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Multifractality and electron-electron interaction at Anderson transitions
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Mesoscopic fluctuations and correlations of the local density of states are studied near metal-insulator
transitions in disordered interacting electronic systems. We show that the multifractal behavior of the local density
of states survives in the presence of Coulomb interaction. We calculate the spectrum of multifractal exponents in
2 + ε spatial dimensions for symmetry classes characterized by broken (partially or fully) spin-rotation invariance
and show that it differs from that in the absence of interaction. We also estimate the multifractal exponents at
the Anderson metal-insulator transition in 2D systems with preserved spin-rotation invariance. Our results for
multifractal correlations of the local density of states are in qualitative agreement with recent experimental
findings.
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I. INTRODUCTION

Anderson localization and Anderson localization transi-
tions remain an actively developing field [1,2]. Metal-insulator
transitions and quantum Hall plateau transitions have been
experimentally observed and studied in a variety of semi-
conductor structures [3]. Recent discoveries of graphene [4]
and time-reversal-invariant topological insulator materials [5]
considerably extended the scope of experimental and theoret-
ical research on Anderson localization and its interplay with
topology.

Similarly to other quantum phase transitions, Anderson
transitions are characterized by critical scaling of various
physical observables. Remarkably, wave functions at Ander-
son transitions demonstrate multifractal behavior which imply
their very strong fluctuations. Specifically, the wave-function
moments (the averaged inverse participation ratios),

〈Pq〉 =
〈∫

r<L

dd r|ψ(r)|2q

〉
, (1)

show at the transition point an anomalous multifractal scaling
with respect to the system size L,

Ld〈|ψ(r)|2q〉 ∝ L−τq , τq = d(q − 1) + �q. (2)

Here d is the spatial dimension and 〈· · · 〉 denotes the averaging
over disorder. The anomalous multifractal exponents �q are
negative at the critical point whereas in a conventional metallic
phase one finds �q ≡ 0. The result (2) implies the following
scaling for the moments of the local density of states at the
critical point:

〈[ρ(E,r)q]〉 ∝ L−�q . (3)

In fact, the nontrivial behavior of wave functions at Anderson
transitions is much richer than only scaling of averaged
participation ratios [6]. Recently, a complete classification
of observables characterizing critical wave functions [that

includes multifractal moments (2) as a “tip of the iceberg”]
was developed [7].

The above results on multifractality have been obtained
for disordered systems in the absence of the electron-electron
interaction. In most cases, even a short-ranged interaction
is relevant perturbation in the renormalization-group (RG)
sense. The only exception when noninteracting multifractality
remains valid in the presence of interaction is the case of
broken time reversal symmetry and broken spin invariance
for which the short-range (e.g., screened by external gate)
electron-electron interaction is RG-irrelevant. In this case the
scaling behavior of critical wave functions determines the
interaction-induced dephasing at the noninteracting critical
point [8–10]. For systems of other symmetries, the short-range
electron-electron interaction is RG-relevant. However, the
multifractality of noninteracting electrons has a dramatic
impact on properties of such systems, as it determines the
RG evolution of the system away from the noninteracting
fixed point. In particular, it was shown that the multifractality
leads to a strong enhancement of superconducting transition
temperature [11–13] and controls possible instabilities of
surface states of topological superconductors with respect to
interaction [14,15].

The long-range (1/r) Coulomb interaction is always RG-
relevant at the noninteracting fixed point and thus has a
strong impact on localization properties of the system (see
Refs. [16–18] for review). In view of a combination of
disorder and interaction physics, metal-insulator transitions
in the presence of Coulomb interaction are often called
Mott-Anderson (or Anderson-Mott) transitions.

One of distinctive manifestations of the Coulomb interac-
tion is a strong suppression of the local density of states at
the Fermi level [19,20]. The local density of states can be
measured in a tunneling experiment, implying a suppression
of the tunneling current at low bias voltages, which is known as
the zero-bias anomaly. Specifically, in a two-dimensional (2D)
weakly disordered system the disorder-averaged local density
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of states behaves as [21–25]

〈ρ(E)〉 ∝ exp

{
− 1

4πg
ln2 |E|

}
, (4)

where g is the dimensionless (measured in units e2/h) con-
ductivity and energy E is counted from the chemical potential.
The unconventional behavior (4) with squared logarithm in the
exponential (rather than with a simple logarithm that would
yield a power law, as normally expected for critical behavior)
is due to gauge-type phase fluctuations which leads to a
suppression of Debye-Waller type. For the Anderson transition
in d = 2 + ε dimensions (with ε � 1 allowing a parametric
control of the theory) the disorder-averaged local density of
states demonstrates the following scaling behavior:

〈ρ(E)〉 ∝ |E|β, β = O(1), (5)

with precise value of the critical exponent β depending on the
symmetry class. Equation (5) originates from Eq. (4) when one
passes from two to 2 + ε dimensions due to a transformation of
one of the logarithmic factors in Eq. (4) into a factor ∼1/ε and
because the critical conductance g∗ is of order 1/ε [16,17]. We
remind the reader that in the absence of interaction the average
local density of states is uncritical, β = 0, in conventional
(Wigner-Dyson) symmetry classes.

We are thus facing the following important question: Does
multifractality survive in the presence of Coulomb interaction
between electrons? This question is of direct experimental
relevance. Scanning tunneling microscopy (STM) provides
direct access to the fluctuations and correlations of the
local density of states in disordered interacting systems. In
particular, multifractal fluctuations and correlations of the
local density of states have been measured recently [26] in
a magnetic semiconductor Ga1−xMnx As near the metal-
insulator transition. Strong fluctuations of the local density
of states in a strongly disordered 3D system (presumably,
on the insulating side of the transition) have been observed
in Ref. [27]. Recent STM measurements in various 2D
semiconductor systems and graphene [28] demonstrated the
feasibility of exploring fluctuations and correlations of the
local density of states also near the quantum Hall transitions.
Strong spatial fluctuations of the local density of states have
been also reported near the superconductor-insulator transition
in disordered films [29].

The experimental findings mentioned above suggest that the
multifractality of the local density of states does survive in the
presence of Coulomb interaction. Recently, this conclusion
was supported by numerical analysis in the framework of
density functional theory [30], by the Hartree-Fock simulation
of the problem [31], and by the authors within the nonlinear
sigma model analysis in d = 2 + ε dimensions in the case of
broken time reversal and spin rotational symmetries [32].

In this paper, we extend the nonlinear sigma model analysis
of Ref. [32] to all conventional symmetry cases. Specifically,
we consider models with fully broken, partially broken, and
preserved spin rotation invariance, both with and without
time-reversal symmetry. We will demonstrate that in spite
of the suppression of the disorder average 〈ρ(E)〉 due to
gauge-type phase fluctuations, the normalized local density of
states ρ(E,r)/〈ρ(E)〉 in strongly interacting critical systems

does show multifractal fluctuations and correlations. We will
also calculate the spectrum of anomalous dimensions in 2 + ε

spatial dimensions in the two-loop approximation (up to the
ε2 order) for symmetry cases with broken (partially or fully)
spin-rotation invariance and demonstrate that it differs from
that of corresponding noninteracting symmetry classes. In
the case of preserved spin-rotation invariance, our results
yield an estimate for the multifractal exponents at the 2D
metal-insulator transition in the model with large number of
valleys, nv 	 1, studied in Ref. [33].

The outline of the paper is as follows. In Sec. II we introduce
formalism of the nonlinear sigma model. Details of the two-
loop renormalization group analysis for moments of the local
density of states in d = 2 + ε dimensions are given in Sec. III.
In Sec. IV A we present the results of a general scaling analysis
for moments as well as spatial and energy correlations of the
local density of states near the interacting critical point. The
results for a set of multifractal exponents for various symmetry
classes are presented in Secs. IV B–IV D. We conclude the
paper with the summary of our findings and a discussion of
open questions, Sec. V. Some of the results were published in
a brief form in Ref. [32].

II. FORMALISM

A. Nonlinear sigma model action

For the case of preserved time reversal and spin rotational
symmetries the action of the nonlinear sigma model (NLSM)
is given as the sum of the noninteracting part, Sσ , and
contributions arising from the interactions in the particle-hole
singlet and triplet channels, and the particle-particle (Cooper)
channel, Sint [16,17]:

S = Sσ + Sint, (6)

where

Sσ = − g

32

∫
d r Tr(∇Q)2 + 4πT Zω

∫
d r Tr ηQ. (7)

In this paper we focus on systems with repulsive interaction in
the Cooper channel, i.e., systems without a superconducting
instability. Thus we neglect the interaction in the Cooper
channel. Then, the interaction part of the action can be written
as

Sint = −πT

4

∑
α,n

∑
r=0,3

3∑
j=0

j

∫
d r Tr

[
Iα
n trjQ

]
Tr
[
Iα
−ntrjQ

]
.

(8)

Here g is the total Drude conductivity (in units e2/h and
including spin), 0 = s denotes the interaction amplitude in
the singlet channel, and 1 = 2 = 3 = t stands for the
interaction amplitude in the triplet channel. The parameter
Zω is a frequency renormalization factor introduced by
Finkelstein [21]. We use the following matrices:

�αβ
nm = sgn n δnmδαβt00, ηαβ

nm = n δnmδαβt00,
(9)(

I
γ

k

)αβ

nm
= δn−m,kδ

αβδαγ t00,

with α,β = 1, . . . ,Nr standing for replica indices and n,m

corresponding to the Matsubara fermionic energies εn =
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πT (2n + 1). The sixteen matrices,

trj = τr ⊗ sj , r,j = 0,1,2,3, (10)

operate in the particle-hole (subscript r) and spin (subscript j )
spaces with the corresponding Pauli matrices denoted by

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0
0 −1

)
,

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i

i 0

)
, s3 =

(
1 0
0 −1

)
.

(11)

Matrices τ0 and s0 stand for the 2 × 2 unit matrices. The
matrix field Q(r) (as well as the trace Tr) acts in the
replica, Matsubara, spin, and particle-hole spaces. It obeys
the following constraints:

Q2 = 1, Tr Q = 0, Q† = CT QT C. (12)

The charge conjugation matrix C = it12 satisfies the relation
CT = −C. Matrix Q can be parametrized as Q = T −1�T

where the matrices T obey

CT ∗ = T C, (T −1)∗C = CT −1. (13)

The symbol ∗ denotes the complex conjugation.

