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Superconductor-insulator transitions: Phase diagram and magnetoresistance
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The influence of the disorder-induced Anderson localization and electron-electron interaction on the
superconductivity in two-dimensional systems is explored. We determine the superconducting transition
temperature Tc, the temperature dependence of the resistivity, the phase diagram, and the magnetoresistance. The
analysis is based on the renormalization group (RG) for a nonlinear sigma model. The derived RG equations are
valid to the lowest order in disorder but for an arbitrary electron-electron interaction strength in a particle-hole
and the Cooper channels. Systems with preserved and broken spin-rotational symmetry are considered, with
both short-range and long-range (Coulomb) interactions. In the case of short-range interaction, we identify
parameter regions where the superconductivity is enhanced by localization effects. Our RG analysis indicates
that the superconductor-insulator transition is controlled by a fixed point with a resistivity Rc of the order of the
quantum resistance Rq = h/4e2. When a transverse magnetic field is applied, we find a strong nonmonotonous
magnetoresistance for temperatures below Tc.
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I. INTRODUCTION

Superconductivity [1,2] and Anderson localization [3] are
among the most important and fundamental quantum phenom-
ena in condensed matter physics. These two phenomena are
in a sense antagonists: in the case of superconductivity, the
Cooper interaction creates a collective state with vanishing
resistivity, while the Anderson localization resulting from
disorder-induced quantum interference drives the system
into a state with zero conductivity. Therefore, when both
interaction and disorder are present, a competition between
the superconductivity and localization naturally arises. This
competition is of particular interest in two-dimensional (2D)
geometry, where even a weak disorder makes the system an
Anderson insulator. Thus a 2D system may be expected to
undergo a direct quantum phase transition (QPT) between
the insulating and superconducting states, the superconductor-
insulator transition (SIT).

Experimentally, SIT has been studied in a variety of 2D
structures, including amorphous Bi and Pb [4,5], MoC [6],
MoGe [7], Ta [8], InO [9–11], NbN [12], and TiN films [13,14],
see also the reviews [15]. In recent years, there has been
also a growing experimental activity on SIT in novel 2D
materials and nanostructures, such as LaAlO3/SrTiO3 inter-
faces [16,17], SrTiO3 surfaces [18,19], MoS2 flakes [20,21],
FeSe thin films [22], LaSrCuO surfaces [23], and LixZrNCl
layered materials [24]. Characteristic for many of the novel
structures is a strong screening of the Coulomb interaction
due to a large dielectric constant of the substrate (such as
SrTiO3). In addition, strong spin-orbit coupling is present in
many of the novel materials (MoS2, LaAlO3/SrTiO3, SrTiO3).

To drive the system through SIT, one changes a param-
eter (film thickness, gate voltage, doping) controlling the
high-temperature sheet resistivity. With lowering tempera-
ture, systems with lower resistivity become superconducting

(resistivity drops to zero), while those with higher resistivity
get insulating (resistivity becomes exponentially large). The
most salient observations common to the majority of the above
experiments are as follows.

(i) Most of the experiments are interpreted as supporting a
direct transition between the superconducting and insulating
phases, although some of them suggest a possibility of
existence of an intermediate metallic phase. The critical
resistivity Rc (the low-temperature limit of the separatrix
curve separating the temperature dependence of resistivity in
the insulating and superconducting phases) is of the order of
the quantum resistance Rq = h/4e2 � 6.5 k�. However, the
precise value of Rc varies from one experiment to another,
roughly in the range between Rq/2 and 3Rq .

(ii) For those systems that are superconducting (at low
temperature T and magnetic field H ), a nonmonotonous
dependence of resistivity on T and H is observed. In particular,
a giant nonmonotonous magnetoresistance is found in such
systems at very low temperatures, T � Tc.

(iii) The temperature dependence of resistivity on the
insulating side is very fast (activation or even stronger).

The theoretical investigation of the interplay of interaction
and disorder in systems with Cooper attraction has a long
history. Soon after the development of the microscopic theory
of superconductivity by Bardeen, Cooper, and Schrieffer
(BCS) [2], the question of influence of disorder on supercon-
ductivity attracted a great deal of attention. It was found [25,26]
that the diffusive motion of electrons does not affect essentially
the temperature Tc of superconducting transition, i.e., the
mean free path does not enter the expression for Tc. This
statement is conventionally called “the Anderson theorem.”

The effects of disorder-induced Anderson localization [3]
on superconductivity were considered in Refs. [27,28]. It was
found that, within the BCS approach, the superconductivity in
a disordered system persists up to the localization threshold
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and even in the localized regime near the Anderson transition.
Furthermore, Refs. [27,28] came to the conclusion that the
mean-field transition temperature Tc in these regimes remains
unaffected by disorder (i.e., the Anderson theorem holds). In
a parallel line of research, it was discovered [29–31] that an
interplay of the long-range (1/r) Coulomb interaction and
disorder leads to suppression of Tc. These ideas were put on
a solid basis by Finkelstein [32] who developed the nonlinear
sigma model (NLSM) renormalization-group (RG) formalism.

An alternative approach to the SIT known as the “bosonic
mechanism” was proposed in Refs. [33]. It takes into ac-
count the superconducting phase fluctuations and discards
completely all other degrees of freedom, in particular, the
localization effects. It was also proposed that an intermediate
“Bose metal” phase may separate the superconductor and
insulator [34]. A relation between the bosonic and fermionic
mechanisms as well as a status of the Bose metal conjecture
remain quite obscure.

Recently, Feigelman et al. [35,36] found that the eigen-
function multifractality near the localization threshold in three
dimensions strongly affects the properties of a superconductor.
Their remarkable finding is that Tc is dramatically enhanced: its
dependence on the coupling constant is no longer exponential
(as in the conventional BCS solution) but rather of a power-law
type. This result was obtained on the basis of the BCS-type
self-consistency equation, with Cooper attraction being the
only interaction included.

In a preceding work by the present authors [37] the influence
of disorder-induced Anderson localization on the temperature
of the superconducting transition Tc was studied within the
field-theoretical framework. The electron-electron interaction
in particle-hole and Cooper channels was taken into account.
The focus was put on the case of a weak short-range interaction
(which is relevant to materials with a large dielectric constant,
as well to cold atom systems). Two-dimensional systems in
the weak localization and antilocalization regime, as well as
systems near the mobility edge were investigated. A systematic
analytical approach to the problem was developed in the
framework of the interacting NLSM and its RG treatment.
The approach took into account the mutual renormalization of
disorder and all interaction constants (that, in particular, leads
to mixing of different interaction channels). This methodology
allows us to explore both the cases of a long-range (Coulomb)
interaction previously studied by Finkelstein [32] and of a
weak short-range interaction within a unified formalism. More
specifically, in the case of short-range interactions a system
of coupled RG equations for the problem was derived in
the lowest order in disorder and three interaction couplings
(singlet, triplet, and Cooper channels).

The analysis of RG equations for the weak short-range
interaction showed a behavior which is exactly opposite to
that predicted by Ref. [32] for the Coulomb interaction. It was
found that the interplay of such interactions and the Anderson
localization leads to strong enhancement of superconductivity
in a broad range of parameters in dirty 2D systems, as
well as in three-dimensional (3D) systems near the Anderson
transition (in contrast to the suppression in the Coulomb case).
In the latter case (vicinity of the Anderson transition), the
microscopic theory of Ref. [37] justified previous theoretical
results obtained from the self-consistency equation [35,36].

This result of Ref. [37] is of fundamental importance and
represents unexpected physics (enhancement of superconduc-
tivity by localization, which is naively its exact “antagonist”).
Indeed, remarkably, the localization physics, responsible
for the increase of resistivity and thus driving the system
towards an insulating state, favors at the same time the
superconductivity. The key condition is a suppression of the
long-range component of the Coulomb interaction (see also
Ref. [38]). This opens a new way for searching novel materials
exhibiting high-temperature superconductivity: one needs the
combination of a large dielectric background constant and
disorder in layered structures.

In this paper, we extend the formalism of Ref. [37] by
deriving the RG equations to the lowest order in disorder
but, formally, for arbitrary interaction couplings. We use
this framework to explore systematically the interplay of
superconductivity, interaction, and localization in 2D systems,
with a focus on the SIT in thin films. More specifically,
(i) we evaluate the temperature dependence of the resistivity
ρ(T ) for given bare (high-temperature) couplings down to
the temperature Tc at which the finite expectation value of the
superconducting order parameter emerges, or else, down to the
temperature where the system enters the insulating regime.

(ii) We use the RG equations to determine the structure of
the phase diagram. In particular, we identify parameter regions
where the superconductivity is enhanced by localization. Our
results also indicate that in some cases the phase diagram may
include a critical-metal phase.

(iii) We study the magnetoresistance near the SIT within a
two-step RG approach. Since the magnetic field suppresses
both superconductivity and localization, a nonmonotonous
magnetoresistance arises, as observed experimentally. Further-
more, this magnetoresistance becomes very strong at low tem-
peratures, again in agreement with experiments. Both orbital
and Zeeman effects of the magnetic field are incorporated in
the unifying RG scheme. All the above analysis is performed
for the cases of the short-ranged and long-ranged Coulomb
interactions, both with and without spin-orbit interaction.

The structure of the article is as follows. In Sec. II,
we introduce the NLSM formalism. The corresponding RG
equations (valid to the lowest order in disorder and for
arbitrary interaction strength) are presented in Sec. III. The RG
equations are used in Sec. IV to analyze the phase diagram in
zero magnetic field. The temperature dependence of resistivity
in zero magnetic field is discussed in Sec. V. In Sec. VI,
this analysis is extended to calculate the magnetoresistance
in a transverse and in a parallel magnetic field. Section VII
contains a discussion of the obtained results, their implica-
tions, limitations, possible extensions, and a comparison with
numerical and experimental results. Finally, our results and
conclusions are summarized in Sec. VIII. Several appendices
contain technical details of the derivation of RG equations and
of their analysis.

II. FORMALISM

A. NLSM action

The action of the NLSM is given as a sum of the
noninteracting part Sσ , and contributions arising from the
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interactions in the particle-hole singlet S
(ρ)
int , particle-hole

triplet S
(σ )
int , and particle-particle (Cooper) S

(c)
int channels (see

Refs. [32,39] for review):

S = Sσ + S
(ρ)
int + S

(σ )
int + S

(c)
int , (1)

where

Sσ = − g

32

∫
d r Tr(∇Q)2 + 4πT Zω

∫
d r Tr ηQ,

S
(ρ)
int = −πT

4
�s

∑
α,n

∑
r=0,3

∫
d r Tr

[
Iα
n tr0Q

]
Tr
[
Iα
−ntr0Q

]
,

S
(σ )
int = −πT

4
�t

∑
α,n

∑
r=0,3

3∑
j=1

∫
d r Tr

[
Iα
n trQ

]
Tr
[
Iα
−n trQ

]
,

S
(c)
int = −πT

2
�c

∑
α,n

∑
r=0,3

(−1)r
∫

d r Tr
[
Iα
n tr0QIα

n tr0Q
]
.

Here, g is the total Drude conductivity (in units e2/h and
including spin), tr = {tr1,tr2,tr3}, and we use the following
matrices:


αβ
nm = sgn n δnmδαβt00,

ηαβ
nm = n δnmδαβt00, (2)(

I
γ

k

)αβ

nm
= δn−m,kδ

αβδαγ t00,

with α,β = 1, . . . ,Nr standing for replica indices and n,m

corresponding to the Matsubara fermionic energies εn =
πT (2n + 1). The sixteen matrices,

trj = τr ⊗ sj , r,j = 0,1,2,3, (3)

operate in the particle-hole (subscript r) and spin (subsrcipt j )
spaces with the corresponding Pauli matrices denoted by

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0
0 −1

)
, (4)

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i

i 0

)
, s3 =

(
1 0
0 −1

)
. (5)

Matrices τ0 and s0 stand for the 2 × 2 unit matrices. The
matrix field Q(r) (as well as the trace Tr) acts in the
replica, Matsubara, spin, and particle-hole spaces. It obeys
the following constraints:

Q2 = 1, Tr Q = 0, Q† = CT QT C. (6)

The charge conjugation matrix C = it12 satisfies the following
relation CT = −C. Matrix Q can be parameterized as Q =
T −1
T where the matrices T obey (symbol ∗ denotes the
complex conjugation)

CT ∗ = T C, (T −1)∗C = CT −1. (7)

In order to avoid notational confusion, it is instructive to
compare our notation with that of the reviews [32] and [39].
In both references, a different definition of Pauli matrices in
the particle-hole space has been used, namely, iτj instead
of τj for j = 1,2,3. In Ref. [32], the Pauli matrices in the
spin space coincide with our definition (5). In Ref. [39], the
spin-space Pauli matrices −isj (for j = 1,2,3) were used
instead of our definition (5). The interaction terms S

(ρ)
int , S

(σ )
int ,

and S
(c)
int coincide with terms in Eqs. (3.9a), (3.9b), and (3.9b)

of Ref. [32] provided the following relations between the
couplings �s , �t , and �c in S

(ρ)
int , S

(σ )
int , and S

(c)
int and Z, �2, and

�c in Ref. [32] hold: �s ≡ −(πν/4)Z, �t ≡ (πν/4)�2, and
�c ≡ (πν/4)�c. Here, the thermodynamic density of states ν

includes the spin-degeneracy factor. Note that Ref. [32] focuses
on the case of unscreened (long-ranged) Coulomb interaction.
Hence the interaction amplitude �s in the singlet particle-hole
channel is expressed through the frequency renormalization
factor Z there. We consider both long-ranged (Coulomb) and
short-ranged interactions. In the latter case, the quantities �s

and Zω are independent variables. The interaction terms S
(ρ)
int ,

S
(σ )
int , and S

(c)
int coincide with the terms in Eqs. (3.92d), (3.92e),

and (3.92f) of Ref. [39] provided �s ≡ K (1), �t ≡ K (2), and
�c ≡ K (3)/2. The parameters g and Zω in Sσ are related to the
corresponding quantities D,Z,ν of Ref. [32] as g = 4πνD and
Zω = (πν/4)Z and to the parameters G and H in Ref. [39] as
g = 16/G and Zω = H/2.

B. Interaction in the Cooper channel

The Cooper-channel interaction term can be rewritten as

S
(c)
int = −πT

4
�c

∑
α,n

∑
r=1,2

3∑
j=0

∫
d r Tr

[
trjL

α
nQ
]

Tr
[
trjL

α
nQ
]
.

(8)

Here the matrix Lα
n is defined as
(
Lα

n

)βγ

km
= δk+m,nδ

αβδαγ t00. (9)

However, for j = 1,2,3, we find

Tr
[
trjL

α
nQ
] = − Tr

[
CtTrjCLα

nQ
] = − Tr

[
trjL

α
nQ
] = 0.

(10)

Therefore the term S
(c)
int describing the interaction in the Cooper

channel is fully determined by the Cooper-singlet channel:

S
(c)
int = −πT

4
�c

∑
α,n

∑
r=1,2

∫
d r Tr

[
tr0L

α
nQ
]

Tr
[
tr0L

α
nQ
]
.

(11)

C. Relation with the BCS Hamiltonian

In general, bare values of the interaction parameters �s, �t ,
and �c can be estimated for a given electron-electron interac-
tion U (r − r ′) in a microscopic Hamiltonian. It is convenient
to introduce the dimensionless parameters γs,t,c = �s,t,c/Zω.
Then their bare values can be written as

γs0 = − Fs

1 + Fs

, γt0 = − Ft

1 + Ft

, γc0 = −Fc, (12)

where Fs = νU (q) + Ft ,

Ft = −ν

2
〈Uscr(2kF sin(θ/2))〉FS,

(13)
Fc = Ft

2
− ν

4
〈Uscr(2kF cos(θ/2))〉FS.

Here, Uscr(q) stands for the statically screened interaction
and 〈. . . 〉FS denotes averaging over the Fermi surface. In the
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BCS case (for example, for a weak short-range attraction
mediated by phonons), the interaction can be written as
U (r) = −(λ/ν)δ(r) where 0 < λ � 1. Neglecting screening
in this case, we find

Fs ≈ −λ/2, Ft ≈ λ/2, Fc ≈ λ/2. (14)

Thus, for the BCS case (i.e., when neither screened nor
unscreened Coulomb repulsion is taken into account), we
get the following interaction parameters at the ultraviolet
scale (which is given by Debye frequency ωD in the case
of phonon-induced superconductivity):

−γs0 ≈ γt0 ≈ γc0 ≈ −λ/2. (15)

If disorder is strong, ωDτ � 1, the relations (15) determine the
initial values of the interaction parameters for the action (1).
In what follows, we will refer to the line determined by
the relations −γs = γt = γc as the “BCS line.” When the
disorder is weak, ωDτ � 1, the relations (15) hold at the scale
corresponding to the Debye frequency ωD . Then the Cooper
interaction constant is renormalized at ballistic scales (between
ωD and 1/τ ) such that

−γs0 = γt0 = −λ/2,

γc0 = − λ/2

1 − (λ/2) ln ωDτ
= 1

ln T BCS
c τ

. (16)

where T BCS
c = ωD exp(−2/λ).

