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SURFACE STATES IN A 3D TOPOLOGICAL INSULATOR:THE ROLE OF HEXAGONAL WARPING AND CURVATUREE. V. Repin a, I. S. Burmistrov a;b*aMosow Institute of Physis and Tehnology141700, Mosow, RussiabL. D. Landau Institute for Theoretial Physis Russian Aademy of Sienes119334, Mosow, RussiaReeived June 3, 2015We explore a ombined e�et of hexagonal warping and a �nite e�etive mass on both the tunneling density ofeletroni surfae states and the struture of Landau levels of 3D topologial insulators. We �nd the inreasingwarping to transform the square-root van Hove singularity into a logarithmi one. For moderate warping, anadditional logarithmi singularity and a jump in the tunneling density of surfae states appear. By ombining theperturbation theory and the WKB approximation, we alulate the Landau levels in the presene of hexagonalwarping. We predit that due to the degeneray removal, the evolution of Landau levels in the magneti �eldis drastially modi�ed.DOI: 10.7868/S00444510150901511. INTRODUCTIONTheoretial and experimental study of three dimen-sional (3D) topologial insulators is in the fous of mo-dern researh in ondensed matter physis [1�3℄. Apartfrom fundamental interest in the novel quantum stateof matter � topologial insulators � attrat great at-tention in view of their possible appliations in spin-tronis due to spin-urrent loking of surfae states.Many exiting features of eletron states on the sur-fae of a 3D topologial insulator were found withinthe simplest two-dimensional (2D) Hamiltonian, linearin momentum and spin operators, that is allowed bythe time-reversal and rystal symmetries [1�3℄.Reently, it was realized that without symmetryviolation, this simplest Hamiltonian an be extendedto higher-order terms in momentum desribing �nite-mass and hexagonal warping of surfae states [4, 5℄.Indeed, the hexagonal warping of their Fermi surfaehas been found experimentally by angle-resolved pho-toemission spetrosopy in topologial insulators suhas Bi2Te3 [6, 7℄, Bi2Se3 [8℄, and Pb(Bi,Sb)2Te4 [9℄. The-oretially, the hexagonal warping of surfae states anindue spin-density wave instability [4℄, a�ets the d*E-mail: burmi�itp.a.ru

and optial ondutivities [10, 11℄, is responsible for lo-alization of the Cherenkov sound in ertain diretions[12℄, and an stabilize the � = 1=3 frational quantumHall state [13℄. In addition to the hexagonal warping,spin and angle resolved photoemission spetrosopy re-vealed the presene of �nite urvature of the spetrumof surfae states in Bi2Te3, Bi2Se3, Pb(Bi,Sb)2Te4, andTlBiSe2 [9℄.An alternative experimental way to aess the spe-trum of surfae states in 3D topologial insulators isthe sanning tunneling mirosopy. Reently, san-ning tunneling mirosopy was employed for Bi2Te3[7; 14�17℄, Bi2Se3 [14; 18�22℄, and Sb2Te3 in a per-pendiular magneti �eld [21℄. The spetrum of sur-fae states extrated from angle-resolved photoemis-sion spetrosopy data is orrelated with the tunnel-ing ondutane measured by sanning tunneling mi-rosopy [7℄. However, bulk states also ontribute tothe tunneling ondutane, thus hiding a part due tothe surfae states. To unravel the surfae ontribution,it is ruial to know the tunneling density of surfaestates (TDOSS) in detail. Within the spetrum linearin momentum, the TDOSS with and without the mag-neti �eld was studied theoretially in Refs. [23�25℄. Inspite of lear experimental relevane, we are not awareof theoretial studies of the TDOSS in the presene ofnonzero urvature and hexagonal warping.584



