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Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films
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We develop a theory for the vortex-unbinding transition in homogeneously disordered superconducting films.
This theory incorporates the effects of quantum, mesoscopic, and thermal fluctuations stemming from length
scales ranging from the superconducting coherence length down to the Fermi wavelength. In particular, we
extend the renormalization group treatment of the diffusive nonlinear sigma model to the superconducting side
of the transition. Furthermore, we explore the mesoscopic fluctuations of parameters in the Ginzburg-Landau
functional. Using the developed theory, we determine the dependence of essential observables (including the
vortex-unbinding temperature, the superconducting density, as well as the temperature-dependent resistivity
and thermal conductivity) on microscopic characteristics such as the disorder-induced scattering rate and bare
interaction couplings.
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I. INTRODUCTION

Disordered superconductors, the superconductor-insulator
quantum phase transition, and quantum transport through
superconducting nanodevices remain a field of intense research
over the past 50 years. On the one hand, superconducting
electronic components are of great technological interest
in connection with a variety of possible applications. On
the other hand, the interplay of the two most outstanding
manifestations of quantum coherence, superconductivity and
Anderson localization, determines the attention attracted by
these systems in the context of fundamental physics research
(see, in particular, Refs. [1–3] and references therein).

Superconductivity, i.e., the phenomenon of frictionless
transport and perfect diamagnetism, is a consequence of
long-ranged correlations of the complex order parameter �(x)
in a theory of charged particles:

〈�∗(x)�(0)〉 x→∞∼
{
e−x/ξ�, normal state;
|〈�〉|2, superconductor.

(1)

Here, ξ� is the correlation length. In two spatial dimensions
at finite temperature true long-range order is not possible in
view of the Mermin-Wagner theorem. In this case, one resorts
to the following weaker definition:

〈�∗(x)�(0)〉 x→∞∼
{
e−x/ξ�, normal state;
1/xη, superconductor.

(2)

In the last equation, the power η takes values 0 < η < 1.
Typically, the following two sufficient conditions are ful-

filled in a superconductor: (i) The modulus of the expectation
value |〈�(x)〉| is nonvanishing and nearly homogeneous. (ii)
Strong phase fluctuations of φ = arg (〈�(x)〉) are suppressed
due to sufficiently large phase rigidity.

As a consequence of these conditions, two different mecha-
nisms driving the transition between the superconducting and
the normal state are often distinguished: (i) the expectation

value 〈�(x)〉 vanishes across the transition; (ii) the expectation
value 〈�(x)〉 �= 0 is locally finite, but the phase rigidity
vanishes across the transition.

The first of these two mechanisms is sometimes referred
to as “fermionic” scenario. It includes the Bardeen-Cooper-
Schrieffer (BCS) theory [4] and related theories. In contrast,
in the second “bosonic” mechanism, the phase fluctuations
of preformed Cooper pairs drive the transition; typically, the
fermionic spectrum displays a pseudogap even in the normal
state.

A particularly important representative of bosonic theories
is the Berezinskii-Kosterlitz-Thouless (BKT) transition [5,6]
occurring in two-dimensional (2D) films. In a system with
broken U(1) symmetry the phase degree of freedom corre-
sponds to a Goldstone boson, the latter being described by the
following U(1) nonlinear sigma model (NLσM) action:

SU(1) = K

π

∫
x
(∇φ)2. (3)

Here and in the following, we use a shorthand notation∫
x for the spatial integral over the 2D system

∫
d2x. In a

clean superconductor, the phase rigidity is given by K/π =
ns/2m∗T , where the density of Cooper pairs of mass m∗ = 2m

is denoted by ns . We set both the Boltzmann and Planck
constants to unity, kB = � = 1, throughout the paper.

Since the manifold of Goldstone bosons is flat, the U(1)
NLσM [Eq. (3)] is not renormalized perturbatively. In other
words, the theory is Gaussian on the perturbative level.
However, the inclusion of nonperturbative effects (vortices)
leads to a two-parameter renormalization group (RG) [7]. If
the stiffness is less than the critical value K∗ = 1, vortices
proliferate and the system can not sustain phase coherence.
Contrary, for K > K∗ there is a regime where vortices are
tightly bound into dipoles and the system is superconducting.
The critical stiffness defines the BKT transition temperature
TBKT. If we assume ns to be determined by the BCS expression,
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TBKT is parametrically close to the BCS transition temperature
TBCS:

TBKT = TBCS(1 − 4 Gi). (4)

Here, Gi = TBCS/μ 	 1 is the Ginzburg-Levanyuk num-
ber [8] for clean 2D superconductors [9] and μ denotes the
chemical potential.

In this paper we concentrate on disordered systems, where
the elastic scattering rate 1/τ of the electrons satisfies the
condition

TBKT 	 1/τ 	 μ. (5)

According to “Anderson’s theorem” [10,11], the critical
temperature Tc with and without disorder are equal Tc = TBCS

in the absence of electron-electron interaction in singlet or
triplet channels. The “Anderson theorem” discards, however,
two important quantum-interference phenomena that can
dramatically affect the superconductivity. The first one is the
disorder-induced Anderson localization [12]. The localization
is a natural antagonist of superconductivity, and a competition
between them leads to emergence of superconductor-insulator
transition in 2D systems. Second, the interelectronic Coulomb
interaction can drastically change the critical temperature Tc

(see Ref. [13] for an early work in this direction). The analysis
of RG equations for the interacting NLσM of diffusive soft
modes [14–18] predicts suppression of Tc, which is governed
by the following expression [19–22]:

Tc

TBCS
= exp

(
− 1

γ
(0)
c

)(
γ (0)

c + √
tD/2

γ
(0)
c − √

tD/2

) 1√
tD

. (6)

In this formula, γ (0)
c = 1

ln(TBCSτ ) . The result is valid in the
limit of sufficiently large dimensionless Drude conductance
gD = 2/(πtD) � 1 in units of e2/h. Finally, for short-range
interaction, the mean-field transition temperature is predicted
to increase in the presence of disorder [3,23–25] (provided

|γ (0)
c | 	 tD 	

√
|γ (0)

c |)
Tc

TBCS
� exp

(
− 1

γ
(0)
c

− 2

tD

)
. (7)

The physical mechanism behind this phenomenon is wave-
function multifractality, which leads to an enhancement of the
matrix elements of interaction [26,27].

The goal of this paper is to develop a theory of the BKT
transition in disordered superconductors that takes into account
Anderson localization and the physics of interactions in the
density-density and spin-density–spin-density channels. Our
work is devoted to s-wave superconductivity in films where the
disorder potential is time-reversal symmetric and short-range
correlated (“homogeneous” disorder). Let us first remind the
reader about key previous works that, while having strongly
advanced the understanding of the disordered BKT transitions,
did not include effects associated with the localization and the
Coulomb interaction.

In full analogy to the clean case, the disordered BKT
transition is determined by K∗ = 1, with the only difference
being

K = πgD

16

|〈�〉|
T

tanh

( |〈�〉|
2T

)
(8)

in the case of disordered films. As a consequence, in the
disordered case [28], TBKT is again given by Eq. (4) with
Gi now being [9]

Gi = 7ζ (3)

π3gD

	 1. (9)

Most prominently, the superconducting transition manifests
itself in the temperature dependence of conductance. There is a
parametrically small temperature window close to TBKT within
which the normal-state resistance rapidly drops to exponen-
tially small values. Above Tc, fluctuating Cooper pairs lead to
an enhancement of conductivity, via Aslamazov-Larkin [29],
Maki-Thompson [30,31], and density of states [32] (DOS)
corrections [9]. In the superconducting state, the resistance
is determined by vortex excitations in the order-parameter
field [33]. Due to the Josephson relation φ̇ = 2eV , a finite
resistance (steady voltage V ) requires a phase relaxation
mechanism. In the 2D case close to the thermodynamic transi-
tion, the phase relaxation rate is determined by the vortices
traveling across the system perpendicularly to the current
direction [34,35]. Above the vortex-unbinding temperature,
the latter proliferate and the following crossover formula for
the resistance ρ near Tc was suggested by Halperin and Nelson
(HN) in Ref. [36]:

ρ(T ) = tD
1

1 + Av

(
ξHN(T )
ξ (TBKT)

)2 . (10)

The numerical constant Av is fixed to Av = π4/56ζ (3) ≈
1.45, so that Eq. (10) interpolates between the vortex-
generated resistance in the superconducting state and the
Aslamazov-Larkin contribution above Tc. Here, the length
ξHN(T ) is given by

ξHN(T ) = ξ (TBKT)

b
sinh

(
b

√
Gi

τBKT

)
(11a)

and provides an interpolation between the BKT coherence
length

ξHN → ξBKT(T ) = ξ (TBKT)