D. F algebra and F invariance

The NLSM action (1) involves the matrices that are formally
defined in the infinite Matsubara frequency space. To perform
calculations with these matrices, it is convenient to introduce
an ultraviolet cutoff N ′

M for the Matsubara frequencies. In
addition, it is useful to introduce another cutoff NM < N ′

M

indicating the size of a nontrivial part of the Q matrix (beyond
which the Q matrix equals 
). At the end of calculations, both
cutoffs should be sent to infinity.

Global rotations of the Q matrix with any matrix of the
type exp(iχ̂ ), where χ̂ =∑α,n χα

n Iα
n t00, play an important role

[40,41]. In the limit NM,N ′
M → ∞ and NM/N ′

M → 0, the set
of rules known as F algebra [40] allows one to establish the
following relations (for r = 0,3 and j = 0,1,2,3):

Tr Iα
n trj e

iχ̂Qe−iχ̂ = Tr Iα
n trj e

iχ0Qe−iχ0

+ 8inχα
−nδr0δj0,

Tr ηeiχ̂Qe−iχ̂ = Tr ηQ +
∑
α,n

inχα
n Tr Iα

n t00Q

− 4
∑
α,n

n2χα
n χα

−n,

Tr
[
Iα
n tr0e

iχ̂Qe−iχ̂
]2 = Tr

[
Iα
n tr0Q

]2
. (17)

Using Eqs. (17), one can check that, provided �s = −Zω, the
action (1) is invariant under global rotations of the matrix
Q with the matrix exp(iχ̂) (so-called F invariance). The
constraint �s = −Zω corresponds to the case of the Coulomb
interaction [32]. Since the relation �s = −Zω is dictated by
the symmetry of the action (1), it should remain fulfilled under
the RG flow.

III. ONE-LOOP RENORMALIZATION-GROUP
EQUATIONS

A. Preserved spin-rotational symmetry

To derive RG equations in the one-loop approximation
(i.e., to the lowest order in disorder strength), we employ the
background-field method and apply it to the renormalization of
the NLSM action (1). Details of the derivation can be found in
Appendix A. In d = 2 dimensions, the one-loop RG equations
read [t = 2/(πg)]

dt

dy
= t2[1 + f (γs) + 3f (γt ) − γc], (18)

dγs

dy
= − t

2
(1 + γs)

(
γs + 3γt + 2γc + 4γ 2

c

)
, (19)

dγt

dy
= − t

2 (1 + γt )[γs − γt − 2γc(1 + 2γt − 2γc)], (20)

dγc

dy
= −2γ 2

c − t

2

[
(1 + γc)(γs − 3γt ) − 2γ 2

c + 4γ 3
c

+ 6γc(γt − ln(1 + γt ))
]
, (21)

d ln Zω

dy
= t

2

(
γs + 3γt + 2γc + 4γ 2

c

)
, (22)

where y = ln(L/l) (l denotes the mean free path) and f (x) =
1 − (1 + 1/x) ln(1 + x). These RG equations describe the
evolution of the system with spin-rotational and time-reversal
symmetries upon changing the characteristic length scale L.
We stress that the RG equations (18)–(22) satisfy the particle
number conservation since d(Zω + �s)/dy = 0. Further, it is
worth emphasizing that the right-hand sides of the equations
are nonsingular in the limit of the Coulomb interaction,
γs = −1.

The ultraviolet value of the NLSM coupling t that describes
the disorder strength is given by the dimensionless Drude
resistivity. The renormalization of t at larger scales involves the
contributions to the resistivity induced by interference effects
and by virtual (elastic) processes due to interactions in the
particle-hole singlet (γs) and triplet (γt ), as well as in the
Cooper channel (γc).

We emphasize that Eqs. (18)–(22) are obtained in the lowest
order in t but they are formally exact in interactions γs,t,c. It
is worth noting that the Cooper-interaction coupling γc enters
all the RG equations only in a polynomial way. Interestingly,
the contribution of the Cooper channel to the renormalization
of t is fully described by the linear term only, thus rendering
Eq. (18) for arbitrary γc the same as in the weak-coupling
limit [42], |γc| � 1.

The first term in Eq. (21) describes the standard BCS
instability; in accordance with the Anderson theorem this term
is not affected by disorder. Moreover, the Anderson theorem
manifests itself in Eq. (21) through the absence of the terms
tO(γc) on the right-hand side. To the lowest order in interaction
couplings, the effect of disorder on the renormalization of γc is
solely due to the presence of the interaction in the particle-hole
channels.

Somewhat counterintuitively, Eq. (18) suggests an insulat-
ing behavior (an increase of the resistivity with increasing L)
for γc → −∞. We note, however, that the (dimensionless)
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physical resistivity ρ is not exactly equal to the NLSM
coupling t because of the inelastic contribution to the conduc-
tivity governed by superconducting fluctuations, see Sec. V
below for details. Near the superconducting instability (for
large |γc| � 1), this antilocalizing inelastic contribution to the
conductivity becomes large.

Furthermore, towards the superconducting instability,
γc → −∞, the disorder-induced renormalization of γc in
Eq. (21) is dominated by the term −2tγ 3

c , which tends to
impede a development of the superconducting instability.
Thus, if Eqs. (18)–(22) would constitute the ultimate truth,
the superconducting instability would not, strictly speaking,
develop. An explanation for this apparent paradox is as follows.
It turns out that the one-loop RG equations become insufficient
in the vicinity of the superconducting instability, namely, on
scales larger than LX where |γc| reaches a value ∼1/t � 1.
In other words, the weak-disorder condition of validity of the
one-loop RG, t � 1, should in fact be supplemented by the
condition t |γc| � 1.

The emergence of the latter condition (and thus of the
scale LX) becomes evident from a comparison of the terms
of the zeroth and the first order in t in Eq. (21). This scale LX

arises also in the calculation of the conductivity (see Sec. V):
at this scale, the inelastic contribution to the conductivity
reaches in magnitude the elastic one. We expect that in the
vicinity of the superconducting instability higher-loop terms
of the type t(tγc)k in the beta-function for t and γ 2

c (tγc)k

in the equation governing the renormalization of γc should
emerge. Upon resummation, they are expected to restore
the divergence of γc at a scale Lc slightly larger than LX.
At the same time, since the second-loop (k = 2) terms are
similar to those describing the mesoscopic fluctuations of
the superconducting order parameter [44,45], we expect for
|γc|t > 1 (i.e., for temperatures slightly above the transition)
strong spatial fluctuations of the observables (in particular, of
the local tunneling density of states [45,46], as observed in
experiments, see, e.g., Ref. [11]).

To the lowest order in γc, Eqs. (18)–(22) coincide with the
results obtained by Finkelstein long ago [42]. Recently, one-
loop RG equations beyond the lowest order in interactions were
reported in Ref. [43] for the case of preserved spin-rotational
and time-reversal symmetries. It should be stressed, however,
that our RG equations (18)–(22) differ from those of Ref. [43].
It is instructive to highlight the difference. First of all, the
right-hand side of the RG equation for γs in Ref. [43] [see
Eq. (A12) there] contains a term proportional to tγ 2

c rather
than to t(1 + γs)γ 2

c as in our Eq. (19). Since the quantity
Zω + �s = Zω(1 + γs) should have no renormalization by
virtue of the particle number conservation, this would imply
the presence of a term proportional to tγ 2

c /(1 + γs) in the RG
equation for Zω. Being divergent for the case of the Coulomb
interaction, γs = −1, such a term would, however, violate the
F invariance of the NLSM action (1) and is thus not allowed.
Second, the RG equation for γt reported in Ref. [43] does
not contain the term proportional to tγ 2

c , in contrast to our
Eq. (20). Finally, the RG equation for γc reported in Ref. [43]
contains an additional term proportional to tγc ln(1 + γs) as
compared to our Eq. (21). We note that a similar term was
reported by Belitz and Kirkpatrick in Ref. [39] [see Eq. (6.8g)
there]. In our opinion, such terms, divergent for the case

of the Coulomb interaction, γs = −1, cannot appear in the
course of renormalization of F-invariant operators, including
Sc. In Ref. [47], the appearance of a term proportional to
tγc ln(1 + γs) in the RG equation for γc of Ref. [39] was
attributed to an improper treatment of the gauge invariance.
In our background-field RG calculations, terms proportional
to ln(1 + γs) do appear in the course of renormalization of �c

at intermediate steps but cancel each other in the final results,
in agreement with the F invariance, see Appendix A.

B. General case

The RG equations (18)–(22) have been derived for the case
of preserved spin-rotational symmetry. We are now going to
generalize them to systems with spin-rotational symmetry
broken (partly or fully) due to spin-orbit coupling and/or
spin-orbit impurity scattering. Both these symmetry-breaking
mechanisms induce finite relaxation rates (1/τx

s , 1/τ
y
s , 1/τ z

s )
for the corresponding components of the electron spin. The
relaxation rates determine the mass of the corresponding
triplet modes (diffusons and cooperons). As an example, the
mode corresponding to the spin component Sx acquires a
mass proportional to 1/τ

y
s + 1/τ z

s . This mode thus becomes
effectively frozen and drops out of RG equations at length
scales L � Lx

s ∼ [1/(Dτ
y
s ) + 1/(Dτz

s )]−1/2.
In the presence of spin-orbit coupling, spin relaxation

due to the D’yakonov-Perel’ mechanism takes place. The
corresponding relaxation rates are given by 1/τ

x,y,z
s ∼ �2

soτ ,
where �so denotes the spin-orbit splitting [48]. Therefore
all triplet modes (both for diffusons and cooperons) are
suppressed at the length scales L � Lso = vF /�so, i.e., the
number of triplet modes contributing to the RG equations
is n = 0. In the case of a 2D electron system with the
spin-orbit impurity scattering but without spin-orbit coupling,
the spin relaxation is anisotropic: 1/τ z

s = 1/τso, 1/τ
x,y
s = 0,

where 1/τso denotes the skew scattering rate [49]. Thus, for
L � Ls = √

Dτso, the triplet modes corresponding to the total
spin component Sz remain massless. Therefore, in this case,
n = 1 triplet mode still contributes to the RG equations.

If the spin-orbit coupling and spin-orbit scattering are both
present, then different regimes with n = 3, n = 1, and n = 0
can be realized depending on the relations between L, Lso,
and Ls . For all three cases, the one-loop RG equations can be
written as

dt

dy
= t2

[
n − 1

2
+ f (γs) + nf (γt ) − γc

]
, (23)

dγs

dy
= − t

2
(1 + γs)

(
γs + nγt + 2γc + 4γ 2

c

)
, (24)

dγt

dy
= − t

2
(1 + γt )[γs − (n − 2)γt − 2γc(1 + 2γt − 2γc)],

(25)

dγc

dy
= −2γ 2

c − t

2

[
(1 + γc)(γs − nγt ) − 2γ 2

c + 4γ 3
c

+ 2nγc(γt − ln(1 + γt ))
]
, (26)

d ln Zω

dy
= t

2

(
γs + nγt + 2γc + 4γ 2

c

)
. (27)
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In the case n = 0, Eq. (25) should be omitted. The RG
equations (23)–(26) constitute one of the main results of the
paper. In the rest of the paper, we will analyze these equations
to investigate phase diagrams and observables for the cases of
preserved and broken spin-rotational symmetry.

The system of RG equations (23)–(26) has the fixed
plane γs = −1 corresponding to the case of the long-ranged
Coulomb interaction. In fact, this statement is not restricted
to the one-loop RG equations. The existence of such a fixed
plane is a consequence of the particle-number conservation
and of the F invariance of the NLSM action (1). Due to the
charge conservation, RG equations for γs and z are related to
all orders in t :

dγs

dy
= −(1 + γs)ζz,

dZω

dy
= Zωζz. (28)

The value ζ ∗
z of the anomalous dimension ζz at a fixed point

determines the dynamical critical exponent z = d + ζ ∗
z . The

latter controls the temperature behavior of the specific heat,
cv ∼ T d/z [50]. Typically, one expects that z ≤ d (ζ ∗

z < 0),
which implies the instability of the fixed point in the plane
γs = −1 with respect to the increase of γs .

It is worth reminding the reader that RG equations (23)–
(27) are of one-loop order with respect to diffusive modes
(i.e., are derived by expansion of the right-hand side to the
lowest nontrivial order in t) but are exact in the interaction.
Typically, one expects that one-loop RG equations are valid
until entering the insulating (strong-disorder) phase, i.e., for
t � 1. This requires a tacit assumption that in the expansion
of the right-hand side of RG equations in powers of t , all
coefficients (which are functions of interaction amplitudes) are
of the order of unity. In the case of superconducting instability,
γc diverges at some scale Lc, so that the coefficients of the
expansion in powers of t become much larger than unity. As
discussed in Sec. III A, near the superconducting instability
(i.e., at |γc| � 1), the general condition of validity of the one-
loop approximation t � 1 becomes more restrictive: t |γc| � 1.
Similarly, near the Stoner instability (which corresponds to the
divergence of γt ) the two-loop analysis [51,52] demonstrates
that expansion in t is justified for t � 1/γt � 1.

Up to now, we have discussed the renormalization as a flow
of couplings with the length scale. In practice, one usually has
a sufficiently large system and the infrared cutoff is controlled
not by the system size but rather by the temperature T . In this
situation, the renormalization due to the contributions to RG
equations (23)–(27) induced by interactions should be stopped
at the length scale LT , which is determined as follows [see
Eq. (A15)]:

T = 1

τ

(
l

LT

)2
t0Zω0

t(LT )Zω(LT )
, (29)

where t0 = t(l) and Zω0 = Zω(l). This transformation of
temperature into the length scale [53] allows us to investigate
the temperature dependence of observables. In particular,
the electrical resistivity in the absence of magnetic field is
addressed in Sec. V. The inclusion of magnetic field induces
two additional length scales, lH and lZ , related to the orbital
and Zeeman effect of the magnetic field and leading to the
magnetoresistivity, Sec. VI.

IV. PHASE DIAGRAM AT ZERO MAGNETIC FIELD

A. Preserved spin-rotational symmetry

We start our analysis of RG equations (23)–(27) from the
case in which spin-rotational and time reversal symmetries are
preserved, i.e., there are n = 3 triplet modes. We note that
in the notations of Ref. [39] this case is termed as G(LR)
for the Coulomb interaction and G(SR) for the short-ranged
interaction.

1. Coulomb interaction

For the case of the Coulomb interaction, γs = −1, which
is the fixed plane of Eqs. (23)–(26), the RG equations can be
simplified as (we set n = 3)

dt

dy
= t2[2 + 3f (γt ) − γc], (30)

dγt

dy
= t

2
(1 + γt )(1 + γt + 2γc(1 + 2γt − 2γc)), (31)

dγc

dy
= −2γ 2

c + t

2

[
(1 + γc)(1 + 3γt ) + 2γ 2

c (1 − 2γc)

− 6γc(γt − ln(1 + γt ))
]
. (32)

Let us now analyze fixed points of Eqs. (30)–(32). It turns
out that the structure of the set of fixed points and of the
three-dimensional phase diagram is very rich. Specifically,
(1) there is a marginally unstable line of fixed points at
t = γc = 0 (with arbitrary γt ). These fixed points describe
a conventional clean Fermi liquid without the Cooper-channel
attraction. (2) There is a line of fixed points at t = 0 and γc =
−∞ (with arbitrary γt ) corresponding to the superconducting
(SC) phase. (3) Further, Eqs. (30)–(32) contain also the
attractive line of fixed points at γt = ∞ and γc = 1. The
divergence of γt corresponds to a ferromagnetic instability.
(4) Formally, in Eqs. (30)–(32), there exists also a fixed point
at γt = −1, γc = 0, and t = ∞. While the range of t � 1
is beyond the accuracy of the one-loop RG, it is expected
on general grounds that full RG equations should contain an
attractive fixed point (or a family of fixed points) with t = ∞
describing the insulating phase.

(5) Within Eqs. (30)–(32), there is a possibility at some
length scale to enter the phase with γt = −1. At this length
scale, there are finite values γc < 0 and t . We note that
γt = −1 corresponds to the infinitely strong attraction in the
triplet particle-hole channel indicating a possibility of exciton
condensation. Since the value γt = −1 is reached at a length
scale close to LX, full RG equations are needed to study a
competition of exciton condensation in the spin channel and
superconductivity in the Cooper channel. We leave this as a
prospect for future research and do not discuss a possibility of
exciton condensation in the rest of the paper.

(6) Going beyond the one-loop RG equations (30)–(32), we
expect a fixed point at γc = −∞, t ∼ 1, and a certain value
of γt governing the transition between the superconductor
and insulator phases. The corresponding phase boundary is
a critical surface with a flow towards this SIT fixed point
originating at the trivial fixed point with t = γc = γt = 0. We
will discuss the SIT fixed point in more detail in Sec. VII
below.
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FIG. 1. (Color online) The case of preserved spin-rotational sym-
metry with the Coulomb interaction, γs = −1: the RG flow obtained
from a numerical solution of Eqs. (30)–(32). The initial condition fixes
γt0 = 0.2. The arrows indicate the flow towards the infrared. The gray
region indicates the part of the phase diagram that is not accessible
within one-loop RG equations. The lines describing the flow to the
superconducting (SC), insulating (I), and ferromagnetic (F) phases
are shown in red, green, and blue, correspondingly. Gray flow lines
correspond to the region of superconductor-insulator transition (SIT).