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfae states in a 3D topologial insulator : : :In this paper, we alulate the tunneling density ofstates on the surfae of a 3D topologial insulator inthe presene of hexagonal warping and a �nite massm. We demonstrate that hexagonal warping leads toa logarithmi van Hove singularity instead of the squa-re-root one that exists in the ase of a �nite mass dueto the end point of the spetrum. For moderate valuesof the hexagonal warping, we disover an additional lo-garithmi singularity and a jump in the TDOSS. Thispredition is quantitatively supported by sanning tun-neling mirosopy measurements of the loal density ofstates in Bi2Te3. In the presene of a perpendiularmagneti �eld, we analyze the struture of Landau le-vels within the perturbation theory and in the WKBapproximation. As is well known [26℄, in the absene ofhexagonal warping, there are rossings of Landau lev-els at some magneti �elds due to a �nite mass. We�nd that the hexagonal warping removes these degene-raies and strongly a�ets the slope of Landau levelswith respet to the magneti �eld.The paper is organized as follows. In Se. 2, we in-trodue the model Hamiltonian and alulate the tun-neling density of states on the surfae of a 3D topolog-ial insulator in the presene of hexagonal warping and�nite mass. In Se. 3, we analyze the e�et of hexago-nal warping on Landau levels within the perturbationtheory. In Se. 4, we investigate the struture of Lan-dau levels in the presene of hexagonal warping in theWKB approximation. We onlude with a disussionof how our theoretial results an be further tested ex-perimentally (Se. 5).2. TUNNELING DENSITY OF SURFACESTATES AT ZERO MAGNETIC FIELDWe start from the model Hamiltonian of eletronstates on the surfae of a 3D topologial insulator inzero magneti �eld, given by the 2� 2 matrix [4, 5℄H = v�kx�y�ky�x�+k2x+k2y2m +�2 �k3++k3���z : (1)Here, k = fkx; kyg denotes the in-plane quasipartilemomentum, k� = kx � iky, and �x;y;z are the Paulimatries. We note that due to the spin�orbit ouplingin the bulk, the Pauli matries �x;y;z do not neessar-ily orrespond to operators of the eletron spin [27, 28℄.The �rst term in the right-hand side of Eq. (1) desribesthe onial (Dira-type) spetrum with a veloity v.The seond term in Eq. (1) takes a �nite urvature ofthe surfae state spetrum into aount. The e�etivemass m an be positive (e. g., for Bi2Se3) or negative

(as in the ase of Bi2Te3) [9℄. In what follows, havingin mind the ase of Bi2Te3, we onsider the situationwhere m < 0. The results for the opposite ase, m > 0,an be easily obtained by inversion of the energy andmomentum. The last term in Eq. (1) desribes the ef-fet of hexagonal warping, whose strength is harater-ized by the parameter �. In the absene of hexagonalwarping, � = 0, Hamiltonian (1) is just the Byhkov�Rashba Hamiltonian for 2D eletrons with spin�orbitsplitting [26℄. To Hamiltonian (1), we an add a termof the third order in the momentum desribing the k2ontribution to the veloity v [4℄. Moreover, in exten-ding Hamiltonian (1) to the �fth order in k, Dressel-haus spin�orbit terms were proposed to explain devia-tion of the eletron spin from the diretion perpendi-ular to the momentum [29℄. However, reent results ofspin and angle resolved photoemission spetrosopy [9℄do not demonstrate signi�ant deviation of the surfaestate spetrum from the one orresponding to Eq. (1).Therefore, we on�ne our onsiderations to Hamilto-nian (1).The spetrum of Hamiltonian (1) has the form [4, 5℄E�(k; �) = k22m �pv2k2 + �2k6 os2 3�; (2)where � parameterizes the momentum, andkx = k os �; ky = k sin �:The TDOSS an be written asg(E) = Xs=� 1Z0 kdk(2�)2 2�Z0 d� Æ�E �Es(k; �)�: (3)It is onvenient to introdue the energy parametersE0 =pv3=�; � = 2jmjv2to haraterize the hexagonal warping and urvature,respetively. Then the dimensionless parameter� = (�=E0)4measures the strength of hexagonal warping in ompa-rison with urvature. We remind that in the abseneof warping, � = � = 0, the density of states is given byg�=0(E) = �2�v2 ��8><>:1; E < 0;(1� 4E=�)�1=2; 0 6 E < �=4;0; �=4 < E: (4)585