2b
exp(b

√
Gi/τBKT) (11b)

in the limit τBKT 	 Gi and the mean-field behavior

ξHN → ξGL(T ) = ξ (0)√
τBKT

, (11c)

in the opposite limit τBKT � Gi. The quantity b is a fitting
parameter of order unity [37]. Further, ξ (TBKT) is the Ginzburg-
Landau coherence length given by ξ (TBKT) = ξ (0)/

√
Gi, and

τBKT denotes a relative distance to the BKT transition

τBKT = (T − TBKT)/TBKT. (12)

The observation of the BKT transition in superconducting
films is a longstanding experimental challenge. The major
difficulties are due to (a) the parametrically small window
Tc − TBKT 	 Tc and (b) finite-size effects. Both the finite
thickness [38] and the finite area [37,39] of the film lead to an
infrared cutoff in the logarithmic vortex-antivortex interaction
and may thus obscure the BKT physics. Defining features
for the experimental observation of the BKT transition are (i)
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a universal crossover function ln[ρ(T )/tD] ∝ 1/
√

τBKT [cf.
Eq. (10)]; (ii) a jump from linear to nonlinear resistance
(V ∝ Iα) with α = 3 right at TBKT; (iii) a crossover from
sublinear to superlinear magnetoresistance. For early work
in this area, we refer the reader to Refs. [28,40–42] and to
the review [43]. Recent years have witnessed a strong rise of
experimental interest to this phenomenon, with observations of
the BKT transition in superconducting films made of various
materials, including indium oxide [44–46], MoGe [46], tita-
nium nitride [47], niobium selenide [48], lead [49], niobium
nitride [50–52], and iron selenide [53].

It is important to emphasize that the experimentally deter-
mined TBKT may differ very substantially from Eqs. (4) with an
input from Eq. (9); see, in particular, Ref. [47]. The reasons for
the insufficiency of the theory leading to Eqs. (4) and (9) are
closely related to those of the failure of Anderson’s theorem
(see a discussion and references above). These equations are
based on the expression (8) for the superconducting density
that neither takes into account the strong renormalization of
conductivity due to interference and interaction effects nor the
renormalization of Tc (see, in particular, Refs. [54,55]). As a
consequence, Eqs. (4) and (9) are not sufficient to correctly
predict TBKT as a function of microscopic parameters encoded
in τ ∝ gD and TBCS.

We are thus facing the following questions: (i) What
is the superconducting stiffness including the disorder- and
interaction-induced corrections? (ii) What is the vortex-
unbinding temperature for homogeneously disordered super-
conducting films? (iii) What is the temperature dependence of
resistivity?

The goal of this paper is to develop a theory that answers
these questions. As we will show, this requires an implemen-
tation of a strategy that allows one to go from the Fermi-liquid
theory at relatively high energies to the low-energy U(1)
theory through a sequence of intermediate-scale effective field
theories. As a result of this procedure, we are able to answer
question (i), i.e., to determine the superconducting density
including the effects of quantum, mesoscopic, and thermal
fluctuations. Combining this result with the RG treatment of
the BKT transition allows to determine the vortex-unbinding
temperature TBKT, and thus to answer question (ii). We further
propose a function for the electric resistivity [question (iii)]
which interpolates between the vortex-dominated resistance
close to the BKT transition and a Maki-Thompson–type
contribution further away from the transition. In addition,
we derive an expression for the thermal conductivity in
superconducting films close to the critical temperature. We will
assume throughout the paper that the dimensionless resistance
is small for all temperatures ρ(T ) 	 1.

The paper is structured as follows. Section II is devoted to
the determination of the vortex-unbinding temperature TBKT.
As will be explained in detail in Sec. II A, our formalism
is based on the consecutive use of Fermi-liquid (Sec. II B),
diffusive NLσM (Sec. II C), Ginzburg-Landau (Sec. II D), and
U(1) NLσM (Sec. II E) theories. The subsequent Sec. III
is devoted to the temperature dependence of resistivity of
the metallic film close to the superconducting transition. We
conclude the paper with a summary and outlook. The most
technical details of our calculations are relegated to a number
of appendixes, while Appendix D consists of a list of notations.

II. FIELD THEORY OF DISORDERED
SUPERCONDUCTORS

This section is devoted to the theoretical framework of
this paper and of disordered superconductors in general. It is
instructive first to get a feeling for the energy and respective
length scales in the problem (Sec. II A). From the hierarchy of
length scales, the Fermi liquid (Sec. II B), the diffusive NLσM
(Sec. II C), the Ginzburg-Landau theory (Sec. II D), and the
U(1) NLσM (Sec. II E) appear as a sequence of theories. This
section is structured following this hierarchy and in each of
Secs. II B–II E we discuss the derivation and the perturbative
renormalization of the corresponding theory.

The physical observables discussed in this section are the
vortex-unbinding temperature TBKT in a disordered supercon-
ductor as well as the superconducting density (see Sec. II E).

A. Strategy and hierarchy of length scales

We will be interested in temperatures close to the vortex-
unbinding transition: |τBKT| 	 1. Our calculations are con-
trolled in the limit when the normal-state conductance close to
the transition is large: g � 1. In this case, TBKT turns out to be
parametrically close to the mean-field transition temperature
TMF. As we will discuss in the following [see specifically
Sec. II D 4 and Eq. (64)], the latter is close but remains
below the critical temperature Tc associated with the BCS-type
instability. Note that, in general, g �= gD and Tc �= TBCS [see,
e.g., Eqs. (6) and (7)].

On length scales larger than the elastic mean-free path
l = vF τ (vF is the Fermi velocity) we will self-consistently as-
sociate a length scale LE to an energy E by LE = √

D(LE)/E
and reversely define EL = D(L)/L2. Here, D(LE) is the
diffusion constant at the scale LE and D(l) = vF l/2. Thus, the
three length scales LT ∼ LTBKT ∼ LTMF are close to each other
in the regime under consideration. This regime further implies
a hierarchy of length scales that we shall expose in this section.
This hierarchy is associated with a step-by-step quantum
to classical crossover governed by subsequent freezing of
excitations.

Fermionic Landau quasiparticles with well-defined mo-
mentum are good excitations only on length scales shorter than
the mean-free path l (see Sec. II B). On longer length scales
they are “confined” in diffusive soft modes: noninteracting
diffusons and cooperons as well as interacting bosonic modes
in the Cooper and particle-hole interaction channels. In
general, their interplay leads to strong renormalization of
the conductivity and of the mean-field transition temperature
TMF. In our approach, this effect will be captured by the RG
technique applied to the interacting, diffusive NLσM. The
RG stops at a length scale LTc

parametrically close to LTMF

(more detailed explanation can be found in Sec. II C). The only
modes that remain at larger distances are static fluctuations
of the order-parameter field �(x). Thus, at the scale LTc

we derive the Ginzburg-Landau (GL) free-energy functional
weighting these fluctuations (see Sec. II D). Our derivation,
which contains terms beyond leading order in 1/g, also yields
random fluctuations of the coefficents in the GL functional.
For T < TMF the Higgs field [fluctuations in the modulus of
�(x)] is gapped on the scale of the GL coherence length
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ξ = ξGL(T ) � LTMF . In the symmetry-broken state, only phase
fluctuations of the order-parameter field are important on
scales exceeding ξ . Thus, at the scale of the coherence length
we derive the disordered model of phase fluctuations (Sec. II E)
(see also Ref. [56] for a related study). Disorder terms turn
out to be RG irrelevant and can be taken into account in
a perturbative manner. This eventually leads to an action
analogous to Eq. (3), but with a renormalized stiffness K .
For TBKT < T < TMF, the theory also predicts a renormalized
coherence length ξBKT > ξ beyond which phase correlations
decay exponentially.

All in all, we find the following hierarchy of length scales
(the Fermi wavelength is denoted by λF ):

λF < l < LT < ξ < ξBKT. (13)

At each intermediate length scale, a certain “microscopic”
theory ceases to be the appropriate description and we derive
an emergent effective theory valid at longer length scales:

Scale “Microtheory” Emergent theory

l Fermi liquid → diffusive NLσM
LTc

Diffusive NLσM → GL theory
ξ GL theory → U(1) NLσM

A summary of length scales, relevant excitations, and
effective theories applicable to the various regimes is given
in Fig. 1.

B. Fermi-liquid theory

The main statement of Landau’s Fermi-liquid theory is
that, in the absence of spontaneous symmetry breaking, the
low-energy excitations of a strongly correlated fermionic
system are fermions (Landau quasiparticles) with the same
quantum numbers as the free particles. Their decay rate is small
as compared to the Fermi energy. In field-theoretical language,
this statement means that the exact electronic Green’s function
(i.e., two-point correlator) can be shown to contain a singular

part (quasiparticle pole) with a weight 0 < a < 1 and an
additional regular contribution [57,58].

