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Abstract This paper describes recent developments in experimental techniques for
thermodynamic measurements. Particularly, we focus on the derivatives of the chem-
ical potential with respect to magnetic field and temperature. The former enables to
determine the spin magnetization per electron and the latter the entropy per electron.
We briefly describe recent results obtained with these techniques and their impact on
the current understanding of the still challenging problem of the ground state(s) of
strongly correlated two-dimensional electron systems.
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1 Introduction

Low temperature thermodynamic properties (TD) of materials carry rich informa-
tion about inter-particle correlations. In contrast to ubiquitous transport and optical
studies, interpretation of thermodynamic data is straightforward and is often model
independent. However, due to the additive character of thermodynamic proper-
ties, their measurements require substantial amount of material, or, alternatively,
extremely high sensitivity of the measurement technique. This becomes the main

B V. M. Pudalov
pudalov@sci.lebedev.ru

1 P.N. Lebedev Physical Institute of the RAS, 119991 Moscow, Russia

2 Moscow Institute of Physics and Technology, 141700 Moscow, Russia

3 L.D. Landau Institute for Theoretical Physics, 119334 Moscow, Russia

4 Solid State Institute, Technion, 32000 Haifa , Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10909-015-1330-x&domain=pdf


100 J Low Temp Phys (2015) 181:99–111

obstacle for studying thin films, two-dimensional (2D) electron sheets, and other
nanometer-size systems where the number of particles does not exceed 108−1010.
Another problem accompanying traditional thermodynamic measurements is the
necessity to eliminate the contribution of a substrate to the measured TD proper-
ties, which becomes of crucial importance in the case of thin films or small-sized
systems.

About three decades ago amethod has been developed for measuring TD properties
of two-dimensional electron layers [1–4]. The method aimed primarily at chemical
potential measurements is based on the Thomson (Lord Kelvin) idea [5] that when two
plates of a capacitor are made of materials with different chemical potentials μ1,2, the
charge of the plates isC(μ1−μ2)/e, whereC is the electric capacitance. Correspond-
ingly, when the two plates are connected electrically and an external parameter varies
affecting one of the chemical potential values, a recharging current flows between the
plates.

For definiteness we shall consider 2D electron layers [6]. A cross section of the
typical Si-MOSFET sample is shown schematically in Fig. 1. The upper plate of the
plane capacitor (“gate”) is an Al-film deposited on the SiO2 layer. As a positive gate
voltage is applied to the gate, electrons fill in the narrow potential well at the Si–
SiO2 interface. Their motion therefore is free only in the X−Y plane, and restricted
(quantized) in the Z -direction. For a low enough electron density only the lowest
size quantization subband is filled, and electrons form a two-dimensional sheet with
a thickness of the Fermi wavelength. A great advantage of this gated structure is a
possibility to tune the electron density in a wide range, 1010−1013 cm−2, simply by
varying the voltage applied to the gate [6].

The recharging current j of such a capacitor is always proportional to �μ, whose
variations are related to the chemical potential of the 2D electron gas solely. When μ

changes due to electron gas density variations δn [4,7], the current j is proportional to
(∂μ/∂n); formagnetic field variations δB, j ∝ (∂μ/∂B) [1,8,9]), and for temperature
variations δT , j ∝ (∂μ/∂T ) [10–12], etc. Thereby, in the first case one can measure
the electron compressibility (or, by integrating it—density dependence of μ), in the
second case the electron magnetization per electron (or field dependence of μ), and in
the third case the entropy per electron (or temperature dependence ofμ). For short, by
“magnetization per electron” and “entropy per electron,” wemean dM/dn and dS/dn,
respectively.

Fig. 1 Schematic cross section of the Si-MOSFETsample, and experimental set-up of the spin magnetiza-
tion measurements [9,30] (Color figure online)
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2 Ground State Energy

Correlations play a crucial role for electrons moving in a neutralizing charge back-
ground [13]. Their importance grows both with lowering the density and the space
dimensionality and renders the simple schemes, such as the Hartree–Fock (HF) or the
random-phase approximation (RPA) [13], inapplicable. In the low-density strongly
correlated electron liquid, the energy balance determining the system properties is
played on a very minute scale and, to get meaningful predictions, a great accuracy
such as the one afforded by quantum Monte Carlo (QMC) methods is necessary [13].