E. V. Repin, I. S. Burmistrov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015It has a square-root van Hove singularity at E = �=4,whih is the end point of the spetrum. For nonzerohexagonal warping, � > 0, the TDOSS isg(E) = �2�v2F (E=�; �); (5)whereF (�; �) = 1� 1Z0 dx j�+ xjRe 1p(�+ x)2 � x ��Re 1p�x3 + x� (�+ x)2 : (6)The limits of integration over x in Eq. (6) are in fatdetermined by the regions where the radiands are po-sitive. Depending on the values of � and �, the ubipolynomial y3(x) = �x3 + x� (�+ x)2an have one (see urves A1, A2, A4, and A5 in Fig. 1a)or three (see urve A3 in Fig. 1a) real roots. The re-gions of the orresponding behavior in the f�; �g planeare shown in Fig. 1b. There is region A5 above the line� = 1=2. Region A1 is situated below the urve�1(�) = 13(1� 2�) :Region A3 is lamped between the urves paramete-rized as � = ��(�) and � = �+(�), where��(�) = 2(�+ z�(�))� 13z2�(�) ;z�(�) = 1� 2��p(1� 2�)2 � 3�2: (7)The urves � = ��(�) merge and end at the points� = 1=�2+p3� � 0:27; � = �3+2p3� =9 � 0:71:Region A2 is below region A5 but above the urve pa-rameterized as � = maxf��(�); �1(�)g:Region A4 is lamped between the urves � = �+(�)and � = �1(�).We let 1, 2, 3 denote the roots of the ubi poly-nomial y3(x) in inreasing order if there exist three realroots, and let i, where i = 1 or 3, be the root of y3(x)in the ase of a single real root only. We note that z�(z+) oinides with 1 and 2 (2 and 3) at the pointwhere they merge. The roots of the quadrati polyno-mial y2(x) = (�+ x)2 � x

Table 1. Expressions for the funtion F (�; �) indi�erent regions of the f�; �g plane� < 1=4 � > 1=4A1 F = F1 + F5 F = F3 + F4A2 F = F3A3 F = F1 + F2 + F3 F = F3 + F4A4 F = F1 + F5 F = F3 + F4A5 F = F3are given as x1;2 = �1� 2��p1� 4� � =2:It is onvenient to introdue the following funtions:F1 = x1Z1 dxF(x; �; �); F2 = 2Zx2 dxF(x; �; �);F3 = 1Z3 dxF(x; �; �); F4 = 2Z1 dxF(x; �; �);F5 = 1Zx2 dxF(x; �; �); (8)
whereF(x; �; �) = 1� j�+ xjp(�+x)2�xp�x3+x�(�+x)2 : (9)Then for eah region in Fig. 1b, the funtion F (�; �)an be represented as a linear ombination of the fun-tions Fi, i = 1; : : : ; 5, with oe�ients equal to 0 or 1(see Table 1).The TDOSS exhibits singular behavior on the line� = 1=4 and on the urves � = ��(�). The logarithmidivergene at � = 1=4 for any � > 0 supersedes thesquare-root singularity at the same energy existing inthe ase � = 0. Formally, it is due to the on�uene oftwo real roots x1;2 of the quadrati polynomial y2(x).The asymptoti form of F (�; �) near this logarithmisingularity isF (�; �) � 4�p� ln 1j�� 1=4j ; j�� 1=4j � 1: (10)There is an other logarithmi divergene of the den-sity of states on the urve � = �+(�). Within thelogarithmi auray, the asymptoti behavior of thefuntion F near � = �+(�) an be found asF (�; �) � �+� ln 1j���+(�)j ; j���+(�)j � 1; (11)586



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfae states in a 3D topologial insulator : : :à