(7) Similarly, we expect strong-coupling fixed points
that control the ferromagnet-insulator and the ferromagnet-
superconductor transitions. We will not discuss these fixed
points in the present paper [55].

Let us now discuss the properties of the emerging phases
(see Figs. 1 and 2) and corresponding fixed points, in more
detail.

Superconducting phase. We first note that within the
RG equations (30)–(32) the superconducting line of fixed
points at t = 0 and γc = −∞ is unstable, which makes the
superconducting phase formally unreachable. As we have
already discussed, this indicates a failure of the one-loop
(lowest order in t) RG equations near the superconducting
instability. In the absence of disorder (i.e., at t = 0), Eq. (32)
describes the usual BCS-type scenario. The Cooper-channel
interaction γc diverges at some finite length scale Lc as
γc(L → Lc) ∼ −1/(Lc − L). To estimate the length scale Lc

in the case of finite disorder, we shall use the scale LX defined
by the condition |γc(LX)| = 1/t(LX) � 1. Assuming that the
divergence of γc is of the BCS type, we get an estimate
(Lc − LX)/LX ∼ t(LX) � 1. Thus, while the one-loop RG
is not sufficient to follow the flow up to the singularity scale
Lc, it works up to a scale LX which is only slightly smaller
than Lc.

Insulating phase and superconductor-insulator transition.
On general grounds, we assume that once the RG flow reaches
t ∼ 1, the system is in the insulating phase, i.e., it flows

SC�I

SC�I�FM�I

t0
1�t0

0
0.1
0.2
0.3
0.4
0.5

�1 �0.5 0

�0.5

0

0.5

1

Γc0 1 � Γc0
2

Γ
t0
�

1
�
Γ

t02
FIG. 2. (Color online) The case of preserved spin-rotational sym-

metry with the Coulomb interaction, γs = −1: a projection of the
phase diagram on the γt0 − γc0 plane. The color indicates the value of
the Drude resistivity t0 at which the quantum phase transition from SC
to I occurs. Above the dashed line, the FM phase appears in addition
to SC and I phases. The figure is obtained from numerical solutions
of RG Eqs. (30)–(32).

into the insulating (I) fixed point with t = ∞. On the other
hand, as discussed above, if t remains small when |γc| reaches
a value 1/t , the system flows into a superconducting fixed
point. There should be thus a fixed point at t ∼ 1 (i.e., with a
resistivity of the order of quantum resistance Rq) and certain
values of γc and γt that controls the quantum phase transition
between superconductor and insulator, see Sec. VII for further
discussion. At small values of t and γc < 0, γt > 0, the
separatrix surface between the two phases is parametrized by
the following equation: t = 4γ 2

c /(1 + 3γt ).
“Ferromagnetic” phase. For the attractive line of fixed

points at γt = ∞ and γc = 1, the value γc = 1 is fixed by
a cancellation of terms in the right-hand side of Eq. (32),
which are proportional to γt � 1. The divergence of γt

occurs at some finite length scale LFM. Due to a delocalizing
effect of the interaction (Altshuler-Aronov) contribution to
the renormalization of the resistance at large γt , the fixed
point value t(LFM) remains finite and is nonuniversal (i.e.,
determined by the initial conditions). Therefore Eqs. (30)–(32)
predict a ferromagnetic metallic phase with a nonuniversal re-
sistivity. Strictly speaking, one-loop equations are insufficient
to describe accurately the regime tγt � 1 (see Refs. [51,52])
but this is not expected to modify essentially the emergence of
instability.

However, since the emergent fixed points are characterized
by a finite value of dimensionless resistivity t(LFM), the dif-
fusive RG continues at larger scales. Specifically, to describe
properly the system at scales larger than LFM, one needs to take
into account breaking of spin-rotational symmetry and derive a
new set of RG equations. In this case, all triplet diffusive modes
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in the particle-hole channel and singlet and triplet modes in
the Cooper channel are suppressed. One can thus assume that
the system at L > LFM is described by RG equations (23)
with n = 0, γc = 0, and γs = −1, which results in insulating
behavior at large length scales. Moreover, due to enhanced spin
fluctuations near the Stoner instability, the system at L > LFM

can demonstrate a spin-glass behavior [62]. In what follows,
we shall term this phase ferromagnetic (FM) for simplicity.

Overall RG flow and phase diagram. A part of the RG flow
for Eqs. (30)–(32) is shown in Fig. 1. In general, a projection
of the flow in a three-dimensional parameter space onto a 2D
plane, as in Fig. 1, depends on the initial conditions for the
couplings. For the plot shown in Fig. 1, we have assumed a
realistic relation between the triplet (third axis) and Cooper
amplitudes, which has allowed us to avoid intersections in
the projected flows. Furthermore, the RG flow is shown
only in the region of validity of the one-loop approximation:
t max{1,|γc|} � 1. The flows towards the superconducting,
insulating, and ferromagnetic phases are plotted in red, green,
and blue, correspondingly. The grey part of the flow describes
the vicinity of the SIT. One of the grey curves is the
separatrix between the superconducting and insulator phases.
However, the one-loop precision is insufficient to determine
the separatrix in the region t max{1,|γc|} � 1. At small values
of γc, the separatrix is parametrized by t = 4γ 2

c /(1 + 3γt ).
The phase diagram expected on the basis of the RG

equations (30)–(32) is shown in Fig. 2 in the plane of
bare interaction couplings γc0 and γt0. For γc0 < 0, the
superconducting phase exists at small values of t0. For given
γc0 and γt0, the quantum phase transition from superconductor
to insulator occurs with increase of t0. In addition, for a
sufficiently large γt0 (above the dashed line) a ferromagnetic
phase emerges. In this part of the γc0-γt0 plane, a sequence
of transitions S–I–FM–I takes place with increasing bare
resistivity t0. For γc0 > 0, there is no superconducting phase;
changing t0 drives a transition from the ferromagnetic to the
insulator phase.

The dependence of the NLSM coupling t on the length scale
L across the quantum phase transition from the superconduct-
ing to insulating phase (in the part of the phase diagram in
Fig. 2 where FM phase does not occur) is shown in Fig. 3. This
dependence dominates the corresponding evolution of the total
electrical resistivity ρ (apart from a narrow region close to the
superconducting instability, where the inelastic contributions
due to fluctuating Cooper pairs becomes dominant, see Sec. V
for details).

In Fig. 4, we choose the values of γc0 and γt0 such that
the FM phase exists in addition to the SC and I ones. We
thus show the length dependence of t across the quantum
phase transitions from SC to I and from I to FM phases. We
note that within the RG equations (30)–(32), the insulating
phase (between SC and FM phases) exists in a very narrow
interval of t0, see Fig. 4. As one can see, the scale LX

(at which red curves in Fig. 4 are stopped), which yields
approximately the superconducting coherence length, is larger
than the BCS coherence length LBCS

c = l exp(−1/2γc0). In
the ferromagnetic phase, the corresponding length scale LFM

(where blue curves end) is still larger than LX.
At finite temperature, the interaction contributions to the

RG equations (30)–(32) are stopped at the length scale LT .
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FIG. 3. (Color online) The case of preserved spin-rotational sym-
metry with the Coulomb interaction, γs = −1: dependence of t

(“renormalized Drude resistivity”) on the length scale across the
quantum phase transition between the superconducting (SC, red
curves) and insulating (I, blue curves) phases. The curves are obtained
from numerical solutions of RG equations (30)–(32) for γc0 = −0.25,
γt0 = 0.01, and t0 = 0.05, 0.1, 0.12, 0.14, 0.15, 0.18, 0.2, 0.22 (from
the bottom to the top).

Neglecting the difference between LT and the temperature-
induced dephasing length Lφ (which cuts off the localization
corrections), we can stop the whole RG at LT . Then the
transition temperatures to superconducting (Tc) and ferro-
magnetic phases (TFM) is estimated as follows (see also a
discussion in the end of Sec. III): Tc ≈ (1/τ )(l/LX)2 and
TFM ≈ (1/τ )(l/LFM)2. A typical dependence of Tc and TFM on
t0 is shown in the insets to Figs. 3 and 4. The effect of disorder
on Tc depends on the sign of the term in the square brackets
in the right-hand side of Eq. (32). It occurs that for γc < 0 and
γt > −1 this term is always positive, except for a small region
at small negative values of γc and −1 < γt < −1/3. Therefore,
as was first found by Finkelstein [32], disorder in the presence
of the Coulomb interaction suppresses the superconducting
phase (i.e., lowers Tc). At the same time, disorder induces the
ferromagnetic phase that exists in an intermediate range of
disorder. This implies a nonmonotonous dependence of TFM

on t0.
We note that Tc evaluated from the RG equations (30)–(32)

is in fact somewhat larger than the true superconducting
[Berezinskii-Kosterlitz-Thouless (BKT)] transition tempera-
ture TBKT due to the presence of phase fluctuations of the
order parameter at temperatures below Tc, see Sec. V for more
detail. The relative difference between Tc and TBKT is, however,
small for weak disorder, and thus does not essentially affect
the much stronger variation of Tc with disorder explored in
this paper.
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FIG. 4. (Color online) The case of preserved spin-rotational sym-
metry with the Coulomb interaction, γs = −1: dependence of t on the
length scale across the quantum phase transition between supercon-
ducting (SC, red curves), insulating (I, green curve), and ferromag-
netic (FM, blue curves) phases. The curves are obtained from numer-
ical solutions of RG equations (30)–(32) for γc0 = −0.1, γt0 = 0.4
and t0 = 0.015, 0.0165, 0.18325, 0.18326, 0.184, 0.02, 0.022, 0.025
(from the bottom to the top). For higher values of t0, another insulating
phase (not shown on this scale) emerges. Inset: dependence of
Tc/T BCS

c and TFM/T BCS
c on t0.

2. Short-ranged interaction

In the case of short-ranged interaction, RG equations (23)–
(26) with n = 3 read

dt

dy
= t2[1 + f (γs) + 3f (γt ) − γc], (33)

dγs

dy
= − t

2
(1 + γs)

(
γs + 3γt + 2γc + 4γ 2

c

)
, (34)

dγt

dy
= t

2
(1 + γt )[−γs + γt + 2γc(1 + 2γt − 2γc)], (35)

dγc

dy
= −2γ 2

c + t

2

[
(1 + γc)(−γs + 3γt ) + 2γ 2

c (1 − 2γc)

− 6γc(γt − ln(1 + γt ))
]
. (36)

Contrary to the Coulomb-interaction case (where we had
γs = −1), the singlet particle-hole amplitude γs is not fixed
now, so that the RG flow occurs in the four-dimensional
parameter space. However, the structure of the set of attractive
fixed points (quantum phases) and of fixed points describing
quantum phase transitions between them remains qualitatively
the same as in the Coulomb case. Specifically, the fixed
points of the RG flow for the short-ranged interaction are
as follows [55]. (1) There is a surface of clean-Fermi-liquid
fixed points at t = γc = 0 (with arbitrary γt and γs). (2) The
fixed-point surface at t = 0 and γc = −∞ corresponds to
the superconducting phase. (3) The line of fixed points with

I
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FIG. 5. (Color online) The case of preserved spin-rotational sym-
metry with the short-ranged interaction, γs0 = −0.05: a projection of
the phase diagram on the γt0 − γc0 plane. The color indicates the
ratio of Tc/(Tc + T BCS

c ) for t0 = 0.06. The dashed curve separates the
regions with Tc < T BCS

c and with Tc > T BCS
c . The figure is obtained

from numerical solutions of RG equations (33)–(36).

γs = −1, γt = ∞, γc = 1, and arbitrary t , is attractive in the
γs direction. Therefore the RG equations (33)–(36) lead to
the same ferromagnetic phase that exists in the case of the
Coulomb interaction. (4) Exactly as in the Coulomb case, there
should be a fixed point (or a family of fixed points) with t = ∞
describing the insulating phase. (5) For the same token as in
the Coulomb case, a SIT fixed point with t ∼ 1 should separate
the superconducting and insulating phases.

The phase diagram for a given γs0 > −1 is similar to
that for the case of the Coulomb interaction, γs0 = −1
(shown in Fig. 2). With increase of γs0, the destruction
of the superconducting phase gets shifted towards larger
values of t0. The crucial difference between the cases of the
short-ranged and Coulomb interactions is the existence of a
large region of the phase diagram with LX < LBCS

c (and thus
Tc > T BCS

c ). In the case of a bare repulsion in the particle-hole
channel, γs0 < 0 and γt0 > 0, the superconducting transition
temperature is typically lower than the clean BCS result,
Tc < T BCS

c (see Fig. 5). However, the situation changes if
the bare interaction in the triplet particle-hole channel is
attractive, γt0 < 0. As illustrated in Fig. 5, a significant part
of the phase diagram is occupied by a superconductor with
Tc > T BCS

c . It should be emphasized that the superconducting
phase with enhanced Tc exists also for γt0 > 0. However,
it occurs only in a small region of γt0,|γc0|,|γs0| � 1 (see
Fig. 5). Typical RG evolution of the resistance t in this
region of initial values of interactions is shown in Fig. 6.
Being initially suppressed by disorder, Tc can be significantly
(several orders of magnitude) enhanced with respect to T BCS

c

near the superconductor-insulator quantum phase transition, as
illustrated in the inset to Fig. 6. This is in agreement with the
conclusion of our work [37] where RG equations (18)–(21)
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FIG. 6. (Color online) The case of preserved spin-rotational sym-
metry with the short-ranged interaction, γs0 = −0.05: dependence of
t on the length scale across the quantum phase transition between
superconducting (SC, red curves) and insulating (I, blue curves)
phases. The curves are obtained from the numerical solution of
RG equations (33)–(36) for γc0 = −0.04, γt0 = 0.005, and t0 =
0.01, 0.03, 0.05, 0.06, 0.07, 0.078, 0.085, 0.095, 0.105 (from bottom
to top). For higher values of t0, an insulating phase (not shown on
this scale) emerges. The dependencies of Tc/(Tc + T BCS

c ) on t0 for
γc0 = −0.04, γt0 = 0.005, and γs0 = −0.05 (solid curve) and for
γc0 = −γs0 = γt0 = −0.1 (dashed curve) are shown in the inset.

with the right-hand sides expanded to the lowest nontrivial
order in γs , γt , and γc were analyzed.

The mechanism of enhancement of the transition temper-
ature is as follows. For small initial values of interaction
parameters |γs0|,|γt0|,|γc0| � t0 � 1, the renormalization of
the Cooper interaction amplitude occurs in two distinct steps.
At the first step of the RG flow, the interaction is renormalized
due to the presence of disorder (the terms proportional to
t), while at the second step the standard BCS-type renor-
malization (the term −2γ 2

c ) takes place. At the first step of
renormalization, we can linearize the RG equations (33)–(36)
in interaction parameters and neglect the term −2γ 2

c . Then, in
the course of RG flow, the interaction amplitudes approach the
BCS line γs = γt = −γc, converting the repulsion in singlet
and triplet particle-hole channels into attraction. This is the
consequence of the (weak) multifractality of the noninteracting
fixed point. At some scale L1 such that ln L1/l = 1/t0 − 1/t ,
the interaction couplings become of the order of the resistance:
|γs,t,c| ∼ t . Provided |γs0|,|γt0|,|γc0| � t2

0 , the resistance at
this scale t(L1) ∼ t2

0 / max{|γs0|,|γt0|,|γc0|} � 1 and all inter-
action parameters are still much smaller than unity. After the
length scale L1 the second step of RG flow starts, where in
Eq. (21) one can neglect terms proportional to t compared to
the disorder-independent term −2γ 2

c . Thus the Cooper interac-
tion γc flows according to the standard BCS RG equation for a

Tc�Tc
BCSTc�Tc
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0
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0.4
0.6
0.8
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t 0
FIG. 7. (Color online) The case of preserved spin-rotational sym-

metry with the short-ranged interaction on the BCS line: the color
density plot for the ratio Tc/(Tc + T BCS

c ) in the t0 − γc0 plane.
The dashed black lines separate the regions with Tc > T BCS

c and
Tc < T BCS

c .

clean system with the initial value γc(L1) ∼ t(L1) rather than
γc0. Hence we find the following rough estimate for the tran-
sition temperature: Tc ∼ (1/τ )(l/L1)2 exp(−1/|γc(L1)|) ∼
(1/τ ) exp(−2/t0) � T BCS

c (see Appendix B for details).
In short, the role of the noninteracting disorder-induced

multifractality is to enhance the interaction in the Cooper
channel such that it becomes comparable to the resistance.
After that, the divergence in the Cooper channel is driven
by the standard mechanism (the same as in a clean system).
The enhancement of Tc occurs in an intermediate range of
disorder (t0 between |γi0| and |γi0|1/2). For a weaker disorder
t0 � max{|γc0|,|γt0|,|γs0|}, one can find a suppression of the
transition temperature instead of enhancement, see the solid
curve in the inset to Fig. 6.