The ground-state properties of 2D electron systems (2DES) have been studied under
various approximations such as RPA and summation of ladder diagrams by several
authors. In particular, the variational and fixed-node Green’s-function Monte Carlo
calculations have beenperformed [14] for the two-dimensional clean electron gas in the
interaction range 1 < rs < 100 (both interaction strength and density are commonly
characterized with a dimensionless parameter rs, that is equal to the ratio of Coulomb
interaction energy to the kinetic energy for a single-valley 2D system, rs ∝ 1/

√
n

[6]). The calculations [14] predicted a Wigner crystallization at rs = 37 ± 5. The
electron system is found to be in the normal-(paramagnetic) fluid state below the
transition density, but with the fully polarized state being very close in energy. The
accuracy of the numerical calculations, however, is far insufficient to predict reliably
the spin-polarization transition, and this issue remains challenging.

Disorder effect on the ground state is even a more subtle issue. Obviously, the
residual disorder, whatever weak, is expected to pin theWigner crystal (WC) rendering
the system an insulator. It is known also that weak disorder stabilizes the Wigner
crystal due to creation of a gap in the phonon spectrum and hence limiting zero-point
displacements [15].

Eguiluz, Maradudin, and Elliott considered a two-dimensional Wigner lattice in
the presence of a random array of pinning centers and of a static external magnetic
field perpendicular to the lattice [15]. They presented detailed numerical results for
the phonon spectral density and electron mean-square displacement, both at T = 0
and at finite temperatures.

Chui andTanatar [16,17] investigated the effect of impurities on the electron liquid–
solid transition via perturbation calculations and Monte Carlo simulations. Disorder
(impurities concentration and their set-back distance)was chosen to correspond to high
mobility Si-MOSFETs studied in [18]. The critical density for Wigner crystallization
rs was found to shift from 37 to 7.5 for which there is about 100 electrons per impurity,
and this case is far from the situation when each electron resides on its impurity (the
latter is considered as the strongly localized state). It is not surprising, therefore,
that the short-range spatial order is well pronounced in the system. However, as the
electron density is reduced, finally, the short-range order is gradually lost and the 2D
system approaches the above-mentioned strongly localized state. In the simulations,
the critical rs ≈ 7.5 value is close to the observed experimental results [18]. Near the
solid–liquid transition rs = 7.5 the system is crystalline and rapidly becomes quite
amorphous as rs is further decreased.

By now there is no experimental technique tomeasure the ground state energy. Only
the energyderivativeswith respect to various parameters are experimentally accessible;
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they are considered below. We hope that bringing together the pieces of information
available from various thermodynamic measurements will help in composing a com-
prehensive realistic picture of the interacting and disordered low-dimensional electron
systems.

3 Compressibility

The inverse compressibility (or ∂μ/∂n) of a system reflects the chemical potential
variations with density:

κ−1 = n2
∂2Etot

∂n2
= n2

(
∂μ

∂n

)
.

For non-interacting electrons κ is proportional to the single-particle density of states
(DOS), which in 2D is density independent, being (gvm/(π h̄2) (gv—is the valley
degeneracy) [6]:

κ−1 = n2
π h̄2

gvm
(1)

This picture, however, changes drastically when interactions are included. It was real-
ized already in the 1980s that compressibility of a 2DES can become negative at low
densities, owing to the electron-electron interactions [19]. Exchange and correlation
effects weaken the repulsion between the electrons, thereby reducing the energy cost,
thus leading to negative and singular corrections to ∂μ/∂n. At zero magnetic field
this effect is primarily due to the exchange energy, while in high fields the correlation
energy plays a significant role as well [20]. Within the HF theory

∂μ

∂n
= π h̄2

m
−

(
2

π

)1/2 e2

4πε

1

n1/2
. (2)

Thus, upon decreasing density, the compressibility gets negative. Experimentally, this
behavior has been found first in the capacitance and chemical potential measurements
in magnetic field [8,21,22]. Later it was confirmed in the zero field compressibility
measurements performed by a more elaborated field penetration technique (requiring
double-gated samples) [23–26]. All these data demonstrate that the compressibility of
an interacting two-dimensional electron system becomes indeed negative as the inter-
action strength exceeds rs ≈ 1− 2. Physically, the state with negative compressibility
means that when electrons are added to the system, the gain due to the exchange and
correlation prevails and exceeds the loss due to increasing kinetic (Fermi) energy, and
as a result the total energy decreases.