0 1 2 3 4
0
1 b

A1
x 0 0:25 0:50 0:75 1:00�

0:25
0:50y3 �

A2
A4A3

A1 A5 A3 A2A4 A5

Fig. 1. The �ve di�erent types of possible behavior of a ubi polynomial y3(x) (a). The �ve orresponding regions in thef�; �g plane (b )where�+ == j�+ z+(�)j[(�+z+(�))2�z+(�)℄1=2[1�3(1�2�)�+(�)℄1=4 : (12)At the border between regions A2 and A3, there is ajump of the density of states due to the appearane ofan in�nitely small range of integration between the �rsttwo roots 1 and 2 of the ubi polynomial y3(x). Forthe jump of the funtion F (�; �) at � = ��(�), we �ndF (�; �� � 0)� F (�; �� + 0) = lim1!2 2Z1 dx�p� �� j�+ xj[(�+ x)2 � x℄�1=2[(3 � x)(x � 1)(2 � x)℄1=2 = ��: (13)Here, �� is given by Eq. (12) after the substitution ofz� and �� for z+ and �+, respetively.Therefore, for � > 0, the square-root divergene ofthe density of states at E = �=4 is split into a loga-rithmi divergene and a jump. The latter exists for� < � only. The seond logarithmi divergene ap-pears from � = �1 as � inreases from the zero value.Suh a nontrivial behavior of the TDOSS (the funtionF (�; �)) is illustrated in Fig. 2.As usual, the van Hove singularities in the densityof states disussed above an be explained by a ompli-ated, not linearly onneted shape of a Fermi surfae
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ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfae states in a 3D topologial insulator : : :after onsolidation of six initially disonneted piees(see Fig. 3b, panel � = 0:250). The jump in the densityof states at E = ��� (�� is determined as the solutionof the equation � = ��(��)) is related to disappear-ane of six empty spots (see Fig. 3b, panel � = 0:255).In the intermediate range �0 < � 6 �, there are twologarithmi singularities of the density of states. The�rst one at E = �=4 is due to the entral snow�ake-like part touhing the six outermost disonneted parts(see Fig. 3, panel � = 0:250). The seond singularityat E = �+� is related to the appearane of six emptyspots (see Fig. 3, panel � = 0:255). The jump in thedensity of state is due to the ollapse of these emptyspots (see Fig. 3, panel � = 0:2645).3. LANDAU LEVELS WITHIN THEPERTURBATION THEORYWe now onsider the e�et of the magneti �eld Hperpendiular to the surfae of a 3D topologial insu-lator on the spetrum of surfae states. In general,one needs to start from a Hamiltonian desribing bulkstates in the presene of the magneti �eld and to de-rive the e�etive 2D Hamiltonian for the surfae statesfrom it. It was shown [30℄ that suh an approah leadsto the results that are similar to the results that an beobtained from the zero-�eld Hamiltonian for the sur-fae states after the Peierls substitution. Therefore, todesribe the surfae states in a perpendiular magneti�eld, we substitute the momentum k in Hamiltonian(1) with k� eA. Here, A denotes the vetor potentialfor the perpendiular magneti �eld H = r�A, and estands for the eletron harge. In addition, the Zeemanterm gL�BH�z=2 (gL and �B are the g-fator and Bohrmagneton) has to be added to Hamiltonian (1). Here,we assume for simpliity the (111) surfae suh that�=2 oinides with the eletron spin operator [27, 28℄.Thus, we onsider the following HamiltonianH = (k� eA)22m + v�(k � eA);��z ++ �2 Xs=�(ks � eAs)3�z + 12gL�BH�z; (14)where A� = Ax � iAy:In the ase � = 0, Hamiltonian (1) desribes 2D elet-rons with a Rashba-type spin-orbit splitting in the pre-sene of a magneti �eld. [26℄. Then the spetrum (Lan-dau levels) are known to be as follows [26℄:

