysh function. The fluctuation dissipation

theorem relates the Keldysh and retarded response functions as

αK
X (ω) = 2i ImαR

X (ω) coth
ω

2T
. (4.20)

We note that there is analogous expression for the operators obeying the
fermionic anti-commutation relations.

Problem for the seminar 40: Consider the Hamiltonian H =
∑

α εαb
†
αbα

where b†α and bα are the creation and annihilation bosonic operators.

Find i
∞∫
0

dtei(ω+i0)t Tr
(
[bα(t), b

†
α]ρ
)
and i

∞∫
−∞

dteiωt Tr
(
{bα(t), b†α}ρ

)
.
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Problem for the seminar 41: Discuss the fluctuation-dissipation relation for
the case of spatially dependent force.

Exercise 74: Prove the relation

α(iω) =

∞∫
−∞

dΩ

π

ImαX (Ω)

Ω− iω
.

Exercise 75: Let us define the correlation function RX (ω) =∫
dt 〈X (t)X (0)〉eiωt. Demonstrate that it satisfies the detailed balance

condition: RX (−ω) = e−βωRX (ω).

Exercise 76: To derive expression (4.18) by solving the equation for the
density matrix to first order in perturbation V = −X f(t).

Exercise 77: The Hamiltonian is affected by the force f(t) = ut. Deter-
mine the time dependence of 〈[H (t) − H (0)]2〉. Express the result in
terms of the generalized susceptibility αX .
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4.2 The Gorini-Kossakowski-Sudarshan-Lindblad
equation

Introduction
In this lecture we will derive the equation governing the dynamics of quantum
system coupled to the thermal reservoir. We will present such a derivation for
a concrete quantum system.

4.2.1 Helical 1D electrons coupled to a magnetic impurity
For definiteness, we consider magnetic impurity of spin S coupled by an ex-
change interaction to helical 1D electrons. This system is described by the fol-
lowing Hamiltonian

H = He +Hi +He−i. (4.21)

Here
He = iv

∫
dyΨ†(y)σz∂yΨ(y) (4.22)

is the Hamiltonian for helical 1D electrons moving along the y axis at velocity
v. Here Ψ(y) = {Ψ↑(y),Ψ↓(y)} and Ψ†(y) = {Ψ†

↑(y),Ψ
†
↓(y)} denote the spinor

annihilation and creation operators of a helical electron at point y. They satisfy
the following commutation relation

Ψσ(y)Ψ
†
σ′(y

′) + Ψ†
σ′(y

′)Ψσ(y) = δσσ′δ(y − y′). (4.23)

The HamiltonianHe−i describes the exchange interaction between spin S at
the point y0 and helical electrons,

He−i =
Jjk

ν
Sj : sk :, sk =

1

2
Ψ†(y0)σkΨ(y0), : sk := sk − 〈sk〉, (4.24)

where 〈sk〉 is the average value of the spin density of helical electrons and ν =
1/(2πv) stands for the density of states. Finally, the Hamiltonian Hi describes
the dynamics of an isolated spin. In the simplest case it is given as

Hi = hjSj, hj = Jjk〈sk〉/ν. (4.25)

4.2.2 Perturbation theory for the reduced density matrix
The density matrix ρ of the total system is described by the Liouville equation
with the Hamiltonian H , i.e., dρ(t)/dt = −i [H, ρ(t)]. Our aim is to derive
the equation governing the time dynamics for the reduced density matrix of
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magnetic impurity. The latter is formally defined as ρS = Tre ρ, where Tre
denotes the trace over the electronic degrees of freedom. In order to derive the
equation for ρS(t), we employ second-order perturbation theory in the exchange
interaction Jij � 1. At first, we change the representation to the interaction
one, ρ(t) = U−1(t)ρI(t)U(t), where

U(t) = Ui(t)Ue(t) = Ue(t)Ui(t), Ue(t) = e−iHet, Ui(t) = e−iHit. (4.26)

The density matrix ρI(t) satisfies the following equation

dρI(t)

dt
= −i[VI(t), ρI(t)], VI(t) = U−1(t)He−iU(t). (4.27)

In order to make the perturbative treatment possible, we formally solve the evo-
lution equation (4.27) and substitute the result back into (4.27):

dρI
dt

= −i[VI(t), ρI(−∞)] +

t∫
−∞

dt′ [VI(t), [ρI(t
′),VI(t

′)]] . (4.28)

Tracing out electrons, we obtain

dρS,I(t)

dt
= −iTre [VI(t), ρI(−∞)]+

t∫
−∞

dt′Tre
(
[VI(t), [ρI(t

′),VI(t
′)]]
)

(4.29)

where ρS,I(t) is the reduced density matrix in the interacting representation,
ρS,I(t) = Ui(t)ρS(t)U

−1
i (t). We assume that the electron-impurity interaction

is switched on adiabatically, so that the distribution of the edge electrons is un-
perturbed at t = −∞. Therefore, Tre [VI(t), ρI(−∞)] = 0, as VI contains
the electron operators with zero average alone. Moreover, in the weak cou-
pling regime, Jij � 1, it is possible to write approximately ρI(t) ≈ ρS,I ⊗ ρ

(0)
e

on the right-hand side of the master equation. Here ρ(0)e ∝ exp[−βHe −
(eβV /2)

∫
dyΨ†(y)σzΨ(y)] denotes the initial densitymatrix for helical 1D elec-

trons with bias voltage V applied. We note that matrix ρ(0)e is the Gibbs distribu-
tion with the chemical potential±eV /2 for the spin-up/down electrons. Finally,
substituting the explicit form of the perturbation VI , we find

dρS,I
dt

= JrjJlk

t∫
−∞

dt′
(
χjk(t− t′)

[
SI
r (t

′)ρS,I(t
′), SI

l (t)
]
+ h.c.

)
where sIk(y0, τ) = U−1

e (τ)sk(y0)Ue(τ), SI
l (t) = U−1

i (t)SlUi(t), and

χjk(τ) =
1

ν2
Tre
[
: sIk(y0, τ) :: s

I
j (y0, 0) : ρ0

]
. (4.30)

We note that χjk(τ) is the spin susceptibility of helical 1D electrons.
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4.2.3 TheMarkov approximation and final form of the master
equation

Next we employ the Markov approximation, i.e., we substitute ρS,I(t′) to ρS,I(t).
This approximation is justified since the correlators χjk decay typically over the
time proportional to either 1/|eV | or 1/T , while the relaxation time of matrix
ρS,I is determined by the scale of the order of 1/[J 2max{T, |eV |}]. Switching
back to the Heisenberg picture, we obtain

dρS(t)

dt
= −i [Hi, ρS(t)] + JrjJlk

+∞∫
0

dτ
(
χjk(τ)

[
SI
r (−τ)ρS(t), Sl

]
+ h.c.

)
.

(4.31)

In order to write down the final form of this master equation, we should compute
χjk(ω) =

∫ +∞
0

dτeiωτχjk(τ). Evaluating the trace in Eq. (4.30) yields

χjk(ω) =
i

4

∑
σ1,σ2

∫
dξ1dξ2 σ

σ1σ2
k σσ2σ1

j

1− fF (ξ2 − σ2V /2)

ω + ξ1 − ξ2 + i0
fF (ξ1 − σ1V /2)

(4.32)

where fF (ε) = 1/[eε/T + 1].
The spin susceptibility can be split into the Hermitian and anti-Hermitian

parts:

χjk(ω) =
1

2
χ
(1)
jk (ω) + iχ

(2)
jk (ω), χ(1) = χ(1)†, χ(2) = χ(2)†. (4.33)

Here we introduce

χ
(1)
jk (ω) =

π

2

∑
σ1,σ2

∫
dξ1dξ2 σ

σ1σ2
k σσ2σ1

j δ(ω + ξ1 − ξ2)(1− fF (ξ2 − σ2V /2))

×fF (ξ1 − σ1V /2) (4.34)

and

χ
(2)
jk (ω) =

1

4

∑
σ1,σ2

p.v.
∫
dξ1dξ2 σ

σ1σ2
k σσ2σ1

j fF

(
ξ1 −

σ1V

2

)
×(1− fF (ξ2 − σ2V /2))

ω + ξ1 − ξ2
(4.35)

where p.v. denotes the Cauchy principal value. The part χ(2)
jk contains the log-

arithmically diverging contributions. The corresponding terms in the master
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equation (4.31) can be cast in the form of unitary dynamics, i.e., they provide us
the renormalization ofHi — the so-called Lamb shift. These logarithmically di-
vergent contributions describe the Kondo renormalization of the coupling con-
stants Jjk.

Omitting χ(2)
jk , we finally obtain the quantum master equation in the follow-

ing form

dρS
dt

= i [ρS, Hi] + ηjk

[
SjρSSk − ρSSkSj/2− SkSjρS/2

]
. (4.36)

Here the 3× 3 matrix ηjk = πT (JΠVJ T )jk governs the non-unitary evolution
of the reduced generalized density matrix. Here we have introduced

ΠV =

 V
2T

coth V
2T

− iV
2T

0
iV
2T

V
2T

coth V
2T

0
0 0 1

 . (4.37)

We note that the eigenvalues of the matrix ΠV are equal to 1 and
(V /2T )[coth(V /2T ) ± 1] ⩾ 0. Therefore, the matrix η is positive semi-
definite and themaster equation (4.36) has theGorini-Kossakowski-Sudarshan-
Lindblad form, ensuring the positivity of ρS .

4.2.4 The Gibbs distribution for the reduced density matrix
Applying the corresponding rotation of the spin basis, an arbitrary exchange
matrix J can be reduced to the lower triangular form

J =

Jxx 0 0
Jyx Jyy 0
Jzx Jzy Jzz

 . (4.38)

Then the Hamiltonian Hi becomes proportional to spin Sz. Therefore, the sta-
tionary density matrix of the spin should be diagonal in the eigen basis of spin
Sz, i.e.,

〈m|ρS|m′〉 = δm,m′ρS,m, Sz|m〉 = m|m〉, m = −S, . . . , S. (4.39)

Substituting this diagonal anzats into Eq. (4.36), we find that ρS,m should satisfy
the following equation

ηjkρS,m+1〈m|Sj|m+ 1〉〈m+ 1|Sk|m〉+ ηjkρS,m−1〈m|Sj|m− 1〉〈m− 1|Sk|m〉
= ηjkρS,m〈m|Sk|m+ 1〉〈m+ 1|Sj|m〉+ ηjkρS,m〈m|Sk|m− 1〉〈m− 1|Sj|m〉.

(4.40)
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Let us demonstrate that the solution of this equation has the form ρS,m ∝
exp(βeffm). Using the matrix elements of the spin operators,

〈m|Sx|m+ 1〉 = 〈m+ 1|Sx|m〉 = 1

2

√
(S +m+ 1)(S −m),

〈m|Sy|m+ 1〉 = −〈m+ 1|Sy|m〉 = i

2

√
(S +m+ 1)(S −m), (4.41)

we find (
eβeffη+ − η−

)
(S +m+ 1)(S −m) +

(
e−βeffη− − η+

)
×(S +m)(S −m+ 1) = 0 (4.42)

where η± = ηxx + ηyy ± iηxy ∓ iηyx. Hence, we obtain that

eβeff =
η−
η+
. (4.43)

AtV = 0 the parameter βeff vanishes, i.e., the impurity spin is equally distributed
over the states with all possible spin projections. At V � T , the parameter βeff
tends to the V -independent constant. Therefore, at large voltage the impurity
spin is still not fully polarized.

Problem for the seminar 42: Derive Eq. (4.32).

Problem for the seminar 43: Analyse χ(2)
jk (ω) and derive the Kondo renor-

malization of Jjk.

Exercise 78: Prove commutation relation (4.23).

Exercise 79: Compute the density of states of 1D helical electrons gov-
erned by the Hamiltonian He.

Exercise 80: Demonstrate that χ(2)
jk (ω) results in the unitary dynamics for

ρS(t).

Exercise 81: Compute Tr ρS(t).
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Exercise 82: The evolution of the density matrix for the system of one-
dimensional fermions with spin 1/2 is described by the following GKSL
equation

dρ

dt
= γ

N∑
j=1

[
2LjρL

†
j − L†

jLjρ− ρL†
jLj

]
, Lj =

1√
2
(a†j↓ + a†j↑)aj↑.

To find the evolution of the density matrix if the initial density matrix is
given as

ρ(t = 0) =

(
1 0
0 0

)
1

⊗ · · · ⊗
(
1 0
0 0

)
N

.



Chapter 5

Thermalization of an isolated
quantum system

Introduction
In this chapter we discuss how the Gibbs distribution emerges in an isolated
quantum system. This phenomenon is known under the name the eigenstate ther-
malization hypothesis and is intensively studied now.

127
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5.1 The eigenstate thermalization hypothesis

Introduction
In the present course we have postulated the Gibbs distribution for the density
matrix of quantum system. One way of how such distribution could occur we
discussed in the previous lecture. For a quantum system weakly coupled to
large quantum system (reservoir), theGibbs distribution for the reduced density
matrix can be induced as a result of the interaction. However, one can ask what
happens if the quantum system is completely isolated. In this lecture we discuss
this point, following recent review by Deutsch [21].