The negative compressibility is enhanced in the presence of a quantizing perpen-
dicular magnetic field [22], where it reaches maxima at shoulders of the Landau levels.
Figure 2 shows that the chemical potential exhibits jumps as the electron density passes
through complete filling of the Landau levels (QHE conditions). Importantly, at low
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Fig. 2 Chemical potential of
Si-MOSFET sample at three
temperatures. Upper horizontal
axis—Landau level filling
factors, lower
axis—approximate electron
density [22]. The curves are
shifted vertically, for clarity
(Color figure online)

temperatures there is a downturn of dμ/dn at filing factors right below and above the
jumps, so their amplitude is significantly enhanced, in accordance with the theoret-
ical prediction [27]. This is the result of the negative compressibility, which is most
pronounced on the shoulders of the filled Landau levels. Thus, the negative ∂μ/∂n
manifests here as a negative slope of the μ(n) curves.

4 Spin Magnetization

An interacting low-density electron system has a tendency to magnetic ordering which
is determined by the interplay between the electronic Coulomb interaction and Pauli
principle. As density decreases, the ratio rs between the interaction and Fermi energies
increases pushing the system towards a ferromagnetic instability.

In the Hartree-Fock approximation the Bloch instability, a first-order phase transi-
tion from unpolarized to fully polarized state, happens at unrealistically small rs ≈ 2.
In the opposite limit of short-range interactions, the Stoner instability, a second-order
phase transition characterized by divergent spin susceptibility, is expected. The hierar-
chy of these transitions is discussed in [28] within the RPA approximation. Numerical
simulations for a clean single-valley two-dimensional electron system (2DES) [29]
predict a Bloch instability at rs ≈ 25 followed by Wigner crystallization at rs ≈ 37,
whereas a clean two-valley system is believed to be stable against spontaneous spin
polarization. Spin magnetization measurements [30–32], especially those performed
in weak magnetic field [9], have addressed this issue experimentally.

Wenote that there is a largebodyof experimental studies of the spinmagnetization in
perpendicular magnetic fields, where the magnetization is large due to orbital effects,
and spin magnetization is greatly enhanced due to interactions. These effects were
extensively studied in the context of the Quantum Hall Effect physics. In this section,
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Fig. 3 ∂M/∂n versus B at different densities and at T =1.7K. Density is units of 1011 cm−2 (Color figure
online)

rather, we focus on the low-field and zero field spin magnetization and do not consider
measurements in perpendicular magnetic field.

When a magnetic field is applied in the 2D plane, it couples to the electron spins
solely. In this geometry spin magnetization has been measured in several experiments
[9,30–32]. A typical experimental set-up is shown in Fig. 1. Here magnetic field B
is applied in the 2D plane. A small modulation field δB ≈ 40mT causes recharging
current to flow δ j = −δB(iωC/e)(∂μ/∂B). Here C is the total sample capacitance
and ω/2π = (4−12)Hz is the modulation frequency. Due to the Maxwell rela-
tion (∂M/∂n) = −(∂μ/∂B), the spin magnetization per electron is obtained from
the measured recharging current j [9,30–32]. The thermodynamic measurements are
possible not only at high electron density in the well-conducting regime but also deep
in the localized phase; in the latter case the capacitance C , that enters the recharging
current equation, should be taken complex, as appears in measurements [32].

The main result of these measurements is the observation of “spin-droplets”—spin
polarized collective electron states with a total spin of the order of 2 [9]. These easily
polarized “nanomagnets” exist as a minority phase on the background of the majority
Fermi liquid phase even though the density and the dimensionless conductance kFl ∼
100 � 1 are high; the latter inequality is commonly considered as a criterion of a
well-defined Fermi liquid state.

Figure 3 shows typical ∂M/∂n signal for several densities. To get insight into the
observed behavior of ∂M/∂n as a function of the density, we review two limiting cases
(i) of low and (ii) of very high densities.