Esn = �n!+ssE20+2nv2l2H ; n = 1; 2; : : : ; s = �;E0 = �!2 � gL�BH2 : (15)Here, lH = 1pjejH ; ! = jejHjmjare the magneti length and the ylotron frequeny.The orresponding wave funtions in the Landau gauge,A = (�Hy; 0; 0);reads  n;s = eikxxpLx  �n;sjn� 1i�n;�sjni ! ; (16)where Lx denotes the size of the surfae in the x dire-tion and jni stands for standard states of the Landaulevel problem. The oe�ients �n;s an be written as�n;s = 1p1 +D2n (�isDn; s sgnE0 > 0;1; s sgnE0 < 0; (17)where Dn = p2nv=lHjE0j+pE20 + 2nv2=l2H : (18)To treat the hexagonal warping in Hamiltonian (14)as a perturbation, we need to evaluate matrix elementsof the operatorV = �2 Xs=�(ks � eAs)3�z � p2�l3H �â3 + ây3��z : (19)Here, the boson operators â and ây are de�ned asâ = lHp2�k� � eA��; ây = lHp2�k+ � eA+�: (20)The state jni is an eigenstate of the operator âyâ,âyâjni = njni. Using the well-known matrix elementsof the operators â and ây, we obtain the following re-sults for the matrix elements:V s;s0n;n+3 = p2�l3H �� ��n;s�n+3;s0�n+2 � �n;�s�n+3;�s0�n+3�; (21)where s; s0 = �, the bar denotes omplex onjugation,and589



E. V. Repin, I. S. Burmistrov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015�n =pn(n� 1)(n� 2) for n > 0:The other nonzero matrix elements an be obtained byomplex onjugation. Hene, the seond-order orre-tion to eigenenergies (15) due to the hexagonal warpingis given asÆEs;(2)n = � Xs0=� jV s0;sn+3;nj2Es0n+3 �Esn + jV s0;sn�3;nj2Es0n�3 �Esn! : (22)For small values of n (for low-lying Landau levels), theperturbation theory is appliable if�=l3H � maxf!; v=lHg:The seond-order orretion ÆEs;(2)n inreases with aninrease in n. Therefore, the perturbation theorybreaks down at large n if � is not su�iently small.Setting X = �=vl2H ; Y = 2jmjlHv;we �nd that perturbative result (22) is valid if the fol-lowing inequalities hold:1� Xn8><>:Ypn; Ypn� 1;1; 1� Ypn� n;Y=pn; n� Ypn: (23)

In addition the perturbation theory in (22) does notwork near rossings of the unperturbed levels E+n andE+n+3 that our with varying the magneti �eld. Toimprove the perturbation theory near these degenera-y points, we apply a unitary transformation of theHamiltonian that diagonalizes the 2� 2 matrixA =  E+n V ++n;n+3V ++n;n+3 E+n+3 ! : (24)As usual, the eigenvalues of the matrix A,�� = E+n+3 +E+n2 �� 12q(E+n+3 �E+n )2 + 4jV ++n;n+3j2; (25)desribe the avoided rossing of levels E+n and E+n+3due to the matrix element V ++n;n+3. For a given n, westart from rewriting Hamiltonian (1) in the basis of theunperturbed states  n;s:H =  A BBy C! : (26)Here, we introdue the in�nite-blok matriesB = 0�V +�n;n+3 V ++n;n�3 V +�n;n�3 0 0 0 : : :0 0 0 V +�n+3;n V ++n+3;n+6 V +�n+3;n+6 : : :1A ;
C =

0BBBBBBBBBBBBBBBBB�
E�n+3 0 0 V ��n+3;n V �+n+3;n+6 V ��n+3;n+6 : : :0 E+n�3 0 V +�n�3;n 0 0 : : :0 0 E�n�3 V ��n�3;n 0 0 : : :V ��n;n+3 V �+n;n�3 V ��n;n�3 E�n 0 0 : : :V +�n+6;n+3 0 0 0 E+n+6 0 : : :V ��n+6;n+3 0 0 0 0 E�n+6 : : :: : : : : : : : : : : : : : : : : : : : :