5.1.1 Ergodicity and chaos in classical mechanics
Let us consider classical system described by a set of N canonically conjugated
coordinates Γ = {q1, p1, . . . , qN , pN}. During its time evolution the system
moves in the 2N dimensional phase space S . The system is called ergodic if
the time average of observable O is equivalent to microcanonical average,

lim
T →∞

1

T

T∫
0

dt O(Γ(t)) ≡
∫
ΓE
dΓ O(Γ)∫
ΓE
dΓ

. (5.1)

Here ΓE denotes the subspace of S in which the constants of motion, e.g. en-
ergy, remain fixed. Although the ergodicity exists in many systems, there is a
class of systems in which ergodicity breaks down. They are so-called the inte-
grable models. The phonon modes in the perfect harmonic crystal are an exam-
ple of such system. For the system close to integrable one, the ergodicity occurs
in the limit N → ∞ as follows from the Kolmogorov–Arnold–Moser theorem.

Another important concept related to the classical systems is chaos. A chaotic
system is such that, if one starts to evolve it from two close initial conditions,
after sufficiently long time these two states will be in very different places of
the phase space. This implies a divergence of the neighboring trajectories in the
phase space. This divergence is characterized by the Lyapunov exponents. We
underline that ergodicity and chaos are not interchangeable notions. However,
in the limit N → ∞ the majority of classical systems are ergodic and chaotic.
Ergodicity and chaos of a classical system allow its thermalization.

5.1.2 Chaos in an isolated quantum system
The concept of chaos comes across difficulties to define in the case of quantum
dynamics. The problem lies in linearity of the Schrödinger equation. However,
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quantum chaotic system can be formulated in terms of statistics of its energy
levels. There is the Bohigas–Giannoni–Schmit conjecture. The energy levels
of a quantum system, which the classical analogue is chaotic, have the statistics
described by the random matrix theory (for the theory of random matrices see
the book [22]). The chaotic behavior in the quantum systems is active field of
research at present.

5.1.3 Eigenstate thermalization hypothesis
An idea of how the quantum system thermalizes is based on the eigenstate ther-
malization hypothesis. It can be formulated in the following form. The matrix
element of some operator A can be written as

〈a|A|b〉 = A(E)δab + e−S(E)/2gab(E, ω) (5.2)

where E = (Ea + Eb)/2 and ω = Ea − Eb, and gab(E, ω) is a bounded smooth
function. The entropy is defined as

eS(E) = E
∑
a

δΓ(E − Ea) =
E

π

∑
a

Γ

(E − Ea)2 + Γ2
. (5.3)

Here Γ is a small broadening of the many-particle levels Ea, making function
S(E) smeared and monotonous,

dS/dE ≡ 1/T > 0. (5.4)

The entropyS(E) is an extensive quantity proportional to the number of degrees
of freedom in the quantum system. We assume that the energyE changes slowly
on the energy scale of the order of temperature T . We note that the statistical
properties of gab(E, ω) resemble the random independent quantities from the
Gaussian distribution.

Let us demonstrate that, if Eq. (5.2) holds for, then the function A(E) co-
incides with the proper Gibbs average,

AG =
TrAe−H/T

Tr e−H/T
(5.5)

where temperature T is defined in Eq. (5.4). Let us consider

TrAe−H/T =
∑
a

〈a|A|a〉e−Ea/T =

∫
dεe−ε/T

∑
a

δ(ε− Ea)〈a|A|a〉. (5.6)

Now using Eq. (5.2), we find

TrAe−H/T ≈
∫
dε e−ε/TA(ε)

∑
a

δ(ε− Ea) =

∫
dε eS(ε)−ε/TA(ε)/ε (5.7)
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SinceS(ε) is an extensive quantity, we can take the integral over ε by the saddle–
point method. The saddle–point magnitude of ε = E is determined byEq. (5.4).
Then we find

TrAe−H/T ≈ eS(E)−E/TA(E)/E. (5.8)

Hence, we obtain
AG ≈ A(E) +O(1/S). (5.9)

We note that this relation implies that in essence, the matrix element of an op-
erator behaves as a thermal (Gibbs) average with the proper temperature.

Nowwe consider time average of operator. Let us introduce the state |ψt〉 =∑
a cae

−iEat|a〉 and define the average At = 〈ψt|A|ψt〉. Then we can define the
time average as

A = lim
T →∞

1

T

∫ T

0

dtAt. (5.10)

Under assumption that Eq. (5.2) holds for, we demonstrate that the time aver-
age A coincides with the thermal or Gibbs average for the temperature corre-
sponding to the energy E =

∑
a |ca|2Ea. We can write

A = lim
T →∞

1

T

∫ T

0

dt

[∑
a

|ca|2〈a|A|a〉+
∑
b ̸=a

c∗acb e
i(Ea−Eb)t〈a|A|b〉

]
=
∑
a

|ca|2〈a|A|a〉, (5.11)

since for the non-degenerate levels the oscillating terms vanish in the limit T →
∞. Next using Eq. (5.2), we find

A ≈
∑
a

|ca|2
[
A(E) +A′(E)(Ea − E) +

1

2
A′′(E)(E − Ea)

2 + . . .

]
≈ A(E).

(5.12)

Since we have demonstrated above thatA(E) is equivalent to the Gibbs average
AG, we show that the ETH hypothesis implies the ergodicity.

Exercise 83: Show that (At − A)2 ∝ exp(−S(E)).



Chapter 6

Solution of problems for seminars

Introduction
In this chapter we present brief solutions for the problems marked above as the
problems for the seminars. We encourage a reader to try to solve these problems
on one’s own and only then to consult the solution given.
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6.1 Seminar I
In this section, we present solutions for the problems Nos. 1, 2 and 3.

6.1.1 Problems 1 and 2
We consider simplest system in statistical physics. The system obeys the follow-
ing assumptions:

• all particles are identical;

• particles are non-interacting;

• each particle can occupy two energy levels (the ground state and the ex-
cited state).

The above assumptions lead to the following Hamiltonian:

H =
N∑
j=1

Hj, Hj = −B
2
σz
j . (6.1)

All information about the system could be obtained from the statistical sum
which can be calculated in two ways.

The first one is applicable for the non-interacting systems. In this case
the system can be split into two independent parts, A and B, such that H =
HA + HB. Then the partition function becomes Z = ZA × ZB where Zi =
tri[exp (−βHi)]. Applying this result to our system, we arrive at

Partition function: Z= tr
{
exp

(
B

2T
σz

)}N

=2N coshN
(
B

2T

)
(6.2)

Free energy: F = −T lnZ = −TN ln
[
2 cosh

(
B

2T

)]
(6.3)

Entropy: S=−∂F
∂T

=N

[
ln
[
2 cosh

(
B

2T

)]
− B

2T
tanh

(
B

2T

)]
(6.4)

Energy: E = F + TS = −NB

2
tanh

(
B

2T

)
(6.5)

Specific heat: CV = T
∂S

∂T
=
∂E

∂T
=

N

4 cosh2
(

B
2T

) (B
T

)2

(6.6)

Chemical potential: µ =
∂F

∂N
= −TN ln

[
2 cosh

(
B

2T

)]
(6.7)
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The second interesting approach is the following. Instead of summation over
all independent states, we perform it over all possible eigen energies Eλ of the
many-body HamiltonianH. Then, the partition function becomes

Z =
∑
λ

exp(−βEλ) =
∑
Eλ

g(Eλ) exp(−βEλ). (6.8)

On the right hand side one should take the sum over all possible eigen energies
and the quantity g(Eλ) is termed as the density of states. It characterizes the
degeneracy of the eigenstates. In our case, the eigenstates can be described
by a number of spins k anti-parallel to the direction of the magnetic field B.
Then, one can find Ek = −BN/2 + Bk. Since we can choose arbitrary k spins
among N , such eigenstate has the degeneracy g(Ek) = Ck

N , where Ck
N denotes

the binomial coefficients. Finally, using Newton’s binomial theorem, we obtain
the same result as in the first approach.

6.1.2 Problem 3
One of most powerful techniques to prove the thermodynamics identities is a
method of Jacobians. Let us suppose that we have a pair of independent ther-
modynamics variables X and Y , for example, V, T or P, S but not conjugated,
e.g. P, V . Then, the Jacobian of transformation from variables X,Y to A,B
reads

∂(A,B)

∂(X,Y )
= det

 ∂A
∂X

∂B
∂X

∂A
∂Y

∂B
∂Y

 . (6.9)

The definition of the Jacobian leads to several useful identities:
∂(A, Y )

∂(X,Y )
=

(
∂A

∂X

)
Y

,
∂(A,B)

∂(X,Y )
=
∂(A,B)

∂(C,D)

∂(C,D)

∂(X,Y )
. (6.10)

Using this identities, we obtain

CP − CV = T

(
∂S

∂T

)
P

− T

(
∂S

∂T

)
V

= T
∂(S, P )

∂(T, P )
− T

∂(S, V )

∂(T, V )

= T
∂(S, P )

∂(T, V )

∂(T, V )

∂(T, P )
− T

∂(S, V )

∂(T, V )
,

T

[(
∂S

∂T

)
V

(
∂P

∂V

)
T

−
(
∂P

∂T

)
V

(
∂S

∂V

)
T

]
1(

∂P
∂V

)
T

− CV

= −T
(
∂P

∂T

)
V

∂2F

∂V ∂T

1(
∂P
∂V

)
T

= −T
(
∂P

∂T

)2

V

1(
∂P
∂V

)
T

. (6.11)
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6.2 Seminar II
In this section, we consider the solutions of problems Nos. 4, 5, and 6.

6.2.1 Problem 4

In the previous seminar we have found several thermodynamic quantities of the
spin system in the magnetic field. One can calculate the fluctuation of energy,
using the expression from the second lecture. However, it is instructive to cal-
culate fluctuations from the first principles. We will use the second approach
for calculating the partition function from the previous seminar. This leads to

〈〈E2〉〉 = 〈E2〉−〈E〉2 = 1

Z

∑
E

E2g(E)e−βE−

[
1

Z

∑
E

Eg(E)e−βE

]2
. (6.12)

As is mentioned in the previous seminar, we can parametrize E by the number
k of the “flipped” spins, E = −NB

2
+ kB. It is worthwhile to note that the

fluctuations similar to the other measured thermodynamic characteristics are
independ of the ground state energy. Therefore, we can use the expression E =
Bk for the energy of the spin configuration with k “flipped” spins. We start our
calculation from the last term on the right hand side of Eq. (6.12) (p = e−βB),

1

Z

∑
E

Eg(E)e−βE =
1

Z

N∑
k=0

BkCk
Ne

−βBk =
B

Z

N∑
k=0

kCk
Np

k =
B

Z
Np(1 + p)N−1.

(6.13)
Since the partition function is given as Z = (1+ p)N , we find 〈E〉 = NBp/(1+
p). The same technique yields,

〈〈E2〉〉 = B2

(
pN

1 + p
+
p2N(N − 1)

(1 + p)2

)
=

B2Np

(1 + p)2
=

B2N

4 cosh( B
2T
)
. (6.14)

6.2.2 Problem 5

The free energy is calculated in Problems 1 and 2. Using these results, we can
obtain the following expressions,

Magnetization: M = −∂F
∂B

=
N

2
tanh

(
B

2T

)
,

Spin susceptibility: χ =
∂M

∂B
=

N

4T

1

cosh2
(

B
2T

) . (6.15)
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For the fluctuation of magnetization, we find

〈〈M2〉 = 〈〈E2〉〉
B2

=
N

4 cosh( B
2T
)

(6.16)

as is expected.

6.2.3 Problem 6
At first, we express ∆P and ∆S via ∆P and ∆V ,∆P

∆S

 =M

∆V

∆T

 , M =

(∂P∂V )T (
∂P
∂T

)
V(

∂S
∂V

)
T

(
∂S
∂T

)
V

 . (6.17)

We note that MT = M . Using this expression, we obtain the following result
for Umin,

Umin =
1

2

[(
∂S

∂T

)
V

(∆T )2 −
(
∂P

∂V

)
T

(∆V )2
]
. (6.18)

Hencewe derive the following expression for the correlation functions (the stan-
dard answer for the Gaussian distribution),

G =

〈(
∆V
∆T

)(
∆V
∆T

)T
〉

=

(
〈∆V∆V 〉 〈∆T∆V 〉
〈∆V∆T 〉 〈∆T∆T 〉

)
= T

(
−
(
∂V
∂P

)
T

0
0

(
∂T
∂S

)
V

)
. (6.19)

Both matrices G andM are necessary to calculate the other fluctuations. This
can be done in the following way,〈(

∆P
∆S

)(
∆V
∆T

)T
〉

=

(
〈∆P∆V 〉 〈∆P∆T 〉
〈∆S∆V 〉 〈∆S∆T 〉

)
=MG

= T

(
−1

(
∂P
∂T

)
V

(
∂T
∂S

)
V

−
(
∂S
∂V

)
T

(
∂V
∂P

)
T

1

)
. (6.20)

Finally, we find〈(
∆P
∆S

)(
∆P
∆S

)T
〉

=

(
〈∆P∆P 〉 〈∆P∆S〉
〈∆S∆P 〉 〈∆S∆S〉

)
=MGMT

= T

(
−
(
∂P
∂V

)
T
+
(
∂P
∂T

)
V

(
∂T
∂S

)
V

(
∂S
∂V

)
T

0
0

(
∂S
∂T

)
V
−
(
∂S
∂V

)
T

(
∂V
∂P

)
T

(
∂P
∂T

)
V

)
.