If the disorder scattering rate 1/τ exceeds the Debye
frequency ωD , the starting point of the RG flow will be
likely located not far from the BCS line, γs0 = −γt0 = −γc0

(see Sec. II C). For such initial conditions, the dependence
of Tc/(Tc + T BSC

c ) on t0 is shown in the inset to Fig. 6 by
the dashed curve. It is worth stressing that in the case of
initial interaction parameters on the BCS line there is no initial
decrease of the transition temperature with increase of t0. This
is because the second term in the right-hand side of Eq. (36) is
negative on the BCS line for 0 > γc > −0.41. The dependence
of Tc/T BSC

c on γc0 and t0 on the BCS line is shown in Fig. 7.
Let us now turn to the region in the phase diagram, Fig. 5,

where the ferromagnetic (FM) phase emerges. Figure 8 shows
typical dependencies of resistance t on the length scale L

across the transition from SC to FM phases with increasing t0.
The inset presents dependencies of both critical temperatures
(Tc and TFM) on t0.
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FIG. 8. (Color online) The case of preserved spin-rotational sym-
metry with the short-ranged interaction, γs0 = −0.05: dependence
of t on the length scale across the quantum phase transition
between superconducting (SC, red curves) and ferromagnetic (FM,
blue curves) phases. The curves are obtained from the numerical
solution of RG equations (33)–(36) for γc0 = −0.1, γt0 = 0.2, and
t0 = 0.02, 0.04, 0.05, 0.063, 0.065, 0.07, 0.075, 0.08, 0.09, 0.1
(from bottom to top). The dependencies of Tc/T BCS

c and TFM/T BCS
c

on t0 are shown in the inset.

B. Broken spin-rotational symmetry

In the presence of spin-orbit coupling and/or spin-orbit
scattering, the spin-rotational symmetry is broken. At length
scales L � max{Lso,Ls}, the spin-rotational symmetry is
completely broken and all triplet modes are suppressed such
that n = 0. In Ref. [39], this case is referred to as SO(LR)
for the Coulomb interaction and SO(SR) for the short-ranged
interaction [57].

1. Coulomb interaction

For n = 0 and for the case of the Coulomb interaction,
γs = −1, the one-loop RG equations, Eqs. (23)–(26), take the
form

dt

dy
= t2

(
1

2
− γc

)
, (37)

dγc

dy
= −2γ 2

c + t

2

[
1 + γc + 2γ 2

c (1 − 2γc)
]
. (38)

The first, perturbative study of the effect of interaction on the
conductivity of a disordered system in the presence of spin-
orbit scattering has been performed in Ref. [63]. To the lowest
order in γc, Eqs. (37) and (38) coincide with the one-loop RG
equations derived in Refs. [64–66].

Since the spin-orbit interaction kills the contribution of
the triplet channel, while the particle-hole singlet amplitude
remains fixed, γs = −1, the RG flow now occurs in a 2D

parameter space, t and γc. The structure of the phase diagram
is governed by the following fixed points. (1) Equations (37)
and (38) possess a clean-Fermi-liquid fixed point at t = γc =
0, which is marginally unstable. (2) There is the fixed point
at t = 0 and γc = −∞ corresponding to the superconducting
(SC) phase. (3) As in all other symmetry classes, there should
be the insulating (I) phase with t = ∞. It is, however, not
reachable within the one-loop RG equations.

(4) There is a stable nontrivial fixed point at γ ∗
c = 1/2

and t∗ = 2/3 describing the critical metallic (CM) phase.
This fixed point appears at the borderline of applicability
of one-loop RG equations, t∗ ∼ 1, so that we do not have
a rigorous argument in favor of existence of the CM phase.
We find, however, very plausible that the attractive character
of this fixed point is not destroyed by going beyond one
loop. The emergence of this fixed point can be traced back
(i) to the competition of weak antilocalization (enhanced by
delocalizing effect of repulsive Cooper-channel interaction)
with the localizing Coulomb repulsion in Eq. (37), and (ii) to
the competition between Cooper instability and the disorder-
induced suppression of the interaction matrix element in
Eq. (38). The CM phase (if indeed exists) should be separated
from the I phase by a CM–I quantum phase transition fixed
point which is, however, located well beyond the limit of our
one-loop RG.

(5) As in other symmetry classes, we expect existence of a
fixed point at γc = −∞ and t ∼ 1 (region marked by “SIT”)
such that the transition between superconductor and insulator
occurs through the separatrix connecting this fixed point and
the trivial fixed point at t = γc = 0. At small values of t

and γc < 0, the separatrix is parametrized by the following
equation, t = 4γ 2

c [66].
The RG flow (and the corresponding phase diagram) for

equations (37) and (38) is shown in Fig. 9. As in the case
of preserved spin-rotational symmetry, we stop the RG flow
when either |γc| reaches the value 1/t � 1 at a certain scale LX

(superconducting phase, red RG flow lines) or the resistance
t reaches the value unity (insulating phase, green flow lines).
In addition, we have now the critical metal phase (blue flow
lines).

The dependence of t on the length scale across the
consecutive SC-I-CM transitions is shown in Fig. 10. As
one can see, there is a very narrow interval of t0 values in
which the insulating phase separating the SC and CM phases
exists. We mention that at not too large length scales (or,
equivalently, at not too low temperatures) the resistance curves
for SC, I, and CM phases cross each other. As expected, the
Coulomb interaction suppresses the superconductivity, so that
LX > LBCS

c , and consequently, Tc < T BCS
c (as shown in the

inset of Fig. 10).
From Eq. (27) with n = 0, we find the following one-loop

RG result for Zω in the case of the Coulomb interaction:

d ln Zω

dy
= t

2

(
γs + 2γc + 4γ 2

c

)
. (39)

As explained below Eq. (28), the fixed-point value of the
ζ function d ln Zω/dy determines the dynamical exponent
controlling the temperature dependence of the specific heat.
The one-loop result (39) yields for the critical metal cv ∼ T 2/z
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FIG. 9. (Color online) The case of broken spin-rotational sym-
metry with the Coulomb interaction, γs = −1: the RG flow obtained
from numerical solutions of Eqs. (37) and (38). The arrows indicate
the flow towards the infrared. The gray region indicates the part of the
phase diagram that is not accessible within one-loop RG equations.
The lines describing the flow to the superconducting (SC), insulating
(I), and critical-metal (CM) phases are shown in red, green, and
blue, correspondingly. Gray flow lines correspond to the region of
superconductor-insulator transition (SIT).

with z = 7/3. Since z > 2, the CM phase is stable with respect
to the deviations of γs from γs = −1.

2. Short-ranged interaction

In the case of short-ranged interaction, RG equations (23)–
(26) with n = 0 take the form

dt

dy
= t2

[
−1

2
+ f (γs) − γc

]
, (40)

dγs

dy
= − t

2
(1 + γs)

(
γs + 2γc + 4γ 2

c

)
, (41)

dγc

dy
= −2γ 2

c + t

2

[−(1 + γc)γs + 2γ 2
c (1 − 2γc)

]
. (42)

These RG equations are richer than Eqs. (33)–(36) and describe
the RG flow in a three-dimensional space of t , γs , and γc.
(1) There is a line of clean-Fermi-liquid fixed points at
t = γc = 0 and arbitrary γs . The peculiarity of the present
symmetry class is that the clean noninteracting fixed point
t = γc = γs = 0 is attractive. It corresponds to a supermetal
(SM) phase. (2) The line of fixed points at t = 0 and γc = −∞
corresponds to the superconducting phase. (3) As in all other
symmetry classes, there is the insulating (I) phase with t = ∞
not reachable within the one-loop RG equations. (4) In addition
to the critical metal phase at γ ∗

c = 1/2, γ ∗
s = −1, and t∗ =

2/3, there is a second fully attractive fixed point at intermediate
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FIG. 10. (Color online) The case of broken spin-rotational sym-
metry with the Coulomb interaction, γs = −1: the dependence
of t on the length scale across the transitions between su-
perconducting (SC, red curves), insulating (I, green curves),
and critical-metal (CM, blue curves) phases. The curves are
obtained from numerical solutions of Eqs. (37) and (38) for
t0 = 0.03, 0.05, 0.058039, 0.0580414, 0.0580416, 0.0580418,
0.0580419, 0.0580421, 0.07 (from bottom to top). With further
increasing the Drude resistivity t0, the system enters again the
insulating phase (not shown here), see Fig. 9. (Inset) Dependence
of Tc/T BCS

c on t0. The value of the Cooper-channel attraction is
γc0 = −0.12.

resistivity (i.e., on the border of applicability of one-loop RG
equations): γ ∗∗

c = −1/2, γ ∗∗
s = 0, and t∗∗ = 1. So, one-loop

RG equations suggest a possibility of two different CM phases.
(5) As in other symmetry classes, we expect existence of a fixed
point t ∼ 1 controlling the transition between superconductor
and insulator phases. Further intermediate-coupling (t ∼ 1)
fixed points control other emerging quantum phase transitions
(SM–I, SC–SM, SM–CM, and CM–I).

The phase diagram expected on the basis of RG equa-
tions (40)–(42) is shown in Fig. 11. For γc0 < 0, a supercon-
ducting phase exists at small values of t0. With increase of t0,
the QPT to insulator or supermetal occurs for given values
of γc0 and γs0. With increase of γs0, the superconducting
phase proliferates. In the biggest part of the phase diagram,
the transition between superconductor and insulator occurs at
t0 ∼ 1. Interestingly, there is a region of the phase diagram
in which a sequence of quantum phase transitions, SC–SM–
I, SC–SM–CM–I, or SC–I–SM–I, occurs as t0 grows (see
Fig. 11). The dashed curve separating the region with multiple
quantum phase transitions is parametrized by the condition
γs0 = 2γc0, see Appendix B.

A typical dependence of t on the length scale L across
the SC-SM transition governed by increase of disorder (t0) is
illustrated in Fig. 12 for some initial values of γs0 and γc0. As
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metry with short-ranged interaction: a projection of the phase diagram
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t0 drives a sequence of QPTs: in 1—SC-SM-I, in 2—SC-SM-CM-I,
and in 3—SC-I-SM-I. The figure is obtained from numerical solutions
of RG equations (40)–(42).
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FIG. 12. (Color online) The case of broken spin-rotational sym-
metry with short-ranged interaction: dependence of t on the length
scale across the QPT between superconducting and supermetallic
phases. The curves are obtained from numerical solutions of
RG equations (40)–(42) for γc0 = −0.04, γs0 = −0.1, and t0 =
0.05, 0.07, 0.1, 0.12, 0.15, 0.2 (from bottom to top). (Inset)
Dependencies of Tc/(Tc + T BCS

c ) on t0 for γc0 = −0.04 and γs0 =
−0.005 (solid curve), for γc0 = −γs0 = −0.05 (dashed curve) and
for γc0 = −0.04 and γs0 = −0.1 (dot-dashed curve) are shown in the
inset.
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FIG. 13. (Color online) The case of broken spin-rotational sym-
metry with the short-ranged interaction: the color plot for the ratio
of Tc/(Tc + T BCS

c ) for t0 = 0.11. The dashed curve separates the
regions with Tc < T BCS

c and with Tc > T BCS
c . The solid line indicates

the boundary between superconductor and supermetal. The figure is
obtained from numerical solutions of RG equations (40)–(42).

shown in the inset, in this case (dot-dashed line), the disorder
suppresses the transition temperature. However, with increase
of γs0, one finds a nonmonotonous dependence of Tc on t0: at
weak disorder, Tc is reduced in comparison with T BCS

c whereas
at intermediate disorder Tc is larger than T BCS

c . There is a
region in the phase diagram with small values of γc0 < 0 and
γs0 < 0 in which Tc > T BCS

c (or more precisely, LX < LBCS
c ).

The enhancement of Tc in a certain range of bare couplings is
in agreement with the conclusions of our work [37] where the
renormalization group equations (40)–(42) with the right-hand
sides expanded to the lowest nontrivial order in γs and γc were
analyzed. In fact, for attraction in the particle-hole channel,
γs0 > 0, a significant part of the phase diagram is occupied by
the superconducting phase with Tc > T BCS

c , see Fig. 13.
The mechanism of enhancement of the transition tem-

perature is similar to one for the case of preserved spin-
rotational symmetry. For small initial values of γc0 and γs0, the
renormalization of the Cooper interaction amplitude occurs in
two distinct steps. At the first step of RG flow, the interaction
is renormalized due to the presence of disorder (the terms
proportional to t), while at the second step the standard
BCS-type renormalization (the term 2γ 2

c ) takes place. In the
case |γs0|,|γc0| � t0 � 1 at the first step of renormalization,
we can linearize the RG equations (40)–(42) in the interaction
parameters and neglect the term −2γ 2

c . Then, for γc0 < γs0/2,
in the course of RG flow, the interaction amplitudes approach
the BCS line γs = −γc, thus converting the repulsion in
the singlet particle-hole channel into attraction. This is a
consequence of the (weak) multifractality of the noninteracting
fixed point.

At some scale L1 such that ln L1/l = 2/t − 2/t0,
the interaction couplings become of the order of the
resistance: |γs,c| ∼ t . The resistance at this scale is
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t(L1) ∼ [t0(γs0 − 2γc0)]1/2 � t0. We note that if the length
scale LX is reached before L1, which is typical for t0 �
max{|γc0|,|γs0|}, one can find suppression of the transition
temperature instead of enhancement (see solid curve in the
inset to Fig. 12). After the length scale L1, the second
step of RG flow starts, where in Eq. (42) one can neglect
terms proportional to t compared to the disorder-independent
term −2γ 2

c . Thus the Cooper interaction γc flows accord-
ing to the standard BCS RG equation for a clean system
with the initial value γc(L1) ∼ t(L1) rather than γc0. Hence
we find the following rough estimate for the transition
temperature: ln 1/(Tcτ ) ∼ 2 ln L1/l + 1/|γc(L1)| ∼ [t0(γs0 −
2γc0)]1/2 � ln 1/(T BCS

c τ ), see Appendix B for details.
In full analogy with the case of preserved spin-rotation

invariance, if the disorder scattering rate 1/τ exceeds the
Debye frequency ωD , the starting point of the RG flow will be
likely located not far from the BCS line, γs0 = −γt0 = −γc0

(see Sec. II C). For such initial conditions, the dependence of
Tc/(Tc + T BSC

c ) on t0 is shown in the inset to Fig. 12 by the
dashed curve. As in the case of preserved spin invariance, for
bare interaction parameters on the BCS line, there is no initial
decrease of transition temperature with increase of t0. For a
given γc0, a deviation from the BCS line in the initial conditions
towards larger (smaller) values of γs0 increases (decreases) the
relative enhancement of the transition temperature, Tc/T BSC

c .
We emphasize that inspite of the antilocalization at the
noninteracting fixed point the multifractality enhances the
interaction in the Cooper channel.

V. RESISTANCE IN ZERO MAGNETIC FIELD

Within the NLSM approach, physical observables can be
written as correlation functions of the matrix field Q. In
particular, the conductivity obtained by evaluating a linear
response to an electromagnetic field in the framework of the
NLSM theory with the action (1) can be expressed in the
following way:

σ (iωn) = − g

16n

〈
Tr
[
J α

n ,Q(r)
][

J α
−n,Q(r)

]〉+ g2

128n

×
∫

d r ′〈Tr J α
n Q(r)∇Q(r) Tr J α

−nQ(r ′)∇Q(r ′)
〉
.

(43)

Here, ωn = 2πT n is a Matsubara frequency, the expectation
values are defined with respect to the action (1), and

J α
n = t30 − t00

2
Iα
n + t30 + t00

2
Iα
−n. (44)

As usual, the static conductivity σ can be obtained after the
analytic continuation of Eq. (43) to real frequencies: iωn →
ω + i0+ and, then, taking the limit ω → 0. At the classical
level, Q = 
, one finds σ = g.

The RG equations derived in this work describe the
renormalization of the couplings in the NLSM action with
the running spatial scale L. As such, these equations yield
physical observables (e.g., the resistivity) of a finite size sample
at T = 0. At finite temperature T , the conductivity can be
evaluated in two steps. At the first step, the action (1) is
renormalized from the energy scale 1/τ down to T . Thus

the bare parameters in the action (1) are substituted by the
parameters at the length scale LT : g → 2/[πt(LT )], γs,t,c →
γs,t,c(LT ), and Zω → Zω(LT ). Their dependence on LT is
governed by RG equations (23)–(27). At the second step, the
Kubo formula (43) is evaluated under the assumption that in
the NLSM action (1) Q fields are restricted by the temperature
in the ultraviolet. We assume LT to be such that t(LT ) � 1
and |γc(LT )| � 1. Then, the conductivity can be written as

σ (T ) � 2

πt(LT )
− π

2
γc(LT ) ln

Lφ

LT

. (45)

This result illustrates the fact that at finite temperature there is
always a difference between the physical resistance ρ = 1/σ

and the coupling parameter t in the NLSM action. The second
term in Eq. (45) is the Maki-Thompson contribution [68–71],
which is the dominant inelastic contribution to the resistivity.
(We neglect the smaller Aslamazov-Larkin contribution [67].)

Comparing the two terms in Eq. (45), we find that the
inelastic contribution becomes of the same order as the
renormalized impurity-scattering conductivity (given by the
NLSM coupling) at the scale LX determined by the condition
t(L)|γc(L)| = 1. Remarkably, this is the same scale as is
found from the condition of validity of the one-loop RG, see
Sec. III. Thus, at scales shorter than LX, or, equivalently, at
temperatures larger than TX, the temperature dependence of
the physical resistivity is dominated by the RG behavior of
t(L). Upon approaching the transition temperature, the role of
the inelastic contribution controlled by γc(L) increases. In the
narrow temperature interval Tc < T < TX the conductivity is
dominated by the inelastic contribution. As we have already
discussed in Sec. IV, the width of this interval is

(TX − Tc)/Tc ∼ t(TX). (46)

At the transition point Tc, the running coupling γc diverges,
|γc(Tc)| = ∞ and Eq. (45) formally yields ρ(Tc) = 0.