B. Moments of the local density of states

The local density of states is determined by the
single-particle Green’s function as follows: ρ(E,r) =
(−1/π ) Im G(E; r,r). Within NLSM formalism the disorder-
averaged local density of states 〈ρ(E)〉 can be obtained after
analytic continuation to the real energies, iεn → E + i0+, of
the following correlation function:

ρ(iεn) = ρ0

4
sp
〈
Qαα

nn

〉
. (14)

Here α is a fixed replica index, the symbol sp denotes trace
in spin and particle-hole spaces, and ρ0 stands for the single-
particle density of states (including spin) at the energy of the
order of inverse elastic scattering time 1/τ which plays the
role of high-energy (ultraviolet) cutoff of the theory.

In order to discuss the second moment of the local density
of states it is convenient to introduce the irreducible two-point
correlation function

K2(E,r; E′,r ′) = 〈〈ρ(E,r) · ρ(E′,r ′)〉〉
= 〈ρ(E,r)ρ(E′,r ′)〉 − 〈ρ(E,r)〉〈ρ(E′,r ′)〉.

(15)

At coinciding spatial points this function, K2(E,r; E′,r), can
be obtain from

K2 = ρ2
0

32
Re
[
P

α1α2
2

(
iεn1 ,iεn3

)− P
α1α2
2

(
iεn1 ,iεn2

)]
(16)

after analytic continuation to the real frequencies: εn1 → E +
i0+, εn3 → E′ + i0+, and εn2 → E′ − i0+. Here

P
α1α2
2 (iεn,iεm) = 〈〈

sp Qα1α1
nn (r) · sp Qα2α2

mm (r)
〉〉

− 2
〈
sp
[
Qα1α2

nm (r)Qα2α1
mn (r)

]〉
. (17)

Replica indices α1 and α2 are different in Eq. (16), α1 =
α2, so that the two-point correlation function K2 measures

mesoscopic fluctuations of the local density of states. We
mention that the NLSM operator corresponding to K2 is the
eigenoperator under action of the renormalization group as
we shall explicitly check by two-loop calculations below. In a
similar way, higher moments of the local density of states
and corresponding irreducible correlation functions can be
expressed in terms of higher-order correlation functions of
the Q field which are eigenoperators of the renormalization
group.

III. TWO-LOOP RENORMALIZATION

A. Perturbative expansion

For the perturbative treatment (in 1/g) of the NLSM
action (6) we shall use the square-root parametrization

Q = W + �
√

1 − W 2 , W =
(

0 w

w̄ 0

)
. (18)

We adopt the following notations: Wn1n2 = wn1n2 and Wn2n1 =
w̄n2n1 with n1 � 0 and n2 < 0. The blocks w and w̄ (in
Matsubara space) obey

w̄ = −CwT C, w = −Cw∗C. (19)

The second equality implies that in the expansion w
αβ
n1n2 =∑

rj (wαβ
n1n2 )rj trj some of the elements (wαβ

n1n2 )rj are real and
some are purely imaginary.

Expanding the NLSM action (6) to the second order in W ,
we find the following propagators for diffusive modes. The
propagators of diffusons read (r = 0,3 and j = 0,1,2,3)

〈
[wrj ( p)]α1β1

n1n2
[w̄rj (− p)]β2α2

n4n3

〉

= 2

g
δα1α2δβ1β2δn12,n34Dp

(
i�ε

12

)

×
[
δn1n3 − 32πT j

g
δα1β1D(j )

p

(
i�ε

12

)]
, (20)

where n12 = n1 − n2 and �ε
12 = εn1 − εn2 . The standard dif-

fusive propagator is given as

D−1
p (iωn) = p2 + 16Zω|ωn|/g. (21)

The diffusons renormalized by interaction in the sin-
glet [D(0)

p (ω) ≡ Ds
p(ω)] and triplet [D(1)

p (ω) = D(2)
p (ω) =

D(3)
p (ω) ≡ Dt

p(ω)] particle-hole channels are as follows:

[
Ds

p(iωn)
]−1 = p2 + 16(Zω + s)|ωn|/g,

(22)[
Dt

p(iωn)
]−1 = p2 + 16(Zω + t )|ωn|/g.

The propagators of singlet and triplet cooperons (r = 1,2 and
j = 0,1,2,3) are insensitive to the interaction in the particle-
hole channels:

〈
[wrj ( p)]α1β1

n1n2
[w̄rj (− p)]β2α2

n4n3

〉 = 2

g
δα1α2δβ1β2δn1n3δn2n4Cp

(
i�ε

12

)
,

(23)

where Cp(iωn) ≡ Dp(iωn).
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For the purpose of regularization in the infrared, it is
convenient to add the following term to the NLSM action (6):

S → S + gh2

8

∫
d r Tr �Q. (24)

This leads to the substitution of p2 + h2 for p2 in the
propagators (21) and (22).

B. The disorder-averaged local density of states

We start from renormalization of the disorder-averaged
local density of states. For our purposes, it is enough to
compute it in the one-loop approximation. Expanding the
matrix Q to the second order in W and using Eq. (14), we
obtain

ρ
(
iεn1

)
ρ0

= 1 − 1

8
sp
∑
n2,β

〈
wαβ

n1n2
(r)w̄βα

n2n1
(r)
〉
. (25)

Computing the average with the help of Eqs. (20)–(23) we find

ρ
(
iεn1

)
ρ0

= 1 + 64πT

g2

∫
q

∑
ωn>εn1

3∑
j=0

jDq(iωn)D(j )
q (iωn).

(26)

Finally, performing analytic continuation to the real frequen-
cies, iεn1 → E + i0+, we obtain

ρ(E)

ρ0
= 1 + 16

g2
Im

3∑
j=0

j

∫
q,ω

Fω−EDR
q (ω)D(j )R

q (ω). (27)

Here DR
q (ω) and D(j )R

q (ω) are retarded propagators corre-

sponding to Matsubara propagators DR
q (iωn) and D(j )R

q (iωn),
respectively. The fermionic distribution function is denoted as
Fω = tanh(ω/2T ). We use the following shorthand notation:

∫
q,ω

≡
∫

dd q
(2π )d

∫ ∞

−∞
dω. (28)

Since sDR
q (ω)DsR

q (ω) ∝ [DR
q (ω)]2Uscr(ω,q) where

Uscr(ω,q) is dynamically screened Coulomb interaction,
one can check that Eq. (27) reproduces the well-known
perturbative result for the zero-bias anomaly [19].

The result (27) implies that the disorder-averaged local
density of states can be written as ρ(E) = ρ0[Z(E)]1/2 with
the renormalization factor

Z(E) = 1 + 16

g2

3∑
j=0

j

∫
q,ω

[Fω−E + Fω+E]

× Im
[
DR

q (ω)D(j )R
q (ω)

]
. (29)

We note that such definition of Z coincides with the definition
of the field renormalization constant in Ref. [17] and the wave-
function renormalization constant in Ref. [22]. We stress that
Z is very different from the frequency renormalization factor
Zω introduced by Finkelstein [21].

To simplify analysis, it is convenient to set temperature
T and energy E to zero and study dependence of 〈ρ〉 on
the infrared regulator h2. Hence, in d = 2 + ε dimension, we

FIG. 1. Representative diagram for the disorder-averaged local
density of states. Solid lines denote electron Green’s functions, while
wavy lines denote the dynamically screened Coulomb interaction.
Ladders of dashed lines dressing the interaction vertices represent
diffusons.

obtain [22]

Z = 1 − [ln(1 + γs) + 3 ln(1 + γt )]
hεt

ε
+ O(ε). (30)

Here γs = s/Zω and γt = t/Zω are dimensionless inter-
action amplitudes and t = 8�d/g denotes resistivity, where
�d = Sd/[2(2π )d ] and Sd = 2πd/2/(d/2) is the area of the
d-dimensional sphere. We notice the well-known peculiarity
of the case of Coulomb interaction (γs = −1) for which the
formally divergent term ln(1 + γs) in Eq. (30) emerges in
addition to 1/ε factor.

As usual, Eq. (30) determines the anomalous dimension ζ

of the disorder-averaged local density of states. In the one-loop
approximation, we obtain

− d ln Z

dy
= 2ζ = −[ln(1 + γs) + 3 ln(1 + γt )]t + O(t2),

(31)

where y = ln 1/h running renormalization group length scale.
To illustrate the renormalization group result (31), we show
in Fig. 1 a representative diagram for the disorder-averaged
local density of states. The local density of states is given by
a fermionic loop dressed by interaction lines. Averaging the
loop over disorder generates diffusive vertex corrections and
yields the suppression of the average local density of states by
gauge-type phase fluctuations.

C. The second moment of the local density of states

The renormalization of the second moment of the local
density of states can be extracted from the irreducible two-
point correlation function K2 at the coinciding spatial points.
We limit our consideration to one- and two-loop orders.

1. One-loop results

In the one-loop approximation we find[
P

α1α2
2

](1)(
iεn1 ,iεn3

) = 0 (32)
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and[
P

α1α2
2

](1)(
iεn1 ,iεn2

) = −2 sp
〈
wα1α2

n1n2
(r)w̄α2α1

n2n1
(r)
〉

= −128

g

∫
q

[
Dq

(
i�ε

12

)+ Cq

(
i�ε

12

)]
.

(33)

Hence, we obtain

K
(1)
2 (E,r; E′,r) = ρ2

0
4

g
Re
∫

q

[
DR

q (�) + CR
q (�)

]
, (34)

where � = E − E′. Setting E = E′ and using h2 as the
infrared regulator, one finds

K
(1)
2 = −ρ2

0
2hεt

ε
+ O(ε). (35)

2. Two-loop results

We start evaluation of the two-loop contribution to
the irreducible two-point correlation function K2 from
P

α1α2
2 (iεn1 ,iεn3 ). In the two-loop approximation, one needs

to take into account only terms with four W :

[
P

α1α2
2

](2)(
iεn1 ,iεn3

) = 1

4

∑
n6n8

∑
β1β2

[〈〈
sp
[
wα1β1

n1n6
w̄β1α1

n6n1

] · sp
[
wα2β2

n3n8
w̄β2α2

n8n3

]〉〉− 2 sp
〈
w

α1β1
n1n6w̄

β1α2
n6n3

wα2β2
n3n8

w̄β2α1
n8n1

〉]
. (36)

By using the Wick theorem and Eqs. (20)–(23), we find

[
P

α1α2
2

](2)(
iεn1 ,iεn3

) =
(

64

g

)2
πT

g

3∑
j=0

j

∫
q,p

∑
ωn>εn3

[
Dq

(
iωn + i�ε

13

)+ Cq

(
iωn + i�ε

13

)]
Dp(iωn)D(j )

p (iωn) + (
εn1 ↔ εn3

)
.