(6.21)
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In order to calculate the last expression, one can use the Jacobian method,(
∂P

∂T

)
V

(
∂S

∂V

)
T

=
∂(PS)

∂(TV )
+

(
∂S

∂T

)
V

(
∂P

∂V

)
T

. (6.22)

Using the above relation, we find the following result,(
〈∆P∆P 〉 〈∆P∆S〉
〈∆S∆P 〉 〈∆S∆S〉

)
= T

((
∂P
∂V

)
S

0
0

(
∂S
∂T

)
P

)
. (6.23)

6.3 Seminar III
In this section, we discuss solutions of Problems Nos. 7, 8, 9, 10, and 11.

6.3.1 Problem 7
In this problem we will find the density of state for free quantum particle in an
arbitrary spatial dimension. To solve this problem, we must write the integral
for the density of states and use the spherical coordinate system,

g(ε) =

∫
ddp

(2πh̄)d
δ

(
ε− p2

2m

)
=

∫ ∞

0

Sdp
d−1dp

(2πh̄)d
δ

(
ε− p2

2m

)
=

Sdm

(2πh̄)d
(
√
2mε)d−2. (6.24)

Here Sd = 2πd/2/Γ(d/2) denotes the area of d-dimensional sphere, Sd.

6.3.2 Problem 8
In this problem, we will find the density of states of ideal two-dimensional elec-
tron gas in the perpendicular magnetic field. Let vector potential be A =

{0, Bx, 0}. Then Hamiltonian is H = p̂2x
2m

+
(py− eB

c
x)2

2m
± µBB. Here µB de-

notes the Bohr magneton. We note that the momentum along y-axis and the
spin are conserved. Then the eigen energies are given as εn = ωc(n + 1

2
± 1

2
)

where ωc =
eB
mc

is the cyclotron frequency (the Landau level problem is treated
in the course of the quantum mechanics). Then, we obtain

g(ε) =
1

S

S

2πl2H

[
δ(ε) + 2

∑
n=1

δ(ε− ωcn)

]
=
mωc

2π

[
δ(ε) + 2

∞∑
n=1

δ(ε− ωcn)
]
.

(6.25)
Here lH =

√
ch̄/(eB) denotes the magnetic length and S/(2πl2H) stands for the

Landau level degeneracy.
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6.3.3 Problem 9
This problem is important in the Fermi gas theory. We will calculate the tem-
perature correction to the chemical potential at T � EF for an ideal Fermi gas.
We note that for all normal metals in d = 3, the Fermi energy is of the order of
EF ≈ 1 eV ≈ 1.1× 105 K.

The temperature behavior of the chemical potential is related with conserv-
ing the number of particles at a given volume, cf. Eq. (1.50). Let β = β0 + δβ,
then we find

0 =
∂N

∂T
=

∞∫
0

eβ0(ε−µ)

(1 + eβ0(ε−µ))
2

(
ε− µ

T 2
+

1

T

∂µ

∂T

)
g(ε)dε. (6.26)

The main technique to calculate such integrals with the Fermi distribution is
integration over variable ξ = ε−µ. The advantage of using such variable is that
the fermions only in the vicinity of the Fermi surface take part in perturbing the
ground state, i.e., ξ ∼ T provides the dominant contribution to the integrals.
Using condition, EF � T , we obtain

0 =
∂N

∂T
=

∞∫
−∞

1

4 cosh2(βξ/2)

(
ξ

T 2
+

1

T

∂µ

∂T

)
(g(µ) + g′(µ)ξ)dξ

=

∞∫
−∞

1

4 cosh2(βξ/2)

(
g′(µ)

ξ2

T 2
+
g(µ)

T

∂µ

∂T

)
dξ =

π2

3
Tg′(µ) + g

∂µ

∂T
. (6.27)

Hence, we find ∂µ/∂T = −π2g′(µ)T/(3g(µ)) and, consequently, µ = EF −
π2g′(µ)T 2/[6g(µ)].

6.3.4 Problem 10
In this problem we find the specific heat of ideal degenerate Fermi gas in an
arbitrary spatial dimension. We use integration over ξ to find an answer. Then,
we obtain, cf. Eq. (1.52),

CV =
∂

∂T

∞∫
0

dεg(ε)εfF (ε) =

∞∫
−∞

dξ
1

4 cosh2(βξ/2)

(g(µ)µ
T

∂µ

∂T

+(g(µ) + g′(µ)µ)
ξ2

T 2

)
= g(µ)µ

∂µ

∂T
+ (g(µ) + g′(µ)µ)

π2

3
T =

π2

3
g(µ)T.

(6.28)
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6.3.5 Problem 11
We find the zero-field spin susceptibility of ideal two-dimensional electron gas.
The weak fields do not change “trajectories” of electrons. Thus we can use the
density of states for a Fermi gas in the absence of the magnetic field. This prob-
lem could also be solved by taking the derivative of integral over the chemical
potential (For d = 2, the density of states is constant, g(ε) = m/(2π).),

χ = −∂2Ω

∂B2
= − ∂2

∂B2

Ω0(µ+ µBB) + Ω0(µ− µBB)

2
=
µB

2

∂

∂B

∞∫
0

dεg(ε)

×
[
fF (ε− µBB)− fF (ε+ µBB)

]
= µ2

B

∞∫
0

dεg(ε)

(
−∂fF (ε)

∂ε

)
= µ2

Bg(µ).

(6.29)

HereΩ0(µ) stands for the thermodynamic potential of ideal Fermi gas atB = 0.

6.4 Seminar IV
In this section, we consider the solutions for Problems Nos. 12 and 13.

6.4.1 Problem 12
The problem is to find the magnetization of ideal two-dimensional electron gas
in the presence of a relatively strong perpendicular magnetic field T � µBB �
EF . It is more complicated problem compared with the previous one. In this
case we should use the expression for the density of states, obtained in the Prob-
lem 8. Then the energy can be written as

E =

∞∫
0

εg(ε)fF (ε− µ)dε =
mωc

π

∞∑
n=1

ωcnfF (ωcn− µ). (6.30)

In the limit µBB = ωc/2 � T we can approximate the Fermi distribution
function by the Heaviside step function. In this case the energy becomes

E =
mω2

c

π

N∑
n=1

n =
mω2

cN(N + 1)

2π
. (6.31)

Here N = [µ/ωc] is the number of filled states. As a result, the magnetization
reads,

M = −∂E
∂B

= −2µBmωcN
2

π
. (6.32)
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In order to find the magnetization at T ∼ ωc, we use the Poisson summation
formula,

∞∑
n=−∞

δ(n− x) =
∞∑

k=−∞

e2πikx. (6.33)

Using this formula to simplify the expression for the energy, we obtain

E =
mω2

c

2π

∞∑
n=−∞

∞∫
−∞

dxδ(x− n)|x|fF (ωc|x| − µ)

=
mω2

c

π

∞∑
k=−∞

Re
∞∫
0

dxei2πkxxfF (ωcx− µ). (6.34)

The term k = 0 in the sum is an energy of the Fermi gas at temperature T in
zero magnetic field. Since it is independent of the magnetic field, we can study
the difference ∆E between the energy energy in the finite and zero magnetic
fields,

∆E =
2mω2

c

π

∞∑
k=1

Re
∫ ∞

0

dxei2πkxxfF (ωcx− µ) =
2mω2

c

π

∞∑
k=1

1

4π2k2

×Re
(
1−

∫ ∞

0

dxei2πkx(1− i2πkx)∂xfF (ωcx− µ)

)
. (6.35)

The last formula is obtained using integration by parts. This expression is suit-
able for the integration over variable ξ = ωcx − µ at µ � T . This leads to the
following integral,

∆E =
∞∑
k=1

mω2
c

2π3k2
Re

1 + (i2πk µ
ωc

− 1

)
ei2πkµ/ωcβ

∞∫
−∞

dξ
ei2πkξ/ωc

4 cosh2(βξ/2)

 .
(6.36)

The last integral can be calculated and finally:

∆E =
2mω2

c

π

∞∑
k=1

1

4π2k2
Re

1 +

(
i2πk

µ

ωc

− 1

)
ei2πkµ/ωc

2π2kT

ωc sinh
(

2π2kT
ωc

)


=
2mω2

c

π

∞∑
k=1

1

4π2k2

[
1−

(
sin(2πkµ/ωc)2πk

µ

ωc

+ cos(2πkµ/ωc)

)

× 2π2kT

ωc sinh
(

2π2kT
ωc

)]. (6.37)
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To find the expression for the magnetization per unit area, it is enough to take
the derivative of “fast” terms with respect to magnetic field alone,

M = −∂∆E
∂B

= −2mµ2

Bπ

∞∑
k=1

2π2kT

ωc sinh
(

2π2kT
ωc

) cos(2πkµ/ωc). (6.38)

Thus we obtained that the magnetization of the Fermi gas oscillates with the
magnetic field. This effect is known as de Haas – van Alphen oscillations.

6.4.2 Problem 13
The study of the Bose-Einstein condensate starts from calculating the number
of non-condensed particles. For T > TBEC, all particles are non-condensed and
this number conserves,

N =

∞∫
0

1

eβ(ε−µ) − 1
g(ε)dε. (6.39)

For d = 3, the density of states is given as g(ε) = m3/2
√
2π2

√
ε. Substituting the

expression for the density of states into the integral, we arrive at,

N =
m3/2

√
2π2

∞∫
0

√
ε

eβ(ε−µ) − 1
dε =

m3/2

√
2π2

∞∫
0

√
εe−β(ε−µ)

1− e−β(ε−µ)
dε

=
m3/2

√
2π2

∞∑
n=1

∞∫
0

√
εe−β(ε−µ)ndε ≈

(
mT

2π

)3/2 ∞∑
n=1

1

(n)3/2
eβµn (6.40)

One can take the derivative with respect to the temperature for small µ:

∂N

∂T
=
(m
2π

)3/2 3
2
T 1/2

∞∑
n=1

e−|βµ|n

n3/2
+

(
mT

2π

)3/2 ∞∑
n=1

e−|βµ|n

n1/2

(
− µ

T 2
+

1

T

∂µ

∂T

)
= 0. (6.41)

The main contribution to the first term can be calculated for µ = 0. To calculate
the second term, we can replace the sum with the integral. Also we note that we
can neglect the term proportional to µ. Then we obtain,

0 =
3N

2
T

−3/2
BEC T

1/2 +

(
mT

2π

)3/2 ∫ ∞

0

dn
1

n1/2
e−|βµ|n 1

T

∂µ

∂T

=
3N

2
T

−3/2
BEC T

1/2 +N

(
T

TBEC

)3/2
1

ζ(3/2)

√
πT√
|µ|

1

T

∂µ

∂T
. (6.42)
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Eventually, this leads to the following equation for µ,

0 =
3

2
√
π
ζ(3/2) +

T
1/2
BEC√
|µ|

∂µ

∂T
. (6.43)

Hence, we obtain,

µ = −
(
3ζ(3/2)

4
√
π

)2
(T − TBEC)

2

TBEC
. (6.44)

6.5 Seminar V
In this section, we present the solution of Problem 14.

6.5.1 Problem 14
Using expression (2.9) for the first-order correction to the thermodynamic po-
tential, we find

Ω =
Ω0(µ+) + Ω0(µ−)

2
+
U

V

[∫
d3p

(2π)3
〈a†p↑ap↑〉

] [∫
d3q

(2π)3
〈a†q↓aq↓〉

]
=

Ω0(µ+) + Ω0(µ−)

2
+

U

4V
N0(µ+)N0(µ−). (6.45)

Here µ± = µ ± µBB, Ω0(µ) is the thermodynamic potential of noninteract-
ing electrons in zero magnetic field, and N0(µ) is the number of particles as a
function of the chemical potential in the absence of interaction.

As in the lecture, we determine the chemical potential from the condition of
the fixed number of particles,

N =
N0(µ+) +N0(µ−)

2
− U

4V

∂

∂µ
[N0(µ+)N0(µ−)] . (6.46)

Hence, we find that the chemical potential is given as

µ = µ0 +
U

2V

∂
∂µ0

[
N0(µ

+
0 )N0(µ

−
0 )
]

∂
∂µ0

[
N0(µ

+
0 ) +N0(µ

−
0 )
] (6.47)

where µ±
0 = µ0 ± µBB, and

N =
[
N0(µ

+
0 ) +N0(µ

−
0 )
]
/2. (6.48)
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Therefore, we can write the thermodynamic potential as

Ω(µ) =
Ω0(µ

+
0 ) + Ω0(µ

−
0 )

2
− UN

2V

∂
∂µ0

[
N0(µ

+
0 )N0(µ

−
0 )
]

∂
∂µ0

[
N0(µ

+
0 ) +N0(µ

−
0 )
]

+
U

4V
N0(µ

+
0 )N0(µ

−
0 ). (6.49)

Next, we find the free energy,

F = Ω+ µN = F0(B) +
U

4V
N0(µ

+
0 )N0(µ

−
0 ),

F0(B) =
Ω0(µ

+
0 ) + Ω0(µ

−
0 )

2
+ µ0N. (6.50)

Here F0(B) stands for the free energy in the absence of interaction. We note
that the chemical potential µ0 is a function of B in accordance with Eq. (6.48).
Using Eq. (6.48), we find in the limit B → 0,

µ0(B) = µ0 −
1

2
(µBB)2

N ′′
0 (µ0)

N ′
0(µ0)

. (6.51)

We note that χ0 = µ2
BN

′
0(µ0). At low temperatures, T � EF , we can write

N0(µ0) ∝ µ
3/2
0 . Therefore, we find µ0(B) = µ0 − (µBB/2)2/µ0. Now we can

compute the zero-field spin susceptibility (per unit volume) at the fixed number
of particles,

χ = − 1

V

∂2F

∂B2

∣∣∣∣∣
B=0

= χ0 −
U

4V 2

∂2

∂B2

[
N0(µ0(B) + µBB)N0(µ0(B)− µBB)