In fact, the behavior of the conductivity in the fluctu-
ation region, |T − Tc|/Tc ∼ t(TX), is additionally affected
by superconducting phase fluctuations. These fluctuations
lead to the BKT character of the actual superconducting
phase transition. The corresponding shift of the transition
temperature is, however, small (as has been already mentioned
in the end of Sec. IV A 1) and is not important for our results.
More specifically, as was argued by Beasley, Mooij, and
Orlando [80], the shift is determined by disorder strength,
(Tc − TBKT)/Tc ∼ t , for t � 1, see also Refs. [81,82]. The
behavior of the true ρ(T ) in the fluctuation (BKT) region
will be addressed elsewhere [54]. Let us only mention
here that the value of the NLSM coupling t(TX) at the
entrance to the fluctuating region determines [54] the stiffness
of the phase fluctuations in the BKT region TBKT < T < TX

and the relevant value of t in the shift of TBKT with respect
to Tc. Because of the renormalization of t , this value may
strongly differ from the bare (high temperature) Drude value
of the resistance t0 (cf. Ref. [14]).

Ignoring the above mentioned subtleties of the behavior of
ρ(T ) in the narrow fluctuation region |T − Tc|/Tc ∼ t(TX)
around the mean-field Tc, the behavior of the electrical
resistance in the whole range of temperatures is well described
by ρ(T ) = 1/σ (T ) with σ (T ) given by Eq. (45). To relate
the length scale Lc with the transition temperature Tc, one
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FIG. 14. (Color online) Dependence of the resistance ρ on temperature T and Tc on t0 for the cases of the Coulomb [(a)–(c)] and short-ranged
[(d)–(f)] interactions. Parameters are the same as in Figs. 3, 4, 6, 10, 8, and 12, respectively. (a), (b), (d), and (e) correspond to the case of
preserved spin-rotational symmetry, (c) and (f) to the broken spin-rotational symmetry calculated from Eq. (45). The dashed parts of the curves
correspond to the “fluctuation” region T < TX . Dotted red curves in panels (a) and (d) show temperature dependencies of t for T > TX . The
dependence of Tc on t0 is shown in the insets (solid curve). The dependence of TX on t0 is shown by the dashed line in the inset to (a). For all
other insets TX coincides with Tc within our accuracy.

needs to know the relevant value Dc of the diffusive coefficient
D ∼ 1/(tZω). It is obtained by using the values for t and Zω

at the scale LX (which is the border of validity of the one-loop
RG and simultaneously is the beginning of the fluctuation
region). The transition temperature is given by Tc ∼ DcL

−2
c ,

see Eq. (29).
We present the dependence of ρ(T ) obtained in accordance

with Eq. (45) (for simplicity, we dropped the logarithmic factor
in the inelastic term; this does not qualitatively affect the plots)
for the cases of preserved and broken spin-rotational symmetry
and Coulomb and short-ranged interactions in Fig. 14. We
mention that due to Maki-Thompson correction the resistance
drops very fast (dashed curves in Fig. 14) since |γc(LX)| �
1 and, consequently, (Tc − TX)/TX ∼ ρ(TX) � 1. Therefore
the temperature TX, at which resistivity has the maximum,
can be used as an estimate of the superconducting transition
temperature. In order to plot ρ(T ) in the fluctuation region T <

TX where the one-loop RG becomes insufficient, we evaluated
γc(T ) near Tc keeping only the BCS term −2γ 2

c in the RG
equation for γc.

We note that our approach for evaluating the temperature
dependence of resistivity is different from that of Refs. [72,73].

In these works, the full set of the first-order perturbative
quantum corrections to the conductivity was computed at finite
temperature in the presence magnetic field. However, such
approach assumes that the T - and H -dependent corrections to
the bare Drude conductivity 1/t0 are small. In our approach,
we split the effects leading to temperature variation of the
conductivity into two parts: those related to virtual and real
processes. Then virtual processes are taken into account within
the RG formalism (they are included in the renormalization
of t). This allows us to consider also situations with strong
renormalization, t(LT ) � t0, i.e., cases in which “quantum
corrections” are large in comparison with 1/t0.

VI. MAGNETORESISTANCE

A transverse magnetic field introduces an additional length
scale lH (magnetic length) into the problem. In what follows,
we assume that it is larger than the mean free path, l < lH . Let
us start from T = 0. In case of weak magnetic field, lH � Lc,
the superconducting instability at L = Lc remains unaffected.
For strong magnetic fields, lH � Lc, the superconducting
phase is destroyed by the magnetic field since the growth
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of |γc| within RG equations is stopped at the length scale lH .
Then the critical magnetic field can be estimated as lHc

= Lc.
This results in the standard relation, Hc ∼ Tc/Dc. At H < Hc,
the physical resistance ρ should vanish in the infinite system,
L = ∞. For systems of finite size L > Lc, the resistance is
not zero and is determined by the nontrivial configurations of
the order parameter in the presence of a magnetic field.

At finite temperature, the critical magnetic field is a function
of temperature. However, at T � Tc, this effect is small and
can be neglected. In order to evaluate the magnetoresistance
at T � Tc and for H > Hc, we use a two-step RG procedure.
At the first step of RG, the interaction in the Cooper channel
grows towards instability. The first step ends at the length
scale lH with some values t(lH ) and γs,t,c(lH ). At L > lH , the
cooperon modes become ineffective and the second step of
the RG procedure starts. For length scales lH < L < LT , RG

equations do not contain cooperon contributions:

dt

dy
= t2[f (γs) + nf (γt )], (47)

dγs

dy
= − t

2
(1 + γs)(γs + nγt ), (48)

dγt

dy
= − t

2
(1 + γt )[γs − (n − 2)γt ], (49)

d ln Zω

dy
= t

2
(γs + nγt ). (50)

Here, y = ln L/lH and the initial values of couplings in
Eqs. (47)–(50) are given by t(lH ) and γs,t,c(lH ). Similarly
to the case of zero magnetic field, in order to find the
physical resistance ρ(T ,H ), one needs to take into account
non-RG corrections to conductivity due to superconducting
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FIG. 15. Dependence of the resistance ρ on the perpendicular magnetic field H for the cases of preserved [(a) and (b)] and broken [(c) and
(d)] spin-rotational symmetries. (a) and (c) correspond to the case of the Coulomb interaction, (c) and (d) to the short-ranged interaction. Solid
curves are obtained from Eq. (51). The dashed lines indicate the drop of magnetoresistance to zero at H = Hc. The parameters used are as follows:
(a) γs = −1, γc0 = −0.45, γt = 1, t0 = 0.1, T = Tc/2, Tc/4, Tc/8, (b) γs0 = 0.1, γc0 = −0.1, γt0 = −0.1, t0 = 0.05, T = Tc/2, Tc/4, Tc/16
(c) γs = −1, γc0 = −0.12, t0 = 0.053, T = Tc/2, Tc/4, Tc/8, and (d) γs0 = 0.05, γc0 = −0.05, t0 = 0.2, T = Tc/2, Tc/16, Tc/256.
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FIG. 16. Dependence of the resistance ρ on parallel magnetic field H for the case of preserved spin-rotational symmetry for the case of the
Coulomb (a) and short-ranged (b) interactions. Solid curves are obtained from Eq. (56). The dashed lines indicate the drop of magnetoresistance
to zero at H = HcZ . The parameters used are as follows: (a) γs = −1, γc0 = −0.45, γt = 1, t0 = 0.1, T = Tc/2, Tc/4, Tc/8 and (b) γs0 = 0.1,
γc0 = −0.1, γt0 = −0.1, t0 = 0.05, T = Tc/2, Tc/4, Tc/16.

fluctuations. In particular, for |γc(lH )| � 1, the leading-order
correction (which is the dominant one for magnetic fields not
too close to the critical field Hc) [74] yields:

σ (T ,H ) = 2

πt(LT )
− 4

3π
ln|γc(lH )|. (51)

It should be emphasized that t(LT ) in Eq. (51) in fact depends
on the magnetic field via the two-step RG procedure. At
H = Hc, the physical resistivity ρ(T ,H ) should vanish. This
happens due to higher-order Cooper-channel corrections of
non-RG type in Eq. (51), which become important in the
fluctuation region (i.e., near Hc) and make ρ(T ,Hc) = 0 in
spite of the finite value t(LT ).

Let us mention that, due to renormalization on ballistic
scales, L < l, [75], one can also expect an effect of the
magnetic field on the initial values of parameters (t0, γc0, γt0,
and γs0) for RG equations (23)–(27). This leads to a shift
of the length scale at which γc diverges. As a consequence,
an additional dependence of the transition temperature on H

appears. We do not take this effect into account.
The dependence of the resistivity on the perpendicular mag-

netic field H at different temperatures below Tc is illustrated
in Fig. 15. The H dependence of resistivity at fixed T < Tc is
qualitatively similar to the ρ(T ) dependence at zero magnetic
field. For all four symmetry classes, the magnetoresistance
shows a maximum that grows with decreasing temperature.
It is worth mentioning that the maximum should become
arbitrarily high as T → 0, yielding a giant magnetoresistance
in agreement with experimental observations. We do not plot
these curves here since we cannot controllably evaluate the
resistance for t � 1 within the one-loop RG.

In addition to lH , the perpendicular magnetic field induces
another length scale lZ related to the Zeeman splitting. Usually,
one expects that lH � lZ since the latter can be estimated as
lZ ∼ lH /

√
(1 + γt (lZ))t(lZ)gL. Here, gL stands for the Landé

g factor. Due to Zeeman splitting, the magnetic field suppresses

the triplet diffuson modes with Sz = ±1 and singlet and triplet
cooperon modes with Sz = 0 at length scales L > lZ .

In the case of fully broken spin-rotational symmetry, there is
no triplet modes, and thus the orbital and Zeeman effects of the
magnetic field on RG equations are the same. Therefore there is
in fact only one length scale associated with the magnetic field
lHZ = min{lH ,lZ}. A similar conclusion holds for the case of
partially broken spin-rotational symmetry, n = 1. Therefore,
in the absence of spin-rotational symmetry, we do not need to
consider the effect of the Zeeman splitting separately.

For the case of preserved spin-rotational symmetry, the
orbital and Zeeman effects are different. For lH � lZ , the RG
equations (47)–(50) should be modified at length scales L > lZ
since two out of three triplet diffusive modes becomes massive
and do not lead to infrared divergences:

dt

dy
= t2[f (γs) + f (γt )], (52)

dγs

dy
= − t

2
(1 + γs)(γs + γt ), (53)

dγt

dy
= − t

2
(1 + γt )[γs + γt ], (54)

d ln Zω

dy
= t

2
(γs + γt ). (55)

Here, y = ln L/lZ and the initial values of couplings in
Eqs. (52)–(55) are given by t(lZ) and γs,t,c(lZ). Therefore,
in this case, a three-step RG scenario is realized.

In the opposite case, lH � lZ , the system at length scales
l < L < lZ is described by RG equations (23)–(27) (with
n = 3). Then, for lZ < L < lH , RG equations transform into
Eqs. (52)–(55) with f (γs) substituted by 1 + f (γs) (weak-
localization correction remains intact in the presence of
Zeeman splitting only). For larger length scales, L > lH , the
system is governed by RG Eqs. (52)–(55). The suppression of
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weak-localization correction does not change the qualitative
behavior of the RG flow.

In the case of a parallel magnetic field, the scale lH
does not appear since the orbital effect of the magnetic field
can be neglected provided lZ � LT � l2

H/d, where d is the
typical width of the film. We thus obtain a two-step RG
scenario in which RG equations are modified at the length
scale lZ . As before, in order to find the physical resistance
ρ(T ,H ), one needs to take into account non-RG corrections
to the conductivity due to superconducting fluctuations. For
|γc(lH )| � 1, we get [76]

σ (T ,H ) = 2

πt(LT )
+ 4

π
ln |γc(lZ)|. (56)

The parallel-field magnetoresistance for the case of pre-
served spin-rotational symmetry is illustrated in Fig. 16 for
several values of temperature below Tc. The dependence of
the resistivity on the parallel magnetic field at fixed temperate
below Tc is essentially different from the ρ(H ) dependence
in the case of a transverse field. First, the maximum at an
intermediate field is much less pronounced in the case of a
parallel field. Second, the parallel-field resistivity increases
with H in strong fields, contrary to the case of a transverse
magnetic field.

VII. DISCUSSION

In this section, we discuss our results and their implications
(in particular, for the phase diagrams of SITs), the relation to
previous works, as well as limitations and possible generaliza-
tions of the RG scheme used.

A. Relevant superconducting systems

1. Symmetry of the order parameter

First of all, we note that our theory is derived for
conventional (BCS) s-wave superconductors, where the effect
of s-wave nonmagnetic impurities on the superconducting
gap and Tc is absent at the semiclassical level (“Anderson
theorem”). Our theory can be generalized to describe the
multiband case with s-wave (or s±-wave) pairing. On the other
hand, in unconventional (p-wave or d-wave) superconductors,
impurities do suppress the superconductivity. As a result, the
diffusion regime does not develop there: either the pairing is so
strong that the superconductivity is established already on the
ballistic scales, or disorder kills the superconductivity. There-
fore, in such systems, the enhancement of superconductivity
by localization (which occurs on the diffusive scales in s-wave
superconductors) is impossible.

However, in such superconductors, a secondary supercon-
ducting transition due to the pairing of Dirac quasiparticles
is possible (which may change the true gap symmetry as,
e.g., d → d + is, thus opening the superconducting gap at
the nodal points of the spectrum), see e.g., Ref. [77] for
review. This transition can be described by the RG equations
generalized for the novel symmetry classes (see Refs. [43,78]).
Furthermore, the peculiar form of the Fermi surface near half-
filling (nesting) may lead to additional emergent symmetries
specific to this problem [79]. In particular, various novel
interaction couplings would be possible by the enhanced

symmetry. Importantly, the Coulomb interaction between the
quasiparticles in this system is screened by the d-wave con-
densate. Thus one can expect a disorder-induced enhancement
of the critical temperature for the secondary superconducting
transition.

2. Macroscopic homogeneity vs granularity

In this paper, we assume that the system is macroscopically
homogeneous and do not discuss granulated superconduc-
tors characterized by weak (Josephson) tunneling between
macroscopic superconducting islands. In granular systems,
additional energy scales appear such as Josephson and
charging energies. We expect, however, that the peculiarities
of inhomogeneous superconductors, while leading to the
emergence of intermediate crossover regimes, do not affect the
universality of the (zero-T ) SIT governed by the symmetries of
the system. The situation resembles the problem of Anderson
metal-insulator transition, which is believed to be universal
independently of whether the microscopic disorder model
is “homogeneous” (e.g., white-noise disorder) or inhomoge-
neous (tunnel-coupled grains).

At the same time, the finite-T behavior of the resistivity
in granular systems will be influenced by the presence of
additional energy scales and thus differ from that of a
homogeneous system. On the other hand, the behavior close to
the transition will be governed by a similar BKT physics both
for granular and homogeneous systems, see the discussion in
Sec. V.

B. Screening of long-ranged Coulomb interaction

Above, we have considered separately the two models
of electron-electron interaction: the long-range Coulomb
interaction and short-ranged interaction. In the latter case, the
superconductivity was shown to be enhanced by Anderson
localization in a wide parametric range. In realistic electronic
systems, there are two mechanisms that can suppress the
Coulomb interaction and make it effectively short-range in
a certain interval of length scales: (i) large dielectric constant
of the medium, and (ii) screening by a nearby external metallic
layer, which results in a less singular dipole-dipole type
interaction at scales larger than the distance to the gate.

In the presence of a dielectric medium, the interaction con-
stant in the singlet channel acquires a momentum dependence:

γs(q) = γ̃s − (1 + γ̃s)
�

� + q
, � = 2πe2

ε

∂n

∂μ
. (57)

Here, γ̃s is the irreducible short-ranged part of the singlet
interaction amplitude, ε is the dielectric constant of the
medium, � is the inverse screening length, and ∂n/∂μ is the
thermodynamic density of states (which is not renormalized
by the interplay of disorder and interaction).

Usually, the condition �−1 � l (the screening radius is
smaller than the mean free path) is fulfilled, and for length
scales L � l, one finds γs = −1, which is a hallmark of
long-ranged Coulomb interaction. However, for a large di-
electric constant the opposite relation, l � �−1, is possible.
In this case, at length scales l � L � �−1, the long-ranged
Coulomb interaction provides a small contribution to γs and is
indistinguishable from the short-ranged interaction within the
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RG. If the scale Lc is smaller than �−1, then the long-ranged
Coulomb interaction does not affect the transition temperature.
Therefore, for a large dielectric constant such that �l � 1,
the long-range Coulomb interaction does not influence the
superconducting temperature provided the following condition
holds:

e2�/t0 � Tc. (58)

When the condition (58) is not fulfilled, the long-ranged
nature of Coulomb interaction screened by a high dielectric
constant becomes effective at large scales L � �−1 before
the superconductivity occurs. While for scales shorter than
the screening radius the coupling constant γc is enhanced by
short-range interaction as compared to the BCS result, at larger
scales, the Coulomb repulsion starts working in the opposite
direction. As a result, one encounters the competition between
the enhancement and suppression of the superconductivity. In
this situation, a more general scheme of including the Coulomb
repulsion is necessary.