(37)

Performing analytical continuation to real frequencies, iεn1 → E + i0+, iεn3 → E′ + i0+, we obtain

[
P

α1α2
2

]RR(2)
(E,E′) =

(
32

g

)2 1

ig

3∑
j=0

j

∫
q,p,ω

Fω−E′
[
DR

q (ω + E − E′) + CR
q (ω + E − E′)

]
DR

p (ω)D(j )R
p (ω) + (E ↔ E′).

(38)

Setting E = E′ = T = 0, we find (see Appendix A)

[
P

α1α2
2

]RR(2) → 16
t2 h2ε

ε2

3∑
j=0

[
ln(1 + γj ) − ε

4
ln2(1 + γj )

]
, (39)

where we omit finite in ε terms.
The two-loop contribution to P

α1α2
2 (iεn1 ,iεn4 ) can be written as follows:

[
P

α1α2
2

](2)(
iεn1 ,iεn2

) = −1

4

∑
n5n6

∑
β1β2

〈〈
sp
[
wα1β1

n1n6
w̄β1α1

n6n1

] · sp
[
w̄α2β2

n2n5
wβ2α2

n5n2

]〉〉− 2

〈
sp
[
wα1α2

n1n2
w̄α2α1

n2n1

][
S(4)

σ + S
(4)
int + 1

2

(
S

(3)
int

)2
]〉

.

(40)

Here the term

S(4)
σ = − g

128

∫
qj

δ

⎛
⎝ 3∑

j=0

q j

⎞
⎠ ∑

β1β2β3β4

∑
n5n6n7n8

sp
[
wβ1β2

n5n6
(q0)w̄β2β3

n6n7
(q1)wβ3β4

n7n8
(q2)w̄β4β1

n8n5
(q3)

]

×
[

2h2 + 16Zω

g

(
�ε

56 + �ε
78

)− (q0 + q1)(q2 + q3) − (q0 + q3)(q1 + q2)

]
(41)

appears in the expansion of Sσ and the regulator term (24) to the fourth order in W . The expansion of the interaction term Sint

results in the following third-order term,

S
(3)
int = πT

4

∑
r=0,3

3∑
j=0

j

∑
α,n

∫
d r Tr Iα

n trjW Tr Iα
−ntrj�W 2, (42)

and fourth-order term,

S
(4)
int = −πT

16

∑
r=0,3

3∑
j=0

j

∑
α,n

∫
d r Tr Iα

n trj�W 2 Tr Iα
−ntrj�W 2. (43)
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After evaluation of averages in Eq. (40), we find[
P

α1α2
2

](2)(
iεn1 ,iεn2

)

= −
(

16

g

)2 [(∫
q

Dq

(
i�ε

12

))2

+
(∫

q

Cq

(
i�ε

12

))2]
+ 1 − 9

4

(
16

g

)2 ∫
q,p

[
p2 + q2 + h2 + 16Zω

g
�ε

12

]

× Cp

(
i�ε

12

)
Dq

(
i�ε

12

)[
Dq

(
i�ε

12

)+ Cp

(
i�ε

12

)]−
(

64

g

)2 3∑
j=0

πT j

g

∫
q,p

[
D2

p

(
i�ε

12

)+ C2
p

(
i�ε

12

)]
⎧⎨
⎩
∑

ωn>εn1

+
∑

ωn>−εn2

⎫⎬
⎭

×
[
p2 + q2 + 2h2 + 16Zω

g

(
�ε

12 + ωn

)]
Dq(iωn)D(j )

q (iωn) +
(

64

g

)2 3∑
j=0

2πT j

g

∫
q,p

∑
ωn>0

[
1 − 16jωn

g
D(j )

q+ p(iωn)

]

× [D2
q

(
i�ε

12

)
Dp

(
i�ε

12 + iωn

)+ C2
q

(
i�ε

12

)
Cp

(
i�ε

12 + iωn

)]+
(

64

g

)2 3∑
j=0

πT j

g

∫
q,p

⎧⎨
⎩

∑
εn1 >ωn>0

+
∑

−εn2 >ωn>0

⎫⎬
⎭

×
[

1 − 16jωn

g
D(j )

q+ p(iωn)

][
D2

q

(
i�ε

12

)
Dp

(
i�ε

12 − iωn

)+ C2
q

(
i�ε

12

)
Cp

(
i�ε

12 − iωn

)]
. (44)

Performing analytic continuation to the real frequencies, iεn1 → E + i0+, iεn2 → E′ − i0+, in Eq. (45), we obtain[
P

α1α2
2

]RA(2)
(E,E′)

= −
(

16

g

)2 [(∫
q

DR
q (�)

)2

+
(∫

q

CR
q (�)

)2]
− 2

(
16

g

)2 ∫
q,p

[
p2 + q2 + h2 − 16Zω

g
i�

]
CR

p (�)

×DR
q (�)

[
DR

q (�) + CR
p (�)

]−
(

32

g

)2 3∑
j=0

j

ig

∫
q,p,ω

[
DR2

p (�) + CR2
p (�)

]
[Fω−E + Fω+E′]DR

q (ω)D(j )R
q (ω)

×
[
p2 + q2 + 2h2 − 16Zω

g
i
(
� + ω

)]+
(

64

g

)2 3∑
j=0

j

2ig

∫
q,p,ω

Bω

[
DR2

q (�)DR
p (ω + �) + CR2

q (�)CR
p (ω + �)

]

×
[

1 + 16j iω

g
D(j )R

q+ p(ω)

]
+
(

32

g

)2 3∑
j=0

j

ig

∫
q,p,ω

[2Bω − Fω−E − Fω+E′]

[
1 + 16j iω

g
D(j )R

q+ p(ω)

]

× [DR2
q (�)DR

p (� − ω) + CR2
q (�)CR

p (� − ω)
]
. (45)

Here we introduce the bosonic distribution function Bω = coth(ω/2T ). We note that the significant part of the two-loop
contribution to [P α1α2

2 ]RA(E,E′) can be considered as the renormalization of the diffuson and cooperon which determine the
one-loop contribution to [P α1α2

2 ]RA(E,E′) (see Appendix B). Again setting E = E′ = T = 0, we derive (see Appendix A)

[
P

α1α2
2

]RA(2) → −32
t2 h2ε

ε2
[3 + ε]−16

t2 h2ε

ε2

3∑
j=0

[
2f (γj ) + 3 ln(1 + γj ) − ε

2 + γj

γj

(
ln(1 + γj ) + li2(−γj ) + 1

4
ln2(1 + γj )

)]
,

(46)

where

f (x) = 1 − (1 + 1/x) ln(1 + x) (47)

and li2(x) = ∑∞
k=1 xk/k2 denotes the polylogarithm. Com-

bining together Eqs. (39) and (46), we obtain the following
two-loop contribution to the irreducible two-point correlation
function:

K
(2)
2 = ρ2

0
t2 h2ε

ε2

⎧⎨
⎩1 + 2

(
1 + ε

2

)
+

3∑
j=0

[
f (γj ) + 2 ln(1 + γj )

+ ε

2
[ln(1 + γj ) + 2f (γj ) − c(γj )]

]⎫⎬
⎭ , (48)

where we introduced the function

c(γ ) = 2 + 2 + γ

γ
li2(−γ ) + 1 + γ

2γ
ln2(1 + γ ). (49)

3. Anomalous dimension

It is well known (see, e.g., Ref. [34]) that the momentum
scale h acquires renormalization. The corresponding renor-
malized momentum scale h′ can be defined as follows:

g′h′2 Tr �2 = gh2〈Tr �Q〉, (50)

where g′ denotes renormalized conductivity at the mo-
mentum scale h′. In the one-loop approximation, one can
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find [34]

h′ = h

⎧⎨
⎩1 − t hε

2ε

⎡
⎣1 +

3∑
j=0

[
f (γj ) + 1

2
ln(1 + γj )

]⎤⎦
⎫⎬
⎭
(51)

and [19,21,22]

g′ = g

[
1 + a1t hε

ε
+ O(ε)

]
, a1 = 1 +

3∑
j=0

f (γj ). (52)

We mention that g′h′2 = gh2Z1/2 as expected.
By using Eq. (51), we can write the second moment of the

local density of states in terms of the renormalized momentum
scale h′ and factor Z as follows:

〈ρ2〉 = Zρ2
0 + K2 = ρ2

0Zm′
2, (53)

where, keeping only terms with pole structure in ε,

m′
2 = m2

[
1 + b

(2)
1 t h′ε

ε
+ t2h′2ε

ε2

(
b

(2)
2 + εb

(2)
3

)]
. (54)

Here m2 = 1 and

b
(2)
1 = −2, b

(2)
2 = 3 +

3∑
j=0

f (γj ), b
(2)
3 = −1

2

3∑
j=0

c(γj ).