]∣∣∣∣∣
B=0

= χ0 +
µ2
BU

2V 2
N ′2

0 (µ0). (6.52)

At low temperatures, T � EF , we obtain

χ = χ0 +
9

8

µ2
BUN

2

V 2E2
F

= νFµ
2
B

[
1 +

2

π3
apF

]
(6.53)

where νF = mpF/π
2 denotes the noninteracting density of states at the Fermi

energy. Equation (6.53) provides us the expression for χ as a function of N .
We note that result (6.53) can readily be obtained from Eq. (6.45),

χ = −∂2Ω

∂B2
= χ0 −

U

4V

∂2

∂B2
[N0(µ+)N0(µ−)] = χ0 +

µ2
BU

2V

[
N ′2

0 (µ)

−N0(µ)N
′′
0 (µ)

]
. (6.54)
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This result gives the spin susceptibility as a function of chemical potential. In
order to express it as a function of N , we should involve that χ0 = µ2

BN
′
0(µ)

and the shift of the chemical potential due to interaction, see Eq. (6.53). Then,
we obtain

χ = µ2
BN

′
0(µ0) +

µ2
BU

2V
N0(µ0)N

′′
0 (µ0) +

µ2
BU

2V

[
N ′2

0 (µ0)−N0(µ)N
′′
0 (µ0)

]
= µ2

BN
′
0(µ0) +

µ2
BU

2V
N ′2

0 (µ0). (6.55)

6.6 Seminar VI
In this section, we consider Problems Nos. 15 and 16.

6.6.1 Problem 15
Let us find variation of chemical potential δµ at zero temperature due to vary-
ing the number of particles, δN . Let us use Eq. (2.21) at p = pF such that
δεσ1σ2(p) ≡ δµ δσ1σ2 . Then we obtain

δµ δσ1σ2 = δεF δσ1σ2 +
∑
σ3,σ4

∫
d3p′

(2πh̄)3
fσ1σ4,σ2σ3(p,p

′)δnσ3σ4(p
′). (6.56)

Here δεF is the change of the Fermi energy due to varying the Fermimomentum,

δεF =
∂εF
∂pF

δpF = vF δpF =
pF
m∗

δpF , δN =
V p2F
π2h̄3

δpF . (6.57)

Next, at zero temperature we can write

δnσ3σ4(p
′) = −∂n

(0)(p′)

∂εp′

π2h̄3δN

pFm∗V
δσ3,σ4 = δ(εp′ − εF )

π2h̄3δN

pFm∗V
δσ3,σ4 . (6.58)

Substituting Eqs. (6.57) and (6.58) into Eq. (6.56), we find

δµ δσ1σ2 =
π2h̄3δN

pFm∗V
δσ1σ2 +

π2h̄3δN

2pFm∗V

∑
σ3,σ4

π∫
0

dθ sin θ
2

[
F (0)(θ)δσ1σ2δσ4σ3

+F (σ)(θ)σσ1σ2σσ4σ3

]
δσ3σ4 , (6.59)

where θ = ∠(p′,p). Hence, we obtain,

δµ =
1 + F

(0)
0

νFV
δN. (6.60)
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Here νF = pFm∗
π2h̄3 denotes the density of states at the Fermi surface. Finally, we

find
∂µ

∂N
=

1 + F
(0)
0

νFV
. (6.61)

6.6.2 Problem 16
The correction to the quasiparticle energy at p = pF in the magnetic field and
interaction can be written as,

δε(p)σ1,σ2 = −µBBσσ1,σ2 +
∑
σ3,σ4

∫
d3p′

(2πh̄)3
fσ1σ4,σ2σ3δnσ3σ4(p

′). (6.62)

We are interested in the change δnσ3σ4(p
′) that occurs due to magnetic field. At

zero temperature we find

δnσ3σ4(p
′) =

∂n(0)(p′)

∂εp′
δε(p′)σ3,σ4 = −δ(εp′ − εF ) δε(p

′)σ3,σ4 . (6.63)

Hence, we obtain

δε(p)σ1,σ2 = −µB(σ,B)σ1,σ2 −
1

2

∑
σ3,σ4

π∫
0

dθ sin θ
2

[
F (0)(θ)δσ1σ2δσ4σ3

+F (σ)(θ)σσ1σ2σσ4σ3

]
δεσ3σ4(p

′), (6.64)

where θ = ∠(p′,p). Let us seek the solution of Eq. (6.64) in the form of the
energy shift in the absence of interaction but with the renormalized g-factor,
δε(p)σ1,σ2 = −(g/2)µBBσσ1,σ2 . Then, it leads to the following equation,

−g
2
µBBσσ1,σ2 = −µBBσσ1,σ2 + F (σ)0

g

2
µBBσσ1,σ2 . (6.65)

Finally, we obtain the renormalized g-factor in the Fermi liquid,

g =
2

1 + F
(σ)
0

. (6.66)

Since the quasiparticle energy shift due to magnetic field is momentum-
independent, we can use the expression for the free electron gas, cf. Eq. (6.53),
but with the renormalized g-factor. Then, we find the Pauli spin susceptibility
of the Fermi liquid,

χ =
g

2
µ2
BνF . (6.67)
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6.7 Seminar VII
In this section we present the solutions for Problems Nos. 17, 18, and 19.

6.7.1 Problem 17
The ground state energy of the weakly non-ideal Bose gas has the following
form (see Eq. (2.42)):

E0 =
UN2

2V
+
∑
p

[
ε(p)− ε(0)(p)− UV

N

]
. (6.68)

It is useful to point out that a sum over p diverges. Fortunately, this diver-
gence has a physical origin. At first, we should understand that potential U is a
constant in the sum and does not represent some physical measurable quantity.
The real physical quantity is the scattering length. This means that we must
express all results in terms of the scattering length. In the main approximation,
the ground state energy and the scattering length are E0 = UN2

2V
and a = mU

4π
,

respectively. Therefore, we obtain E0 = 2πaN2

mV
. In order to find next order

correction in the ground state energy, we have to write the following expression
that relates the scattering length and U ,

U =
4πa

m

[
1− 4πa

mV

∑
p ̸=0

1

p2

]
. (6.69)

This expression involves a diverging sum. This divergence indicates that one
cannot approximate the interaction potential by the constant U at very short
scales. However, using the above expression, we find

E0 =
Nmu2

2
+
∑
p

[
ε(p)− ε(0)(p)−mu2 +

m3u4

p2

]
(6.70)

where u =
√

4πaN
m2V

. Surprisingly this integral converges! We see that the diver-
gence has been removed by introducing the proper expression for the scattering
length. This effect is called the renormalization. Now we should calculate the
following integral,

f(X) =

∫
d3p

(2π)3

[√
ε(0)(p)2 + ε(0)(p)X − ε(0)(p)− X

2
+

X2

8ε(0)(p)

]
. (6.71)

To calculate integral, we should find themagnitude of function f(X) at the point
X = 2mu2. To calculate the above integral we should take the third derivative
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and note that f(0) = f ′(0) = f
′′
(0) = 0. We have:

f
′′′
(X) = V

3
√
2m3

16π2

∞∫
0

dε
ε

(X + ε)5/2
=

√
2m3

4π2
√
X
. (6.72)

As a result

f(X) = V
2
√
2m3X5/2

15π2
, f(X = 2mu2) = V

16m4u5

15
. (6.73)

Substituting the above expression to E0 results in Eq. (2.44).

6.7.2 Problem 18
In this problem we should calculate the number of particles in the condensate
at temperatures µ(0) � T � TBEC(an

1/3)1/4. The number of particles in the
condensate can be calculated as follows, see Eq. (2.49),

N0(T ) = N − V

∫
d3p

(2π)3
[
u2pfB(εp) + v2p(fB(εp) + 1)

]
= N − V

∫
d3p

(2π)3

[
ε0(p) +mu2

εp
fB(εp) +

ε0(p) +mu2 − ε(p)

2

]
= N0(T = 0)− V

∫
d3p

(2π)3
ε0(p) +mu2

εp
fB(εp). (6.74)

Let us transform integration over p to integration over ε0 = ε
(0)
p = p2/(2m).

Then we find

N0(T ) = N0(T = 0)− V

π2

√
m3

2

∞∫
0

dε0
√
ε0
ε0 +mu2

εp
fB(εp). (6.75)

Next, we change the integration variable ε0 to the integration over ε =√
(ε0 +mu2)2 − (mu2)2. Then we obtain

N0(T ) = N0(T=0)− V

π2

√
m3

2

∞∫
0

√√
ε2 + (mu2)2 −mu2fB(ε)dε

= N0(T=0)−N +N
(0)
0 (T )− V

π2

√
m3

2

∞∫
0

(√√
ε2 + (mu2)2 −mu2 −

√
ε

)

×fB(ε)dε = N0(T=0)−N +N
(0)
0 (T )− V m3u3

π2
√
2
F (mu2/T ). (6.76)
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Here N (0)
0 (T ) = N [1 − (T/T

(0)
BEC)

3/2] is the number of condensate particles for
the noninteracting Bose gas. The function F (z) is given as

F (z) =

∫ ∞

0

dx

√√
1 + x2 − 1−

√
x

ezx − 1

=


z−1

∫ ∞

0

dx

√√
1 + x2 − 1−

√
x

x
= − π

z
√
2
, z � 1,∫ ∞

0

dy
−√

yz−3/2 + yz−2

ey − 1
= −ζ(3/2)

√
π

2z3/2
+

π2

6z2
, z � 1.

(6.77)

Hence we obtain

N0(T ) = N0(T=0)− V mT 2

6
√
2u

, T � mu2, (6.78)

and

N0(T ) = N0(T=0)−N

(
T

T
(0)
BEC

)3/2

, mu2 � T � TBEC. (6.79)

6.7.3 Problem 19
The vortex solution of the Gross–Pitaevskii equation (2.54) can be represented
as Ψ0(r) = eiφAf(r/r0) and the scale r0 describes the vortex size. Substituting
the above ansatz into Eq. (2.54) and introducing new variable ξ = r/r0, we
find,

− A

2mr20

[
1

ξ
∂ξ (ξ∂ξf)−

f

ξ2

]
− µAf +

4πa

m
A3f 3 = 0. (6.80)

If we choose the amplitude A =
√
µm/(4πa) and the size r0 =

√
2m/µ, we

obtain the dimensionless equation which can numerically be solved

−
[
1

ξ
∂ξ (ξ∂ξf)−

f

ξ2

]
− f + f 3 = 0. (6.81)

It is easy to check that f(ξ) ' aξ at ξ → 0 and f(ξ) ' 1+ b exp(−
√
2ξ) at ξ →

∞. The numerical constants a and bcan be found bymeans of numerical solution
of the above equation. Details of numerical solution by shooting method can be
found in Ref. [23]. In particular, one finds a ≈ 0.5832. The behavior of the
function f(ξ) is shown in Fig. 6.1.
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Figure 6.1: The function f(ξ).

6.8 Seminar VIII
In this section we consider the solutions for Problems Nos. 20, 21, and 22.

6.8.1 Problem 20
The energy of two excitations is given as ε(p1)+ ε(p2)+ (p1+p2)v. We expect
that this combination should be positive. This equation leads to the following
expression for the critical velocity: vcr,2 = min

(
ε(p1)+ε(p2)

p1+p2

)
. Let us introduce

the function f(p) = ε(p)/p. Then we find [ε(p1)+ε(p2)]/(p1+p2) = [p1f(p1)+
p2f(p2)]/(p1 + p2) ⩾ min{f(p1), f(p2)} ⩾ min

p
f(p) = vcr. Therefore, indeed

we find that vcr,2 ⩾ vcr.

6.8.2 Problem 21
The normal component density in superfluid liquid is given by the following
expression, cf. Eq. (2.60),

ρn =
1

3

∫
d3p

(2π)3
p2
(
−∂fB
∂ε

)
=

β

12

∫
d3p

(2π)3
p2

sinh2 (βε(p)/2)
. (6.82)

The excitation spectrum ε(p) consists of two segements: phonon and roton ones.
We should calculate the contributions from both of them. We start from the
phonon contribution

ρn,p =
β

12

∫
d3p

(2π)3
p2

sinh2 (βup/2)
=

4T 4

3π2u5

∞∫
0

x4dx

sinh2 x
=

2π2T 4

45u5
. (6.83)
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Let us turn now to the roton contribution. At low temperatures such asmrT �
p20 and ∆ � T we find

ρn,r =
β

12

∫
d3p

(2π)3
p2

sinh2 (βε(p)/2)
' β

6π2
p40e

−∆/T

∞∫
−∞

dδp e−βδp2/(2mr)

=
p40
6π2

√
2πmr

T
e−∆/T , (6.84)

where δp = p− p0. We note that though the roton contribution is exponentially
small at T � ∆, it predominates over the phonon one at high temperatures
T ≳ 0.7 K.