(i) For low densities ∂M/∂n is positive, much exceeding the Pauli spin susceptibil-
ity. Its magnetic field behavior is reminiscent of that anticipated for free spins,
∂M/∂n = μB tanh(b), where b = μB B/kBT � 1 is the dimensionless mag-
netic field. However, as temperature decreases, ∂M/∂n exceeds Bohr magneton,
the fact that evidences for ferromagnetic alignment of spins. Moreover, the mag-
netization curves, ∂M/∂n versus b, “saturate” in fields b ≈ 0.25 rather than unity,
signifying a large total spin, S ∼ 1/2b = 2, of the collective easily magnetized
states responding to the field modulation.
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Fig. 4 Phase diagram of the spin susceptibility ∂χ/∂n represented in colors for each temperature and
density, in units of (μB/T ).Dashed blue line represents the density at which ∂χ/∂n is zero. Black diamond
depicts the critical density of the metal-insulator transition, nc , known from transport measurement [9].
(Color figure online)

(ii) For high densities, deep in the metallic regime, the ratio between interaction and
the Fermi energies is small. One expects to get the density-independent Pauli spin
susceptibility in low magnetic field, and as a result ∂M/∂n approaches zero, as
may be seen in Fig. 3 for n = 2 and 4.5 × 1011 cm−2.

At the intermediate densities, well inside the metallic phase, e.g., at n = 1.5 ×
1011 cm−2, the low temperature ∂M/∂n changes sign. Note that negative ∂M/∂n
is expected in the metallic phase, since increase in density reduces interaction and
therefore spin polarization of a 2D electron system. Thermal fluctuations also suppress
magnetic ordering; therefore, ∂M/∂n becomes less negative with temperature and, at
temperatures exceeding the Fermi energy (about 10K at n = 1.5 × 1011 cm−2),
approaches the dependence expected for non-interacting electrons.

Figure 4 shows a color-phase diagram, where the critical dashed line corresponding
to the sign change of the spin-susceptibility-per electron, ∂χ/∂n, separates the regions
with dominating spin droplets and Fermi liquid states, respectively. In the lower-
density phase, as the density increases the number of droplets also increases, reaching
its maxima at the temperature-dependent critical density shown by the dash line in
Fig. 4. In the high-density phase the spin droplets melt with the density. The phase
diagram, therefore, signifies a critical magnetic behavior. Interestingly, the dashed
critical line in the T = 0 limit extrapolates to the critical density value nc for themetal-
insulator transition in transport. The coincidence of the magnetic and transport critical
density values at T → 0 suggests that the two phenomena, the formation of easily
magnetized droplets and the metal-insulator transition in transport, are intimately
interrelated; the origin of this link is not clarified yet.

No signatures of the presence of ferromagnetic droplets are detected so far in trans-
port in the metallic phase, e.g., dephasing time shortening.We believe this is due to the
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fundamental difference between the physical quantities provided by thermodynamic
and transport methods: the thermodynamic method yields an average magnetization
of all the electrons that are capable of recharging within about hundred millisecond
field modulation period. In contrast, the transport is influenced mostly by delocalized
electrons having the picosecond-scale relaxation time.

5 Entropy Measurements

For ∂μ/∂T measurements we apply the technique similar to that described above
for the 2D electron systems in magnetic field and also to the one used for the bulk
samples in Ref. [10]. Instead of magnetic field modulation, as in Fig. 1, we modulated
the sample temperature. The heater varies the temperature T of a sample (either Si-
MOSFET or GaAs-FET), as T (t) = T0 + �T cos(ωt). Both T0 and�T values were
measured using a miniature thermometer attached to the copper sample chamber;
the sample capacitance C was determined in the same experiment. Temperature T0
varied from 2.4 to 26K and was modulated at the frequency ω/(2π) ≈ 0.5Hz with
the amplitude �T ≈ 0.1 − 0.2K. Modulation of the sample temperature changes
the chemical potential and, hence, causes recharging of the gated structure. Therefore,
∂μ/∂T is directly determined in the experiment from themeasured recharging current:
j (t) = (∂μ/∂T )�TωC sin(ωt). Using the Maxwell relation,

(∂S/∂n)T = −(∂μ/∂T )n,

the density derivative of the entropy is found from the temperature derivative of the
chemical potential.