(55)

In order to find the anomalous dimension of m′
2, we

introduce the dimensionless quantity t̄ = t ′h′ε and, using
Eqs. (52) and (54), express t , γj , and m2 as

t = (h′)−ε t̄Zt (t̄ ,γ
′
s ,γ

′
t ), γj = γ ′

jZj (t̄ ,γ ′
s ,γ

′
t ),

m2 = m′
2Zm2 (t̄ ,γ ′

s ,γ
′
t ). (56)

We remind the reader that interaction parameters γj are
renormalized at the one-loop level. However, since b

(2)
1 is

independent of γj this renormalization does not affect the
two-loop result for the anomalous dimension of m′

2. To the
lowest orders in t̄ the renormalization parameters become

Zt = 1 + a1

ε
t̄ (57)

and

Z−1
m2

= 1 + b
(2)
1

ε
t̄ + t̄2

ε2

[
b

(2)
2 + b

(2)
1 a1 + εb

(2)
3

]
. (58)

Now the renormalization group function for m′
2 can be derived

in a standard manner from the condition that m2 (as well as
t and γj ) does not depend on the momentum scale h′. Thus,
we obtain the two-loop result for the anomalous dimension
ζ2(t,γs.γt ) of m2:

−d ln m2

dy
= ζ2 = −2t − [c(γs) + 3c(γt )]t

2 + O(t3). (59)

Here y = ln 1/h′ is the renormalization group running length
scale and we omit the prime and bar signs for a brevity.
The function c(γ ) is defined in Eq. (49). It is worthwhile
to mention that c(0) = 0 as it is known for free electrons [35],
and c(−1) = 2 − π2/6 ≈ 0.36. Remarkably, the interaction
affects the anomalous dimension at the two-loop order

FIG. 2. Representative diagram for the two-point correlation
function of the local density of states. Solid lines denote electron
Green’s functions, while wavy lines denote the dynamically screened
Coulomb interaction. Ladders of dashed lines represent diffusons and
cooperons.

only. We emphasize that the relation b
(2)
2 = b

(2)
1 (b(2)

1 − a1)/2
guaranties the renormalizability of m2, i.e., the absence in
Eq. (59) of terms divergent in the limit ε → 0. In addition,
this indicates also that the operator corresponding to K2

is the eigenoperator under action of the renormalization
group. Indeed, if the operator corresponding to K2 consists
of several eigenoperators, the relation b

(2)
2 = b

(2)
1 (b(2)

1 − a1)/2
would imply a nonlinear system of equations which has no
nontrivial solutions in general.

To illustrate the two-loop contribution to the renormaliza-
tion group equation (59) we show in Fig. 2 representative
diagrams for the two-point correlation function of the local
density of states. Each local density of states is given by a
fermionic loop dressed by interaction lines. Averaging each
loop over disorder generates diffusive vertex corrections and
yields the suppression of the average local density of states by
gauge-type phase fluctuations. On the other hand, diffusons
and cooperons connecting the loops lead to multifractal
correlations.

The results of this section imply that the second moment of
the local density of states at E = T = 0 can be written as

〈ρ2〉 = 〈ρ〉2 m′
2, (60)

where the scaling behavior of m2 is governed by Eq. (59). We
mention that the interaction affects the anomalous dimension
ζ2 only at the two-loop level.

D. The qth moment of the local density of states

In this section we demonstrate that in the two-loop
approximation the qth moment of the local density of states at
E = T = 0 can be written as

〈ρq〉 = 〈ρ〉qm′
q, (61)

where the behavior of mq for the orthogonal case (both
time reversal and spin rotational symmetries are preserved) is
determined by the following renormalization group equation:

− d ln mq

dy
= ζq = q(1 − q)

2
{2t + [c(γs) + 3c(γt )]t

2}

+O(t3). (62)

085427-7



I. S. BURMISTROV, I. V. GORNYI, AND A. D. MIRLIN PHYSICAL REVIEW B 91, 085427 (2015)

Here the function c(γj ) is given in Eq. (49). We mention that
Eq. (62) implies

m′
q = mq

[
1 + b

(q)
1 t h′ε

ε
+ t2h′2ε

ε2

(
b

(q)
2 + εb

(q)
3

)]
(63)

with mq = 1 and

b
(q)
1 = q(q − 1)

2
b

(2)
1 , b

(q)
2 = b

(q)
1

2

(
b

(q)
1 − a1

)
,

(64)

b
(q)
3 = q(q − 1)

2
b

(2)
3 .

In order to establish Eqs. (63) and (64) we use the proof by
induction. Let us consider the irreducible qth moment of the
local density of states, Kq = 〈(ρ − 〈ρ〉)q〉 (with q � 3). Then
we can express the qth moment of the local density of states
via Kq and 〈ρj 〉 with j < q as follows:

〈ρq〉 =
q−1∑
j=0

(−1)q−1−jC
q

j 〈ρj 〉〈ρ〉q−j + Kq, (65)

where C
q

j = q!/[(q − j )!j !]. Provided Eqs. (61) and (63) hold
for all 0 � j � q − 1, we find

〈ρq〉 = Zq/2m̃q + Kq, (66)

where

m̃q = mq

[
1 + b̃

(q)
1 t h′ε

ε
+ t2h′2ε

ε2

(
b̃

(q)
2 + εb̃

(q)
3

)]
, (67)

with

b̃
(q)
1 = kq

2
b

(2)
1 , b̃

(q)
2 = b

(2)
1

[
lqb

(2)
1 − 2kqa1

]
8

, b̃
(q)
3 = kq

2
b

(2)
3 .

(68)

The combinatorial coefficients kq and lq are defined via
derivatives of the function Pq(x) = xq − (x − 1)q at the point
x = 1:

kq = P ′′
q (1), lq = (x2P ′′

q (x))′′
∣∣
x=1. (69)

As one can check, kq = q(q − 1) for q � 3 whereas lq = k2
q

for q � 5. For q = 3 and q = 4 one finds l3 = 12 and l4 = 120.
Since expression for Kq involves connected contributions from
averages of the number q of matrices Q, the lowest order
contribution to Kq involves at least q matrices W . Thus there
is no two-loop contribution to Kq for q � 5. Therefore, with
the help of Eq. (69), we obtain the result (63) for q � 5. The
cases q = 3 and q = 4 are needed to be considered specially.
One can demonstrate that Eq. (62) holds for q = 3 and q = 4
also (see Appendix C).

IV. SCALING ANALYSIS

A. General scaling results

Near the interacting critical point Eqs. (61) and (62) imply
that at zero energy and temperature, E = T = 0, the qth
moment of the local density of states obeys the following
scaling behavior:

〈ρq〉 ∼ 〈ρ〉q (ξ/ l)−�q ϒq(ξ/L). (70)

Here L stands for the system size, and l and ξ = l|1 − t/t∗|−ν

denote the mean free path and the correlation length, respec-
tively. The multifractal critical exponent �q is determined by
the anomalous dimension of mq at the critical point, �q = ζ ∗

q

(q � 2). We note that �1 = 0 by definition. The scaling
function ϒq(x) has the following asymptotes:

ϒq(x) =
{

1, x � 1,

x�q , x 	 1.
(71)

As one can see from Eq. (70), the scaling behavior of the
qth moment of the local density of states is determined also by
the scaling behavior of the average DOS. At zero energy and
temperature, E = T = 0, one can write from Eq. (31) (see,
e.g., [16,17])

〈ρ〉 ∼ (ξ/ l)−θϒ(ξ/L), (72)

where the critical exponent θ is determined by the anomalous
dimension of the disorder-averaged local density of states at
the critical point, θ = ζ ∗. The scaling function ϒ behaves as
follows:

ϒ(x) =
{

1, x � 1,

xθ , x 	 1.
(73)

Combining Eqs. (70) and (72), we find

〈ρq〉 ∼ (ξ/ l)−θq−�q ϒ̃q(ξ/L), (74)

where the scaling function ϒ̃q(x) has the following properties:

ϒ̃q(x) =
{

1, x � 1,

x�q+θq , x 	 1.
(75)

In general, the exponent θ is positive, which corresponds
to a suppression of the average tunneling density of states.
While our calculation of moments is restricted to integer
positive q, the results for the multifractal exponents �q can
be extended (by analytic continuation) to all real (and, in
fact, even complex) q. Indeed, the local density of states
ρ(r) is a real positive quantity and thus the moments 〈ρq〉
are unambiguously defined for any q. By definition �0 =
�1 = 0. According to general properties of the multifractality
spectra, d2�q/dq2 < 0, so that �q is positive for 0 < q < 1
and negative on the rest of the real axis. The combination
θq + �q controlling the scaling of moments 〈ρq〉 (without
normalization to the average) is positive for not too large
positive q. It is expected that the absolute value of �q grows
sufficiently fast, so that θq + �q becomes negative at q > qc

with some qc > 1. This means that although the average local
density of states is suppressed, its sufficiently high moments
are enhanced (in comparison with a clean system) by a
combined effect of interaction and disorder.

Interestingly, the results (70), (74) are similar to the
behavior of the local density of states at critical points in
noninteracting systems of unconventional symmetry classes
(see Ref. [2] and references therein). However, the physics
in the two cases is essentially different. In unconventional
symmetry classes, suppression of the local density of states
occurs near a special point of the single-particle spectrum
due to existence of an additional symmetry. For example,
it is the case for noninteracting Dirac fermions subjected to
special types of disorder. Contrary to this, in our problem
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the suppression of disorder-averaged local density of states
takes place because of Coulomb interaction and, therefore, is
pinned to the chemical potential. This suppression is a genuine
many-body effect that has common roots with formation of the
gap in Mott insulators and in the Coulomb-blockade regime
of quantum dots, as well as of the soft Coulomb gap [20] in
disordered insulators.

As usual, in the presence of interactions, finite energy
or temperature induces the inelastic length Lφ related with
the dephasing time τφ : Lφ ∼ τ

1/z

φ , where z is the dynam-
ical exponent. In the case of Coulomb interaction the fre-
quency/energy and temperature scaling are the same such that
1/τφ ∼ max{|E|,T }. Therefore, the inelastic length becomes
Lφ ∼ min{LE,LT } with LE ∼ |E|−1/z and LT ∼ T −1/z. We
emphasize that the energy E is counted from the chemical
potential. Provided Lφ � L, the inelastic length should be
substituted for L in Eqs. (70), (72), and (74). Therefore, our
scaling results for the qth moment can be summarized as
follows:

〈ρq(E,r)〉 ∼ 〈ρ(E)〉q(L/l)−�q , 〈ρ(E)〉 ∼ (L/l)−θ , (76)

where L = min{L,ξ,Lφ}. Note that the exponent θ is related
with the exponent β which determines the energy dependence
of the disorder-average local density of states at the criticality,
〈ρ(E)〉 ∼ |E|β , as β = θ/z.