Further particularly important quantities in the theory
of strongly interacting fermions are the four-point corre-
lators [59–61]. These implicitly define the full interaction
amplitudes. The latter are subdivided into different channels
of small energy-momentum transfer according to their tensor
structure in spin space. For the problem of disordered,
interacting, spinful fermions we concentrate on the static part
of the Cooper singlet (�c), particle-hole singlet (�s), and
particle-hole triplet (�t ) scattering amplitudes and keep only
their zeroth angular harmonic (s wave) [16,18]. In this paper,
the quasiparticle residue a is absorbed into the definition of
fermionic fields and scattering amplitude.

Even though our goal is to describe a superconducting
system close to and below TMF, i.e., in the symmetry-broken
phase, it is appropriate and justified to describe it using the
Fermi-liquid theory at the smallest length scales L < l. The
fermionic excitations at these scales do not “know” about the
fact that at larger length scales they will eventually form
coherent Cooper pairs. In other words, if the system had
a linear dimension L� < l, the associated size-quantization
energy scale would by far exceed the superconducting gap.

C. Diffusive NLσM

In the previous section, we explained that the Fermi-liquid
description is appropriate for disordered superconducting films
at smallest length scales, i.e., those less than the elastic
mean-free path l. In our hierarchy of length scales we now
reach the next level characterized by scales exceeding l.
The effective field theory that emerges in this regime is the
NLσM of diffusive interacting soft modes (for review, see
Refs. [16,17] and Appendix A).

1. Normal state NLσM

Upon inclusion of sufficiently weak disorder (in the sense
gD � 1), static quantities, such as the static interaction
amplitudes, remain unchanged even at scales L � l. They
are determined by scales much shorter than the mean-free

Ballistic e - Diffusons / Cooperons

Phase of order parameter field (   Goldstone mode) normal state
supercond.

singlet/triplet interaction modes

ex
cit
at
io
ns

th
eo
rie
s Fermi liquid Ginzburg-Landau U(1) NLσMDiffusive, interacting

 NLσM + RG

Modulus of order parameter field (   Higgs field)

FIG. 1. (Color online) Hierarchy of length scales for T � TBKT < TMF. The scales LTX
and LTc

are introduced for technical reasons (see
Sec. II C). Both of them and LTBKT are parametrically close to LTMF . In the category “excitations,” a colored bar indicates the regime of
importance of the various excitation modes. Analogously, in the category “theories,” a colored bar indicates the regime, where a certain theory
provides an appropriate description. A general explanation of the hierarchy of length scales can be found in the main text (Sec. II A).
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path. On the contrary, the dynamical properties of the system
are altered, as the retarded-advanced ladders consisting of two
Green’s functions acquire a diffusive pole [16,18]. It is possible
to describe the diffusive dynamics by means of the interacting,
diffusive NLσM [14,15]. In the normal state, the path-integral
representation of the partition sum

Z =
∫

DQ exp(−S[Q]) (14)

is governed by the following action:

S = Sσ + S
(ρ)
int + S

(σ )
int + S

(c)
int , (15a)

with

Sσ = g

32

∫
x

tr[(∇Q)2] − 2Zω

∫
x

tr[ε̂Q], (15b)

S
(ρ)
int = πT

4
�s

∑
α,n

r=0,3

∫
x

tr
[
Iα
n tr0Q

]
tr
[
Iα
−ntr0Q

]
, (15c)

S
(σ )
int = πT

4
�t

∑
α,n

r=0,3
j=1,2,3

∫
x

tr
[
Iα
n trjQ

]
tr
[
Iα
−ntrjQ

]
, (15d)

S
(c)
int = πT

4
�c

∑
α,n

r=1,2

∫
x

tr
[
Lα

ntr0Q
]
tr
[
Lα

ntr0Q
]
. (15e)

Here, the symbol “tr” denotes summation over all internal
matrix indices. We are interested in systems where time-
reversal symmetry is fulfilled. If the system is additionally
spin-rotational invariant (which corresponds to class AI in the
classification of noninteracting systems), the Q matrices are
symplectic, traceless, and have nontrivial structure in replica,
Matsubara, spin, and Nambu spaces:

Q = Q† = Q−1 = t12Q
T t12, tr Q = 0. (16a)

In the absence of spin-rotational symmetry (noninteracting
class AII), the Q matrices are orthogonal [62], traceless, have
nontrivial structure in replica, Matsubara, and Nambu spaces,
and are proportional to the identity matrix in spin space:

Q = Q† = Q−1 = t10Q
T t10 ∝ 1σ , tr Q = 0. (16b)

We use the convention trj = τr ⊗ σj where τr = (1τ ,�τ ) are
the identity and the Pauli matrices in Nambu space, while
σj = (1σ ,�σ ) are those in spin space. Here and throughout the
paper, we use a convention in which α,β = 1, . . . ,NR denote
replicas and m,n = −N ′

M, . . . ,N ′
M − 1 Matsubara indices

associated to fermionic frequencies εn = πT (2n + 1). The
following matrices, which are trivial in Nambu and spin spaces,
have been introduced [63]:

�αβ
nm = sgn(n)δαβδnm, (17a)

ε̂αβ
nm = εnδ

αβδnm, (17b)(
Iα0
n0

)αβ

nm
= δα0αδα0βδn−m,n0 , (17c)(

Lα0
n0

)αβ

nm
= δα0αδα0βδn+m+1,n0 . (17d)

The coupling constants of the NLσM are the dimensionless
conductivity g (bare value gD), the static interaction ampli-
tudes �i (i = s,t,c), and the prefactor Zω of the frequency
term, which is related to the renormalization of specific heat.
Note that the latter does not flow in the noninteracting case
and keeps the bare value Z(0)

ω = πν/4 determined by the
density of states ν. In the presence of long-range Coulomb
interaction, the NLσM is “F invariant” [64]. Essentially, this
means electrostatic gauge invariance (i.e., invariance under
time-dependent but space-independent phase rotations) and
fixes Zω + �s = 0. In the present convention, attraction in the
Cooper channel implies �c < 0.

For the sake of a better readability, we omit gauge potentials
in Eq. (15) and in the rest of the paper (except Appendix C).
Thus, we formally treat a neutral superfluid. As we explain
in Sec. III C, in the truly 2D limit all presented results hold
equally for a charged superconductor.

2. NLσM in the superconducting state

While in the normal state diffusive fluctuations are associ-
ated to smooth variations around the noninteracting saddle-
point solution Q = �, in the symmetry-broken phase the
true saddle point is a function of the superconducting gap.
This result can be directly derived from the microscopic
theory (see Refs. [65–68] and Appendix A). However, in
such a derivation the disorder is taken into account at the
level of Anderson’s theorem only. Here, we derive the NLσM
for the symmetry-broken phase directly from the interacting
normal state NLσM [Eqs. (15)]. Since this procedure can
be accomplished at any scale, this allows us to go beyond
Anderson’s theorem.

Upon Hubbard-Stratonovich decoupling in the Cooper
channel the action becomes

SHS[Q,�̌] = g

32
Tr[(∇Q)2] − 2ZωTrQ

[
ε̂ + i

(
0 −�̌

�̌† 0

)]

− 4Zω

πγcT

∑
αn

∫
x
�∗

αn�αn + S
(ρ)
int + S

(σ )
int . (18)

The symbol “Tr” includes both the trace operation in ma-
trix space and spatial integration. The complex Hubbard-
Stratonovich field �̌ is defined by

�̌ =
∑
α,m

�α,mLα
m. (19)

We also introduced the notation γc = �c/Zω. Since we expect
static s-wave superconductivity, the Hubbard-Stratonovich
field can be assumed to take the form �α,n = �αδn,0 on
mean-field level. We will refer to �α as “order-parameter
field.”

Variation of Eq. (18) with respect to �∗
α,0 leads to the gap

equation

�α

γcT
= − iπ

2
tr

[
Q

τx − iτy

2
Lα

0

]
. (20)

Using the constraint (16a) [or (16b)] on the Q matrix, we find
that the second term in (18) modifies the saddle point Q = �
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to Q = �̄ with

�̄ =
∑

n�0,α

P α
|n|

⎡
⎢⎣ |εn|�z√

ε2
n + |�α|2 +

(
0 −i�α

i�∗
α 0

)
(τ )

�x√
ε2
n + |�α|2

⎤
⎥⎦. (21)

By P α
|n| we denote a projector on replica α and on a block with

given modulus of the Matsubara frequency, matrices �x,y,z are
Pauli matrices in this space.