We first focus on ∂μ/∂T oscillations in weak perpendicular fields to compare them
with the semiclassical theory and to determine the shape of the level’s density of states.

It is worthwhile to give a qualitative explanation why ∂μ/∂T oscillates with per-
pendicular magnetic fieldwhen the gate voltage is kept constant. For the bare quadratic
energy spectrum, ε(p) = p2/2m, the single electron density of states is constant in
two dimensions. At temperatures T � EF the number of particle-like excitations
above μ equals to the number of hole-like excitations below μ (hatched areas in
Fig. 5a). Therefore, for a fixed electron density n the chemical potential is indepen-
dent of temperature, ∂μ/∂T = 0, with exponential accuracy at low temperatures,
T � EF .

In the case of energy-dependent density of states (e.g., in 3D systems, graphene or
2D systems with non-parabolic spectrum, or in quantizing magnetic field), one can
expand it in the vicinity of the Fermi energy (see Fig. 5b): D(ε) = D(EF )+(∂D(ε =
EF )/∂ε) × (ε − EF ). Then, for a non-zero temperature the hatched areas in Fig. 5b
are not equal, the particle-hole asymmetry emerges, and the chemical potential shifts
in order to conserve the total number of particles. Using the standard low temperature
expansion for the Fermi type integrals (see, e.g., Ref. [33]), one can easily find cor-
rection to the chemical potential at low temperatures, T � EF :
μ(T ) − EF = −[π2T 2/6D(EF )] × ∂D(ε = EF )/∂ε.

123



J Low Temp Phys (2015) 181:99–111 107

(a) (b) (c)

Fig. 5 a Density of states D(ε) = const and its product with the Fermi distribution function. Equal
hatched areas denote electron and hole excitations. b The same as (a) for the density of states changing
with energy; the hatched areas are unequal. c Oscillatory density of states in perpendicular magnetic field
and Fermi function corresponding to low temperature (T < h̄ωc, �, solid line) and high temperature
(T < h̄ωc, �, dashed line)(Color figure online)

Hence, we find

(
∂μ

∂T

)
n

= − π2T

3D(EF )

∂D(EF )

∂EF
= −π2T

3

∂D(EF )

∂n
. (3)

We note that this equation is applicable for degenerate Fermi systems of any dimen-
sionality and for any spectrum.

In perpendicular field, due to Landau quantization, D(ε) becomes dependent on
energy (see Fig. 5c), and Eq. (3) should be averaged over T in the vicinity of the Fermi
energy. If the temperature is low (T1, Fig. 5c), one can directly apply Eq. (3); in the
opposite limit of high temperature (T2, Fig. 5c) the oscillations are averaged over a
wide energy interval and become exponentially suppressed.

Two qualitative predictions follow from the above considerations. (i) In themaxima
andminima of the density of states the ∂μ/∂T signal is zero, and the signal is maximal
at such field where the derivative ∂ ln D(EF )/∂EF is maximal. (ii) The amplitude of
the ∂μ/∂T magnetooscillations is a non-monotonic function of temperature: at low
temperatures T � ωc, � the ∂μ/∂T increases with T , whereas for high temperatures,
T � ωc, averaging over several oscillations suppresses the signal.

The thermodynamic potential of non-interacting electron system can be written as
[33]

�(T, μ, B) = −T
∫

dε D(ε) ln
[
1 + e(μ−ε)/T

]
. (4)

In the presence of the perpendicular magnetic field B the density of states becomes

D(ε) = mωc

2π

∑
σ=±

∞∑
n=0

W(
ε + σ Z − ωc(n + 1/2)

)
, (5)
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where Z = gLμB B/2 (gL stands for the g-factor) describes the effect of the Zee-
man splitting. The functionW(ε) describes disorder broadening of a Landau level. It
satisfies the normalization condition:

∫
dεW(ε) = 1. We note that, in general, this

function can be different for different Landau levels. Using the functionW(ε) a typical
width of a Landau level can be estimated as � ∼ [∫

dεW ′′(ε)
]−1/2. The accurate

quantum-mechanical evaluation of W(ε) for a given type of disorder is a compli-
cated problem and solved only partially. In the absence of disorder one obviously has
W(ε) = δ(ε).