The scaling behavior of the 2-point correlation function of
the local density of states at the same energy but different
spatial points is controlled by the exponent �2 also. At l <

R < L, we find the following scaling:

〈ρ(E,r)ρ(E,r + R)〉 ∼ 〈ρ(E)〉2(R/L)−η. (77)

Here the exponent η = −�2. This result follows from two
observations: (i) at R ∼ l Eq. (77) should reproduce Eq. (76)
with q = 2, and (ii) at R � L the local density of states at
points r and r + R is essentially uncorrelated. Similarly (see,
e.g., Ref. [2]), one can find at l � R � L that

〈ρq1 (E,r)ρq2 (E,r + R)〉 ∼ 〈ρ(E)〉q1+q2 (L/l)−�q1 −�q2

× (R/L)�q1+q2 −�q1 −�q2 . (78)

The 2-point correlation function of the local density of
states at the same spatial point but at different energies
shows the following scaling behavior for l < Lω,LE <

min{L,ξ,LT }:
〈ρ(E,r)ρ(E + ω,r)〉
〈ρ(E)〉〈ρ(E + ω)〉 ∼ (Lω/l)ηϒ̂2(Lω/LE). (79)

Here Lω ∼ |ω|−1/z and the scaling function ϒ̂2(x) has the same
asymptotes as the function ϒ2(x) [see Eq. (71)]. In the case
l < Lω < L, one expects scaling as follows:

〈ρ(E,r)ρ(E + ω,r)〉 ∼ (L/l)−θ (Lω/l)−θ+η. (80)

Next, using Eqs. (77) and (79), we find the following scaling
behavior of the 2-point correlation function of the local density
of states at different energies and different spatial points in the
most interesting case l < R < Lω < L:

〈ρ(E,r)ρ(E + ω,r + R)〉
〈ρ(E)〉〈ρ(E + ω)〉 ∼ (Lω/R)η. (81)
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FIG. 3. (Color online) Schematic color-code plot of the normal-
ized autocorrelation function K2(E,r,E,r + R)/〈ρ(E)〉2 for the
system (a) at the critical point, t = t∗, and (b) slightly on the
metallic side, (t∗ − t)/t∗ = 0.15. The energy is measured in units
of elastic scattering rate which sets the ultraviolet cutoff of the
NLSM theory. The dashed curve in (a) and (b) corresponds to
R/l ∼ [|E|2/z + (1 − t/t∗)2ν]−1/2.

To visualize the spatial correlations (81) of the local density
of states near a metal-insulator transition, we present in
Fig. 3 a color-code plot of the normalized autocorrelation
function K2(E,r,E,r + R)/〈〈[ρ(E)]2〉〉 [see Eq. (15)]. For
this plot, we have chosen the following values of the critical
exponents: ν = 1, z = 1.5, η = 0.5, which are theoretical
estimates obtained by taking ε = 1 in the one-loop results
for the case of Coulomb interaction with broken time reversal
symmetry and spin invariance (see Sec. IV B below). The left
panel [Fig. 3(a)] corresponds to the case when the system is
exactly at the transition point, t = t∗. We see the long-range
multifractal correlation around the Fermi level, E = 0. The
values of critical exponents we use satisfy the inequality
ν > 1/z. This inequality holds for experimental estimates of
the corresponding exponents at 3D metal-insulator transitions
and at quantum Hall transitions. Then at zero temperature
the range of correlations, which is given by L, is controlled
by the dephasing length Lφ ∼ |E|−1/z. In the right panel
[Fig. 3(b)], the system is slightly on the metallic side of
the transition, t < t∗. In this case the range of correlations
in the local density of states L is governed by the correlation
length ξ for a certain window around the chemical potential,
|E| � �. On the metallic side of the transition the energy scale
� ∼ ξ−1/z ∼ (t∗ − t)νz determines the critical region near the
interacting critical point. Interestingly, on the insulator side
of the transition a similar energy scale controls the position
of the mobility edge for single-particle excitations [36]. Away
from the Fermi level, |E| � �, the range of correlations is
controlled by the dephasing length Lφ . All essential features of
Fig. 3 compare well with Figs. 4A and 4B of the experimental
paper [26]. Provided the inequality νz > 1 is fulfilled, the
spatial correlations of the local density of states look similar
to Fig. 3 for any metal-insulator transition in the presence of
Coulomb interaction.

We are now going to evaluate the multifractal exponents
in various symmetry classes. We limit ourselves to conven-
tional classes (i.e., no particle-hole symmetries), which are
classified by the presence or absence of time reversal and spin
rotational (full or partial) symmetries. We will first explore
in Secs. IV B–IV D the classes with broken (at least partly)
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spin rotation invariance. In these classes d = 2 serves as a
lower critical dimension for the Anderson transition, so that
the transition in d = 2 + ε dimensions with small ε takes
place in the weak-coupling regime and can be controllably
studied within the ε expansion. We will also briefly discuss
critical points relevant to disordered topological insulators
for which the σ -model action is supplemented by terms
of topological character. We will then turn in Sec. IV E to
systems with preserved spin-rotation invariance. In this case
there is no weak-coupling Anderson transition in d = 2 + ε

dimensions since the triplet-channel interaction grows under
renormalization. This shifts the transition in the range of
intermediate couplings. The conclusion is valid also for 2D
systems. We will estimate multifractal exponents for this 2D
metal-insulator transition.

B. Broken time reversal and spin rotational symmetries

As the first example, we consider a system of disordered
fermions with Coulomb interaction in the absence of time
reversal and spin rotational symmetry, which corresponds to
the symmetry class “MI(LR)” in terminology of Ref. [17]. In
the absence of electron-electron interactions this is the unitary
Wigner-Dyson class A. For example, such situation occurs in
the presence of magnetic impurities. In this case, all cooperon
modes (W with r = 1,2) and triplet diffuson modes (W with
j = 1,2,3 and r = 0,3) are suppressed at large length scales.
The anomalous dimension of the qth moment of the local
density of states becomes [32]

−d ln mq

dy
= ζq = q(1 − q)

2

[
t

2
+ c(−1)

t2

4

]
+ O(t3). (82)

Here the function c(γ ) is defined by Eq. (49) such that c(−1) =
2 − π2/6. We note the factor-of-2 difference in definition of
t in Ref. [32]. The two-loop renormalization group analysis
of the Anderson transition in d = 2 + ε dimensions for this
symmetry class in the presence of Coulomb interaction was
developed in Refs. [34,37]. The dimensionless resistance t

is renormalized according to the following β function:

− dt

dy
= β(t) = εt − t2 − At3 + O(t4). (83)

Here the numerical factor in the two-loop contribution is
equal [37] to

A = 1

16

[
139

6
+ (π2 − 18)2

12
+ 19

2
ζ (3) +

(
16 + π2

3

)
ln2 2

−
(

44 − π2

2
+ 7ζ (3)

)
ln 2 + 16G

− 1

3
ln4 2 − 8 li4

(
1

2

)]

≈ 1.64, (84)

where G ≈ 0.915 denotes the Catalan constant, ζ (x) stands for
the Riemann zeta function, and li4(x) = ∑∞

k=1 xk/k4 denotes
the polylogarithm. As usual, the condition β(t∗) = 0 deter-
mines the critical point: t∗ = ε(1 − Aε) + O(ε3) (and thus
the critical conductance g∗ = 2/πt∗). Then the multifractal
exponents controlling scaling behavior of the moments of the

local density of states read [32]

�q = ζ ∗
q = q(1 − q)ε

4

[
1 +

(
1 − A − π2

12

)
ε

]
+ O(ε3).

(85)

The localization length exponent is obtained as ν =
−1/β ′(t∗) = 1/ε − A + O(ε). The dynamical exponent is
also known up to the two-loop order: z = 2 + ε/2 + (2A −
π2/6 − 3)ε2/4 + O(ε3) [34].

For the case of broken time reversal and spin rotational sym-
metries, the anomalous dimension of the disorder-averaged
local density of states becomes [cf. Eq. (31)]

ζ = − 1
2 ln(1 + γs)t + O(t2). (86)

In the case of Coulomb interaction, γs = −1, one has to
substitute ln(1 + γs) by −2/ε. It leads to the following results
(see, e.g., Refs. [16,17]):

θ = t∗
ε

= 1, β = θ

z
= 1

2
. (87)

Therefore, in d = 2 + ε the combination θq + �q is positive
for q � 4/ε.

It is worthwhile to compare the results for the interacting
critical point with the known results for the critical point in the
absence of interactions. In the case of Anderson transition in
the unitary Wigner-Dyson class A, the β function, the critical
point, and the localization length exponent are known up to
the five-loop order [38]:

− dt

dy
= β(0)(t) = εt − 1

8
t3 − 3

128
t5 + O(t6), (88)

t∗ = (2ε)1/2(1 − 3ε/4) + O(ε5/2), and ν = 1/2ε − 3/4 +
O(ε). The anomalous dimensions of operators which deter-
mine the scaling behavior of the moments of the local density
of states have been computed at the four-loop level with the
result [6]

ζ (0)
q (t) = q(1 − q)t

4

(
1 + 3

32
t2 + 3ζ (3)

128
q(q − 1)t3

)
+ O(t5).

(89)

This leads to the following expression for the multifractal
exponents:

�(0)
q = q(1 − q)

(
ε

2

)1/2

− 3ζ (3)

32
q2(q − 1)2ε2 + O(ε5/2).

(90)

Comparing Eqs. (83) and (88), one sees that Coulomb
interaction changes the β function and, consequently, the
fixed point and critical exponents. Thus, Anderson transitions
with and without Coulomb interaction belong to different
universality classes. As a consequence, sets of multifractal
exponents with and without Coulomb interaction are also
different.

For small enough values of ε, when the expansion in t is
parametrically controlled, the Coulomb interaction consider-
ably reduces numerical values of the multifractal exponents,
i.e., weakens multifractality. As an example, for ε = 1/9 we
get η(0) = −�

(0)
2 = 0.48 in the absence of interaction and ten
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times smaller value, η = −�2 = 0.047, in the presence of
interaction. In the case of dimensionality d = 3, i.e., ε = 1,
we can only use our results as a rough estimate. Taking for this
estimate the one-loop result we obtain η(0) ∼ 1.4 and η ∼ 0.5;
i.e., again the exponent η for the interacting critical point is
smaller than this exponent in the noninteracting case, η(0) > η.
A qualitative reason for this is that in the considered symmetry
class the interaction has a “localizing” effect (it suppresses
the conductivity). Thus, the interaction shifts a critical point
towards weaker disorder and thus weaker multifractality.
While this is a controllable argument for Anderson transition at
small ε, for d = 3 or higher dimensions (where the transition
is not in the weak-coupling regime from the sigma model point
of view) this is just a plausible (but not rigorous) reasoning.