1CCCCCCCCCCCCCCCCCA : (27)
The unitary transformation diagonalizing the matrix A is as follows:U =  u 00 1! ; u = 0BBBB� 1q1 + 2+ 1q1 + 2�+q1 + 2+ �q1 + 2� 1CCCCA ; (28)
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ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfae states in a 3D topologial insulator : : :� = E+n+3�E+n �q(E+n �E+n+3)2+4jV +�n;n+3j22V ++n;n+3 : (29)Now taking into aount the matrix elements (givenby uyB) onneting levels �� with the other levelswithin the seond-order perturbation theory, we �ndthe following results for energies orresponding to theunperturbed energies E+n and E+n+3:E� = ��+ 11+2� jV +�n;n+3j2�� �E�n+3+ jV ++n;n�3j2�� �E+n�3 ++ jV +�n;n�3j2�� �E�n�3 + j�V +�n+3;nj2�� �E�n ++ j�V ++n+3;n+6j2�� �E+n+6 + j�V +�n+3;n+6j2�� �E�n+6 !: (30)This result is free from the �titious divergene at thepoint E+n = E+n+3 produed within the standard per-
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Fig. 4. The dependene of dimensionless unperturbedenergies E+4 =� and E+7 =� on dimensionless magneti�eld h = 4�v2=(lH�)2 (dashed urves) near theirrossing point. The thin solid urves illustrate the re-sults of the standard perturbation theory (see Eq. (22)).The dot-dashed urves are the eigenvalues ��. Thethik solid blak urves are the result of the modi�edperturbation theory (see Eq. (30)). The points rep-resent the results of numerial diagonalization of thetrunated Hamiltonian with 2000 levels. The dimen-sionless parameter of hexagonal warping is � = 0:1and gL = 0

turbation theory, Eq. (22). Away from the rossingpoint, the result in (30) transforms into result (22). Weillustrate the result (30) of the modi�ed perturbationtheory, whih is essentially the orret hoie of wavefuntions for the zeroth-order approximation, in Fig. 4for the rossing of the unperturbed levels E+4 and E+7 .As we an see from Fig. 4, expressions (30) smoothly in-terpolate the results of the standard seond-order per-turbation theory, Eq. (22), before and after the degen-eray point. Even in the lose viinity of the rossingpoint, the energies E� are di�erent from the eigenva-lues �� of the matrix A, i. e., transitions to other levelsare important. The energy levels found from Eq. (30)are in good agreement with numerial diagonalizationof Hamiltonian (14).4. LANDAU LEVELS IN THE WKBAPPROXIMATIONTo study the struture of Landau levels at higherenergies, we use the WKB approah [31℄. We employthe Bohr�Sommerfeld quantization onditionS(E) = 2�l�2H �n+ Æ(E)�; (31)where S(E) denotes the area bounded by a urve of theonstant energy E in the momentum spae in the ab-sene of the magneti �eld, n is an integer number, andÆ(E) ontains information on the number of turningpoints of a semilassial eletron orbit and the Berryphase [32℄. Typially, the funtion Æ(E) is of the or-der of unity. Sine we are interested in Landau levelswith n � 1, we omit Æ(E) below. We also negletthe Zeeman splitting, assuming that the g-fator is notstrongly enhaned in omparison with its band value.The area S(E) an be expressed through the den-sity of states without a magneti �eld. As follows fromthe results in Se. 2, for some values of � and � there areseveral disonneted regions enlosed by onstant-ener-gy urves. In this ase, semilassial quantization on-dition (31) has to be applied to eah disonneted areaseparately. For energies in the interval0 < � < minf�+(�); 1=4g(see regions A1 and A4 in Fig. 1b ), there is one snow-�ake-like region inluding the �� point and six outer-most regions of in�nite area (see Fig. 3). The area ofthe entral region an be written asS1 = �22v2 242�1 + 12 x1Z1 dxG(x; �; �)35 ; (32)591