In a standard way by means of the Poisson resummation formula applied to the
thermodynamic potential (4), we obtain the Lifshitz–Kosevich-type [34] expression
for ∂μ/∂T :

(
∂μ

∂T

)
T

= −
∞∑
k=1

2π(−1)kAk

sinhXk

[
1 − Xk cothXk

]
sin

2πμk

ωc

× cos
2π Zk

ωc

[
1 + 2

∞∑
k=1

(−1)kAkXk

sinhXk
cos

2πμk

ωc

× cos
2π Zk

ωc

]−1

. (6)

This result holds for μ ± Z � ωc, T, �. Here Xk = 2π2T k/ωc, and

Ak =
∫

dεW(ε) exp

(
2π iεk

ωc

)
(7)

characterizes damping of oscillations due to Landau level broadening.
For low temperatures, T � ωc, �, μ ± Z , the ∂μ/∂T value is given by Eq. (3)

with D = (1/2)
∑

σ =± D(Eσ
F ). Here Eσ

F = 2πnσ /m denotes the Fermi energy
for a given spin projection. The corresponding electron density is determined by the
Zeeman splitting, nσ /n = 1 + σ Z/EF , where EF = 2πn/m. In the case of the
Lorentzian broadening of a Landau level the density of states at the Fermi energy
becomes [11]

D(Eσ
F ) = m

π

(1/2) sinh(2π�/ωc)

sinh2(π�/ωc) + cos2(πEσ
F/ωc)

. (8)

We mention that above we ignored the effect of electron-electron interaction. It is
well known that for an interacting 3D electron system the Lifshitz–Kosevich-type
expressions for magnetooscillations of the thermodynamic potential is modified via
standard Fermi-liquid renormalization of the quasiparticle spectrum [35,36]. In 2D,
in general it is not the case [37]. For classically weak perpendicular magnetic field
modification of the Lifshitz–Kosevich-type expression for a 2D electron interacting
disordered system has been studied in Refs. [38,39].

We studied two Schottky gated GaAs/AlGaAs single heterojunctions (GaAs1 and
GaAs2, similar to those in Ref. [40]) with electron mobilities 20 and 25m2/V s,
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Fig. 6 ∂μ/∂T versus magnetic field measured with sample GaAs2 at n = 4.16 × 1011cm−2. Data are
fitted with Lorentzian (dashed curves), Gaussian (solid curves), and Gaussian with� ∝ √

B (dotted curves)
lineshapes at 3K (panel a) and 9K (panel b)

respectively, in the temperature range between 2.5 and 25K. The density could be
varied in the range from 2 × 1011 to 4 × 1011cm−2 by varying the gate voltage. The
samples had 5mm2 area; the gate-to-2D gas capacitance was 1.1nF. Both samples
demonstrated similar results,we present therefore the data only for one sample,GaAs2.

Examples of the measured low-field ∂μ/∂T oscillations are shown in Fig. 6. For
the fields lower than 3 Tesla and in the range of temperatures 2.7–9.1K, we fitted
the data using Eq. (6) with the bare band mass mb = 0.067me [6]. Because of the
low-field range used and large cyclotron splitting, all the results below are insensi-
tive to the g-factor value (that may vary in the range g = −0.4/2). The best fit is
obtained for the broadening of Landau levels described by the Lorentzian model with
the independent of B width �=0.4meV (see dashed curves in Fig. 6). The range of
temperatures (0.22mV< T <0.8 mV) and magnetic fields (0.86 < h̄ωc < 5.2 mV)
used for fitting procedure is wide enough to identify the line shape with the Loretzian
curve. Other models for � fail to fit the oscillations (see Fig. 6). We checked that in
a density range from 3×1011 to 5×1011 cm−2 the low-field level broadening is con-
stant (equal to 0.4 meV for sample GaAs-2). The Lorentzian lineshape of the Landau
levels is in the agreement with magnetization measurements of Potts et al. [41] on the
moderate mobility GaAs-based sample; it is also in line with Gaussian lineshape with
oscillatory level broadening [1,4].