In the case of the integer quantum Hall effect Eq. (83)
(with ε = 0) describes the perturbative contributions to the
renormalization of the resistivity along the line of half-integer
Hall conductance. Although the perturbative result (83) favors
localization, there is a topological protection (nonperturbative
in t contributions to the beta function [39]) which leads to
the existence of the critical point at some coupling t ∼ 1. We
thus expect that the multifractal exponents �q at this critical
point are of the order unity. A similar scenario holds for the
noninteracting electrons; see [2] for a review. We do not know
whether the quantum Hall multifractality in the presence of
interaction is stronger or weaker than in the noninteracting
system (in particular, whether the interacting exponent, η, is
smaller or larger than the noninteracting one, η(0), equal to
≈0.55 according to numerical simulations).

C. Broken spin rotational symmetry but preserved time
reversal symmetry

Now, we consider a system of disordered fermions with
Coulomb interaction in the presence of time reversal symmetry
but in the absence of spin rotational symmetry, which corre-
sponds to the symmetry classes “SO(LR)” in the terminology
of Ref. [17]. In the absence of interactions, this situation
corresponds to the symplectic Wigner-Dyson class AII. In this
case, all triplet diffuson and cooperon modes (W with j =
1,2,3) are suppressed at large length scales. Then, Eqs. (35)
and (48) are transformed into the following two-loop result for
the 2-point irreducible correlation function:

K2 = − ρ2
0
hεt

2ε
+ ρ2

0
t2 h2ε

4ε2

[
1 −

(
1 + ε

2

)
+ 2 ln(1 + γs)

+ 2f (γs) + ε

2
[ln(1 + γs) + 2f (γs) − c(γs)]

]
. (91)

Hence, for the Coulomb interaction, γs = −1, the anomalous
dimension of the qth moment of the local density of states is
given as follows:

ζq = q(1 − q)

2

[
t

2
+ c(−1)

t2

4

]
+ O(t3). (92)

Here, we remind the reader that the function c(γ ) is given in
Eq. (49) and c(−1) = 2 − π2/6. In the case of the symmetry
class “SO(LR)” the beta function is known in the one-loop

approximation only (see, e.g., Refs. [16,17]):

− dt

dy
= β(t) = εt − t2

[
−1

2
+ f (−1)

]
+ O(t3). (93)

Here the function f (γ ) is defined after Eq. (46). The
contribution −1/2 is due to weak antilocalization whereas the
term f (−1) = 1 describes the Aronov-Altshuler contribution
in the singlet channel which favors localization. To the
lowest order in ε we find the following estimates for the
critical dimensionless resistance and for the correlation length
exponent: t∗ = 2ε and ν = 1/ε, respectively. Then, from
Eq. (92), we obtain the following one-loop result,

�q = q(1 − q)ε/2, (94)

for the multifractal exponents which govern behavior of the
moments of the local density of states. We recall that for the
symmetry class “SO(LR)” values of the dynamical exponent
and the exponent of the disorder-averaged local density of
states are z = 2 + O(ε2) and θ = 2 (β = 1), respectively (see,
e.g., Refs. [16,17]).

In the absence of electron-electron interaction the one-loop
renormalization group beta function does not predict Anderson
transition in d = 2 + ε dimensions: there is only one fixed
point at t = 0 corresponding to the metallic phase. This is also
valid for a 2D system; in this case one finds a flow towards
a supermetallic fixed point with an infinite conductivity. To
recover the Anderson transition, one should take into account
higher orders of the loop expansion [38] and topological
(vortex-like) excitations [40]. The Anderson (super)metal-
insulator transition in 2D and in d = 2 + ε dimensions is
thus at strong coupling, i.e., at some t ∼ 1, and cannot be
studied analytically in a controllable way. In d = 2,3 this
transition was studied by numerical means [2]. In view of
the strong-coupling character of the noninteracting transition,
the corresponding multifractal exponents �(0)

q are of order
unity in 2D and in d = 2 + ε dimensions. This should be
contrasted to the above analysis of the interacting systems.
The Coulomb interaction eliminates the 2D supermetallic
phase, rendering the 2D system insulating. As a consequence,
the Anderson transition in d = 2 + ε dimensions acquires
the weak-coupling character. In particular, the multifractal
exponents are of order ε in the presence of Coulomb
interaction; see Eq. (94). Therefore, similarly to the unitary
case, the electron-electron interaction reduces the values of the
exponents characterizing the multifractality of the local density
of states in the symplectic case in d = 2 + ε dimensions
(e.g., η(0) > η). Again, it is plausible that such a reduction
of exponents holds true also for 3D systems but we are not
aware of any analytical argument proving this. Since the
3D transition is of strong-coupling character (whether with
or without Coulomb interaction), numerical methods should
be used to find precise numerical values of the multifractal
exponents.

In d = 2 Eq. (93) demonstrates a tendency towards localiza-
tion. However, in the case when the symmetry class “SO(LR)”
corresponds to a single flavor of Dirac fermion, the localization
is avoided due to a topological protection [41]. Such a situation
is realized on the surface of a 3D Z2 topological insulator. The
interacting system then flows into a fixed point with a coupling
t ∼ 1 [42]. We thus expect that the corresponding multifractal
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exponents �q are of the order of unity at this interacting
critical point. This can be contrasted with the noninteracting
case in which a model of a single flavor of Dirac fermion was
numerically found to be always in the supermetallic phase [43],
corresponding to t = 0 in the infrared. Thus, the Coulomb
interaction has a dramatic impact on properties of the system
(including multifractality) in this situation. Specifically, it
transforms the supermetallic phase (with no multifractality
in the limit of large system) into a strong-coupling critical
phase with strong multifractality (multifractal exponents of
order unity).

A similar situation occurs also in a transition between the
normal and topological insulators in 2D [42]. Also in this
problem, a strong-coupling fixed point emerges, instead of
a supermetallic phase for a noninteracting system, due to
an interplay of Coulomb interaction and topology (which
is in this case implemented by vortices in the sigma-model
language [40]). This interaction-induced fixed point can be
also realized on a surface of a weak 3D topological insulator
(cf. Ref. [44] where the corresponding noninteracting problem
was analyzed). As for other strong-coupling fixed points, we
expect multifractal exponents of order unity in this problem.

D. Partially broken spin rotational symmetry

The spin rotational symmetry can be broken not only due
to spin-orbit coupling but also due to spin-orbit scattering.
Provided the relaxation rates for Sx and Sy components of the
spin due to spin-orbit scattering are much larger than for Sz,
1/τz � 1/τx,y , the spin rotational symmetry is broken only
partially. In this case the time reversal symmetry is preserved.
Such situation can be expected for the 2D electrons with spin-
orbit coupling and spin-orbit scattering (see, e.g., Ref. [16]). In
this case the cooperon and diffuson modes with nonzero spin
projections (W with j = 1,2) are suppressed. Then, Eqs. (35)
and (48) transform into

K2 = −ρ2
0
hεt

ε
+ ρ2

0
t2 h2ε

2ε2

⎧⎨
⎩1 +

∑
j=0,3

[
2 ln(1 + γj )

+ 2f (γj ) + ε

2
[ln(1 + γj ) + 2f (γj ) − c(γj )]

]⎫⎬
⎭ . (95)

This leads to the following result for the anomalous dimension
of the qth moment of the local density of states:

ζq = q(1 − q)

2

[
t + [c(γs) + c(γt )]

t2

2

]
+ O(t3). (96)

The renormalization group equations in this symmetry class
are known up to the one-loop order only (see, e.g., Ref. [16]):

− dt

dy
= β(t) = εt − t2[f (γs) + f (γt )],

−dγs

dy
= t

2
(1 + γs)(γs + γt ), (97)

−dγt

dy
= t

2
(1 + γt )(γs + γt ).

In the case of Coulomb interaction, γs = −1, these renor-
malization group equations have a nontrivial interacting fixed
point: γ ∗

t = 1 and t∗ = ε/[2(1 − ln 2)]. The corresponding
one-loop results for the correlation length exponent, dynamical
exponent, and exponent of the disorder-averaged local density
of states for this case are as follows [17]:

ν = 1

ε
, z = 2 + ε, θ = 1

2(1 − ln 2)
. (98)

Substituting the critical value t∗ in the leading-order term of
Eq. (96), we obtain the multifractal exponents in the one-loop
approximation:

�q = q(1 − q)

2(1 − ln 2)
ε. (99)

We note that the same renormalization-group equations,
Eqs. (97), describe also the case when a magnetic field
breaks the time reversal symmetry and partially destroys the
spin invariance due to a finite value of the g factor. In the
terminology of Ref. [17] these are “MF(LR)” (for Coulomb
interaction) and “MF(SR)” (for short-ranged interaction)
classes. In this case, all cooperon modes (W with r = 1,2) and
triplet diffuson modes with nonzero total spin projection (W
with j = 1,2) are suppressed. Equations (96), (98), and (99)
are fully applicable to this situation as well.

E. Preserved spin invariance

Finally, we consider a system of disordered interacting
fermions in the presence of spin rotation symmetry. The key
difference with the case of broken spin invariance is that
now no weak-coupling transition point in 2 + ε dimensions
is found. Instead, the system undergoes a metal-insulator
transition at a coupling t ∼ 1 in two dimensions.

We will focus here on a system with broken time-reversal
invariance; the analysis of the time-reversal-invariant case
leads to similar results. The considered situation can be
realized in the presence of magnetic field provided the g

factor is zero (see, e.g., Ref. [16]). In the case of finite small
value of g factor, spin rotational symmetry is preserved at the
intermediate length scales. In the absence of electron-electron
interactions this corresponds to the two independent unitary
Wigner-Dyson classes A for each spin component. In this case,
all cooperon modes (W with r = 1,2) are suppressed. Then,
Eqs. (34)and (48) transform into the following result:

K2 = −ρ2
0
hεt

ε
+ ρ2

0
t2 h2ε

2ε2

⎧⎨
⎩1 +

3∑
j=0

[
2 ln(1 + γj )

+ 2f (γj ) + ε

2
[ln(1 + γj ) + 2f (γj ) − c(γj )]

]⎫⎬
⎭ .