On the saddle-point level, it is possible to choose the order-
parameter field real and equal in all replicas

�α = � > 0, α = 1, . . . ,NR. (22)

Then, �̄ has the following structure in Matsubara and Nambu
spaces:

�̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋱ 0 0 0 0 ⋰

0 ε2√
ε2

2+�2
0 0 �τy√

ε2
2+�2

0

0 0 ε1√
ε2

1+�2

�τy√
ε2

1+�2
0 0

0 0 �τy√
ε2

1+�2

−ε1√
ε2

1+�2
0 0

0 �τy√
ε2

2+�2
0 0 −ε2√

ε2
2+�2

0

⋰ 0 0 0 0 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

In the limit � → 0 the usual diffusive form is restored: �̄ →
� = diag(1, − 1).

Returning to the generally complex �α , it is possible to
perform a Bogoliubov transformation [65]

Q = U
†
�qU�, (24)

such that the saddle point of the rotated field is again q = �. In
the parametrization �α = |�α|eiφα the unitary rotation matrix
is

U� =
∑

n�0,α

P α
|n|e

i
φα
2 τz

(
cos ψα

n τy sin ψα
n

−τy sin ψα
n cos ψα

n

)
(�)

e−i
φα
2 τz .

(25)

We introduced the energy-dependent rotation angle

cos ψα
n = 1√

2

√
1 + |εn|√

ε2
n + |�α|2 . (26)

After integration of fluctuations δ�α,n = �α,n − �αδn,0

around the mean-field solution we arrive at the NLσM
describing the system at T < TMF. It has the standard structure
exposed in Eq. (15a). The terms S

(ρ)
int [Q] = S

(ρ)
int [U †

�qU�]
and S

(σ )
int [Q] = S

(ρ)
int [U †

�qU�] are determined by Eqs. (15c)
and (15d), respectively. The Cooper channel interaction
term (15e) is slightly modified, as the static mean-field solution
is subtracted from Q:

S
(c)
int = πT

4
�c

∑
α,n

r=1,2

∫
x

tr
[
Lα

ntr0Q
(n)
]
tr
[
Lα

ntr0Q
(n)
]

(27)

with Q(n) = Q − �̄δn,0. The major modification concerns the
dynamic part of the action, i.e., Eq. (15b), which is most

conveniently written in the rotated basis

Sσ [q] = g

32
Tr[(∇q)2] − 2ZωTr[qε̂]. (28)

We have introduced the matrix

ε̂αβ
n,m = sign(εn)εα

n δn,mδα,β with εα
n =

√
ε2
n + |�α|2. (29)

3. Saddle-point equation

Using Eq. (23), the gap equation (20) becomes

�

T
= −γcπ�

∞∑
n=−∞

1√
ε2
n + �2

.= −γc

�

T

∫ λ

�

dε
tanh ε

2T√
ε2 − �2

. (30)

This equation has the structure of the standard BCS equation.
The symbol “

.=” indicates equality of sum and integral upon
appropriate ultraviolet (UV) regularization at the scale λ. The
solution of this equation determines a transition temperature

Tc = λ exp(1/γc). (31)

All standard implications [e.g., �(T ), the DOS, etc.] imme-
diately follow analogously to the BCS case. However, it is
important to keep in mind that in general the Cooper channel
interaction parameter γc = γc(L) is strongly scale dependent
and influenced by disorder and interactions in the particle-hole
channels.

In the simplest approximation, the NLσM is analyzed at
bare level. The diffusive UV cutoff is λ ∼ 1/τ and γc is
replaced by γc(l). It already includes the ballistic renormal-
ization from scales between the Debye wavelength λD and
the mean-free path l. Within this simplified analysis, Tc is
determined by the energy scale of divergence of the solution

γc(L) = 1

[γc(l)]−1 − ln ELτ
(32)

of the BCS-type [69] RG equation

dγc

dy
= −2γ 2

c , (33)

where

y = − ln(ELτ )/2 (34)

is the logarithm of the running RG scale. The transition
temperature appearing in Eq. (31) simply becomes the BCS
transition temperature Tc = TBCS with

Tc = 1

τ
e

1
γc (l) = ωDe

1
γc (λD ) = Tce

1
γc (LTc

) , (35)

where ωD is the Debye frequency. This equation is a re-
statement of Anderson’s theorem. For BCS superconductors,
γc(λD) determines the bare phonon mediated interaction
vertex.

In general, disorder and interaction effects modify the RG
equation (33). Then, the transition temperature Tc (defined via
the scale where γc diverges) may strongly differ from TBCS.
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4. Renormalization group flow

In the normal state, the noninteracting diffuson of a
quasiparticle pair with Matsubara frequencies εn1 ,εn2 (n1 � 0,
n2 < 0) and replica indices α,β is determined by the following
diffusion propagator (see Appendix B):

[D(q)]αβ
n1,n2

= D

Dq2 + εn1 − εn2

. (36)

The diffusion coefficient D is determined by the coupling con-
stants of the NLσM via D = g/16Zω. In the superconducting
state this propagator becomes

[D�(q)]αβ
n1,n2

= D

Dq2 + εα
n1

+ ε
β
n2

. (37)

However, in the interval of length scales l < L < LT 	
L� the effect of the superconducting gap on Eq. (37) is
negligible. Therefore, in this interval, it is legitimate to
construct a perturbative RG around the normal-state saddle
point �. (Fluctuations are too fast to resolve the difference
between � and �̄.) Thus, in this regime of length scales,
the renormalization of parameters in superconducting state
is dictated by the RG equations of the normal state NLσM
[Eq. (15)]. These have the following form [t = 2/(πg)]:

dt

dy
= βt (t,γs,γt ,γc), (38a)

dγs

dy
= βγs

(t,γs,γt ,γc), (38b)

dγt

dy
= βγt

(t,γs,γt ,γc), (38c)

dγc

dy
= βγc

(t,γs,γt ,γc). (38d)

It is worth stressing that, as a consequence of dimensional
analysis, the RG equations can be written in terms of reduced
coupling constants γi = �i/Zω (with i = s,t,c). The particle-
number conservation implies that the combination Zω + �s is
not renormalized. Therefore,

d ln(Zω)

dy
= −βγs

(t,γs,γt ,γc)

1 + γs

. (38e)

In Ref. [15], the beta functions (38) were derived to the
lowest order in t and γc. Recently [3], three of us extended the
results of Ref. [15] by deriving one-loop (lowest order with
respect to t) beta functions which are formally exact in the
Cooper channel interaction constant γc. Here, we only quote
the result and refer to Ref. [3] for more details:

βt = t2[1 + f (γs) + 3f (γt ) − γc], (39a)

βγs
= − t

2
(1 + γs)

(
γs + 3γt + 2γc + 4γ 2

c

)
, (39b)

βγt
= − t

2
(1 + γt )[γs − γt − 2γc(1 + 2γt − 2γc)], (39c)

βγc
= − t

2

[
(1 + γc)(γs − 3γt ) − 2γ 2

c + 4γ 3
c

+ 6γc[γt − ln(1 + γt )]
]− 2γ 2

c . (39d)

The function f (x) entering Eq. (39a) is given by

f (x) = 1 − 1 + x

x
ln(1 + x). (40)

Equations (39) are appropriate for a system with spin-
rotation invariance. The first term “1” in the square bracket
of Eq. (39a) describes the weak-localization effect, which
originates from disorder and is unrelated to interactions. The
last term “−2γ 2

c ” in Eq. (39d) represents the Cooper instability,
which is also present in clean systems [69]. All other terms
stem from the interplay of disorder and interactions.

In the case of a system with strong spin-orbit coupling the
following modifications to Eqs. (39) occur. First, one should
replace the weak-localization by the weak-antilocalization
effect, i.e., “1” in the square bracket of Eq. (39a) by “− 1

2 .”
Second, the triplet channel is gapped out, so that Eq. (39c)
should be discarded and terms containing γt should be removed
from the remaining equations.

5. Range of applicability of perturbative RG

As we have already stated, per definition γc(LT )
LT →LTc−→

−∞. Thus, close to Tc, one may be tempted to keep only
the leading powers of γc in Eqs. (39). However, one should
keep in mind that the RG Eqs. (39) were derived in the
one-loop approximation (i.e., perturbatively in resistance t).
An inspection of the perturbative series in the vicinity of Tc

(where |γc| is large) indicates [3] that the actual parameter
of the expansion in this region is t |γc|. Thus, close to Tc, the
RG equations are only applicable for energy scales EL � TX,
where TX is defined by

|γc(LTX
)t(LTX

)| = 1. (41)

Therefore, disorder-induced corrections are subleading with
respect to the dominant Cooper-instability term within the
range of applicability of Eqs. (39). Therefore, close to Tc, the
Cooper channel coupling constant diverges as

γc(LT )
LT →LTc∼ Tc

Tc − T
(LT � LTX

< LTc
). (42)

We remind the reader that Tc (and thus LTc
) as given by the RG

equations (39) is in general strongly renormalized as compared
to TBCS [see Eqs. (6) and (7) of the Introduction].