6.8.3 Problem 22
The roton contribution to the specific heat can similarly be calculated using
the same integral from the previous problem. Assuming that mrT � p20 and
T � ∆, we obtain

Er = V

∫
d3p

(2π)3
ε(p)

eβε(p) − 1
' V

p20∆

2π2
e−β∆

∞∫
−∞

dδp e−βδp2/(2mr)

= V
p20∆

2π2
e−β∆

√
2πmrT . (6.85)

Hence we find

CV =
∂Er

∂T
= V

p20∆
2mr1/2√

2π3T 3/2
e−∆/T . (6.86)

6.9 Seminar IX
In this section we present the solutions for Problems Nos. 23 and 24.

6.9.1 Problem 23
We should find the temperature dependence of the superconducting gap near
Tc. It can be found from the self-consistent equation, cf. Eq. (2.77),

1 =
λg(EF )

2

∞∫
0

dξ

εξ
tanh

( εξ
2T

)
(6.87)
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where εξ =
√
ξ2 +∆2 is the spectrum of superconducting quasiparticles. Here

we again use the trick called “integration over ξ”, described above. This integral
does not converge and must be regularized at some ultra-violet scale. As it is
mentioned in the Lecture, this ultra-violet scale determines the magnitude of the
zero-temperature gap. Therefore, it is convenient to rewrite the self-consistent
equation as,

ln
(
∆0

∆

)
=

∞∫
0

dξ

εξ

(
1− tanh

( εξ
2T

))
= 2I(u),

I(u) =

∞∫
0

dx√
x2 + u2

1

exp[
√
x2 + u2] + 1

(6.88)

where u = ∆/T . In order to compute I(u) at u → 0, let us split the integral
I(u) as follows,

I(u) =
1

2

∞∫
0

dx

(
1√

x2 + u2
−

tanh x
2

x

)
︸ ︷︷ ︸

I1

+
1

2

∞∫
0

dx

(
tanh x

2

x
−

tanh
√
x2+u2

2√
x2 + u2

)
︸ ︷︷ ︸

I2

.

(6.89)

For the first integral, we obtain

I1 =
1

2

∞∫
0

[
d ln
(
x+

√
x2 + u2

)
− tanh

(x
2

)
d lnx

]
=

1

2
ln

2

u
+

1

4

∞∫
0

dx lnx
cosh2(x/2)

=
1

2
ln

2

u
+

1

2

(
ln
π

2
− γ
)
, (6.90)

where γ ≈ 0.577 is the Euler constant. Expanding the second integral in powers
of u, we find

I2 ' −u
2

4

∞∫
0

dx

x

(
1

x
tanh

x

2

)′

= 2u2
∞∑
n=0

∞∫
0

dx

[π2(2n+ 1)2 + x2]2

=
u2

2π2

∞∑
n=0

1

(2n+ 1)3
=

7ζ(3)

16π2
u2 (6.91)

Above we used the following representation

tanh
x

2
=

∞∑
n=0

4x

π2(2n+ 1)2 + x2
. (6.92)
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Therefore, we obtain

I(u) =
1

2
(ln(π/u)− γ) +

7ζ(3)

16π2
u2 + . . . (6.93)

Substituting the expansion (6.93) into the self-consistent equation, we obtain
the following equation for ∆ � T :

ln
(
∆0

∆

)
= ln

πT

∆
− γ +

7ζ(3)

8π2

(
∆

T

)2

. (6.94)

This expression gives the value for Tc = ∆0e
γ/π and also leads to the following

temperature dependence,

∆(T ) = Tc

[
8π2

7ζ(3)

(
1− T

Tc

)]1/2
. (6.95)

The condensation free energy can be written as follows, cf. Eq. (2.76),

Fcond = F [∆]− F [0] =
∑
p

(
|ξp| − ε(p) +

∆2

2ε(p)

)
−
∑
p

∆2

ε(p)
fF (ε(p))

−2T
∑
p

ln
1 + e−βε(p)

1 + e−β|ξp|
. (6.96)

The first sum over p has been found in the Lecture. The second sum is calculated
above. Therefore, we find,

Fcond = −1

4
V g(EF )∆

2 − V g(EF )∆
2I(∆/T ) + 2V g(EF )T

2K(∆/T ),

K(u) =

∞∫
0

dx ln
1 + e−

√
x2+u2

1 + e−x
. (6.97)

It is readily to check that K ′(u) = uI(u). Hence, we obtain at u� 1.

K(u) =
u2

4

(
ln
π

u
− γ +

1

2

)
+

7ζ(3)u4

64π2
+ . . . . (6.98)

Summing all contributions, we find

Fcond = −7ζ(3)

32π2

V g(EF )∆
4

T 2
= − 2π2

7ζ(3)
V g(EF )(Tc − T )2. (6.99)
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6.9.2 Problem 24

We should find the magnitude of jump-like discontinuity in the specific heat at
the superconducting transition point. We use Eq. (2.82) and the expression for
∆(T ) from the previous problem. Then, we find

CV = V g(EF )

∞∫
0

dξ
ε(p)

2 cosh2
(

ε(p)
2T

) (ε(p)
T 2

− 1

2ε(p)T

d∆2

dT

)
. (6.100)

Hence, we find for the specific heat jump,

∆CV = −V g(EF )
d∆2

dT

∞∫
0

dξ
1

4T cosh2
(

ε(p)
2T

) = V
4π2

7ζ(3)
g(EF )Tc = V

4mpF
7ζ(3)

Tc.

(6.101)

We note that this result can be obtained as second derivative of Fcond, cf. Eq.
(6.99).

6.10 Seminar X

In this seminar we consider Problems Nos. 25, 26, and 27.

6.10.1 Problem 25

This problem is solved with applying the general method useful in many other
problems. Let us consider two operators A and B. They obey the following
property: if C := [A,B], then [C,A] = [C,B] = 0. In this case, we can simplify
the expression exp(A + B). First of all, let us consider how A ‘acts’ on some
function of B,

[A,Bn] = [A,Bn−1]B +Bn−1[A,B] = nCBn−1 ⇒ [A, f(B)] = Cf ′(B).
(6.102)
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The other important identity is a derivative of operator exp[A(x)] with respect
to x. The convenient expression can be derived in the following way,

∂xe
A(x)=

∞∑
n=1

1

n!

n−1∑
k=0

Ak(x)A′(x)An−1−k(x)=
∞∑
n=1

n−1∑
k=0

1∫
0

dt
tk(1− t)n−1−k

k!(n− k − 1)!
Ak(x)

×A′(x)An−1−k(x) =
∞∑
k=0

∞∑
n=k+1

1∫
0

dt
tk(1− t)n−1−k

k!(n− k − 1)!
Ak(x)A′(x)An−1−k(x)

=

1∫
0

dt

(
∞∑
j=0

tkAk(x)

k!

)
A′(x)

∞∑
l=0

(1− t)lAl(x)

l!
=

1∫
0

dt etA(x)A′(x)e(1−t)A(x).

(6.103)

After the above preliminaries we turn our attention to the problem. We
should calculate the following expression

f(αq, βq) =
〈
exp[αqbq + βqb

†
q]
〉
= Tr

{
exp[αqbq + βqb

†
q]e

−βH
}
/Tr e−βH .

(6.104)

Let us calculate the derivative over αq (here A = αqbq + βqb
†
q),

∂f

∂αq

=

1∫
0

dtTr
[
etA bq e

(1−t)Ae−βH
]
/Tr e−βH = Tr[bqeAe−βH ]/Tr e−βH

−
1∫

0

dtTr
{
[bq, e

tA]e(1−t)Ae−βH
}
/Tr e−βH . (6.105)

Since [bq, A] = βq, we find [bq, e
tA] = βqte

tA. Next, we use the following trans-
formations

Tr[bqeAe−βH ] = Tr[eAe−βHbq] = eβωq Tr[eAbqe−βH ] = eβωq

1∫
0

dtTr[etAe(1−t)A

×bqe−βH ] = eβωq

1∫
0

dt
(
Tr[etAbqe(1−t)Ae−βH ]− Tr

{
etA[bq, e

(1−t)A]e−βH
})

= eβωq

(
∂f

∂αq

− βq
2
f

)
Tr e−βH . (6.106)
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Hence, we obtain the equation for the function f ,

∂f

∂αq

=
βq
2
coth

ωq

2T
f. (6.107)

Using the initial condition f(0, βq) = 1, we find

f(αq, βq) = exp
(
αqβq
2

coth
ωq

2T

)
. (6.108)

As f(0, α+) = 1, we have f = exp[α+α−
2

coth
( ωq

2T

)
] yielding the answer for the

problem.

6.10.2 Problem 26
The annihilation operator for the electron traveling to the right side is deter-
mined as ψR(x) =

∑
p exp(−ipx)a

†
+,p and obeys the commutation relations

[b†+,q, ψR(x)] = −
√

2π

qL
e−iqxψR(x), [b+,q, ψR(x)] = −

√
2π

qL
eiqxψR(x).

(6.109)

Herewe use the representation of the bosonic operators in terms of electron den-
sity. Now let us try to represent the fermionic operator ψR(x) as the product of
fermionic operatorΨR(x) and bosonic operators. Using the methods developed
in Problem 25, one can check that provided that [b†+,q,ΨR(x)] = [b+,q,ΨR(x)] =
0, the operator

ψR(x) = ΨR(x) exp

[
−(2π/(qL))1/2

∑
q>0

(
e−iqxb†+,q − eiqxb+,q

)]
(6.110)

obeys the commutation relations Eq. (6.109).
We note that the operatorΨR(x) should change the total number of the right

moversNR by one. Let us consider the operator ϕR,0 that satisfies the following
commutation relation

[NR, ϕR,0] = i ⇒ [eiϕR,0 ,NR] = eiϕR,0 . (6.111)

As follows from the last commutation relation, operator eiϕR,0 has single nonzero
matrix element 〈NR − 1|eiϕR,0 |NR〉. The same matrix element has the fermionic
operator ΨR(x).
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Finally, for the formulation in the real space, it is convenient to have the
following relation ρR(x) = ∂ϕR(x)/∂x. Then using the relation

ρR(x) =
NR

L
+ (q/(2πL))1/2

∑
q>0

(
e−iqxb†+,q + eiqxb+,q

)
, (6.112)

we find finally,

ψR(x) ∼ eiϕR(x), ϕR(x) = ϕR,0 +
NRx

L
+ i
∑
q>0

√
2π

qL

(
e−iqxb†+,q − eiqxb+,q

)
.

(6.113)
This relation is referred to as the Mattis–Mandelstam formula.

6.10.3 Problem 27
Let us introduce new bosonic operators,

a†η,q =
b†η,↑,q + b†η,↓,q√

2
, aη,q =

bη,↑,q + bη,↓,q√
2

,

d†η,q =
b†η,↑,q − b†η,↓,q√

2
, dη,q =

bη,↑,q − bη,↓,q√
2

. (6.114)

We emphasize that they obey the usual commutation relations,

[aη,q, a
†
η′,q′ ] = δη,η′δq,q′ , [dη,q, d

†
η′,q′ ] = δη,η′δq,q′ . (6.115)

The bosonic states for operators a†, a and d†, d are independent,

[aη,q, d
†
η′,q′ ] = 0, [dη,q, a

†
η′,q′ ] = 0. (6.116)

We note that the operators a†, a corresponds to the total density whereas the
operators d†, d describe the spin density. In terms of new operators the Hamil-
tonian can be rewritten as

HLL =
∑
η,q>0

vF qd
†
η,qdη,q +

∑
η,q>0

[
(vF + 2g4)qa

†
η,qaη,q + g2(a

†
η,qa

†
−η,q + aη,qa−η,q)

]
.

(6.117)

We apply the canonical transformation to the operators a†, a,

a†η,q = cosh θqβ†
η,q + sinh θqβ−η,q, aη,q = cosh θqβη,q + sinh θqβ†

−η,q, (6.118)
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where

cosh 2θq =
vF + 2g4

u
, sinh 2θq = −2g2

u
, u =

√
(vF + 2g4)2 − 4g22.

(6.119)
The Hamiltonian, rewritten in new operators, reads

HLL = EG+
∑
η,q>0

vF qd
†
η,qdη,q +

∑
η,q>0

uq β†
η,qβη,q, EG =

1

2

∑
q>0

(u− vF − 2g4)q.

(6.120)
The disentangling of spin and density channels in the Luttinger liquid Hamil-
tonian is an example of the spin–charge separation in the strongly correlated
systems.

6.11 Seminar XI

In this section we present the solutions for Problems Nos. 28 and 29.

6.11.1 Problem 28

Let us consider the ground state of the one-dimensional Ising model in the ab-
sence of magnetic field. In the ground state all spins are parallel to each other.
One can consider a perturbation of the ground state. The excited state corre-
sponding to such perturbation is called the domain wall: some spins are parallel
to the initial direction and the others are not. There is only a single site at which
neighboring spins are antiparallel to each other. The difference between energy
of the ground state and the excited state with the domain wall equals∆E = 2J .
If we have n domain walls, the energy of this configuration will be∆En = 2Jn.
The free energy of the model in zero magnetic field becomes

F = −LT ln
(
1 + e−2βJ

)
. (6.121)

This leads to the energy E = 2LJ exp(−βJ)/[exp(βJ) + exp(−βJ)]. So, the
domain wall density can be written as

ρ =
E

2JL
=

1

exp(2βJ) + 1
. (6.122)

We note that the density of domain walls coincides with the Fermi–Dirac dis-
tribution.
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6.11.2 Problem 29
The problem for calculating the correlation function is not considered before in
this course. We cannot use the free energy to solve it. Fortunately, the transfer
matrix can serve for this purpose as well. At first, we calculate the average spin
in the one-dimensional Ising model with the periodic boundary conditions,

〈σi〉 =
1

Z

∑
σ1...σN

σie
−βEσ1,...,σN =

1

Z

∑
σi

σi(T L)σi,σi
, Z = tr T L (6.123)

where L = N − 1. As in the lecture, we can rewrite the last expression as a
trace of matrix product:

〈σi〉 =
1

Z
tr
[
τzT L

]
=

1

Z
tr
[
U−1τzUΛL

]
= cos(2ϕ)

=
sinh(βh)√

e−4βJ + sinh2(βh)
. (6.124)

The matrix τz helps us to calculate the correlation function,

〈σiσi+n〉 =
1

Z
tr
[
τzT nτzT L−n

]
=

1

Z
tr
[
U−1τzUΛnU−1τzUΛL−n

]
= cos2(2ϕ) +

(
λ−
λ+

)n

sin2(ϕ). (6.125)

For the physical applications, the so-called irreducible correlation function is of
more interest,

〈〈σiσi+n〉〉 = 〈σiσi+n〉 − 〈σi〉〈σi+n〉 = e−n ln(λ+/λ−) sin2(ϕ). (6.126)

The decaying character of this function describes the physical properties inher-
ent in the system.