(100)

Hence, the anomalous dimension of the qth moment of the
local density of states is given as follows:

ζq = q(1 − q)

2

[
t + [c(γs) + 3c(γt )]

t2

2

]
+ O(t3). (101)
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We recall that the function c(γ ) is given in Eq. (49). The
renormalization group equations are known up to the one-loop
approximation only (see, e.g., Refs. [16,17]):

− dt

dy
= εt − t2[f (γs) + 3f (γt )],

−dγs

dy
= t

2
(1 + γs)(γs + 3γt ), (102)

−dγt

dy
= t

2
(1 + γt )(γs − γt ).

We note that the one-loop result for ζ (0)
q (which coincides

with the one-loop result in the presence of interaction) can
be obtained from renormalization group equations (102)
expanded to the lowest order in interaction amplitudes γs

and γt :

d

dy

(
γs

γt

)
= − t

2
R
(

γs

γt

)
, R =

(
1 3
1 −1

)
. (103)

The matrix R has two eigenvalues of opposite sign: λ± = ±2.
Then the one-loop result for the anomalous dimension in the
noninteracting case can be written as follows: ζ (0)

q = λ−q(q −
1)t/4.

As is well known [16,17], the one-loop renormalization
group equations (102) for the case of preserved spin invariance
are not sufficient to describe the Anderson transition. The
reason for this is a growth of the triplet-channel coupling γt

which eventually forces the resistivity t to flow towards a
metal. One thus needs a two-loop extension of these equations.
This has been achieved in the limit of large number nv of
valleys (fermion flavors) [33]. The one-loop renormalization
group equations (102) in two dimensions are modified in the
case of arbitrary nv as follows:

− dt

dy
= − t2

nv

[
f (−1) + (

4n2
v − 1

)
f (γt/nv)

]
,

(104)

−dγt

dy
= − t

2

(
1 + γt

nv

)2

,

where t and γt are resistivity and triplet-channel interaction per
single fermion flavor, respectively. It was found in Ref. [33]
that within the two-loop generalization of the renormalization
group equations (104) there exists a fixed point describ-
ing the metal-insulator transition at t = t∗ ≈ 0.3 and γt =
γ ∗

t ≈ 1.5.
The anomalous dimension (101) of the qth moment of

the local density of states in the case of an arbitrary nv

becomes

ζq = q(1 − q)

2

[
t + [

c(−1) + (
4n2

v − 1
)
c(γt/nv)

] t2

2nv

]

+O(t3). (105)

Using the result (105) in the large-nv limit as well as the
above value of t∗, we obtain a two-loop approximation for the

multifractal exponents

�q = q(1 − q)

2
η, η = t∗ ≈ −0.3. (106)

We note that the two-loop approximation is not exact (even in
the limit nv → ∞). Therefore, this result for the multifractal
spectrum at the 2D metal-insulator transition point should be
considered as a rough estimate only.

V. CONCLUSIONS

In this paper we have shown that the multifractal fluctua-
tions and correlations of the local density of states persist in
the presence of Coulomb interaction. By using the nonlinear
sigma model approach, we have calculated the multifractality
spectrum for interacting systems with different symmetries
(with respect to time reversal and spin rotations) up to the
two-loop order in 2 + ε dimensions. For systems with fully
preserved spin-rotation invariance our analysis yields an esti-
mate for the multifractality spectrum at the 2D metal-insulator
transition. For all symmetry classes, the obtained values of
the multifractal exponents are essentially different from their
noninteracting counterparts. This happens both because of a
difference in the corresponding anomalous scaling functions
and because of different values of the critical resistance t∗.
We mention that in all cases the spectrum of multifractal
dimensions �q (and thus the singularity spectrum f (α) that
is obtained by the Legendre transformation; see Ref. [2]) is
parabolic, �q � γ q(1 − q), in the two-loop approximation. It
is expected, however, that higher-loop contributions will break
the exact parabolicity in the case of Coulomb interaction, in
analogy with what happens (in the four-loop order) in the
noninteracting model [6].

We hope that our work will motivate further experimental
and numerical studies of multifractality of interacting electrons
near metal-insulator transitions, quantum Hall plateau-plateau
transitions, and transitions between different phases of topo-
logical insulators. On the theoretical side, our paper paves
a way to a systematic investigation of multifractality at
interacting critical points of localization transitions within the
nonlinear sigma model approach. The rich physics related
to multifractality in the absence of interaction, including,
in particular, systems of different symmetry classes and
different dimensionalities, symmetries of multifractal spectra,
termination and freezing, implications of conformal symmetry,
connection to entanglement entropy, and manifestation of
multifractality in various observables [2,7,45–47], remains to
be explored in the presence of Coulomb interaction. Finally,
we mention that our analysis of multifractal correlations in
the local density of states can be extended to superconductor-
insulator transitions [48].

ACKNOWLEDGMENTS

We thank A. W. W. Ludwig, V. Kravtsov, M. Müller,
B. I. Shklovskii, M. Skvortsov, and A. Yazdani for discus-
sions. The work was supported by the program DFG SPP
1666 “Topological insulators,” German-Israeli Foundation,
Dynasty Foundation, RFBR Grant No. 14-02-00333, and
Russian Ministry of Education and Science under Grant No.
14Y.26.31.0007.

085427-13



I. S. BURMISTROV, I. V. GORNYI, AND A. D. MIRLIN PHYSICAL REVIEW B 91, 085427 (2015)

APPENDIX A: EVALUATION OF THE TWO-LOOP INTEGRALS IN d = 2 + ε DIMENSIONS

In this Appendix we present results for the two-loop integrals which determine the infrared behavior of [P α1α2
2 ]RR(2)(E,E′)

and [P α1α2
2 ]RA(2)(E,E′). Following, we do not distinguish between diffuson and cooperon propagators denoting both by D. Then

a general integral that we need to consider is as follows:

J δ
νμη(α) =

∫
pq

∫ ∞

0
ds sδDν

p(s)Da
p(s)Dμ

q (0)Dη
p+q(s), (A1)

where Da
p(s) = [p2 + h2 + as]−1. In the limit E = E′ = T = 0 we find from Eqs. (38) and (45)

[
P

α1α2
2

]RR(2) → 2

(
16

g

)2 3∑
j=0

γjJ
0
101(1 + γj ) (A2)

and

[
P

α1α2
2

]RA(2) → −2

(
16

g

)2
⎧⎨
⎩

3∑
j=0

γj

[
J 0

110(1 + γj ) + J 0
020(1 + γj ) − J 0

020(1) + γjJ
1
021(1 + γj )

]

+
∫

qp

Dq(0)Dp(0)[3 + 2p2Dq(0)]

⎫⎬
⎭ . (A3)

Using the result ∫
q

Dq(0) = −2�dh
ε(1 + ε/2)(1 − ε/2)

ε
, (A4)

we find ∫
qp

Dq(0)Dp(0) = 4Aεh
2ε

ε2
,

∫
qp

p2D2
q(0)Dp(0) = 2Aεh

2ε

ε
, (A5)

where Aε = �2
d

2(1 − ε/2)2(1 + ε/2). Next, with the help of the result
∫ ∞

0
ds

∫
q

Da
q (s) = 4�dh

ε+2(1 + ε/2)(1 − ε/2)

aε(2 + ε)
(A6)

we obtain

J 0
020(a) = 4Aεh

2ε

aε(2 + ε)
. (A7)

Using the relation ∫ ∞

0
dω

∫
q

Dq(ω)Da
q (ω) = ln a

a − 1

∫
q

Dq(0) (A8)

we derive

J 0
110(a) = 4Aεh

2ε

ε2

ln a

a − 1
. (A9)

It is convenient to rewrite the integral J 0
101(a) as follows:

J 0
101(a) = −Aε(1 − ε)h2ε

ε2(1 − ε/2)
T01(a), (A10)

where (see Eq. (A26) of Ref. [37])

T01(a) =
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 δ(x1 + x2 + x3 − 1)

x
−1−ε/2
3 (x1 + x2)−1−ε/2

x1 + ax2 + x3
. (A11)

The evaluation yields

T01(a) = 22(1 − ε/2)

(a − 1)ε(1 − ε)

∫ 1

a

du

u1+ε/2 2F1(−ε/2,−ε,1 − ε,1 − u) = − 2(1 − ε/2)

(a − 1)(1 − ε)

[
2 ln a

ε
− 1

2
ln2 a

]
. (A12)
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Hence,

J 0
101(a) = Aεh

2ε

a − 1

[
2 ln a

ε2
− ln2 a

2ε

]
. (A13)

We rewrite the integral J 1
021(a) in the following way:

J 1
021(a) = −Aε(1 − ε)h2ε

ε2(1 − ε/2)
S1

2 (a), (A14)

where

S1
2 (a) =

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 δ(x1 + x2 + x3 − 1)(x1x2 + x2x3 + x3x1)−1−ε/2 x2

(ax1 + x3)2
. (A15)

Evaluating the integral, we find

S1
2 (a) = 4

ε(2 + ε)

∫ 1

0

du [u(1 − u)]1−ε

(au + 1 − u)2 2F1(2,−ε,1 − ε/2,1 − u(1 − u))

= 2

ε

2(1 − a) + (1 + a) ln a

(a − 1)3
− 2

a
+ 2(1 + a) ln a

(a − 1)3
+ 2(1 + a)

(a − 1)3

[
li2(1 − a) + 1

4
ln2 a

]
+ O(ε). (A16)

Hence,

J 1
021(a) = Aεh

2ε

{
−2

2(1 − a) + (1 + a) ln a

(a − 1)3ε2
+ 2

aε
− 2(1 + a) ln a

(a − 1)3ε
− 2(1 + a)

(a − 1)3ε

[
li2(1 − a) + 1

4
ln2 a

]
+ O(ε)

}
. (A17)

APPENDIX B: ONE-LOOP RENORMALIZATION OF DIFFUSON AND COOPERON PROPAGATORS

In this Appendix we demonstrate that the significant part of the two-loop contribution to [P α1α2
2 ]RA(E,E′) can be considered

as the renormalization of the diffuson and cooperon which determine the one-loop contribution to [P α1α2
2 ]RA(E,E′).