We expect that the full RG equations (38) contain a line
of attractive fixed points characterized by γc(LTc

) = −∞ but
finite Zω = Zω(LTc

) and t = t(LTc
) � tSIT ∼ 1. This expecta-

tion is based on the fact that Zω and t determine the coefficients
of the GL functional (see Sec. II D). The line ends in the
point with coupling constant tSIT which represents the quantum
critical point of the superconductor-insulator transition. While
it is worth emphasizing the difference between the physical
resistance ρ and the NLσM coupling constant t (see Sec. III
and Ref. [3]) at this quantum critical point we expect ρ = t =
tSIT.

We now present an estimate for the difference between
Tc, t(LTc

), Zω(LTc
) and TX, t(LTX

), Zω(LTX
), respectively.

We will assume that (a) there is a region of fixed points, (b)
γ −1

c �αc ln(Tc/T ) as LT → LTc
(αc ∼ 1), (c) the crossover of

RG flow from Eqs. (39) to the fixed-point region is encoded in
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a power series of the parameter |γct | entering the beta functions
[Eq. (38)]. Mathematically, these assumptions mean

βt = tft (|γct |), (43a)

βγs
= −2t−1(1 + γs)fγs

(|γct |), (43b)

βγc
= −2γ 2

c fγc
(|γct |), (43c)

with interpolating functions

ft (x) �
{
x, x 	 1
αt

xηt
, x � 1 (44a)

fγs
(x) �

{
x2, x 	 1
αs

xηs
, x � 1

(44b)

fγc
(x) �

{
1, x 	 1
αc, x � 1.

(44c)

In these equations, the positive phenomenological coef-
ficients αt,s,c and ηt,s can be expected to be of order one.
Note that F invariance [64] dictates the prefactor (1 + γs) in
Eq. (43b).

Under the additional assumption of positivity of fγc
(x) it

follows that (LTX
< LT < LTc

)

min(αc,1)
Tc

T − Tc

< |γc(LT )| < max(αc,1)
Tc

T − Tc

. (45)

Hence, the relative difference between TX and Tc is small as

TX − Tc

Tc

∼ GiX = 7ζ (3)

π3gX

	 1. (46)

Here, we use the symbol GiX for the Ginzburg-Levanyuk
number [Eq. (9)], evaluated with the normal-state conductance
gX = g(LTX

) = 2/[πt(LTX
)] � 1.

We can further use that ft (x) and fγs
(x) have a maximum

ft,γs
(x) � f max

t,γs
∼ 1. Therefore, we can estimate

d ln t

d(γ −1
c )

� f max
t

2 min(αc,1)
, (47)

which yields

t(LTc
) − t(LTX

)

t(LTc
)

� GiX. (48)

In a similar way find

d ln Zω

d(γ −1
c )

�
f max

γs

t(LTX
) min(αc,1)

(49)

and therefore

Zω(LTc
) − Zω(LTX

)

Zω(LTc
)

� Gi2
X. (50)

All in all, we have determined the critical temperature of
the fermionic system Tc ∼ TX with accuracy of GiX to be the
following function of bare parameters:

TX

TBCS
= exp

(
− 2yX − 1

γc(l)

)
. (51)

Here, yX is the running RG logarithmic scale y at which the
system reaches the condition (41).

D. Ginzburg-Landau functional

In Sec. II C, we discussed the range of length scales
L ∈ [l,LTc

] and found that the normal-state NLσM RG can
be applied to determine the critical temperature Tc up to an
uncertainty ∼ GiX 	 1 associated with the critical Ginzburg
region. Now, we are going to ascend to the next level in our
hierarchy of length scales and derive the GL functional.

While Secs. II D 1 and II D 2 are devoted to the derivation of
the standard GL functional (to all orders in the order-parameter
field), in Sec. II D 3 we go beyond the standard paradigm and
derive mesoscopic fluctuations [70] of the parameters in the
GL expansion. The perturbative renormalization (Sec. II D 4)
of the GL functional incorporates the effect of thermal order-
parameter fluctuations in our theory.

1. Intrareplica GL functional

This derivation of the GL functional for the static order-
parameter field �α(x) is based on the normal state NLσM at
scale LTX

using (i) the local solution of the gap equation (21),
and (ii) the implicit definition of the critical temperature Tc

via γ −1
c (LTX

) ≡ ln(Tc/TX) [71]. In view of (i), we perform
the same rotation [Eq. (24)] as above, but with spatially
dependent order-parameter field �α(x). After this, we evaluate
the resulting NLσM action at q = �, which yields the sought
GL functional.

The frequency term and the quadratic Hubbard-
Stratonovich term generate the exact GL potential

SGL
pot =

∫
x

[
−2Zωtr[qε̂] − 4Zω

πγcT

∑
α

|�α|2
]

q=�

= −2Zω

∑
α

∫
x

{
8

∞∑
n1=0

√
ε2
n1

+ |�α|2 + 2

πγcT
|�α|2

}

.= 16ZωπT
∑

α

∫
x

{
|δα|2 ln(T/Tc)

4

+
∞∑
l=2

(−1)l(2l)!(22l−1 − 1)

(2l − 1)(l!)24l22l−1
ζ (2l − 1)|δα|2l

}
. (52a)

We introduced the reduced order-parameter field δα =
�α/(πT ) and used ingredient (ii). At the equality sign with a
dot

.=, the divergent Matsubara sum was cut at εn = TX. In a
similar way, we evaluate the kinetic term at the saddle-point
level:

SGL
kin = g

32
Tr[{∇[U�(x)†qU�(x)]}2]q=�

= g

16

∑
α

∫
x

{
|∂i�α|2 tanh(|�α|/2T )

|�α|T

− [∂i |�α|2]2[−|�α| + T sinh(|�α|/T )]

8|�α|3T 2[1 + cosh(|�α|/T )]

}
. (52b)

In view of the fact that we are interested in temper-
atures parametrically close to the mean-field temperature
T ∼ TBKT ∼ TMF, we will keep only leading terms in the GL
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expansion:

S = F
T

= 1

T

∑
α

∫
x
A|�α|2 + B

2
|�α|4 + C|∇�α|2, (53)

where

A = 4Zω

π
ln

T

Tc

, (54a)

B = Zω

7ζ (3)

2π3T 2
, (54b)

C = g

32T
. (54c)

If renormalizations are discarded, we have g = gD and
Zω = πν/4, and the parameters of the GL functional take the
standard form [9,60] A = ν ln(T/Tc), B = 7ζ (3)ν/(8π2T 2),
and C = πνD(l)/(8T ). On the other hand, in the vicinity of
Tc, one should replace g → gX and Zω → Zω(LTX

) here and
in the remainder of this section.

2. Fluctuation corrections: Intrareplica terms

In Sec. II D 1, the GL functional was derived using the local
saddle-point solution of the NLσM. However, more precisely,
the GL functional is determined by

SGL[�α] := − ln

⎡
⎣∫ DQ

∏
n�=0,α

D[�α,n,�̄α,n]e−SHS[Q,�̌]

⎤
⎦,

(55)

where SHS[Q,�̌] was introduced in Eq. (18) and �α,n=0(x) ≡
�α(x). The functional integral is dominated by the local
saddle-point configurations leading to Eq. (52), while correc-
tions are generated by fluctuations around these mean-field
solutions. Generally, such terms lead to a renormalization
of GL parameters A,B,C in Eq. (54). These effects are
already taken into account in our approach: the solution of
exact RG equations (38) includes all corrections stemming
from scales L ∈ [l,LTc

]. As far as corrections from larger
scales are concerned, these will be discussed in Sec. II D 4
in the framework of the perturbative treatment of the GL
functional. We will discard, however, weak (anti) localization
corrections to C (stemming from scales between LTc

≈ LT

and the dephasing length Lφ). Indeed, these corrections are of
the order

δCWL

C
∼ GiX ln GiX (56)

and turn out to be subleading with respect to corrections
discussed in Sec. II D 4.