6.12 Seminar XII
In this section we consider Problems Nos. 30, 31, and 32.

6.12.1 Problem 30
The expansion of the thermodynamic potential for the antiferromagnet in the
vicinity of the Néel temperature can be written as

F = F0 + AL2 +BL4 +D(HL)2 +D′H2L2 − χP

2
H2 +

β

2
(L2

x + L2
y)

−γ
2
(H2

x +H2
y )−

H2

8π
. (6.127)



158 CHAPTER 6. SOLUTION OF PROBLEMS FOR SEMINARS

Here we assume that A = a(T − Tc) and β > 0 (easy axis). Then atH = 0, we
find

Lz =

{√
a(Tc − T )/(2B), T < Tc,

0, T > Tc.
(6.128)

The magnetization is given as

M = −H

4π
− ∂F

∂H
. (6.129)

For T > Tc, in the field parallel to the z axis we find

Mz = χzHz, χz = χp. (6.130)

For T < Tc, we obtain

Mz = χzHz, χz = χp−2(D+D′)L2 = χp−a(D+D′)(Tc−T )/B. (6.131)

6.12.2 Problem 31
The effective Hamiltonian that describes fluctuations at T > Tc has the form,
cf. Eq. (3.42),

Heff ≈ H (2)
eff =

1

2

∑
p

φpφ−p

(
bp2 + T − Tc

)
. (6.132)

Here we neglect the quartic term in Eq. (3.42). To calculate the correction to
the free energy due to fluctuations, we should evaluate the following integral,

e−βδF =

∫ ∏
p

dφp e
−βH

(2)
eff . (6.133)

It is a product of the Gaussian integrals. We note that φp = φ†
−p. The result of

calculation becomes (within accuracy of some constant),

δF =
T

2

∑
p

ln
(
bp2 + T − Tc

Tπ

)
. (6.134)

To calculate the correction to the specific heat, we differentiate with respect to
the temperature,

δCP = −T ∂
2δF

∂2T
' T 2

c

2

∑
p

1

(bp2 + T − Tc)2
=
T 2
c V

2

Sd

(2π)d

∫ ∞

0

dp pd−1

(bp2 + T − Tc)2

= − T 2
c V

2(T − Tc)2
Sd

(2π)d
(d− 2)π

4 sin
(
πd
2

) (T − Tc
b

)d/2

. (6.135)

Here Sd is the area of unit sphere in the d-dimensional space. We note that, for
d > 4, δCP vanishes as T → Tc. For d < 4, δCP diverges as the temperature
approaches Tc.
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6.12.3 Problems 32

Before calculating the order parameter, we find the following average (T > Tc)

〈φkφq〉 =
∫ ∏

p dφpφkφqe
−βH

(2)
eff∫ ∏

p dφpe
−βH

(2)
eff

=
δk,−qTc

bq2 + T − Tc
. (6.136)

We note that G(x) = 〈φ((x))φ(0)〉 =
∑

p e
ipx〈φpφ−p〉. Therefore, we find,

〈φ2〉 = G(0) =
SdV Tc
(2π)d

∞∫
0

dp pd−1

bp2 + T − Tc
=

Sd

(2π)d
πV Tc(T − Tc)

d/2−1

2 sin
(
πd
2

)
bd/2

. (6.137)

6.13 Seminar XIII

In this section we solve Problems Nos. 33 and 34.

6.13.1 Problem 33

The scaling dimension of thermodynamic potential δF is ∆F = d. Therefore,
one can write,

δF = td/∆tf
(
ht−∆h/∆t

)
. (6.138)

Using the relation φ = −∂F
∂h
, we have ∆φ = d − ∆h. Next, using the relation

CP = Tc
∂2δF
∂2t

, one can note that (at zero field) α = 2 − d/∆t. This leads to the
relation νd = 2 − α. For t → 0, we should have F ∝ td/∆t(ht−∆h/∆t)−ε since
CP ∝ h−ε. Hence we obtain the relation αµ = νε.

6.13.2 Problem 34

For the n-component field φ, we have the following effective Hamiltonian,

Heff[φ] =
1

2

∫
ddr

[
τφ2 + (∇φ)2 +

λ

2
(φ2)2

]
. (6.139)

Our aim is to perform an integral over the modes with the momenta between Λ
and Λ′ = Λ/u. Splitting on the fast and slow components in the same way as in
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the lecture, we find the following expression for the effective Hamiltonian,

Heff[φ] ≈ Heff[φ] +H(0)
eff [φ] +Hint

eff,

Heff[φ] =
1

2

∫
ddr

[
τφ2 + (∇φ)2 +

λ

2
(φ2)2

]
,

H(0)
eff [φ] =

1

2

∫
ddr

[
τφ2 + (∇φ)2

]
,

Hint
eff =

λ

4

∫
ddr

[
2(φ2)(φ2) + 4(φφ)2

]
. (6.140)

We have neglected the terms vanishing due to fast oscillations after integration
over thewhole space. Alsowe assume that the fast componentφ is small. So, the
term proportional toλ can be omitted in the effectiveHamiltonian forφ,H(0)

eff [φ].
Now we should take an average over H(0)

eff [φ]. This produces the correction to
Heff[φ]. The correction can be written as,

e−δHeff[φ]/T =

∫
D[φ] e−(Hint

eff+H(0)
eff [φ])/T

/∫
D[φ] e−H(0)

eff [φ]/T (6.141)

Hence, to second order in λ, we find

δHeff[φ] = 〈Hint
eff〉 −

β

2
〈〈(Hint

eff)
2〉〉. (6.142)

Here 〈〈(Hint
eff)

2〉〉 = 〈(Hint
eff)

2〉 − 〈Hint
eff〉2. The average of interaction term is given

as

〈Hint
eff〉 =

λ(n+ 2)

2

∫
ddrφ2Gφ(0). (6.143)

Here 〈φi(r)φj(r
′)〉 = δijGφ(r − r′). The other term can be found as

〈〈(Hint
eff)

2〉〉 = λ2(n+ 8)

2

∫
ddr

∫
ddr′(φ2(r))2G2

φ(r
′). (6.144)

Therefore, we reproduce the same expression forHeff[φ]+δHeff[φ] as forHeff[φ]
but the coupling constants are different,

τ → τ(l) = e2lτ + (n+ 2)λe2lGφ(0),

λ→ λ(l) = e(4−d)lλ− (n+ 8)βλ2e(4−d)l

∫
ddr′G2

φ(r
′).

(6.145)
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Note here that we have used the same choice of exponent ρ = (d + 2)/2 as in
the Lecture. We remind that u = el. Now we calculate the integrals over the
Green’s functions,

Gφ(0) =

∫
ddk

(2π)d
Gφ(k) =

SdT

(2π)d

Λ∫
Λ/u

kd−1dk

k2 + τ
≈ Sd

(2π)d
TΛd

Λ2 + τ
l,

∫
ddr′G2

φ(r
′) =

∫
ddk

(2π)d
G2

φ(k) =
SdT

2

(2π)d

Λ∫
Λ/u

kd−1dk

(k2 + τ)2
≈ Sd

(2π)d
T 2Λd

(Λ2 + τ)2
l.

(6.146)

Then we substitute this expression into the previous equation. Also we will
introduce newnotations, τ̃ = τ/Λ2 and λ̃ = λTΛd−4Sd/(2π)

d. Then, expanding
to lowest order in l, we find,

τ̃(l) = τ̃ +

(
2τ̃ +

(n+ 2)λ̃

1 + τ̃

)
l, λ̃(l) = λ̃+

(
(4− d)λ̃− (n+ 8)λ̃2

(1 + τ̃)2

)
l.

(6.147)
These relations can be represented in the form of the renormalization group
equations,

dτ̃

dl
= 2τ̃ +

(n+ 2)λ̃

1 + τ̃
,

dλ̃

dl
= (4− d)− (n+ 8)λ̃2

(1 + τ̃)2
. (6.148)

6.14 Seminar XIV

In this section we consider Problems Nos. 35 and 36.
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6.14.1 Problem 35
Let us rewrite the difference between the ground state energy for odd and even
sectors as

E (g)
o − E (g)

e = 2h+ 2

N/2∑
n=1

(√
h2+J2−2hJ cos

2πn

N
cos

π

N
−2hJ sin

2πn

N
sin

π

N

−
√
h2+J2−2hJ cos

2πn

N

)
N→∞−→ 2h− 2π

N

N/2∑
n=1

hJ sin 2πn
N√

h2+J2−2hJ cos 2πn
N

= 2h−
π∫

0

dp
sin p√

h2 + J2 − 2hJ cos p
= h− J + |h− J |

=

{
0, h ⩽ J,

2(h− J), h > J.
(6.149)

6.14.2 Problem 36
In order to derive the result (3.94) for 〈σx

j 〉 we will use the following equality,

lim
k→∞

〈σx
1σ

x
k〉 → 〈σx

j 〉2. (6.150)

Let us introduce to fermionic operators

Aj = a†j + aj, Bj = a†j − aj. (6.151)

We note that A2
j = 1 and B2

j = −1. Essentially, operators Aj and iBj are
operators of Majorana fermions. Then, we find

〈σx
1σ

x
k〉 = 〈A1KkAk〉 = 〈B1A2B2 . . . Ak−1Bk−1Ak〉 (6.152)

Here we used that Kk =
∏k−1

j=1(1 − 2nj) =
∏k−1

j=1 AjBj . The idea to com-
pute (6.152) is based on application of theWick theorem (since theHamiltonian
(3.89) is quadratic in terms of quasiparticle creation and annihilation operators.
In what follows we shall work in the sector with even number of quasiparticles
(since it is the ground state for all magnitudes of h).

Let us first compute the pair averages of the fermionic operators a†j and aj .
We find

〈a†jak〉 =
1

N

∑
p,p′

e−ipj+ip′k〈(cos θpα†
p + i sin θPα−p)(cos θp′αp′ − i sin θp′α†

−p′)〉

=
1

N

∑
p

e−ip(j−k)Gp, Gp =
1

2
− cos 2θp

2

[
1− 2fF (Ep)

]
. (6.153)
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In a similar way we obtain

〈aja†k〉 =
1

N

∑
p

e−ip(j−k)[1−Gp], (6.154)

and

〈a†ja
†
k〉 =

1

N

∑
p

e−ip(j−k)Fp, 〈ajak〉 = − 1

N

∑
p

e−ip(j−k)Fp,

Fp =
i sin 2θp

2

[
1− 2fF (Ep)

]
. (6.155)

Now we can compute the pair correlation functions of A and B operators. We
find

〈AjAk〉 =
1

N

∑
p

e−ip(j−k)
[
Fp − Fp +Gp + 1−Gp

]
= δjk,

〈BjBk〉 =
1

N

∑
p

e−ip(j−k)
[
Fp − Fp −Gp − 1 +Gp

]
= −δjk,

〈BjAk〉 =
1

N

∑
p

e−ip(j−k)
[
2Fp + 2Gp − 1

]
= − 1

N

∑
p

e−ip(j−k)−2θp
[
1− 2fF (Ep)

]
≡Mjk,

〈AjBk〉 =
1

N

∑
p

e−ip(j−k)
[
2Fp − 2Gp + 1

]
≡ −Mkj. (6.156)

Armed with the above expressions for A and B correlation functions, let us
compute the average of two spins on the neighboring sites:

〈σx
1σ

x
2 〉 = 〈B1A2〉 =M12. (6.157)

Next, we find

〈σx
1σ

x
3 〉 = 〈B1A2B2A3〉 = 〈B1A2〉〈B2A3〉+ 〈B1A3〉〈A2B2〉

=M12M23 −M13M22 =

∣∣∣∣M12 M13

M22 M23

∣∣∣∣ . (6.158)

We note that in the product of A and B operators all A operators are at dif-
ferent sites. The same holds for B operators. Therefore, the expression after
application of the Wick theorem contains the functionMjk alone.
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Next, we obtain

〈σx
1σ

x
4 〉 = 〈B1A2B2A3B3A4〉 = 〈B1A2〉

[
〈B2A3〉〈B3A4〉+ 〈B2A4〉〈A3B3〉

]
+〈B1A3〉

[
〈A2B2〉〈B3A4〉 − 〈A2B3〉〈B2A4〉

]
+ 〈B1A4〉

[
〈A2B2〉〈A3B3〉

+〈A2B3〉〈B2A3〉
]
=M12[M23M34 −M24M33]−M13[M22M34 −M32M24]

+M14[M22M23 −M32M23] =

∣∣∣∣∣∣
M12 M13 M14

M22 M23 M24

M32 M33 M34

∣∣∣∣∣∣ . (6.159)

For arbitrary k > 1 the structure of the pair spin correlation function is clear,

〈σx
1σ

x
k〉 =

∣∣∣∣∣∣∣∣
M12 M13 . . . M1k

M22 M23 . . . M2k

. . . . . . . . . . . .
Mk−1,2 Mk−1,2 . . . Mk−1,k

∣∣∣∣∣∣∣∣ . (6.160)

Now let us rewriteMjk in a more convenient form,

Mjk =
1

N

∑
p

e−ip(j−k+1)Xp ≡ X̃j−k+1,

Xp =

√
1− zeip

1− ze−ip
tanh

[J
T

√
(1− zeip)(1− ze−ip)

]
. (6.161)

Here we introduce z = h/J . Then the pair spin correlation function acquires
the form of the Toeplitz determinant,

〈σx
1σ

x
k〉 =

∣∣∣∣∣∣∣∣
X̃0 X̃−1 . . . X̃−(k−2)

X̃1 X̃0 . . . X̃−(k−3)

. . . . . . . . . . . .