Taking into account Eq. (33) and Eq. (45), we can rewrite the expression for [P α1α2
2 ]RA(E,E′) in the following way:

[
P

α1α2
2

]RA
(E,E′) = −256

∫
q

Z(E,E′)
gq2 − 16iZω� − �R(q,E,E′)

− 2

(
16

g

)2 (∫
q

DR
q (�)

)2

− 4

(
16

g

)2 ∫
qp

DR2
q (�). (B1)

Here the renormalization factor Z(E,E′) is given as [cf. Eq. (29)]

Z(E,E′) = 1 + 16

ig2

3∑
j=0

j

∫
p,ω

[Fω−E + Fω+E′]DR
p (ω)D(j )R

p (ω). (B2)

The diffuson self-energy reads

�R(q,E,E′) = 4q2
∫

p

DR
p (�) − 8

ig

3∑
j=0

j

∫
p,ω

[
2Bω − Fω−E − Fω+E′

]D(j )R
p (ω)

DR
p (ω)

[
DR

p+q(ω + �) + DA
p−q(ω − �)

]

+ 8

ig

3∑
j=0

j

∫
p,ω

[Fω−E + Fω+E′]D(j )R
p (ω)

[
2 pqDR

p+q(ω + �) + [
DR

q (�)
]−1[DR

p+q(ω + �) − DR
p (ω)

]]
. (B3)

Expanding the self-energy �R(q,E,E′) to the lowest order in ω and q2, we find

1

g
DR

q (�) → Z(E,E)

g(E)q2 − i16Zω(E)� + τ−1
φ (E)

. (B4)

Here, we obtain

g(E) = g − 4
∫

p

DR
p (0) + 16

g

3∑
j=0

j

∫
p,ω

p2[Fω−E + Fω+E] Im
[
D(j )R

p (ω)DR2
p (ω)

]

− 16

g

3∑
j=0

j

∫
p,ω

[2Bω − Fω−E − Fω+E] Im
[
D(j )R

p (ω)
[
DR

p (ω)
]−1]

Re
[[

1 − 2p2DR
p (ω)

]
DR2

p (ω)
]
, (B5)

Zω(E) = Zω + 1

2g

3∑
j=0

j

∫
p,ω

∂ω[Fω−E + Fω+E] Re
[
D(j )R

p (ω)
[
DR

p (ω)
]−1]

ReDR
p (ω), (B6)
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τ−1
φ (E) = 4

g

3∑
j=0

j

∫
pω

[2Bω − Fω−E − Fω+E] Im
[
D(j )R

p (ω)
[
DR

p (ω)
]−1]

ReDR
p (ω). (B7)

As one can see, indeed for |E| 	 T , the energy |E| serves as a cutoff for the infrared logarithmic divergences in Eqs. (B5)
and (B6) (in the case of L → ∞). At the same time nonzero value of energy E induces nonzero dephasing time.

APPENDIX C: THE THIRD AND FOURTH MOMENT OF THE LOCAL DENSITY OF STATES

In this Appendix we calculate the two-loop contributions to the irreducible third and fourth moments of the local density of
states and demonstrate the validity of Eq. (61).

1. The third irreducible moment of the local density of states

The third irreducible moment K3 can be obtained from the function

K3 =
(

ρ0

8

)3(
P

α1α2α3
3

(
iεn1 ,iεn3 ,iεn5

)− P
α1α2α3
3

(
iεn1 ,iεn3 ,iεn2

)− P
α1α2α3
3

(
iεn1 ,iεn2 ,iεn3

)− P
α1α2α3
3

(
iεn2 ,iεn1 ,iεn3

)

+ P
α1α2α3
3

(
iεn2 ,iεn4 ,iεn1

)+ P
α1α2α3
3

(
iεn2 ,iεn1 ,iεn4

)+ P
α1α2α3
3

(
iεn1 ,iεn2 ,iεn4

)− P
α1α2α3
3

(
iεn2 ,iεn4 ,iεn6

))
(C1)

after analytic continuation to the real frequencies: εn1,3,5 → E + i0+ and εn2,4,6 → E − i0+. Here,

P
α1α2α3
3 (iεn,iεm,iεk) = 〈 sp Qα1α1

nn (r) sp Qα2α2
mm (r) sp Q

α3α3
kk (r)

〉− 3
〈
sp Qα1α1

nn (r)
〉〈

sp Qα2α2
mm (r) sp Q

α3α3
kk (r)

〉
− 3

〈
sp Qα1α1

nn (r) sp
[
Q

α2α3
mk (r)Qα3α2

km (r)
]〉+ 6

〈
sp Qα1α1

nn (r)
〉
sp
〈
Q

α2α3
mk (r)Qα3α2

km (r)
〉

+ 8 sp
〈
Qα1α2

nm (r)Qα2α3
mk (r)Qα3α1

kn (r)
〉+ 2

〈
sp Qα1α1

nn (r)
〉〈

sp Qα2α2
mm (r)

〉〈
sp Q

α3α3
kk (r)

〉
(C2)

and replica indices α1, α2, and α3 are all different. In the two-loop approximation we find

P
α1α2α3
3

(
iεn1 ,iεn3 ,iεn2

) = P
α1α2α3
3

(
iεn1 ,iεn2 ,iεn3

) = P
α1α2α3
3

(
iεn2 ,iεn1 ,iεn3

) = −
(

128

g

)2 ∫
qp

Dq

(
i�ε

12

)
Dp

(
i�ε

32

)
,

P
α1α2α3
3

(
iεn2 ,iεn4 ,iεn1

) = P
α1α2α3
3

(
iεn2 ,iεn1 ,iεn4

) = P
α1α2α3
3

(
iεn1 ,iεn2 ,iεn4

) =
(

128

g

)2 ∫
qp

Dq

(
i�ε

12

)
Dp

(
i�ε

14

)
,

P
α1α2α3
3

(
iεn1 ,iεn3 ,iεn5

) = P
α1α2α3
3

(
iεn2 ,iεn4 ,iεn6

) = 0. (C3)

Hence, we obtain

K3 = ρ3
0

12t2h2ε

ε2
+ O(1). (C4)

By using Eq. (67), we obtain Eq. (63).

2. The fourth irreducible moment of the local density of states

The fourth irreducible moment K4 can be obtained from the function

K4 =
(

ρ4
0

8

)4 (
P

α1α2α3α4
4

(
iεn1 ,iεn3 ,iεn5 ,iεn7

)− P
α1α2α3α4
4

(
iεn1 ,iεn3 ,iεn5 ,iεn2

)− P
α1α2α3α4
4

(
iεn1 ,iεn3 ,iεn2 ,iεn5

)

− P
α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn3 ,iεn5

)− P
α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn3 ,iεn5

)+ P
α1α2α3α4
4

(
iεn1 ,iεn3 ,iεn2 ,iεn4

)
+ P

α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn3 ,iεn4

)+ P
α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn3 ,iεn4

)+ P
α1α2α3α4
4

(
iεn2 ,iεn4 ,iεn1 ,iεn3

)
+ P

α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn4 ,iεn3

)+ P
α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn4 ,iεn3

)− P
α1α2α3α4
4

(
iεn2 ,iεn4 ,iεn6 ,iεn1

)
− P

α1α2α3α4
4

(
iεn2 ,iεn4 ,iεn1 ,iεn6

)− P
α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn4 ,iεn6

)− P
α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn4 ,iεn6

)
+ P

α1α2α3α4
4

(
iεn2 ,iεn4 ,iεn6 ,iεn8

))
(C5)

after analytic continuation to the real frequencies: εn1,3,5,7 → E + i0+ and εn2,4,6,8 → E − i0+. Here,

P
α1α2α3α4
4 (iεn,iεm,iεk,iεl) = 〈 sp Qα1α1

nn sp Qα2α2
mm sp Q

α3α3
kk sp Q

α4α4
ll

〉− 12
〈
sp Qα1α1

nn sp Q
α4α4
ll sp

[
Q

α1α2
mk Q

α2α1
km

]〉
− 32

〈
sp Qα1α1

nn sp
[
Q

α4α2
lm Q

α2α3
mk Q

α3α4
kl

]〉− 48 sp
〈
Qα1α2

nm Q
α2α3
mk Q

α3α4
kl Q

α4α1
ln

〉
+ 12

〈
sp
[
Qα1α2

nm Qα2α1
mn

]
sp
[
Q

α3α4
kl Q

α4α3
lk

]〉− 4
〈
sp Qα1α1

nn

〉〈
sp Qα2α2

mm sp Q
α3α3
kk sp Q

α4α4
ll

〉
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+ 12
〈
sp Qα1α1

nn

〉〈
sp Q

α4α4
ll sp

[
Q

α2α3
mk Q

α3α2
km

]〉− 32
〈
sp Qα1α1

nn

〉〈
sp
[
Q

α4α2
lm Q

α2α3
mk Q

α3α4
kl

]〉
+ 6

〈
sp Qα1α1

nn

〉〈
sp Q

α4α4
ll

〉〈
sp Qα2α2

mm sp Q
α3α3
kk

〉− 12
〈
sp Qα1α1

nn

〉〈
sp Q

α4α4
ll

〉〈
sp
[
Q

α2α3
mk Q

α3α2
km

]〉
− 3

〈
sp Qα1α1

nn

〉〈
sp Qα2α2

mm

〉〈
sp Q

α3α3
kk

〉〈
sp Q

α4α4
ll

〉
(C6)

and replica indices α1, α2, α3, α4 are all different. In the two-loop approximation we find that all P4 in Eq. (C5) are zero except
the following ones:

P
α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn3 ,iεn4

) = P
α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn3 ,iεn4

) = P
α1α2α3α4
4

(
iεn1 ,iεn2 ,iεn4 ,iεn3

)

= P
α1α2α3α4
4

(
iεn2 ,iεn1 ,iεn4 ,iεn3

) = 12

(
64

g

)2 ∫
qp

Dq

(
i�ε

12

)
Dp

(
i�ε

34

)
. (C7)

Hence,

K4 = ρ4
0

12t2h2ε

ε2
+ O(1). (C8)

By using Eq. (67), we obtain Eq. (63).
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