It is appropriate to compare here the two techniques: the described above entropy
measurements and the conventional technique of the specific heat measurements. The
method described above allows us to measure ∂S/∂n, whereas the ac calorimetry
measures specific heat T ∂S/∂T . Both methods, however, allow one to evaluate the
entropy change. In the quantizing regime,when the entropyoscillates, one can integrate
both ∂S/∂n and T ∂S/∂T and calculate the respective changes in entropy between the
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neighboring maxima andminima.We compare the smallest oscillation one may detect
with eachparticularmethod.The ac calorimetrymeasurementswith a sample at density
8.8 × 1011 cm−2, mobility 10m2/Vs (both comparable to our GaAs1 sample), and in
a similar temperature range (1.7–4.6 K) were done with a stack of 75 quantum wells,
with 50 times larger total area [42]. The smallest oscillation was observed at filling
factor=12 in field of 3 Tesla. In our measurements with GaAs1 sample (Fig. 1 in [11])
at 2.5 K, we observed huge oscillations at the same field 3 Tesla. The oscillations were
clearly observed down to 1 Tesla, where they had a factor of 50 lower amplitude. This
implies that our technique has ∼ 50 × 50 = 2500 times better sensitivity per unit
area than the ac calorimetry. Remarkably, the (∂S/∂n) value we measure is of purely
electronic origin and has no contribution from the lattice specific heat.

6 Conclusions

Wepresented here experimental test of the novel techniques of thermodynamic ∂μ/∂B
and ∂μ/∂T measurements,which are ideally suitable for 2Dgated carrier systems. The
techniques are highly sensitive and thereby enable thermodynamicmeasurements with
a single-layer electron system comprising only 108−1010 electrons. Particularly, the
temperature modulation technique is three orders of magnitude superior in sensitivity
to the ac calorimetry, allowing entropy measurements with only 108 electrons. The
spin magnetization measurements provide evidence for an easily polarizable electron
state in a wide density range from insulating to deep into the metallic phase.

The temperature and magnetic field dependence of the observed magnetization is
consistent with the formation of large-spin droplets in the insulating phase. These
droplets melt in the metallic phase with increasing density and temperature, though
they survive up to large densities.

For the ∂μ/∂T magnetooscillations in 2D systems we also present a Lifshits–
Kosevitch-type calculations and compare the theory with experimental data; the
comparison reveals a good agreement between the data and the theory. The mag-
netic field dependence of the ∂μ/∂T appears to be rather sensitive to the shape of the
density of states at Landau levels.

Both magnetic field and temperature modulation techniques enable measurements
down to very low electron densitieswhich are inaccessible for transportmeasurements.

Acknowledgments AYuK acknowledges support by RFBR (15-02-07715); VMP and ISB acknowledge
support by RSF (14-12-00879). MR was supported by ISF, Grant No. 1445/11. Measurements at LPI were
performed using research equipment of the LPI shared facility center.

References

1. V.M. Pudalov, S.G. Semenchinskii, V.S. Edel’man, ZhETF 89, 1870 (1985). [JETP 62, 1079 (1985)]
2. V.M. Pudalov, S.G. Semenchinckii, V.S. Edel’man, Pis’ma v ZhETF 41, 225 (1985). [JETP Lett. 41,

325 (1985)]
3. R.T. Zeller, B.B. Goldberg, P.J. Stiles, F.F. Fang, S.L. Wright, Phys. Rev. B 33, 1529R (1986)
4. V.M. Pudalov, S.G. Semenchinskii, Pis’ma ZhETF 44(11), 526 (1986). [JETP Lett. 44(11), 677 (1986)]
5. W. Thomson, Phil. Mag. 46, 82 (1898)
6. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54(2), 437 (1982)

123



J Low Temp Phys (2015) 181:99–111 111

7. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. B. 50, 1760 (1994)
8. S.V. Kravchenko, V.M. Pudalov, D.A. Rinberg, S.G. Semenchinsky, Phys. Lett. A 146, 535 (1990)
9. N. Teneh, AYu. Kuntsevich, V.M. Pudalov, M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012)

10. V.I. Nizhankovskii, Europ. Phys. J. B 3(18), 397 (2000)
11. Y. Tupikov, AYu. Kuntsevich, V.M. Pudalov, I.S. Burmistrov, Pisma v ZhETF 101, 131 (2015). [JETP