X̃k−2 X̃k−3 . . . X̃0

∣∣∣∣∣∣∣∣ ≡ det X̂k−1. (6.162)

Let us check the above result setting h = 0. Then, we obtain X̃j =
tanh(J/T )δj0. Such that 〈σx

1σ
x
k〉 = exp[(k − 1) ln tanh(J/T )]. It is the result

we derived in the classical one-dimensional Ising model.
In order to compute the Toeplitz determinant in the limit k → ∞ and N →

∞, we employ the second Szego’s theorem. Let us introduce the quantity

λj =

π∫
−π

dp

2π
e−ijp lnXp, j ∈ Z. (6.163)
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Then the Szego’s theorem suggests

lim
k→∞

〈σx
1σ

x
k〉 ' exp

[
kλ0 +

∞∑
j=1

jλjλ−j

]
. (6.164)

In order to compute λj we use the following representation

λj =
1

2

π∫
−π

dp

2π

[
e−ijp − eijp

]
ln(1− zeip) +

π∫
−π

dp

2π
e−ijp

× ln tanh
[J
T

√
(1−zeip)(1−ze−ip)

]
. (6.165)

At first, we note that at T = 0 we find λ0 = 0. At nonzero temperature, T > 0,
we find λ0 < 0 (see Fig. 6.2). It implies immediately, that 〈σx

1σ
x
k〉 → 0 at k → ∞

for T > 0. In other words, at nonzero temperature, T > 0, 〈σx
j 〉 = 0, i.e. there

is no phase transition. We note that 1/|λ0| is nothing but the correlation length.
The correlation length has a cusp at h = J .

In order to compute λj at T = 0, we note that λ−j = −λj . Then for z < 1,
we find for j > 0,

λj =

π∫
−π

dp

4π

[
e−ijp − eijp

]
ln(1− zeip) =

π∫
−π

dp

4π

[
eijp − e−ijp

] ∞∑
k=1

zkeikp

k
= − zj

2j
.

(6.166)

Then, we obtain
∞∑
j=1

jλjλ−j = −
∞∑
j=1

z2j

4j
=

1

4
ln(1− z2). (6.167)

Hence, for z < 1 and T = 0, we find

〈σx
j 〉 =

(
lim
k→∞

〈σx
1σ

x
k〉
)1/2

= (1− z2)1/8. (6.168)

For z > 1, we proceed as follows (j > 0),

λj =

π∫
−π

dp

4π

[
e−ijp − eijp

][
ln z + ip+ iπ + ln(1− e−ip/z)

]
=

π∫
−π

dp

2π
p sin(pj)

+

π∫
−π

dp

4π

[
eijp − e−ijp

] ∞∑
k=1

z−ke−ikp

k
=

(−1)j−1

j
+
z−j

2j
. (6.169)
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Figure 6.2: The inverse correlation length at T > 0 as a function of the ratio
h/J . The solid curve is for T/J = 0.1 and the dashed curve is for T/J = 0.5.

Then, we obtain

∞∑
j=1

jλjλ−j = −
∞∑
j=1

jλ2j = −
∞∑
j=1

1

j

[
1− z−j + z−2j/4

]
= −∞. (6.170)

Hence, for z > 1 and T = 0, we find

〈σx
j 〉 =

(
lim
k→∞

〈σx
1σ

x
k〉
)1/2

= 0. (6.171)

6.15 Seminar XV
In this section we consider Problems Nos. 37, 38, and 39.

6.15.1 Problem 37
The correlation function 〈cos(θ0 − θn)〉 is determined as

〈cos(θ0 − θn)〉 =

∏
l

2π∫
0

dθl
2π

 cos(θ0 − θn) exp

[
βJ

∑
<jk>

cos(θj − θk)

]
/∏

l

2π∫
0

dθl
2π

 exp

[
βJ

∑
<jk>

cos(θj − θk)

]
. (6.172)
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Let us rewrite this expression as an expression on the dual lattice in a way anal-
ogous to Eq. (3.110). Then, we find

〈cos(θ0 − θn)〉 =
∑
{sl}

∏
<ll′>

I|sl−sl′+∆ll′ |(βJ)

/∑
{sl}

∏
<ll′>

I|sl−sl′ |(βJ). (6.173)

Here sl is an integer number and ∆<ll′> = 1 if the link between the sites l and
l′ on the dual lattice is crossed by the path from point 0 to point n. Otherwise,
∆<ll′> = 0. We note that this path can be arbitrary. The result is independent
of the particular path choice. At high temperatures T � J , one can use the
following expansion for the modified Bessel function, I|s|(z) = (z/2)|s|/(|s|!) at
z � 1. Then, as it follows from Eq. (6.173), the contribution lowest in powers
βJ to the correlation function 〈cos(θ0− θn)〉 will be determined by the shortest
path between points 0 and n. Each link of this path has ∆<ll′> = 1 and, thus,
contributes a factor βJ/2. Therefore, we find

〈cos(θ0 − θn)〉 = (βJ/2)Nlinks , (6.174)

where Nlinks is the number of shortest path links between the points 0 and n.

6.15.2 Problem 38
In this problem we calculate the integral over θ̃l in expression (3.114) from the
main part of Lectures. Let us write,

Z =
∑
{ml}

∏
l

(∫
dθ̃l

)
exp

[
−βF0(θ̃, m)

]
,

F0(θ̃, m) =
J

2

∑
⟨l,l′⟩

(θ̃l − θ̃l′)
2 − i2πJ

∑
l

mlθ̃l. (6.175)

In order to calculate this integral, let us consider a shift of integration variables:
θ̃l 7→ θ̃l+al. We should find such variables al which eliminate the terms linearly
dependent on θ̃l. After such transformation the free energy becomes

F0(θ̃, m) 7→ F (a, θ̃,m) = F0(θ̃, 0) + F0(a,m) + F1(a, θ̃,m),

F1(a, θ̃,m) = J
∑
⟨l,l′⟩

(θ̃l − θ̃l′)(al − al′)− i2πJ
∑
l

mlθ̃l

= 2J
∑
⟨l,l′⟩

θ̃l(al − al′ − iπml). (6.176)
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So, we attempt to find variables al nullifying F1. For the square lattice, we
should solve the following set of equations

4aj,k − aj+1,k − aj−1,k − aj,k−1 − aj,k+1 = 4iπmj,k. (6.177)

In order to solve the above equations, we use the periodic boundary conditions.
We introduce the Green’s function, determined as

4Gj,k −Gj+1,k −Gj−1,k −Gj,k−1 −Gj,k+1 = δj,0δk,0. (6.178)

Performing the Fourier transform,

Gj,k =

2π∫
0

dqxdqy
(2π)2

eiqxajeiqyakG(qx, qy), (6.179)

we obtain

G(qx, qy) =
1

4− 2 cos(qxa)− 2 cos(qya)
. (6.180)

The integral over q has logarithmic divergence. The latter is associated with
an existence of zero mode (translation) in the operator (6.177). Performing the
integral over q, we find

Gj,k =
1

2π
ln
(
L

rjk

)
(6.181)

where L is a typical size of the system and rjk = a
√
j2 + k2 is the distance be-

tween the origin (0, 0) and the point (j, k). With the help of the Green’s function
G we can find al satisfying Eq. (6.177) as

al =
∑
l′

G(|l− l′|)ml′ . (6.182)

Hence, we obtain

Z =
∏
l

(∫
dθ̃l

)
exp

[
−βF0(θ̃, 0)

]∑
{ml}

exp

[
−2πJβ

∑
l,l′

mlml′ ln
L

|l− l′|

]

≡ Z0

∑
{ml}

exp

[
−2πJβ ln

L

rv

(∑
l

ml

)2

− 2πJβ ln
rv
a

∑
l

m2
l

−2πJβ
∑
l ̸=l′

mlml′ ln
rv

|l− l′|

]
. (6.183)
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Here the length scales satisfy L � rv � a, where rv is a typical distance be-
tween vortices. In the limit βJ � 1, the first two terms should acquire the
minimal possible values so

∑
lml = 0 and eachml = ±1 .

Now let us demonstrate that with the constraint
∑

lml = 0 we obtain ex-
actly the same form for the partition function as given by Eq. (3.116). Let us
incorporate this constraint into Eq. (3.115), then we find

Z =

2π∫
0

ds

2π

∑
{ml}

∏
l

 ∞∫
−∞

dθl y
m2

l e2πismle2πiβJθlml

 exp
[
−βJ

2

∑
<ll′>

(θl − θl′)
2
]
.

(6.184)

Performing summation overml, we find

Z =

2π∫
0

ds

2π

∏
l

 ∞∫
−∞

dθl ϑ3

(
πβJθl + πs, y

) exp
[
−βJ

2

∑
<ll′>

(θl − θl′)
2
]

(6.185)

Shifting integration variables θl → θl−s/(βJ), we obtain the expres-
sion (3.116).

6.15.3 Problem 39
The action S is determined as, see Eq. (3.118):

S = βHeff =
βJ

2

∫
d2r(∇θ)2 − 2βỹ

∫
d2r cos(2πβJθ). (6.186)

In order to derive the RG equations, let us choose the convenient variables. We
denote 2πβJ = g and 2ỹβ = u. Also we rescale θ: θ → θ/g. Then we find

S =
1

4πg

∫
d2r(∇θ)2 − u

∫
d2r cos(θ). (6.187)

The original field θ is determined as

θ(r) =
∑
|p|<Λ

θpe
ipr, (6.188)

where Λ ∼ 1/a stands for the ultra-violet cut off. Let us split the field θ into the
slow and fast components, θ = θs + θf ,

θs(r) =
∑
|p|<Λ′

θpe
ipr, θf (r) =

∑
Λ>|p|>Λ′

θpe
ipr. (6.189)
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Expanding S in the fast component θf to second order, we derive the following
action:

S ' 1

4πg

∫
d2r

[
(∇θs)2 + (∇θf )2

]
− u

∫
d2r

[
cos θs − θf sin θs −

θ2f
2
cos θs

]
.

(6.190)
The term− sin(θs)θf is insignificant since it is a product of slow and fast modes.
Omitting this term, we find the action for the slow modes,

SΛ′ =
1

4πgΛ

∫
d2r(∇θs)2 − u

∫
d2r cos(θs) + δSΛ′ , (6.191)

where

δSΛ′ ≈ 〈Sint〉 −
1

2
〈〈S2

int〉〉, Sint = −u
2

∫
d2r θ2f cos θs,

〈A〉 =
∫
D[θf ] A[θf ] e

− 1
4πgΛ

∫
d2r(∇θf )

2
/∫

D[θf ] e
− 1

4πgΛ

∫
d2r(∇θf )

2

. (6.192)

Next, we find several averages. At first, we get

〈Sint〉 =
u

2

∫
d2r 〈θ2f〉 cos θs =

u

2

∫
d2r G(0) cos θs =

gu

4π

Λ− Λ′

Λ′

∫
d2r cos θs.

(6.193)
Here

G(r) = 〈θf (r)θf (0)〉 = 2πg

∫
Λ′<q<Λ

d2q

(2π)2
e−iqr

q2
. (6.194)

In particular, we find G(0) = g lnΛ/Λ′. Thus the average 〈Sint〉 entails the
renormalization of the parameter u,

uΛ′ = uΛ +
1

2
gΛuΛ

Λ− Λ′

Λ′ . (6.195)

The second average is more complicated,

〈〈S2
int〉〉 =

u2

4

∫
d2r1d

2r2 cos θs(r1) cos θs(r2)〈〈θ2f (r1)θ2f (r2)〉〉 =
u2

2

∫
d2r1d

2r2

× cos θs(r1) cos θs(r2)G2(r1 − r2) =
u2

2

∫
d2qd2k

(2π)4
[cos θs]q[cos θs]−q

×G(k)G(k+ q). (6.196)
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Let us compute the integral over k at q → 0:∫
Λ′<k<Λ

d2k

(2π)2
G(k)G(k+ q) = (2πg)2

∫
Λ′<k<Λ

d2k

(2π)2
1

k2(k+ q)2

' 2πg2
[ 1

2Λ′2 − 1

2Λ2
+

q2

4Λ′4 − q2

4Λ4

]
' 2πg2

[Λ− Λ′

Λ3
+
q2(Λ− Λ′)

Λ5

]
(6.197)

Hence, we obtain

〈〈S2
int〉〉 =

πg2u2

2

Λ− Λ′

Λ3

∫
d2r cos2 θs +

πg2u2

2

Λ− Λ′

Λ5

∫
d2r(∇ cos θs)2

=
πg2u2

2

Λ− Λ′

Λ3

∫
d2r cos2 θs +

πg2u2

4

Λ− Λ′

Λ5

∫
d2r[1− cos(2θs)](∇θs)2.