3. Fluctuation corrections: Disorder terms

As shown in Appendix B, the fluctuation determinant
associated to linear deviations from the local saddle-point
solution further leads to qualitatively new terms in the GL
functional: these are interreplica interaction terms. As we
explain in the following, most of them can be interpreted as
random fluctuations of GL parameters A and C. The leading
terms in the expansion |�|/T and under the assumption that

fluctuations of � are smooth on the scale LT are the following:

δSGL
dis = − 1

2T 2

∑
αβ

∫
x,x′

{
〈〈A(x)A(x′)〉〉|�α|2x |�β |2x′

+2〈〈A(x)C(x′)〉〉|∂i�α|2x |�β |2x′

+〈〈C(x)C(x′)〉〉
2

[
2|∂i�α|2x |∂i�β |2x′

+(∂i�
∗
α[sx]ii ′∂i ′�α)x(∂j�

∗
β[sx]jj ′∂j ′�β)x′

+(∂i�
∗
α[sz]ii ′∂i ′�α)x(∂j�

∗
β[sz]jj ′∂j ′�β)x′

]}
. (57)

The matrices sx,z are Pauli matrices in the space of spatial
coordinates i,i ′,j,j ′ ∈ {x,y}. The correlation functions of GL
parameters entering Eq. (57) are given by〈〈(

A(x)
2πT
D

C(x)

)T(
A(x′)

2πT
D

C(x′)

)〉〉

= βσ

D(2π )3T

(
γAA −γAC

−γAC γCC

)
δ(x − x′) (58)

with

γAA = 7ζ (3)

4π
, (59a)

γAC = π3

64
, (59b)

γCC = 7π2ζ (3) − 62ζ (5)

8π
. (59c)

We recall that the diffusion coefficient (at scale LTX
) is

D = g/16Zω. Further, the parameter βσ takes values βσ = 4
in the presence of spin-rotation invariance and βσ = 1 in the
absence of the latter.

Here, we keep only the Gaussian white-noise part of
the distribution functions for random quantities A and C.
The omission of interaction corrections [70] beyond the
renormalization of D and of higher moments is justified in the
limit GiX 	 1. A more detailed study is relegated to a future
publication. In the given approximation, our result for random
fluctuation of GL parameter A is consistent with the result
presented in Ref. [70]. Note that fluctuations of A can be both
interpreted as fluctuations of Tc and of the density of states.
The spatial delta function is smoothened on the scale LT , and
in Appendix B we present the exact correlation function in
momentum space.

The GL functional with disorder-induced corrections also
contains random fluctuations of higher angular harmonics [see
the last two lines of Eq. (57)]. Since we assumed spin-singlet
superconductivity from the outset, the leading corrections are
of d-wave type. Their distribution function has zero mean
while the Gaussian correlation happens to be half as large as
the one for the GL parameter C.

4. Perturbative renormalization

We have now completed the derivation of the disordered
GL functional, which is the appropriate theory at length scales
larger than LTc

. We turn now to the role of fluctuations on

214503-9
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scales L ∈ [LTc
,ξ ]. To investigate their effect, we will employ

a self-consistent perturbative treatment.
We observe that the mean-free path of free Cooper pairs

scattering off fluctuations of the transition temperature is

lbosons ∼ ξ |εc|g2 � ξ, (60)

where the reduced temperature is

εc = T − Tc

Tc

. (61)

Therefore, in the considered regime of length scales, the
Cooper-pair kinetics is ballistic.

Before turning to self-consistency, we present the simple
perturbative correction to the mass term

A → A

[
1 + 2

GiX

εc

ln

(
1

|εc|
)]

= Ã + 2A
GiX

εc

ln

(
GiX

|εc|
)
(62)

with

Ã = 4Zω

π

[
T − Tc

Tc

+ 2GiX ln

(
1

GiX

)]
. (63)

This correction stems from quartic term of the clean GL
functional (53). The analogous diagram from the quartic
interreplica term (57) is smaller by additional factor of GiX. We
note that GiX/εc is the same as the parameter γc(LTX

)t(LTX
)

from the analysis of NLσM RG (Sec. II C). In the second line,
we disentangled effects of the two dimensionless parameters
in the theory (GiX/εc and GiX). The effect of fluctuations is
a reduction of the transition temperature, which turns out to
be [9]

TMF = Tc(1 − 2GiX| ln GiX|). (64)

Further, the shift of transition temperature is taken into account
self-consistently. This results in replacing εc → ε, where

ε = (T − TMF)/TMF, (65)

and A → Ã in the last term of Eq. (62). Summing up all of
these effects leads to a replacement

A → Ã

[
1 + 2

GiX

ε
ln

(
GiX

|ε|
)]

(66)

in the GL functional (53). The factor in square brackets in
Eq. (66) can be absorbed into a redefinition of the order-
parameter field �α . Then, the self-consistent perturbative
treatment yields a GL functional of the form of Eqs. (53)
and (57) with renormalized coefficients

A → Ã = 4Zω

π
ε, (67a)

B → B̃ = B[
1 + 2GiX

ε
ln
(

GiX
|ε|
)]2 , (67b)

C → C̃ = C[
1 + 2GiX

ε
ln
(

GiX
|ε|
)] . (67c)

The parameteres γAA, γAC, and γCC are renormalized
analogously to the coefficient B.

5. Metallic side of the mean-field transition

We note that the procedure employed up to now is
equally applicable for T > TMF and T < TMF. Let us briefly
concentrate on the region of weak fluctuations on the metallic
side of the superconducting transition, i.e., ε � GiX. As
explained in Ref. [3], in this case the RG has to be stopped
at the scale LT . The corrections to the kinetic GL parameter
C → C̃ can be associated to the conductance

g(LT ) → g(LT )

[
1 − 2

GiT

ε
ln

(
GiT

|ε|
)]

. (68)

Here, GiT is the Ginzburg-Levanyuk number with g(LT )
evaluated at scale LT . The expression (68) can be interpreted
as the (physical) conductance above TMF and is of the same
form as was presented in Eq. (45) of Ref. [3], provided
ln(Lφ/LT ) ∼ − ln(GiX/|ε|).

Furthermore, we conclude that the GL coherence length
[Eq. (11c)] is more accurately given by

ξGL(T ) ∼ ξ (0)√
ε

√
D(LT )

D(LTc
)
, ε � GiT . (69)

The zero-temperature coherence length is ξ (0) ∼√
D(LTc

)/Tc.

E. Disordered O(2) model, superconducting density,
and vortex-unbinding transition

In the previous section we derived the effective GL
functional and incorporated the effect of fluctuations from
scales L ∈ [LTc

,ξ ]. We now reach the largest scale at which
a crossover of theories takes place, namely, the GL coherence
length ξ =

√
C̃/(2|Ã|). In order to obtain an effective descrip-

tion in terms of the U(1) NLσM similar to Eq. (3), we need to
determine the mean-field order parameter.

1. Order-parameter fluctuations

The mean-field equation for the order-parameter field is

−∇[C̃∇�MF(x)] + Ã�MF(x) + B̃|�MF(x)|2�MF(x) = 0.

(70)
Here, the quantities C̃(x) = C̃ + δC̃(x) and Ã(x) = Ã +
δÃ(x) fluctuate randomly according to Eqs. (58) and (67).
Iterative, perturbative solution of this equation leads to �MF =
�̄MF + δ�MF(x):

|�̄MF| =
√

− Ã

B̃
= 2πTMF

√
2|ε|

7ζ (3)

[
1 + 2

GiX

ε
ln

GiX

|ε|
]
(71a)

and

δ�MF(x) = −�̄MF

∫
x′,k

δÃ(x′)eik(x−x′)

C̃[k2 + ξ−2]
. (71b)
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Therefore, the order-parameter field fluctuates [70,72] on
the scale of the coherence length

〈〈�MF(x)�MF(x′)〉〉
�̄2

MF

= 〈〈�MF(x)�∗
MF(x′)〉〉

|�̄MF|2

= 〈〈�∗
MF(x)�∗

MF(x′)〉〉
[�̄∗

MF]2
= K�(x − x′)

(72)

with Gaussian correlation function

K�(x) = βσ γ̃AA

C̃
2
D(2π )3T

∫
k

eikx

[k2 + ξ−2]2

= βσ γ̃AA

C̃
2
D(2π )3T

ξ 2

4π
K1

( |x|
ξ

) |x|
ξ

� βσ γ̃AAπ6

49ζ 2(3)

[
GiX

|ε|
]2

Dδ(x − x′)
2πT

, (73)

where K1 is the first modified Bessel function. The white-noise
approximation in the last line of Eq. (73) is justified when the
physics on spatial scales much larger than ξ is considered.

It should be noted that the inclusion of higher Matsubara
harmonics can lead to long-range ln2(kξ ) tails in the Fourier
transform ofK�(x) [72]. Such effects are beyond our accuracy
in the determination of TBKT (see the discussion in Sec. II F).
Further, we explicitly checked that fluctuations of C̃(x) do not
contribute to fluctuations of �MF(x).

2. Mean-field stiffness

Finally, we find the mean-field stiffness, which fluctuates
on the scale of ξ , to be

K(x)

π
= C̃(x)

T
|�MF(x)|2 ≈ K̄ + δK(x)

π
. (74)

Following the notation from above, K̄ denotes the average
stiffness and δK(x) the small fluctuations. Replacing C̃ and
�MF by their respective expectation values leads to

K̄

π
= g

32

∣∣�̄(0)
MF

∣∣2
T 2

[
1 + 2

GiX

ε
ln

(
GiX

|ε|
)]

= 1

4π

|ε|
GiX

[
1 + 2

GiX

ε
ln

(
GiX

|ε|
)]

. (75)

Here, we have introduced |�̄(0)
MF|2 = −A/B =

−ε8π2T 2/7ζ (3), the mean-field gap without corrections
stemming from length scales L ∈ [LTc

,ξ ].
Thus, the mean superconducting density K̄(ε) (ε < 0)

is determined by the normal-state conductivity at the same
distance from the transition [i.e., g(−ε) obtained by reflecting
ε = (T − TMF)/TMF about the origin] [see Eq. (68)].