E. V. Repin, I. S. Burmistrov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015where we introdue the funtionG(x; �; �) = 13 aros �p(x+�)2�xp�x3 ��6 : (33)It an be shown that�S1�� = 4�2�g1(�); g1(�) = �2�v2F1(�; �): (34)The funtion g1(�) provides the ontribution to the den-sity of states g(�) from the states in this snow�ake-likeentral region. The area of eah among the six outer-most regions isS5 = �2v2 1Zx2 dxG(x; �; �): (35)Again, this area an be related to the orrespondingontribution to the density of states:�S5�� = 2�2�3 g5(�); g5(�) = �2�v2F5(�; �): (36)Sine the integral in Eq. (35) diverges at the upperlimit, it is onvenient to rewrite Eq. (35) asS5(�) = 16S(0) + ��23v2 �Z0 d�0F5(�0; �): (37)Here, S(0) is the total area enlosed by the ons-tant-energy urve � = 0. We note that in the frame-work of Hamiltonian (1), the area S(0) is in�nite. Itbeomes �nite, for example, if we take orretion to themass m of the next order in k2 into aount. Withinthe semilassial approximation, the Bohr�Sommerfeldquantization ondition (31) for S5(�) results in sixfolddegenerate levels. The quantum tunneling (magnetibreakdown) removes this degeneray [31℄.In the asemaxf0; �+(�)g < � < 1=4(see region A3 in Fig. 1b ), there are two disonnetedparts of the area (see Fig. 3). The area of the inner-most part is given by Eq. (34), whereas the area of theoutermost part isS2;3 = 6�2v2 0� 2Zx2 dxG(x; �; �) + 1Z3 dxG(x; �; �)1A ++ �22v2 (2�3 � 2�2): (38)

Again, we �nd�S2;3�� = 4�2�g2;3(�); g2;3(�) == �2�v2 �F2(�; �) + F3(�; �)�: (39)It is onvenient to rewrite S2;3 asS2;3 = S(0)+2��2v2 �Z0 d�0hF2(�0; �)+F3(�0; �)i: (40)In the other ase 1=4 < � (see Fig. 3), there is alwaysone onneted region whose area an be written asS(�) = S(0) + 4�2� �Z0 d�0g(�0): (41)For � < 0, the area an be found using the relation�S�� = 4�2��g5(�)� g1(�)�: (42)The struture of Landau levels undergoes hangesnear suh singularities of the zero-�eld density of states,whih are related to the hange of the number of on-neted parts of the area enlosed by a onstant-energyurve.For � < �0, the sixfold degenerate levels trans-form into nondegenerate levels at � = �+(�). UsingEq. (11), we an estimate the hange in the level spa-ing at � = �+(�). We �ndd�dn = h4�+ ln(1=j�� �+j) ��(6; �+ � �� 1;1; �� �+ � 1; (43)where h = 4�v2=(lH�)2stands for the dimensionless magneti �eld. Thus, thesixfold degenerate levels (orresponding to six dison-neted piees) are six times sparser than the levels af-ter the disonneted piees merged together. Also, theslope of the sixfold degenerate levels with respet to themagneti �eld is six times larger than the slope of lev-els after onsolidation of the disonneted piees. Thelevels orresponding to the area S1 are ontinuous at� = �+(�). But at � = 1=4, the area S1 merges withthe area S2;3. Using Eq. (10), we an estimate the levelspaing before and after the onsolidation:d�dn = hp�16 ln(1=j�� 1=4j) (2; 1=4� �� 1;1; �� 1=4� 1: (44)592
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� = 2. There are several interesting features due tothe hexagonal warping in the struture of the Landaulevels. At �rst, hexagonal warping leads to the exis-tene of sixfold degenerate levels (red urves in Fig. 5)within the WKB approximation for � < minf�+; 1=4g.The aount of quantum tunneling (magneti break-down) should remove this degeneray. Next, due tothe hexagonal warping, there exist levels (green urvesin Fig. 5) with energies well above �=4, whih is notpossible in the ase � = 0. However, it is not learin the WKB approximation how the Landau levels at� = 0 transform to produe levels with energies above�=4 in the ase � > 0. Therefore, we ompare theresults of the WKB approximation with the Landaulevels obtained by numerial diagonalization of Hamil-tonian (14) trunated to 2000 levels. As we an seefrom Fig. 6, the numerial results are in qualitativeagreement with the semilassial treatment.5. DISCUSSIONS AND CONCLUSIONSUsing reent results of spin and angle resolved pho-toemission spetrosopy [9℄, we estimate the parame-ters relevant for the model onsidered above for twotopologial insulators, Bi2Te3 and Bi2Se3. We note11 ÆÝÒÔ, âûï. 3 (9) 593
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Fig. 6. The struture of Landau levels from numerial diagonalization of the trunated Hamiltonian with 2000 levels for� = 0:4 (a) and 2 (b )Table 2. Estimates for parameters of the modelextrated from Ref. [9℄�, eV E0, eV � k0, Å�1 h=H , T�1Bi2Te3 1.1 0.51 22 0.14 2.2 � 10�3Bi2Se3 0.34 0.43 0.4 0.08 7.0 � 10�3that they di�er by the sign of the e�etive massm. It isnegative for Bi2Te3 and positive for Bi2Se3. Estimatesfor parameters of the model extrated from Ref. [9℄ aresummarized in Table 2. We emphasize that althoughthe energy sales � and E0 are of the same order forboth topologial insulators, the dimensionless parame-ter � haraterizing the strength of the hexagonal warp-ing di�ers by more than 50 times.The most interesting theoretial observation is thelogarithmi singularity in the TDOSS at E = �=4,whih orresponds to onsolidation of the snow�ake-li-ke entral region and the six outermost disonnetedregions. It ours in ertain diretions of the momen-tum spae, e. g., at the angle � = �=6. The onditionE+(k0; �=6) = �=4is solved by the momentumk0 = �2v :Aording to the estimates in Table 2, it is muhsmaller than the size of the surfae Brillouin zone,