(6.198)

Therefore, 〈〈S2
int〉〉 contributes to the kinetic term, (∇θ)2. We note that there

are additional terms generated in the course of the renormalization group pro-
cedure. One can check that these terms do not change the critical behavior of
the model. Thus, we obtain the following two relations,

uΛ′ = uΛ +
gΛuΛ
2

ln
(
Λ

Λ′

)
,

1

gΛ′
=

1

gΛ
− π2u2Λg

2
Λ

2

Λ− Λ′

Λ5
. (6.199)

In order to represent the above relations as some RG equation, we introduce
γΛ = uΛ/Λ

2 and l = − lnΛ. Then, one can write

∂γ

∂l
=
(
2− g

2

)
γ,

∂g

∂l
= −π

2γ2g4

2
. (6.200)

Equivalently, we can rewrite the above equations as

∂y

∂l
= −xy, ∂x

∂l
= −y2. (6.201)

where x = g/2− 2 = πβJ − 2 and y = 8πγ.

6.16 Seminar XVI
In this section we present the solutions for Problems Nos. 40 and 41.
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6.16.1 Problem 40
Let us start from calculating the function

DR(ω) = i

∞∫
0

dtei(ω+i0)t Tr
(
[bα(t), b

†
α]ρ
)
. (6.202)

The operator bα(t) satisfies the equation of motion,

dbα(t)

dt
= i[H, bα(t)]. (6.203)

Using commutation relations [bα, b†β] = δαβ , we find

bα(t) = e−iεαtbα. (6.204)

Hence, we find

DR(ω) = i

∞∫
0

dtei(ω−εα+i0)t〈[bα, b†α]〉 = i

∞∫
0

dtei(ω−εα+i0)t = − 1

ω − εα + i0
.

(6.205)
Next, we compute the function

DK(ω) = i

∞∫
−∞

dteiωt Tr
(
{bα(t), b†α}ρ

)
= i

∞∫
−∞

dtei(ω−εα)t
[
2fB(εα) + 1

]
= 2πiδ(ω − εα)

[
2fB(εα) + 1

]
. (6.206)

Here we have used the fact that 〈b†αbα〉 = fB(εα).
Comparing Eqs. (6.205) and (6.206), we find

DK(ω) = 2i ImDR(ω) coth
ω

2T
. (6.207)

6.16.2 Problem 41
Let us consider the case when the applied force depends on the spatial coordi-
nate r. Then the perturbation has the following form, V = −

∫
drf(r, t)X (r).

In what follows, we use the interaction representation. This means, in particu-
lar, that the density matrix satisfies the following equation,

dρ(t)

dt
= −i[V (t), ρ(t)]. (6.208)
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Within the linear response one can relate the generalized susceptibility with the
average of corresponding operator Y (r, t) and applied force X (r, t) by means
of the following relation,

〈Y (r, t)〉 =
t∫

−∞

dt′
∫
dr′f(r′, t′)αY X (r, t; r′, t′). (6.209)

The average 〈Y (r, t)〉 is determined in a standard way,

〈Y (r, t)〉 = Tr
(
Y (r, t)ρ(t)

)
. (6.210)

Since we are interested in the linear response, we can approximate the density
matrix ρ(t) as

ρ(t) ≈ ρ0 − i

t∫
−∞

dt′[V (t′), ρ0] (6.211)

where ρ0 is the density matrix in the absence of perturbation. Let us introduce
the following notation, 〈Ô〉0 = Tr(Oρ0). Also we assume that 〈Y (r, t)〉0 = 0.
Then, we find

〈Y (r, t)〉 ≈ −i
t∫

−∞

dt′ Tr
(
Y (r, t)[V (t′), ρ0]

)
= −i

t∫
−∞

dt′〈[Y (r, t),V (t′)]〉0

= i

t∫
−∞

dt′
∫
dr′f(r′, t′)〈[Y (r, t),X (r′, t′)]〉0. (6.212)

Comparing Eqs. (6.209) and (6.212), we obtain our final conclusion:

αY X (r, t; r′, t′) = i〈[Y (r, t),X (r′, t′)]〉0. (6.213)

We note that the generalized susceptibility depends only on r−r′ for the system
with the translational invariance.

6.17 Seminar XVII

In this section we consider Problems Nos. 42 and 43.
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6.17.1 Problem 42
Let us start from the case when the bias voltage is absent, V = 0. The spin
susceptibility has the following form, see Eq. (4.30),

χjk(τ) =
1

ν2
Tre
[
: sIk(y0, τ) :: s

I
j (y0, 0) : ρ0

]
=

1

4ν2
〈: Ψ†(y0, τ)σkΨ(y0, 0) :

× : Ψ†(y0, 0)σjΨ(y0, τ) :〉0 =
∑
s1,s2

σs1s2
k σs3s4

j

4ν2
〈: Ψ†

s1
(y0, τ)Ψs2(y0, 0) :

× : Ψ†
s3
(y0, 0)Ψs4(y0, 0) :〉0. (6.214)

In order to calculate the above average, we should diagonalize the Hamiltonian,

He = iv

∫
dyΨ†(y)σz∂yΨ(y) = −v

∑
s

s

∫
dk

2π
Ψ†

s(k)kΨs(k)

=
∑
s

∫
dk

2π
ξs(k)Ψ

†
s(k)Ψs(k), (6.215)

where ξs(k) = −vsk. Therefore, we can write

Ψs(y, τ) =

∫
dk

2π
Ψs(k)e

−iξs(k)τ , Ψ†
s(y, τ) =

∫
dk

2π
Ψ†

s(k)e
iξs(k)τ . (6.216)

The commutation relations for the creation and annihilation operators have the
standard form,

Ψs(k)Ψ
†
s′(k

′) + Ψ†
s′(k

′)Ψs(k) = 2πδ(k − k′)δs,s′ . (6.217)

Using the Fourier representation, we can rewrite the susceptibility as

χjk(τ) =
∑
s1,s2

σs1s2
k σs3s4

j

4ν2

∫ 4∏
i=1

dki
2π

e−i(ξs2 (k2)−ξs1 (k1))τe−i(k2+k4−k1−k3)y0

×〈: Ψ†
s1
(k1)Ψs2(k2) :: Ψ

†
s3
(k3)Ψs4(k4) :〉0. (6.218)

Now we treat the average written in the last line. At first, we calculate the
simpler expression,

〈Ψ†
s1
(k1)Ψs2(k2)〉0 = 2πδ(k1 − k2)δs1,s2 − 〈Ψs2(k2)Ψ

†
s1
(k1)〉0

= 2πδ(k1 − k2)δs1,s2 − 〈Ψ†
s1
(k1)Ψs2(k2)〉0eβξs1 (k1). (6.219)

To obtain the last line in the above equation, we employ the following relation,
Ψ†

s1
(k1)ρ0 = ρ0Ψ

†
s1
(k1)e

βξs1 (k1), where ρ0 is the equilibrium density matrix. Fi-
nally, we obtain

〈Ψ†
s1
(k1)Ψs2(k2)〉0 = 2πδ(k1 − k2)δs1,s2fF (ξs1(k1)),

〈Ψs2(k2)Ψ
†
s1
(k1)〉0 = 2πδ(k1 − k2)δs1,s2 [1− fF (ξs1(k1))] (6.220)
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where fF (ε) = 1/[1 + exp(ε/T )]. Now we are ready to calculate the average,

〈Ψ†
s1
(k1)Ψs2(k2)Ψ

†
s3
(k3)Ψs4(k4)〉0 = 2πδ(k1 − k2)〈Ψ†

s3
(k3)Ψs4(k4)〉0δs1,s2

−〈Ψs2(k2)Ψ
†
s1
(k1)Ψ

†
s3
(k3)Ψs4(k4)〉0 = 2πδ(k1 − k2)〈Ψ†

s3
(k3)Ψs4(k4)〉0δs1,s2

+〈Ψs2(k2)Ψ
†
s3
(k3)Ψ

†
s1
(k1)Ψs4(k4)〉0 = 2πδ(k1 − k2)〈Ψ†

s3
(k3)Ψs4(k4)〉0δs1,s2

+2πδ(k1 − k4)δs1,s4〈Ψs2(k2)Ψ
†
s3
(k3)〉0 − 〈Ψs2(k2)Ψ

†
s3
(k3)Ψs4(k4)Ψ

†
s1
(k1)〉0

= 2πδ(k1 − k2)〈Ψ†
s3
(k3)Ψs4(k4)〉0δs1,s2 + 2πδ(k1 − k4)δs1,s4〈Ψs2(k2)Ψ

†
s3
(k3)〉0

−〈Ψ†
s1
(k1)Ψs2(k2)Ψ

†
s3
(k3)Ψs4(k4)〉0eβξs1 (k1). (6.221)

Hence, we find

〈Ψ†
s1
(k1)Ψs2(k2)Ψ

†
s3
(k3)Ψs4(k4)〉0 = (2π)2

[
δ(k1 − k2)δ(k3 − k4)fF (ξs3(k3))

×δs1,s2δs3,s4 + δ(k1 − k4)δ(k2 − k3)δs1,s4δs2,s3 [1− fF (ξs2(k2))]
]
fF (ξs1(k1)).

(6.222)

Consequently, we obtain

〈: Ψ†
s1
(k1)Ψs2(k2) :: Ψ

†
s3
(k3)Ψs4(k4) :〉0 = (2π)2δ(k1 − k4)δ(k2 − k3)δs1,s4δs2,s3

×[1− fF (ξs2(k2)− s2eV /2)]
]
fF (ξs1(k1)− s1eV /2). (6.223)

Here we have augmented the chemical potential seV /2 to the distribution func-
tion of the edge electrons. This chemical potential appears due to the presence
of a bias voltage V . Substituting this average in the expression for the suscepti-
bility leads to

χjk(τ) =
∑
s1,s2

σs1s3
k σs3s1

j

4ν2

∫
dk1
2π

dk3
2π

e−i(ξs3 (k3)−ξs1 (k1))τfF (ξs1(k1)− s1eV /2)

×[1− fF (ξs3(k3)− s3eV /2)] =
σs1s2
k σs2s1

j

4

∫
dξ1dξ2e

−i(ξ2−ξ1)τfF (ξ1 − s1eV /2)

×[1− fF (ξ2 − s2eV /2)]. (6.224)

Next, we find in the frequency domain,

χjk(ω) =
∑
s1,s2

i
σs1s2
k σs2s1

j

4

∫
dξ1dξ2

fF (ξ1 − s1eV /2)(1− fF (ξ2 − s2eV /2))

ω − ξ2 + ξ1 + i0
.

(6.225)
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We can simplify the above integral with the aid of shift ξ1,2 7→ ξ + s1,2eV /2.
Also we introduce new variable ω12 = ω+(s1−s2)eV /2. As a result, we obtain

χjk(ω) =
∑
s1,s2

i
σs1s2
k σs2s1

j

4

∫
dξ1dξ2

fF (ξ1)(1− fF (ξ2))

ω12 − ξ2 + ξ1 + i0

=
∑
si

i
σs1s2
k σs2s1

j

4

∫
dξ1dξ2

fF (ξ1)fF (ξ2)

ω12 + ξ2 + ξ1 + i0
. (6.226)

Introducing new variables ξ+ = ξ1+ξ2
2

and ξ− = ξ1− ξ2, we derive the following
expression,

χjk(ω) =
∑
si

i
σs1s2
k σs2s1

j

4

∫
dξ+dξ−

fF (ξ+ + ξ−
2
)fF (ξ+ − ξ−

2
)

ω12 + 2ξ+ + i0

=
∑
si

i
σs1s2
k σs2s1

j

4

∫
dξ

1

ω12 + ξ + i0

ξ

exp(ξ/T )− 1
. (6.227)

Finally, for the real part of χjk(ω), we find

Reχjk(ω) = −π
4

∑
si

σs1s2
k σs2s1

j

ω12

e−ω12/T − 1
. (6.228)

6.17.2 Problem 43
The anti-hermitian part of the spin susceptibility is determined as (for zero fre-
quency), see Eq. (4.35),

χ̂(2)(0) =
1

2
p.v.

∞∫
−∞

dξ
ξ

eξ/T − 1

 ξ

ξ2−(eV )2
ieV

ξ2−(eV )2
0

− ieV
ξ2−(eV )2

ξ

ξ2−(eV )2
0

0 0 1
ξ

 . (6.229)

This integral contains linearly divergent term. However, this term is indepen-
dent of V and T . Therefore, we can omit it. We find to first order in V ,

χ
(2)
jk (0) →

ieV εjkz
2

p.v.
∞∫

−∞

dξ

ξ

1

exi/T − 1
=
ieV εjkz

4
p.v.

∞∫
−∞

dξ

ξ
tanh

ξ

2T

' ieV

2
εjkz ln(Λ/T ). (6.230)

Here Λ is the ultra-violet cut-off. As a result, we can write,

χ
(2)
jk (0)JrjJlk

(
[Srρ, Sl] + [Sl, ρSr]

)
= χ

(2)
jk (0)JrjJlk

{
SrρSl − SlSrρ

+SlρSr − ρSrSl

}
. (6.231)
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Since χ(2)
jk (0) is an antisymmetric matrix, we can omit the symmetric part in the

above expression. This yields

χ
(2)
jk (0)JrjJlk

(
SrSlρ− ρSrSl

)
= iχ

(2)
jk (0)JrjJlkεrlm[Sm, ρ]. (6.232)

This correction can be interpreted as a correction to the Hamiltonian of impu-
rity,

δHimp = δhmSm δhm = JrjJlkεrlmεjkz
eV

2
ln(Λ/T ). (6.233)

Hence, we obtain

Jmz 7→ Jmz + νJrjJlkεrlmεjkz ln(Λ/T ). (6.234)

This is nothing but the Kondo renormalization of the exchange coupling.
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