The simplest generalization of the RG procedure would be
then a two-step RG. At the first step, for L � �−1, one uses
the short-ranged RG with the initial values of all interaction
couplings determined by the short-range attraction (BCS line).
At the second step, for L � �−1, the RG equations are switched
to the Coulomb case with γs = −1 and the initial values of
other couplings given by the outcome of the first step. However,
within this two-step procedure, the singlet amplitude γs is
instantly switched at L ∼ �−1 from the value dominated by the
phonon-induced attraction, γ̃s(L), to the Coulomb dominated
value γs = −1, implying the change of its sign.

In order to smoothly describe the crossover regime, an
interpolating flow equation for the coupling γs defined in
Eq. (57) can be derived by replacing the momentum by L−1.
In particular, for the case of preserved time and spin-rotational
symmetries, this yields [cf. Eq. (19)]

∂γs

∂y
= − t

2
(1 + γs)

(
γs + 3γt + 2γc + 4γ 2

c

) 1

ZL + 1

− (1 + γs)
ZL

ZL + 1
. (59)

In this flow equation, we have introduced the new coupling
ZL = �L satisfying

∂ZL

∂y
= ZL. (60)

In Eq. (60), we have used the fact that � is not renormalized
by interactions, since it is determined by the electron charge
and the thermodynamic density of states ∂n/∂μ [32]. If
the background medium is characterized by a momentum-
dependent dielectric function ε(q), this would modify Eq. (60)
accordingly. The RG flow governed by Eqs. (59) and (60) can
be viewed as a two-step RG procedure with a short-ranged
singlet amplitude γs � γ̃s(1 + ZL) − ZL at the first step.

We plot the results of the numerical evaluation of the renor-
malization of the Cooper-channel coupling γc for ln(1/�l) = 2
using the two-step and interpolating RG procedures in Fig. 17.
One can see that the enhancement of the superconductivity at
the first (short-ranged) step of the RG is more important than
the suppression at the second (long-ranged) step. As shown
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FIG. 17. (Color online) Effect of a high dielectric constant on

the renormalization of Cooper-channel coupling γc. Black curve
corresponds to the solution of RG equations (33)–(36) for γc0 = γt0 =
−γs0 = −0.1, and t0 = 0.05. Blue curve corresponds to the behavior
of γc on L for the clean BCS case. Red curve is obtained from
the numerical solution of the two-step RG equations for ln(1/�l) =
2. Red dashed curve is obtained from the numerical solution of
the crossover RG equations (59) and (60). (Inset) Dependence
of Tc/(Tc + T BCS

c ) on ln(1/�l) for two-step (solid) and crossover
(dashed) RG equations.

in the inset, the overall enhancement of the superconductivity
takes place (for chosen values of the bare interactions and
resistivity) for (�l)−1 � 3 ÷ 4. For larger screening lengths,
both the two-step and interpolating RG procedures yield close
results for the enhancement of Tc.

The long-range Coulomb repulsion can also be screened
by a nearby metallic layer. Specifically, the electron-electron
repulsion can be considered as short-ranged on scales L larger
than the spacer width ws . When the mean-free path is larger
than ws , we have the short-range case from the very beginning.
In the opposite case ws � l, without additional screening by
the dielectric medium (i.e., for �L � 1) the RG procedure
corresponds to the Coulomb case γs = −1 [up to small
corrections of the order of (�ws)−1 � 1] for scales L � ws .
For larger scales, the interaction becomes of the dipole-dipole
type, but the singlet interaction constant inherited from the
first step remains Coulomb-like, γs � −1. Therefore a metallic
layer placed at the distance ws � l is not sufficient to screen
the Coulomb repulsion such that the superconductivity would
be enhanced. However, the combination of the screening
by a medium with a large dielectric constant (see above)
and by the metallic layer does lead to the enhancement of
the superconductivity as compared to the cases when these
screening mechanisms are considered separately. Indeed, these
two mechanisms make the interaction effectively short-ranged
(with |γs | < 1) for short and large scales, respectively. In
particular, for �ws � 1, there is no room for the Coulomb
regime at all.
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C. Enhancement of superconductivity for short-range repulsion

Most of experiments on the superconducting transition in
2D films have been performed without screening the long-
range component of the interaction. It is desirable to explore
whether the mechanism of the enhancement of superconduc-
tivity addressed in the present work may be employed in prac-
tice to obtain structures with substantially enhanced Tc. The
key condition is a suppression of the long-range component
of the Coulomb interaction [37,38]. This opens a new way for
searching novel materials exhibiting high-temperature super-
conductivity: one needs the combination of a large dielectric
background constant and disorder in layered structures.

As mentioned in Introduction, 2D superconductivity has
been recently realized in interfaces between two oxides,
in particular, in LaAlO3/SrTiO3 interfaces [16,17]. These
systems possess unique electrostatic properties owing to the
giant dielectric constant of SrTiO3. In particular, the long-
range component of the Coulomb interaction is expected to
be strongly screened in such materials. Although currently,
the highest Tc reached in such materials is rather low as
compared to high-Tc materials, the dependence of Tc on the
conductivity of a normal state is nonmonotonic, which agrees
with the localization-induced mechanism of the supercon-
ductivity enhancement. Further investigations are required to
identify the ways for increasing Tc in strongly screened oxide
interfaces, and to analyze optimal materials, structure design,
and operation regimes, depending on the microscopic details.

A possible route for increasing the superconducting tran-
sition temperature in these materials is based on further sup-
pression of the long-range Coulomb interaction by designing
a double-interface structure with a LaAlO3 layer sandwiched
between two SrTiO3 oxides. In such a setup, already ten atomic
layers of LaAlO3 are sufficient, so that the screening properties
of the sample would be fully determined by the giant dielectric
constant of SrTiO3. At the same time, the two interfaces
would be coupled by the interlayer interaction, similarly
to the Coulomb drag problem in double-layer structures.
The corresponding generalization of the sigma model would
include an additional degree of freedom (a pseudospin in the
interface space). Furthermore, the doping of SrTiO3 layers
away from the interfaces can produce an effective metallic
gate made of the same material.

A simpler setup would involve an amorphous superconduct-
ing film placed on a SrTiO3 substrate (again possibly doped
away from the interface) with high dielectric constant instead
of more conventional SiO2 or Al2O3 insulating substrates1

typically used in experiments on the SIT. On the other side
of the substrate, one can place a metallic gate, thus realizing
both mechanisms of screening discussed above. An interesting
possibility of arranging a closely located metallic layer is
provided by BN-graphene heterostructures [83] with gated
graphene layer serving as a metallic gate and BN playing a

1Recently, evidence for an order-of-magnitude increase of Tc in
single-layer FeSe films placed on the SrTiO3 substrate as compared
to thicker FeSe films on conventional insulating substrates [22] has
been reported in Ref. [89]. One might expect that, among other
possible factors, the screening of the Coulomb interaction by the
SrTiO3 substrate plays an important role in this observation.

role of a thin spacer. In this situation, a generalization of the
RG equations (23)–(27) to the case of two layers (similar to
Ref. [59]) needs to be done.

Recently, the superconductivity has been studied in layered
material LixZrNCl [24]. It was found that with increase of
doping level x the transition from insulator to superconductor
occurs at x ≈ 0.05. The critical resistance is close to h/2e2.
The temperature dependence of the resistivity, ρ(T ), measured
across the transition is qualitatively similar to the one shown
in Fig. 14(b). Near the SIT, the superconducting transition
temperature increases with decrease of doping level: from
Tc(x ≈ 0.12) ≈ 11 K to Tc(x ≈ 0.05) ≈ 16 K. Such behavior
of superconducting temperature is in suit with the dependence
Tc(t0) on BCS line predicted by our theory (see the inset
to Figs. 6 and 7). Similar nonmonotonous dependence of Tc

on disorder was measured in W and Mo based films (for an
overview, see Ref. [84]).

In the case of repulsion in the particle-hole channel, the
enhancement of superconductivity by Anderson localization
(in comparison with the corresponding clean system) occurs
in a certain range of (not too strong) interaction and (not
too weak) disorder, see Figs. 5, 7, and 13. It should be
stressed, however, that the critical temperature for short-range
interaction is predicted to be always higher than Tc for
unscreened Coulomb interaction when other parameters are
kept fixed, see, e.g., the inset to Fig. 17. Therefore we propose
to perform benchmarking experiments, measuring Tc in the
same superconducting film placed on the substrate with a
high dielectric constant (say, STO-material that screens the
long-range Coulomb repulsion) and on the reference substrate
with a not too high ε (say, SiO2 or Al2O3). The experiments
should be performed for sufficiently dirty samples (but still on
superconducting side of the SIT), since the stronger disorder
leads to a stronger difference between the critical temperatures
in the two cases, see Fig. 18.

D. Relation to numerical results

Recent numerical calculations [85,86] demonstrate that
disorder may indeed enhance the superconductivity in a certain
range of parameters. These results should be contrasted with
numerical simulations of a two-dimensional disordered Hub-
bard model with strong on-site attraction in small-size systems
that yielded a monotonous suppression of Tc with increasing
disorder [87]. The physics behind the results of our work
develops for not too strong disorder and interaction, whereas
Ref. [87] focused on the opposite limit. Specifically, we predict
the enhancement of Tc by the Anderson localization in 2D
when both disorder and interaction are weak: |γc0| � t0 �√|γc0| � 1. In terms of the disordered Hubbard model used
in numerical simulations [87], this regime corresponds to the
following range of parameters: |U | � V � √|U | � 1, where
U and V stand for dimensionless interaction and disorder.

It is the strong interaction U that allowed the authors
of Ref. [87] to extract the information on superconducting
properties from the simulation on a rather small system of 8 ×
8 sites. As seen from Fig. 7, in the strong-coupling regime, our
theory agrees with the numerics of Ref. [87]. Indeed, for strong
attraction and strong disorder, our theory predicts a suppres-
sion of the mean-field Tc (and hence a suppression of the true
critical temperature). The point is that, in realistic systems, the
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FIG. 18. (Color online) The case of broken spin-rotational sym-
metry. Comparison of superconducting transition temperature for the
Coulomb interaction (T C

c ) and for the short-ranged interaction on the
BCS line (T SR

c ). The color indicates the ratio (T C
c + T BCS

c )/(T SR
c +

T BCS
c ). The dashed curve corresponds to the boundary of SC phase in

the case of the Coulomb interaction.

attraction is normally considerably weaker (otherwise Tc

would be given by the Debye energy and no challenge of ob-
taining high-temperature superconductivity existed) and this is
precisely the range of γc where the enhancement of supercon-
ductivity is expected according to our predictions. The results
of Ref. [87] may in addition reflect the difference between Tc

and TBKT in the strongly disordered case, see Sec. V. If one
extrapolates the Beasley-Mooij-Orlando estimate [80] to the
regime of strong disorder, tm ∼ 1, one gets (Tc − TBKT)/Tc ∼
1. This correlates with the numerical findings of Ref. [87]:
for strong disorder, TBKT may be significantly lower than the
mean-field Tc (this difference might be important near the SIT).

In fact, the disordered Hubbard model contains all the
ingredients required for the enhancement of superconductivity
by multifractality, but the range of optimal parameters requires
large system sizes. To verify our prediction numerically
within the disordered Hubbard model, one has to use weaker
interaction and disorder and hence larger system sizes of
N × N sites, where due to the logarithmic renormalization
of couplings in 2D, N depends exponentially on the inverse
disorder strength. Rough estimates yield at least N ∼ 30–50
for the minimal system size where the enhancement can be
detected. Indeed, in Ref. [85], where an enhancement of the
superconductivity by disorder in a honeycomb lattice was
detected for a certain range of parameters, the number of sites
in the attractive Hubbard model was 900–1600, in consistency
with the above estimate. At the same time, such system sizes
are still much smaller than the sizes of real macroscopic
systems where the regime required for a strong enhancement
of Tc by our mechanism can be realized.

E. Beyond one-loop RG: Structure of the phase diagram

In Sec. IV, we have analyzed the one-loop RG equations for
the cases of preserved and broken spin-rotational symmetry.
As we have shown, the one-loop precision is applicable for
t max{1,|γc|} � 1, and therefore some fixed points of the full
phase diagram remain unaccessible at this level, see gray areas
in Figs. 1 and 9. Here, we discuss an expected structure of the
full phase diagram, going beyond the one-loop RG equations.
We will focus on the SIT part of the phase diagram, first
disregarding the complications related to the appearance of
additional phases such as the ferromagnetic (FM) phase for
the case of preserved spin-rotational symmetry and the critical
metal (CM) for the spin-orbit case. Furthermore, for simplicity,
we consider the Coulomb case, γs = −1, which allows us to
reduce the parameter space for the RG flow. We expect that
the superconductor-insulator quantum phase transition is not
sensitive to details of interactions and, therefore, concentrate
on the simplest case of broken spin-rotational symmetry, where
we have a two-parameter RG flow (for couplings t and γc).

In Fig. 19(a), we plot schematically the expected phase
diagram for a physical electrical resistance ρ (that can differ
from the NLSM coupling t as discussed in Sec. VI) and
a parameter γ̃c (“generalized superconducting interaction”)
characterizing the superconducting correlations in the system.
On the mean-field level, this parameter is just equal to
γc, but beyond the mean-field description it also reflects
order-parameter fluctuations and thus characterizes the overall
superconducting coherence (hence tilde), diverging when the
true 2D superconductivity is established. The superconducting
fixed point is then located at ρ = 0 and γ̃c = −∞. As
mentioned in Sec. V above, the SIT is most likely governed by
the fixed point at ρ = ρ∗ ∼ 1 and γ̃c = −∞, see Fig. 19(a).
The existence of such fixed point is compatible with the RG
flows shown in Figs. 1 and 9. The SIT occurs through the
separatrix connecting this fixed point with the trivial clean
noninteracting fixed point ρ = γ̃c = 0.

Two more possibilities compatible with Figs. 1 and 9 are as
follows: (i) the fixed point at ρ = ∞ and γ̃c = −∞ is unstable
and the SIT fixed point is located at ρ ∼ 1 and |γ̃c| ∼ 1, see the
right panel in Fig. 19(b) and (ii) the SIT fixed point is located
at ρ = ∞ and γ̃c = −∞.

In both these cases, the flow towards the superconducting
fixed point would occur in the presence of strong super-
conducting correlations for an arbitrary high resistivity. The
existence of the SIT in granular systems (or 2D Josephson-
junction arrays) provides a strong evidence against such a
scenario. Indeed, in such strongly inhomogeneous systems,
the superconductivity is established locally, but sufficiently
strong disorder prevents vanishing of the total resistance.

At the same time, our one-loop RG analysis does not
exclude the possibility of existence of an intermediate metallic
phase around ρ ∼ 1 at γ̃c = −∞, e.g., as shown in the left
panel of Fig. 19(b). This metallic phase might be governed
by either a segment of fixed points or by an attractive
metallic fixed point. In both cases, this intermediate metallic
phase would resemble a so-called “Bose metal” mentioned
in Introduction. Experimental evidence for existence of such
a phase was reported in literature. In the case of preserved
spin-rotation invariance, we do not see any indications for
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FIG. 19. (Color online) Sketch of possible RG flows for the SIT
with the unstable fixed point at ρ = ρ∗ and |γ̃c| = ∞ (a) and with the
metallic phase at γ̃c = ∞ [(b), left panel] or the fixed point at ρ ∼ 1
and |γ̃c| ∼ 1 [(b), right panel].

such a scenario. For the spin-orbit class, our theory does
suggest a critical-metal phase with resistivity of the order of
resistance quantum, somewhat similar to the proposed “Bose
metal.” However, in the phase diagram this phase is separated
from the superconductor by a narrow insulating region, so
that the expected sequence of quantum phase transitions is
SC–I–CM–I. More work is needed to prove or disprove the
possibility of the intermediate metallic phase both within the
NLSM formalism and experimentally.

0 Tmin 1
0

Rc �Tmin�

Rc

1

TΤ

R
�R

c

FIG. 20. (Color online) Sketch of a typical dependence R(T )
near the SIT. The black dashed curve demonstrates how the maximal
resistance approaches the critical one with decrease of T . The
solid green curve indicates the separatrix. The dashed green line
demonstrates approximation to the critical resistance from the curves
available for T > Tmin (see text).

Returning to the phase diagram in Fig. 19(a), we emphasize
that the SIT fixed point at ρ∗ ∼ 1 and γ̃c = −∞ is reached
only at infinite RG scale, corresponding to exactly zero T .
This implies that in realistic experiments (performed at finite
temperature) the flow along the separatrix might seem as a flow
towards an insulator. As a result, the critical value of resistance
Rc(Tmin) inferred from the temperature dependence of the
resistivity measured down to finite Tmin might be lower than
the true critical value Rc = (h/e2)ρ∗, see Fig. 20. Moreover,
the “critical” values Rc(Tmin) extracted in such a manner from
experimental data may significantly differ for different values
of Tmin. This example is typical for the two- (and more)
parameter scaling and demonstrates that the “nonuniversality”
of the critical resistance of the SIT might be an artifact of the
interpretation of the data obtained for finite temperatures.