Lett. 101, 125 (2015)]
12. A.Yu. Kuntsevich, Y.V. Tupikov, V.M. Pudalov, and I.S. Burmistrov, /ncomms8298
13. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cam-

bridge, 2005)
14. B. Tanatar, D.M. Ceperley, Phys. Rev. B 39, 5005 (1989)
15. A.C. Eguiluz, A.A. Maradudin, R.J. Elliott, Phys. Rev. B 27, 4933 (1983)
16. S.T. Chui, B. Tanatar, Phys. Rev. Lett. 74, 458 (1995)
17. S.T. Chui, B. Tanatar, Phys. Rev. B 55, 9330 (1997)
18. V.M. Pudalov, M. D’Iorio, S.V. Kravchenko, J.W. Campbell, Phys. Rev. Lett. 70, 1866 (1993)
19. M.S. Bello, E.I. Levin, B.I. Shklovskii, A.L. Efros, Zh. Eksp. Teor. Fiz. 80, 1596 (1981). [Sov. Phys.

JETP 53, 822 (1981)]
20. A.L. Efros, Solid State Commun. 65, 1281 (1988)
21. S.V. Kravchenko, V.M. Pudalov, S.G. Semenchinsky, Phys. Lett. A 141, 71 (1989)
22. S.V. Kravchenko, D.A. Rinberg, S.G. Semenchinsky, V.M. Pudalov, Phys. Rev. B 42(6), 3741 (1990)
23. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 68, 674 (1992)
24. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. B 50, 1760 (1994)
25. S. Shapira et al., Phys. Rev. Lett. 77, 3181 (1996)
26. S.C. Dultz, H.W. Jiang, Phys. Rev. Lett. 84, 4689 (2000)
27. A.H. NacDonald, H.C.A. Oji, K.L. Liu, Phys. Rev. B 34, 2681 (1986)
28. Y. Zhang, S. Das Sarma, Phys. Rev. B 72, 115317 (2005)
29. C. Attaccalite, S. Moroni, P. Gori-Giorgi, G.B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002)
30. O. Prus, Y. Yaish, M. Reznikov, U. Sivan, V. Pudalov, Phys. Rev. B 67, 205407 (2003)
31. A.A. Shashkin, S. Anissimova, M.R. Sakr, S.V. Kravchenko, V.T. Dolgopolov, T.M. Klapwijk, Phys.

Rev. Lett. 96, 036403 (2006)
32. M. Reznikov, AYu. Kuntsevich, N. Teneh, V.M. Pudalov, Pis’ma v ZhETF 92, 518–522 (2010)
33. L.D. Landau, E.M. Lifshitz, Statistical Physics. Part I, Course of Theoretical Physics, vol. 5

(Butterworth-Heinemann, Oxford, 1980)
34. I.M. Lifshitz, A.M. Kosevich, JETP 2, 636 (1956)
35. J.M. Luttinger, Phys. Rev. 121, 1251 (1961)
36. YuA Bychkov, L.P. Gor’kov, JETP 14, 1132 (1962)
37. S. Curnoe, P.C.E. Stamp, Phys. Rev. Lett. 80, 3312 (1998)
38. G.W. Martin, D.L. Maslov, MYu. Reizer, Phys. Rev. B 68, 241309(R) (2003)
39. Y. Adamov, I.V. Gornyi, A.D. Mirlin, Phys. Rev. B 73, 045426 (2006)
40. V.G. Mokerov, B.K. Medvedev, V.M. Pudalov, D.A. Rinber, S.G. Semenchinsky, YuV Slepnev, JETP

Lett. 47, 59 (1988)
41. A. Potts, R. Shepherd, W.G. Herrenden-Harker, M. Elliott, C.L. Jones, A. Usher, G.A.C. Jones, D.A.

Ritchie, E.H. Linfield, M. Grimshaw, J. Phys. 8, 5189 (1996)
42. J.K. Wang, J.H. Campbell, D.C. Tsui, A.Y. Cho, Phys. Rev. B 38, 6174 (1988)

123


	Thermodynamic Studies of Two-Dimensional Correlated Electron Systems
	Abstract
	1 Introduction
	2 Ground State Energy
	3 Compressibility
	4 Spin Magnetization
	5 Entropy Measurements
	6 Conclusions
	Acknowledgments
	References