whih is of the order of 1Å�1. We note that for suha momentum, the ratio of the hexagonal warping termto the term linear in momentum is of the order of�k20=v = p�=4:This indiates that for �=16 � 1, the singularity o-urs in the regime where the hexagonal warping is asmall orretion to the dispersion linear in k. Theseestimates are in favor of the use of Hamiltonian (1),whih was derived near the �� point, for desribing thesingularity in TDOSS at E = �=4.The spin and angle resolved photoemission spetro-sopy for Bi2Te3 and Bi2Se3 indiates that the energyspetrum of surfae states is a monotoni funtion ofmomentum above the Dira point. Therefore, for thesematerials, the singularities of TDOSS predited in ourwork are situated at energies in the bulk ondutionband, and are therefore unobservable. Nevertheless,our results provide a theoretial explanation for thetypial sanning tunneling mirosopy experiments insuh materials [15℄. If we hoose a very large value ofthe parameter �, then in the energy interval 0 < E << �=4, the funtion F (�; �) has a step-like feature.We present the dependene of F (�; �) on � in Fig. 7for � = 2000 (this is the minimal value for whih thedependene is still step-like). This plot looks muh likethe experimental one in Ref. [15℄. We note that suhan enormous inrease in the parameter � in ompari-son with the estimate for Bi2Te3 (see Table 2) an be594



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfae states in a 3D topologial insulator : : :

0−0.1 0.1 0.2

ǫ

0.1

0.2

F

Fig. 7. The dependene of F (�; �) on � for � = 2000ahieved, e. g., by inreasing the e�etive mass by threetimes.Finally, we stress the smallness of dimensionlessmagneti �eld h for both Bi2Te3 and Bi2Se3 (see Tab-le 2). It implies the smallness of the parameter!lH=v =ph=�:The validity of the perturbation theory for Landau le-vels with a small level index is ontrolled by the pa-rameter p�h=4�. Therefore, for moderate values of �,low-lying Landau levels are not signi�antly a�etedby the presene of the �nite urvature and hexagonalwarping and, hene, sale as pH. Suh saling for Lan-dau levels near the Dira point was reently observedfrom osillations in the tunneling ondutane of Bi2Se3[18℄, of Sb2Te3 [21℄, from mirowave spetrosopy inBi2Te3 [34℄, and from magneto-infrared spetrosopyin Bi0:91Sb0:09 [35℄. The e�et of hexagonal warpingis most pronouned near the degeneray points of theunperturbed Landau levels. For a given h � 1, thedegeneray point orresponds to Landau levels withnh � �=(2h) � 1 and energies of the order of �=4.The hexagonal warping leads to avoiding the rossingof Landau levels E+nh and E+nh+3 with the typial dis-tane between them of the order ofÆh � p�=2�h8� :An additional signature of hexagonal warping is the
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