The fluctuations of K are given by

δK(x)

K̄
= δC̃(x)

C̃
+ δ�MF(x)

�̄MF
+ δ��

MF(x)

�̄�
MF

. (76)

The fluctuations of K are governed by order-parameter
fluctuations:

〈δK(x)δK(x′)〉 = βσγAA

4

[
π3

7ζ (3)

]2
Dδ(x − x′)

2πT
. (77)

Note that the delta function is smoothened on the scale
ξ . Mesoscopic fluctuations of the GL parameter C lead to
subdominant contributions to 〈δK(x)δK(x′)〉. We explicitly
checked that terms proportional to γAC or γCC are negligible
as compared to those proportional to γAA in view of additional
small factors of |ε| and/or GiX.

3. BKT transition temperature

We remind the reader that the clean U(1) NLσM sup-
plemented with topological excitations (vortices) exhibits a
phase transition which is driven by the logarithmic intervortex
interaction. The latter is encoded in the following RG equations
for the mean stiffness K̄ and fugacity z̄v:

dK̄−1

dy
= z̄2

v, (78a)

dz̄v

dy
= 2(1 − K̄)z̄v, (78b)

where y = ln(L/ξ ). The fixed point defining the vortex-
unbinding transition is given by (K̄∗,z̄∗

v) = (1,0).
Generally, the effect of disorder on the vortex physics in

the U(1) NLσM is twofold: first, the random stiffness modifies
the interaction between vortices and rotationless supercurrents
as well as between vortices themselves. Second, since the
stiffness determines the core energy Score = − ln zv = αzK ,
fluctuations of the stiffness can lead to pinning of vortices.
The coefficient αz is a number of order unity in realistic
superconductors [37], and the fugacity zv acquires a lognormal
distribution.

In the present case, the effect of disorder on the BKT tran-
sition temperature is relatively weak: the quartic interreplica
terms are RG irrelevant. In addition, since K(x) fluctuates
on the scale ξ , vortex pinning is negligible for the following
reason: The size of a vortex core is of the same scale ξ and by
consequence fluctuations largely cancel out.

Technically, the effect of disorder can be taken into account
by partial contraction of the quartic interreplica terms [73]. It
turns out that intrareplica quartic terms (thermal fluctuations
from length scales L > ξ ) dominate upon disorder effects by
a factor of Gi−1

X .
Using this observation and simple rescaling arguments [74]

in the formal definition of the bare stiffness we find that Kbare

depends only on the single parameter GiX/|ε|:
Kbare

π
= 1

4π

|ε|
GiX

fK

(
GiX

|ε|
)

, (79a)

with fK (x)/x being a monotonically decreasing function and

fK (x) �
{

1 − 2x ln x, for x 	 1
� xηK (ηK < 1), for x � 1.

(79b)

In the limit zv → 0, the critical stiffness is K∗ → 1. The
transition temperature TBKT is governed by the solution αBKT
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of fK (1/αBKT) = 4/αBKT, i.e.,

|εBKT| ≡ TMF − TBKT

TMF
= αBKTGiX. (80a)

Even though the precise value of αBKT remains unknown,
the asymptotic terms in the limit |ε| � GiX are sufficient to
identify αBKT as a number of order unity.

In a realistic superconductor close to the transition, the
fugacity z̄v ∼ O(1) is finite and thus the system undergoes the
phase transition far from the critical end point (K̄∗,z̄∗

v) = (1,0).
This does not alter, however, the result (80a) with αBKT

understood as an unknown coefficient of order unity. For
completeness, we repeat that

GiX = 7ζ (3)

π3gX

	 1, (80b)

TMF = Tc(1 − 2GiX| ln GiX|), (80c)

with gX being the NLσM coupling constant evaluated close
to the superconducting instability of the diffusive Fermi liquid
occurring at the energy scale Tc. The expression for the vortex-
unbinding temperature, defined via Eq. (80a), is one of the
major results of this paper.

We speculate now on the behavior of the vortex-unbinding
temperature, when the system is tuned close to the quantum
critical point {characterized by [γc(LTc

= ∞),t(LTc
= ∞)] =

(−∞,tSIT ∼ 1)} of the NLσM RG from Sec. II C 4. It appears
very plausible that Eq. (80a) describes the first term of a
geometric series, such that

TBKT = TMF

1 + αBKTGiX
. (81)

A result of this form was first obtained by Beasley, Mooij,
and Orlando [28] who, however, omitted all fluctuation and
disorder renormalizations. (In their approximation TMF =
TBCS, αBKT = 4, and GiX = Gi.)

4. Correlation length

It is easy to check that the quantity

c(K) = 4[K−1 − 1 − ln K−1] − z2
v (82)

is conserved under the BKT RG [Eqs. (78)]. On the normal
conducting side, the limit τBKT → 0 implies

c � −
(

π

2b

)2
τBKT

2GiX
. (83)

We remind the reader of the definition τBKT = (T −
TBKT)/TBKT. The fitting parameter b is chosen such that the
solution of RG equations (78) with c(K) given by Eq. (83)
leads to the same form as Eq. (11b):

ξBKT(T ) ∼ ξ (TBKT)eb

√
GiX
τBKT , τBKT 	 GiX (84)

for the correlation length [75]. As was discussed in detail in
Ref. [37], the parameter Gi (or better GiX) naturally appears in
the standard definition of both BKT and GL coherence lengths.

5. Temperature-dependent stiffness

We now focus on the superconducting side of the transition
and discuss the temperature-dependent mean stiffness. We

consider three different temperature regimes: (i) T 	 TBKT,
(ii) GiX 	 |τBKT| 	 1, and (iii) |τBKT| 	 GiX.

In the immediate vicinity of the transition [regime (iii)],
Eq. (83) implies

K(τBKT) = 1

1 − π
4b

√|τBKT|/GiX
. (85)

In contrast, in regime (ii), renormalization effects are negligi-
ble and Eq. (79) describes the temperature-dependent stiffness.

Finally, we consider the regime (i) of lowest temperatures
T 	 TBKT. It is useful to first clarify the hierarchy of length
scales occurring in this regime. As compared to the case
−τBKT 	 1 depicted in Fig. 1, now the following scales are
almost identical: LTc

∼ L� ∼ ξ . Therefore, the large window
LTc

	 L 	 ξ of dominant thermal fluctuations disappears
and the stiffness is determined by the outcome of the NLσM
RG:

K

π
= g(LTc

)

8

�

2T
tanh

�

2T
. (86)

Within our theory, � = �(T ) � T is the temperature-
dependent spectral gap, which has standard BCS form, but with
renormalized Tc, as dictated by the NLσM RG. This expression
incorporates the quantum corrections stemming from scales
L � LTc

. The low-temperature stiffness (superconducting
density) including dominant quantum corrections to Tc was
recently determined in Ref. [76] using an alternative approach
(self-consistent diagrammatic technique).

F. Summary and discussion

The final result for the vortex-unbinding temperature is
visualized in Fig. 2. For concreteness, we consider a system
with long-range Coulomb interaction and strong spin-orbit
coupling. The transition temperature is displayed as a function
of the Drude resistance tD . Deviation from the horizontal line
T/TBCS = 1 implies a violation of Anderson’s theorem. The
three curves correspond to Finkel’stein’s solution [Eq. (6) (blue
dashed line)] to the temperature TX of the superconducting
instability [Eq. (51)] as resulting from the full one-loop
fermionic RG (red dotted-dashed line), and to the vortex-
unbinding temperature TBKT [Eq. (81)] (green full line). We
see that there is a substantial difference between the three
curves. The relative difference between TX and TBKT is of
the order of GiX| ln GiX| [see Eqs. (46), (64), and (80a)].
This difference can serve as a rough estimate for the width
of the BKT fluctuation regime in the temperature dependence
of resistivity, which is of order GiX, as will be discussed in
Sec. III.