It is also worth noting that in the case of preserved
spin-rotational symmetry (realized in many SIT experiments),
the RG flow includes an extra dimension corresponding
to the triplet coupling γt . In this situation, depending on
the initial parameters, the SIT fixed point at ρ∗ ∼ 1 in the
three-dimensional parameter space can be reached both from
above and from below, thus leading to different conclusions on
the value of Rc obtained at finite Tmin in different samples or
settings. Moreover, the extra dimension in the phase diagram
in this case might result in a nonmonotonic temperature
dependence of the resistivity at the SIT, as observed in some
experiments.

Let us emphasize that the phase diagram in Fig. 19 is
obtained within the framework of the so-called “fermionic
mechanism” of the SIT (associated to the works by Finkel’stein
[32,42,47]). There is a popular misconception in literature
stating that, contrary to the “bosonic mechanism” [33,88]
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yielding ρ∗ ∼ 1, the fermionic mechanism predicts ρ∗ � 1
for a system with the Coulomb interaction. Our analysis
demonstrates that this is not so: the SIT within the “fermionic
mechanism” is governed by a fixed point with the critical
resistivity ρ∗ ∼ 1. The confusion might arise if one neglects
localization effects (due to interference and interactions) in
the analysis of Tc as in Refs. [32,47]. Indeed, for very weak
disorder (t0 � γ 2

c0), the renormalization of t is negligible, see
Figs. 1 and 9, where the red SC curves appear to be almost
horizontal for small t0. However, with increasing disorder and
approaching the separatrix (t0 ∝ γ 2

c0 � 1), the red SC curves
become more and more pushed into the region of ρ ∼ 1 at low
temperatures, and the critical resistance Rc is of the order of Rq .
In other words, the temperature dependence of the resistivity
for SC curves close to the transition reaches at the maximum
a value ∼Rq before dropping down with further lowering of
the temperature. This is very well illustrated by the resistivity
plots in the present paper. We thus reiterate that both fermionic
and bosonic mechanisms predict the SIT governed by a fixed
point at ρ∗ ∼ 1.

VIII. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we have explored by means
of the RG approach the interplay of superconductivity, inter-
action, and localization in 2D quantum systems. The focus
has been put on the SIT in thin films. Our main results are as
follows.

(1) Within the nonlinear sigma model formalism, we have
derived the full set of one-loop (in disorder strength t � 1) RG
equations for a 2D disordered interacting system, Eqs. (23)–
(26). Formally, these RG equations are valid for arbitrary
interaction couplings, including an arbitrary strong amplitude
γc in the Cooper channel. The range of the applicability of
one-loop RG equations has been identified as the domain
t max{1,|γc|} � 1: beyond this range, higher loops become
important when approaching to the insulator t = ∞, or else,
to the superconducting instability, γc = −∞.

(2) We have employed the RG framework to explore the
structure of the phase diagram at zero magnetic field. The anal-
ysis of RG equations has been performed for systems both with
and without spin-orbit interaction (see Figs. 1, 2, 5, 7, 9, 11,
and 13). Furthermore, the cases of the short-ranged and
long-ranged Coulomb interactions have been investigated. In
general, the phase diagram of a 2D disordered interacting
system is determined by multi-parameter scaling and depends
on the symmetry of the problem.

(3) The enhancement of 2D superconductivity by the
Anderson localization [37] has been confirmed for the short-
range case. We have identified the parameter regions where
the superconductivity is enhanced by localization, both for the
cases of preserved and broken spin-rotational symmetry (see
Figs. 5, 7, and 13).

(4) In the case of preserved spin-rotational symmetry, the
RG flow describes the three-parameter (for the Coulomb repul-
sion) or four-parameter (for the short-range repulsion) scaling,
thus rendering the phase diagram multidimensional, with
nontrivial fixed points appearing. In particular, a ferromagnetic
phase develops with the metallic temperature behavior of the
resistivity in a range of temperatures above the ferromagnetic

instability (see Fig. 4). This behavior of resistivity in the
ferromagnetic phase may be confused with a tendency to
superconductivity in experiments.

(5) The presence of spin-orbit coupling (which removes the
triplet interaction channel and converts weak localization into
antilocalization) strongly affects the overall phase diagram.
Two of this changes are fully expected. First, the spin-orbit
coupling eliminates the ferromagnetic phase. Second, in
the case of the short-range interaction, a supermetal phase
emerges. What is much more intriguing, our results indicate
that a critical-metal phase with resistivity of the order of
resistance quantum Rq may arise (see Figs. 9 and 10). This
phase bears certain similarity with a “Bose metal” phase,
evidence for which has been found in some experiments.

(6) We have evaluated the temperature dependence of the
electrical resistivity, ρ(T ), for given bare (high-temperature)
couplings down to the lowest temperatures of the applicability
of the one-loop RG approach. In this temperature range, the
resistivity is dominated by the NLSM coupling t taken at the
length scale LT . At lower temperatures, in the close vicinity of
Tc, the electric resistivity is controlled by contributions due to
inelastic processes (which are not automatically included by
the RG procedure but rather require an additional calculation
once the RG has been stopped by temperature). These
corrections lead to a strong suppression of ρ(T ) (see Fig. 14).

(7) We have studied the magnetoresistance near the SIT
(Sec. VI). Both orbital and Zeeman effects of the magnetic field
have been included in the unifying RG scheme complemented
by the analysis of fluctuation corrections near the super-
conducting transition. A nonmonotonous magnetoresistance,
see Fig. 15, has been predicted, with a maximum near the
critical field Hc, in agreement with experimental observations.
The magnetoresistance becomes progressively stronger with
lowering temperature and becomes giant as T → 0, as also
seen in experiments.

(8) We have further discussed in Sec. VII the limitations and
generalizations of our approach as well as comparison between
our theory and experiments. In particular, we have analyzed
in detail how the screening of the Coulomb interaction
by substrates with high dielectric constant and by external
metallic gates can be taken into account within our framework
(see Fig. 17).

(9) This consideration allowed us to propose specific sample
designs for experimental observation of the superconductivity
enhancement. Also, we argued that our results for enhance-
ment of the superconductivity are in qualitative agreement with
the experimental observations in layered material LixZrNCl.

(10) We have discussed the possible overall structure of a
generic SIT phase diagram (see Fig. 19) and the implications
of our findings for the experimental verification of the
universality of this quantum phase transition (see Fig. 20). In
particular, we have shown that, in contrast to a popular belief,
both “fermionic” and “bosonic” mechanisms of the SIT have
to do with the fixed point characterized by R ∼ Rq .

Our findings are in a qualitative agreement with most of
the experiments on 2D superconductivity in disordered films.
In particular, our approach explains a seemingly nonuniversal
behavior of the critical resistance Rc found experimentally in
different systems. Further, the analysis of the RG equations in
a magnetic field is in accord with the experimentally observed
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nonmonotonic behavior of the magnetoresistance near the
SIT.

The detailed analysis of the temperature dependence of
the resistivity in the close vicinity of the “classical” (finite-T )
superconducting phase transition governed by the Berezinskii-
Kosterlitz-Thouless physics is a subject of future work [54].
The effect of disorder and interaction on the topological sector
of the theory (vortices in the order-parameter phase) is ex-
pected to be increasingly more pronounced upon approaching
the SIT. A related line of future research [54] is devoted to the
study of the zero-T resistance of a disordered superconducting
film as a function of the sample size. Further, the RG approach
developed here will be employed for studying the local tun-
neling density of states (including its mesoscopic fluctuations)
in the presence of superconducting correlations [45] as well
as the fluctuations of the superconducting order parameter
near the SIT, as measured in experiments. Finally, the role of
strong local superconducting fluctuations in the physics on the
insulating side of the SIT still requires further study.
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APPENDIX A: BACKGROUND FIELD
RENORMALIZATION OF THE NONLINEAR

SIGMA-MODEL ACTION

In this Appendix, we present details of the derivation of
one-loop renormalization of the NLSM action (1) with the help
of the background field renormalization. Let us separate the
matrix field Q into the “fast” (Q) and “slow” (Q0 = T −1

0 
T0)
modes as

Q → T −1
0 QT0. (A1)

We assume that the “fast” matrix field Qnm has a nontrivial
structure in the Matsubara space for frequencies |n|,|m| <

Nmax, whereas the “slow” matrix field T0 has a nontrivial
structure only for smaller frequencies:

(T0)nm =
{

(T0)nm, |n| ≤ nmax and |m| ≤ nmax,

δnm, |n| ≤ nmax or |m| ≤ nmax.
(A2)

In what follows, we assume that Nmax � nmax � 1.
It is convenient to rewrite the sum of interacting terms S

(ρ)
int ,

S
(σ )
int , and S

(c)
int in NLSM (1) as

Sint = −πT

4

∑
αn

∑
r,j

∫
d r�rj Tr

[
J α

n,rjQ
]

tr
[
J α

n,rjQ
]
, (A3)

where

Jn,rj =
{
Intrj , r = 0,3, j = 0,1,2,3,

Lntrj , r = 1,2, j = 0,1,2,3.
(A4)

and

�r0 = (−1)r�s, �rj = −(−1)r�t , r = 0,3, j = 1,2,3,

�r0 = �c, �rj = 0, r = 1,2, j = 1,2,3. (A5)

The effective action for the slow Q0 field is given by

Seff[Q0] = ln
∫

D[Q] exp S
[
T −1

0 QT0
]

(A6)

with

S
[
T −1

0 QT0
] = S[Q0] + S[Q] + Oσ + Oint + Oη, (A7)

where

Oσ = O(1)
σ + O(2),1

σ + O(2),2
σ ,

(A8)
Oint = O

(1),1
int + O

(1),2
int + O

(2),1
int + O

(2),2
int .

Here we introduce the following terms (δQ = Q − 
):

O(1)
σ = −g

8

∫
d r Tr AδQ∇δQ,

O(2),1
σ = −g

8

∫
d r Tr AδQA
,

O(2),2
σ = − g

16

∫
d r Tr AδQAδQ,

O
(1),1
int = −πT

2

∑
αn

∑
r,j

∫
d r�rj Tr

[
J α

n,rj δQ
]

tr
[
J α

n,rjQ0
]
,

O
(1),2
int = −πT

2

∑
αn

∑
r,j

∫
d r�rj Tr

[
J α

n,rj δQ
]

tr
[
Aα

n,rj δQ
]
,

O
(2),1
int = −πT

2

∑
αn

∑
r,j

∫
d r�rj Tr

[
J α

n,rjQ0
]

tr
[
Aα

n,rj δQ
]
,

O
(2),2
int = −πT

4

∑
αn

∑
r,j

∫
d r�rj Tr

[
Aα

n,rj δQ
]

tr
[
Aα

n,rj δQ
]
,

Oη = 4πT Zω

∫
d r tr AηδQ, (A9)

where

A = T0∇T −1
0 , Aη = T0[η,T −1

0 ], Aα
n,rj = T0

[
J α

n,rj ,T
−1

0

]
.

(A10)
In the one-loop approximation, the effective action Seff[Q0]

can be obtained by expansion of S[T −1
0 QT0] to the second

order in Aη and Aα
n;rj . Then, we find

Seff[Q0] = S[Q0] + 〈Oσ 〉 + 〈Oint〉 + 〈Oη〉
+ 1

2 〈(Oσ + Oint + Oη)2〉, (A11)

where the average 〈. . . 〉 is taken with respect to action (1).
For the perturbative (in 1/g) treatment of the correlations

of the fast fields in Eq. (A11), we shall use the square-root
parametrization of the fast fields:

Q = W + 

√

1 − W 2, W =
(

0 w

w̄ 0

)
. (A12)

We adopt the following notations: Wn1n2 = wn1n2 and Wn2n1 =
w̄n2n1 with n1 ≥ 0 and n2 < 0. The blocks w and w̄ (in
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Matsubara space) obey

w̄ = −CwT C, w = −Cw∗C. (A13)

The second equality here implies that in the expansion w
αβ
n1n2 =∑rj (wαβ

n1n2 )rj trj some of the elements (wαβ
n1n2 )rj are real and some

are purely imaginary.
Expanding the NLSM action (1) to the second order in W , we find the following propagators for diffusive modes. The

propagators of diffusons (r = 0,3 and j = 0,1,2,3) read

〈
[wrj (q)]α1β1

n1n2
[w̄rj (−q)]β2α2

n4n3

〉 = 2

g
δα1α2δβ1β2δn12,n34Dq(i�ε

12)

[
δn1n3 − 32πT �j

g
δα1β1D(j )

q

(
i�ε

12

)]
, (A14)

where �ε
12 = εn1 − εn2 = 2πT n12 = 2πT (n1 − n2). The standard diffuson propagator is given as

D−1
q (iωn) = q2 + 16Zω|ωn|/g. (A15)

The diffusons renormalized by interaction in the singlet [D(0)
q (ω) ≡ Ds

q(ω)] and triplet [D(1)
q (ω) = D(2)

q (ω) = D(3)
q (ω) ≡ Dt

q(ω)]
particle-hole channels are as follows:

[
Ds

q(iωn)
]−1 = q2 + 16(Zω + �s)|ωn|/g,

(A16)[
Dt

q(iωn)
]−1 = q2 + 16(Zω + �t )|ωn|/g.

The propagators of singlet cooperon modes (r = 1,2 and j = 0) can be written as

〈
[wr0(q)]α1β1

n1n2
[w̄r0(−q)]β2α2

n4n3

〉 = 2

g
δα1α2δβ1β2δn14,n32Cq

(
i�ε

12

)[
δn1n3 − 64πT z

g
δα1β1Cq

(
i�ε

34

)
Lq(iE12)

]
, (A17)

where E12 = εn1 + εn2 , Cq(iωn) ≡ Dq(iωn), and the fluctuation propagator (γc = �c/Zω)

L−1
q (iωn) = γ −1

c + ln



4πT
− ψ

(
Dq2 + |ωn| + 
′

4πT
+ 1

2

)
+ ψ

(
1

2

)
. (A18)

Here, D = g/(16Zω) stands for the diffusion coefficient, ψ(z) denotes the digamma function, and 
 = 4πT Nmax (
′ =
4πT nmax) determines the ultraviolet (infrared) for the fast modes. The propagators of triplet cooperons (r = 1,2 and j = 1,2,3)
are insensitive to the interaction and are as follows:

〈
[wrj (q)]α1β1

n1n2
[w̄rj (−q)]β2α2

n4n3

〉 = 2

g
δα1α2δβ1β2δn1n3δn2n4Cq

(
i�ε

12

)
. (A19)

In general, each term in the right-hand side of Eq. (A11) produces contributions that cannot be expressed in terms of Q0 only.
However, all such contributions cancel in the total expression (A11). Therefore we will not list them below. Expanding δQ in
series of W according to Eq. (A12) and performing averaging with the help of Eqs. (A14) and (A17), we obtain the action (1)
for the slow field Q0 but with

g(
) → g(
′) = g(
) + δg,

�s,t,c(
) → �s,t,c(
′) = �s,t,c(
) + δ�s,t,c, (A20)

Zω(
) → Zω(
′) = Zω(
) + δZω.

The contributions δg,δ�s,t,c, and δZω take into account the effect of integration over the fast modes from the ultraviolet energy
scale 
 down to new ultraviolet scale 
′.

Below we list the different nonzero contributions to δg,δ�s,t,c, and δZω from each term in the right-hand side of Eq. (A11).
We start from corrections to the conductance:

〈
O(2),1

σ

〉→ δg(2),1
σ = 2

∫
q,ωn

[
2C2

q (iωn)Lq(iωn) +
3∑

j=0

γjDq(iωn)D(j )
q (iωn)

]
(A21)

and
〈
O(2),2

σ

〉→ δg(2),2
σ = −4

∫
q

Cq(0). (A22)

Here we use the following notation:
∫

q,ωn

≡ 2πT

D

∑
n>0

∫
d2q

(2π )2
�(
 − Dq2 − |ωn|)�(Dq2 + |ωn| − 
′) (A23)
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and ∫
q

≡
∫

d2q
(2π )2

�(
 − Dq2)�(Dq2 − 
′), (A24)

where �(x) stands for the Heaviside step function. Next,

〈
O

(2),2
int + 1

2

[
O

(1),2
int

]2〉→ δg
(2),2
int = −2

∫
q,ωn

3∑
j=0

γjDq(iωn)D(j )
q (iωn)[1−2q2Dq(iωn)] − 4

∫
q,ωn

Lq(iωn)C2
q (iωn)[1−2q2Cq(iωn)].

(A25)

In total, we find

g(
′) = g(
) − 4
∫

q

Cq(0) + 4
∫

q,ωn

q2

⎡
⎣2C3

q (iωn)Lq(iωn) +
3∑

j=0

γjD2
q(iωn)D(j )

q (iωn)

⎤
⎦. (A26)

The renormalization of Zω is described by the following terms:

〈Oη〉 → δZη
ω = 2

g
Zω

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦, (A27)

〈
O

(2),2
int + 1

2

[
O

(1),2
int

]2〉→ δZ(2),2
ω = 2

g

∫
q,ωn

⎧⎨
⎩

3∑
j=0

�j

[
D−1

q (iωn)D(j )
q (iωn) − 1

]
∂nDq(iωn) + 2ZωCq(iωn)∂nLq(iωn)

⎫⎬
⎭, (A28)

where ∂nf (iωn) ≡ (g/16)∂f/∂ωn. Combining Eqs. (A27) and (A28) together, we obtain

Zω(
′) = Zω(
) + 2

g
(�s + 3�t )

∫
q,ωn

D2
q(iωn) + 4

g
Zω

∫
q,ωn

[Cq(iωn)∂nLq(iωn) − Lq(iωn)∂nCq(iωn)]. (A29)

The corrections to the interaction amplitude �s are as follows:

〈
O

(2),1
int

〉→ δ�
(2),1
s,int = 4

g
�s

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦, (A30)

〈
O

(2),2
int + 1

2

[
O

(1),2
int

]2〉→ δ�
(2),2
s,int = − 2

g
(�s + 3�t )

∫
q

Dq(0) − 4

g
Zω

∫
q

Cq(0)Lq(0) − 8

g
Zω

∫
q,ωn

C2
q (iωn)L2

q(iωn), (A31)

〈
O

(1),1
int O

(1),2
int

〉→ δ�
(1),1;(1),2
s,int = − 4

g
�s

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦. (A32)

In total, we find

�s(

′) = �s(
) − 2

g
(�s + 3�t )

∫
q

Dq(0) − 4

g
Zω

∫
q

Cq(0)Lq(0) − 8

g
Z2

ω

∫
q,ωn

C2
q (iωn)L2

q(iωn). (A33)

The corrections to the interaction amplitude �t can be listed as follows:

〈
O

(2),1
int

〉→ δ�
(2),1
t,int = 4

g
�s

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦, (A34)

〈
O

(2),2
int + 1

2

[
O

(1),2
int

]2〉→ δ�
(2),2
t,int = − 2

g
(�s − �t )

∫
q

Dq(0) + 4

g
Zω

∫
q

Cq(0)Lq(0) − 8

g
�2

t

∫
q,ωn

Dt2
q (iωn), (A35)

1

2

〈[
O

(1),1
int

]2〉→ δ�
(1),1;(1),1
t,int = 8

g
�2

t

∫
q,ωn

[
D2

q(iωn) − Dt2
q (iωn)

]− 8

g
�2

t

(
D

4πT

)2 ∫
q,ωn

Lq(iωn)ψ ′′(Xq,i|ωn|), (A36)

〈
O

(1),1
int O

(1),2
int

〉→ δ�
(1),1;(1),2
t,int = 4

g
�t

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) −
3∑

j=0

�jDq(iωn)D(j )
q (iωn) + 4�tDt2

q (iωn)

⎤
⎦. (A37)
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Here, Xq,i|ωn| = (Dq2 + |ωn| + 
′)/(4πT ) + 1/2. In total, we obtain

�t (

′) = �t (
) − 2

g
(�s − �t )

∫
q

Dq(0) + 8

g
�2

t

∫
q,ωn

D2
q(iωn) + 4

g
Zω

∫
q

Cq(0)Lq(0)

+ 16

g
�tZω

∫
q,ωn

Lq(iωn)

[
C2

q (iωn) − �t

2z

(
D

4πT

)2

ψ ′′(Xq,i|ωn|)
]
. (A38)

Finally, the corrections to the Cooper channel interaction amplitude �c are given as

〈
O

(2),1
int

〉→ δ�
(2),1
c,int = 4

g
�c

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦, (A39)

〈
O

(2),2
int + 1

2

[
O

(1),2
int

]2〉→ δ�
(2),2
c,int = − 2

g
(�s − 3�t )

∫
q

Dq(0) − 2

g
�sZω

∫
q,ωn

D−1
q (iωn)D(s)

q (iωn)Lq(iωn)
[
D2

q(iωn) + C2
q (iωn)

]
,

(A40)

1

2

〈[
O

(1),1
int

]2〉→ δ�
(1),1;(1),1
c,int = −�cLq=0(iωn = 0)

∫
ωm

Cq=0(iωm), (A41)

〈
O

(1),1
int O

(1),2
int

〉→ δ�
(1),1;(1),2
c,int = 4

g
�c

[
−Lq=0(iωn = 0)

∫
ωm

Cq=0(iωm)

]

×
∫

q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦. (A42)

Here we introduce ∫
ωn

≡ 2πT

D

∑
n>0

�(
 − Dq2 − |ωn|)�(Dq2 + |ωn| − 
′). (A43)

In total, we obtain

�c(
′) = �c(
) + �c

[
−Lq=0(iωn = 0)

∫
ωm

Cq=0(iωm)

]
4

g

∫
q,ωn

⎡
⎣2ZωC2

q (iωn)Lq(iωn) +
3∑

j=0

�jDq(iωn)D(j )
q (iωn)

⎤
⎦

− 2

g
(�s − 3�t )

∫
q

Dq(0) − 2

g
�sZω

∫
q,ωn

D−1
q (iωn)D(s)

q (iωn)Lq(iωn)
[
D2

q(iωn) + C2
q (iωn)

]
. (A44)

We emphasize that Eqs. (A29) and (A33) implies that

Zω(
′) + �s(

′) = Zω(
) + �s(
) + 4

g
Zω

∫
q,ωn

Cq(iωn)L2
q(iωn)

[
ψ ′(Xq,i|ωn|) − 4πT

D
Cq(iωn)

]
= Zω(
) + �s(
). (A45)

Here we employ the following relation: ∂nLq(iωn) = [D/(4πT )]L2
q(iωn)ψ ′(Xq,i|ωn|). Also since 
′ � 4πT , we use that

ψ ′(Xq,i|ωn|) ≈ (4πT /D)Cq(iωn).
The one-loop renormalization of the parameters of the NLSM action obtained from the background field procedure can be

summarized as follows:

g(
′) = g(
) − 4
∫

q

Cq(0) + 4
∫

q,ωn

q2

⎡
⎣2C3

q (iωn)Lq(iωn) +
3∑

j=0

γjD2
q(iωn)D(j )

q (iωn)

⎤
⎦, (A46)

Zω(
′) = Zω(
) + 2

g
(�s + 3�t )

∫
q,ωn

D2
q(iω) + 4Zω

g

∫
q,ωn

C2
q (iωn)

[
L2

q(iωn) + Lq(iωn)
]
, (A47)

�s(

′) = �s(
) − 2

g
(�s + 3�t )

∫
q,ωn

D2
q(iω) − 4Zω

g

∫
q,ωn

C2
q (iωn)

[
L2

q(iωn) + Lq(iωn)
]
, (A48)

�t (

′) = �t (
) − 2

g

(
�s − �t − 4

�2
t

Zω

)∫
q,ωn

D2
q(iωn) + 4

g

(
Zω + 4�t + 2�2

t

Zω

)∫
q,ωn

C2
q (iω + n)Lq(iωn)

− 4

gD

∫
q,ωn

C2
q (iωn)L2

q(iωn), (A49)
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and

�c(
′)=�c(
)− �2
c

Zω

∫
ωn

Cq=0(iωn)− 2

g
(�s − 3�t )

∫
q,ωn

D2
q(iωn)+ 8�c

g

∫
q,ωn

C2
q (iωn)Lq(iωn)+ 12�t�c

gZω

∫
q,ωn

Dq(iωn)Dt
q(iωn).

(A50)

To derive RG equations from Eqs. (A46)–(A50), we choose 
′ = 
 + d
. Then, provided d
/
 corresponds to −2dL/L we
obtain RG equations (18)–(22).

APPENDIX B: ENHANCEMENT OF Tc IN THE CASE OF
WEAK SHORT-RANGED INTERACTION

1. Orthogonal symmetry class

Expanding RG equations (23)–(26) with n = 3 to the lowest
order in interactions γs,t,c, we find

dt

dy
= t2,

d

dy

⎛
⎝γs

γt

γc

⎞
⎠ = − t

2
Ro

⎛
⎝γs

γt

γc

⎞
⎠−

⎛
⎝ 0

0
2γ 2

c

⎞
⎠. (B1)

Here, within our accuracy, we neglect the interaction correc-
tions to t in comparison with weak-localization correction.
The matrix

Ro =
⎛
⎝1 3 2

1 −1 −2
1 −3 0

⎞
⎠ (B2)

has the following eigenvalues and eigenvectors:

λ = −4 :

⎛
⎝−1

1
1

⎞
⎠; λ′ = 2 :

⎛
⎝ 1

1
−1

⎞
⎠ and

⎛
⎝ 1

−1
2

⎞
⎠. (B3)

If the γ 2
c term is neglected, the solution of the linear

system (B1) approaches the eigenvector with λ = −4, i.e.,
interaction parameters tends to the BCS line −γs = γt = γc.
Let us expand the vector formed by γs,t,c in eigenvectors (B3):⎛

⎝γs

γt

γc

⎞
⎠ =

⎛
⎝−1 1 1

1 1 −1
1 −1 2

⎞
⎠
⎛
⎝a

b

c

⎞
⎠. (B4)

Transforming the set of equations (B1) to the new variables
a,b, and c, we get

dt

dy
= t2,

da

dy
= 2ta − 2

3
(a − b + 2c)2,

(B5)
db

dy
= −tb,

dc

dy
= −tc − 2

3
(a − b + 2c)2.

Equations (B5) are supplemented by the following initial
conditions: t(0) = t0, a(0) = a0, b(0) = b0, and c(0) = c0,
where ⎛

⎝a0

b0

c0

⎞
⎠ =

⎛
⎝−1/6 1/2 1/3

1/2 1/2 0
1/3 0 1/3

⎞
⎠
⎛
⎝γs,0

γt,0

γc,0

⎞
⎠. (B6)

From Eq. (B5), it is easy to find

t(y) = t0

1 − t0y
, b(y) = b0(1 − t0y) ≡ b0

t0

t
. (B7)

Since b decreases upon RG flow, it is not important and we
neglect it in the future analysis.

Equations for the remaining two variables, a and c are
coupled. If the quadratic term is neglected, then a increases
and c decreases. This suggests that c can be neglected. This
is confirmed by a more careful analysis which shows that,
although on the very last interval of RG “time” y the variable
c starts to increase and becomes of the same order as a (i.e.,
of order unity), this weakly affect the RG scale at which
this happens (i.e., the temperature of the superconducting
transition). Thus we neglect c in what follows.

We can now easily solve the remaining equation for a. We
assume the starting value a0 to be negative (which means that
there is attraction in the Cooper channel that is supposed to
lead to the superconductivity), a = −|a|. This is, in particular,
the case when γc,0 is the dominant coupling and γc,0 < 0. Then
the equation reads

d|a|
dy

= 2t |a| + 2

3
a2 . (B8)

Solving this equation, we obtain

a(y) = −
(

t2
0

|a0|t2
+ 2t0

3t2
− 2

3t

)−1

. (B9)

Let us analyze the result obtained. Let us first assume that
|a0| � t0. Then the second term in brackets in the right-hand
side of (B9) is small compared to the first one and can be
neglected,

a−1(y) = −1

t

(
t2
0

|a0|t − 2

3

)
. (B10)

With increasing RG scale y, the resistance t increases together
with the interaction a. If t reaches first unity, we get an
insulator; if a ∼ 1 happens first, we get a superconductor.
It is easy to see that the second possibility (superconductivity)
is realized if |a0| � t2

0 . Then at the point of divergence of
a we have a resistance t∗ � 3t2

0 /(2|a0|) � 1. This occurs
at y∗ � 1

t0
− 1

t∗
, i.e., we can estimate the temperature of

superconducting transition as Tc ∼ exp(−2y∗) yielding

Tc ∼ 1

τ
exp

{
− 2

t0

[
1 − t0

t∗

]}
. (B11)

Here the factor 2 in the exponent originates from a translation
of the length scale into energy (temperature). Under the above
assumption, |a0| � t0, the second term in square brackets in
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the exponential of (B11) is just a small correction to the first
one.

The transition temperature (B11) is much higher than the
BCS temperature T BCS

c = (1/τ )e−1/|γc,0|, so that the super-
conductivity is strongly enhanced by disorder. The origin
of the enhanced superconductivity is in the increase of |a|
governed by the eigenvalue λ = −4 of matrix Ro, which
yields the eigenvalue −(t/2) × (−4) = 2t of the linear part
of the system in Eq. (B1). This is nothing but the anomalous
multifractal exponent −�2 for this symmetry class [90]. (We
have in mind the “weak multifractality” in 2D.) Therefore
the (multi)fractality is the source of the enhancement of the
superconductivity.

By solving (B5) with b = 0 and a given by Eq. (B10),
one finds that although |c| decreases initially, eventually with
increasing the RG scale towards y∗ it becomes of the order
of unity: |c(y∗)| ∼ 1. Therefore, to determine a precise value
of t∗, one has to solve coupled equations for a and c [with
(b = 0)].

If |a0| � t2
0 , the resistance reaches unity before the inter-

action becomes strong, and the system is an insulator. Finally,
if |a0| � t0, the disorder is not particularly important, and the
transition temperature is given by usual clean BCS T BCS

c . In
the latter case, neglecting b and c is not parametrically justified
and leads to an incorrect numerical factor in the exponent.

For the initial values of interaction parameters used in the
inset of Fig. 6, we find that a0 = −0.01. Thus we expect the
regime with Tc ≈ T BCS

c for t0 � |a0| = 0.01. In the range of t0
between |a0| = 0.01 and

√|a0| = 0.1, the transition occurs at
Tc � T BCS

c . At t0 ∼ √|a0| = 0.1 the superconductor-insulator
transition is expected. The above crude analysis of RG
equations linearized in interactions is in good agreement with
the numerical solutions of full RG equations (23)–(26).

2. Symplectic symmetry class

Now we consider the symplectic symmetry class, i.e., as-
sume that the spin symmetry is completely broken. Expanding
Eqs. (23)–(26) with n = 0 to the lowest order in interactions
γs,t,c, we obtain

dt

dy
= − t2

2
,

d

dy

(
γs

γc

)
= − t

2
Rs

(
γs

γc

)
−
(

0
2γ 2

c

)
. (B12)

Here we neglect interaction corrections to t in comparison with
weak antilocalization. The matrix

Rs =
(

1 2
1 0

)
(B13)

has the following eigenvalues and eigenvectors:

λ = −1 :

(−1
1

)
; λ′ = 2 :

(
2
1

)
. (B14)

If the γ 2
c term is neglected, the solution of the linear system

in Eq. (B12) approaches the eigenvector with λ = −1, i.e.,
interaction amplitudes approach the BCS (in the absence of
γt ) line γs = −γc. As in the orthogonal case, we can expand
the vector formed by γs,c in the eigenvectors(

γs

γc

)
=
(−1 2

1 1

)(
a

c

)
. (B15)

Transforming the set of equations (B12) to the new variables
a and c, we find

dt

dy
= − t2

2
,

da

dy
= t

2
a − 4

3
(a + c)2, (B16)

dc

dy
= − tc − 2

3
(a + c)2.

Equations (B16) are supplemented by the initial conditions:
t(0) = t0, a(0) = a0 and c(0) = c0, where(

a0

c0

)
=
(−1/3 2/3

1/3 1/3

)(
γs,0

γc,0

)
. (B17)

From the first of Eqs. (B16), we find

t(y) = t0

1 + yt0/2
. (B18)

Equations for two variables, a and c are coupled. If the
quadratic term is neglected, then a increases and c decreases.
At the later stage of RG, the quadratic terms lead to an
enhancement of c. This suggests that c can be neglected
for a qualitative analysis of RG equations (B16). We thus
neglect c and keep only a (fully analogously to what we have
done in the orthogonal case). The resulting equation for a

reads

da

dy
= t

2
a − 4

3
a2 . (B19)

We solve this equation with the result

a = 1

t

(
1

a0t0
+ 4

3t2
− 4

3t2
0

)−1

. (B20)

Provided a0 < 0, the superconducting instability is possible.
The new, different from standard clean BCS behavior, emerges
under the condition |a0| � t0. Then the condition a ∼ 1 yields

t∗ � 2(|a0|t0/3)1/2 � t0. (B21)

By solving Eq. (B16) with a given by Eq. (B20), we find that
although |c| decreases initially, eventually with increasing RG
scale it reaches a: c ∼ a at t = t∗. Therefore, to determine the
precise value of t∗, one has to solve coupled equations for a

and c.
Equation (B21) yields the following estimate for the

transition temperature:

Tc ∼ 1

τ
e−2y∗ ∼ e−4/t∗ ∼ exp

(
− C√|a0|t0

)
� T BCS

c . (B22)

The constant C is of the order of unity and depends on
ratio c0/a0. The clean BCS result is restored (up to small
corrections) at |a0| � t0. For a0 < 0 (or, equivalently, γc,0 <

γs,0/2), there is no transition to the supermetallic phase with
increase of t0.

As in the orthogonal case, the source of the enhancement
of the superconducting temperature is in the first term on
the right-hand side of Eq. (B19). The eigenvalue t/2 is the
anomalous multifractal exponent −�2 for the symplectic sym-
metry class. Therefore, also in this case, the (multi)fractality is
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the source of the enhancement of the superconductivity. This
enhancement is less efficient than in the orthogonal case for

two reasons, because of antilocalizing behavior that leads to a
decrease of t and therefore weakening of multifractality.
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