Let us emphasize once more that, as seen in Fig. 2, the found
mean-field transition temperature TMF, and consequently the
true transition temperature TBKT, can differ strongly from
the BCS temperature TBCS. The dominant effects behind this
difference are those incorporated in the NLσM RG. In addition
to them, there is a contribution of GL fluctuation corrections.
The randomness of the stiffness inherited from “mesoscopic”
fluctuations of GL parameters [Eq. (59)] is parametrically
smaller and thus of minor importance for the finite-temperature
superconducting transition that we are exploring. This applies
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FIG. 2. (Color online) Transition temperature for a homogeneously disordered superconducting film with Coulomb interaction and strong
spin-orbit scattering as a function of the Drude resistance tD = 1/(πμτ ). On the left (right), the mean-free time τ is varied (fixed) while the
chemical potential is kept fixed (is varied). Blue dashed line: Finkel’stein’s approximate solution for Tc [Eq. (6)]. Red dotted line: temperature
TX [Eq. (51)] of the instability of the fermionic system. Green solid line: vortex-unbinding temperature [Eq. (81)]. Green and red curves are
obtained by numerical solution of RG equations. The only free parameter in the left (right) plot is TBCS/μ = 0.01 [ln(TBCSτ ) = −0.2]. The
origin of the different behavior in left and right plots is due to the strong dependence of γc(l) on tD in the left graph.

also to ln2(kξ ) tails [72] in the correlation function of K(x)
(Sec. II E 1), which are subleading and do not affect Eq. (80a).

Therefore, our theory implies that in homogeneously
disordered films the long-wavelength theory describing the
finite-temperature vortex-unbinding transition is a theory of
clean bosons. In this paper, we showed how this theory
emerges from the underlying theory of disordered fermions.
Our derivation of parameters of the effective U(1) theory takes
into account all essential disorder, quantum-interference, and
interaction effects.

It is worth pointing out that we have assumed a short-
range disorder. Spatial variations of the chemical potential
and/or the BCS-coupling constant with a characteristic length
large compared to ξ (TBKT) can be incorporated in the resulting
bosonic theory, which will yield a disordered U(1) NLσM.
This will lead to an additional suppression of TBKT [37].

III. TEMPERATURE DEPENDENCE OF RESISTANCE

This section is devoted to the temperature dependence
of the resistance in a 2D metallic film at the verge of
superconductivity.

A. Interpolating function for the resistance

The asymptotic behavior of the resistance in the vicinity
of the BKT transition is given by generalization of the result
obtained in Ref. [36]:

ρ(T ) � A−1
v t

(
LTX

)(ξ (TBKT)

ξHN(T )

)2

, τBKT 	 GiX (87)

and by Eq. (68)

ρ(T ) � t(LT )

[
1 + 4

(
ξHN(T )

ξ (TBKT)

)2

ln

(
ξHN(T )

ξ (TBKT)

)]
,

τBKT � GiT . (88)

Here, ξHN is a generalization of the Halperin-Nelson
length [36] [cf. Eq. (11a)]

ξHN(T ) = ξ (TBKT)

b
sinh

(
b

G̃iT

τBKT

)
, (89)

inasmuch it contains all renormalization effects discussed in
this work. We introduced an interpolating function for the
Ginzburg number G̃iT = 7ζ (3)t̃(T )/(2π2) by means of t̃(T )
given by t̃(T ) = t(LT ) for T � TX and by the extrapolation

t̃(T ) = TXGiX∂T t(LT )|TX
tanh

[
T − TX

TXGiX

]
+ t(LTX

) (90)

for temperatures below TX.
The vortex-generated resistance in the immediate vicinity

of TBKT [Eq. (87)] contains an unknown prefactor A−1
v of

order unity. The resistance far from the superconducting
transition includes the fluctuation corrections (68), which
are essentially the anomalous Maki-Thompson correction. In
2D, they dominate upon Aslamazov-Larkin corrections. We
propose the following interpolating function for the resistance
which reproduces correctly both limits (87) and (88):

ρ(T ) = t̃(T )

1 + 2
(

ξHN(T )
ξ (TBKT)

)2
ln
[
eAv/2 + (

ξ (TBKT)
ξHN(T )

)2] . (91)

Let us comment on the width of the crossover region from
metal to superconductor in the temperature dependence of
resistance. As is indicated by Eqs. (87) and (88), our formalism
predicts that this crossover happens within a window of relative
size GiX around the mean-field temperature TMF. The only
temperature scale arising in our analysis of the crossover is
|ε| ∼ GiX.

B. Electrical versus heat transport

The final result for the resistivity [Eq. (91)] is displayed in
Fig. 3. Again, we focus on the case of a system with strong
spin-orbit coupling and Coulomb interaction.

When the transition is approached, the physical resistance
ρ starts to deviate from the NLσM running coupling constant
t and eventually rapidly decreases to zero. The difference
between the two quantities is due to inelastic processes, in
particular fluctuation corrections, which are beyond the RG
scheme of the NLσM. The quantity t(L) serves as a starting
point for the calculation of various physical observables sub-
jected to these corrections, including the electrical resistance
[Eq. (91)] and the superconducting density [Eq. (79)]. We
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FIG. 3. (Color online) Temperature-dependent resistance of a
homogeneously disordered metallic film close to the superconducting
transition. Here, the case of strong spin-orbit coupling and Coulomb
interaction is considered. Blue dashed curve: temperature dependence
of the NLσM coupling constant t , which determines the prefactor of
Eq. (92) for the thermal conductivity. Green solid curve: temperature
dependence of the physical resistance. The BCS transition temper-
ature TBCS is marked by the black dashed vertical line, while the
mean-field transition temperature TMF is marked by a dotted-dashed
line surrounded by a gray Ginzburg-Levanyuk window. Note the
logarithmic scale of the temperature axis. This plot was generated
using Eq. (91) with the bare values ln(TBCSτ ) = −0.2 and tD = 0.1,
as well as phenomenological constants αBKT = 4, Av = π 4/56ζ (3),
and b = 1.

interpret the NLσM coupling constant t(L) [or t̃(T )] as the
electronic contribution to the thermal resistance of the system.
Indeed, it is known that the quasiparticle contribution to the
thermal transport coefficient κ has no singular corrections at
the onset of the transition [77]. Technically, this is related to
the extra frequencies at heat-current vertices (see Appendix C),
each producing an extra factor γ −1

c in the inelastic contribution
to the thermal conductivity as compared to the electrical
conductivity (see Ref. [3] for the NLσM calculation of the
latter). In particular, the thermal conductivity κ can be readily
derived within our NLσM formalism at the saddle-point level
(see Appendix C for the technical details), with the result

κ = gT

4π

∫ ∞

�/T

ζ 2dζ

cosh2(ζ/2)
, (92)

and is thus related to renormalized g and, consequently, to
renormalized t .

To summarize, well above the transition both electric
resistivity and thermal resistivity t follow the NLσM RG.
When the transition is approached, the electric resistivity ρ gets
strongly suppressed due to fluctuation effects and eventually
becomes zero at TBKT. On the other hand, the NLσM coupling
t , and thus the thermal resistivity, remains finite in the vicinity
of the transition temperature TBKT.

It should be mentioned that in the model of diffusive
electronic system with long-range Coulomb interactions there
are additional logarithmic corrections to the thermal conduc-
tance κ [78]. These corrections, however, are nonuniversal and
beyond the RG scheme [79], so that they are not accounted for
explicitly in our treatment.

C. Finite-size effects and the role of electromagnetic fields

Finite-size effects may lead to a smearing of the BKT transi-
tion. First, as for any phase transition, the linear dimension L�
of the film leads to a natural infrared cutoff. Second, a finite-
size effect which is specific to superconducting films is due to
the finite thickness d �= 0, as has been already mentioned in
Sec. II C 1. Due to the interplay with electromagnetic fields, a
finite thickness leads to an infrared cutoff for the logarithmic
vortex-antivortex interaction [38] at the length scale of λ2/d,
where λ is the London penetration depth. In the context of
the present treatment, this means that RG has to be stopped at
the smaller of the two scales {λ2/d,L�}, which at the same
time is the maximal value for ξBKT. The consequence is a
rounding [37] of the sharp resistance drop near TBKT in Fig. 3.

IV. SUMMARY AND OUTLOOK

To summarize, we have developed a theory for the vortex-
unbinding transition in homogeneously disordered supercon-
ducting films. This theory incorporates the effects of quantum,
mesoscopic, and thermal fluctuations stemming from length
scales ranging from the superconducting coherence length
down to the Fermi wavelength. Using the developed theory,
we determine the dependence of essential observables (includ-
ing the vortex-unbinding temperature, the superconducting
density, as well as the temperature-dependent resistivity and
thermal conductivity) on microscopic characteristics such
as the disorder-induced scattering rate and bare interaction
couplings. More specifically, our key results are as follows:

(1) We have performed a consecutive mapping of emerging
effective field theories, starting from the Fermi-liquid theory
at a short scale through the normal-state interacting sigma
model, superconducting-state sigma model, and Ginzburg-
Landau theory, to the U(1) theory of superconducting phase
fluctuations.

(2) As a result of this procedure, we obtained the super-
conducting density in the temperature regimes (i) T 	 TBKT

[Eq. (86)] and (ii) GiX 	 |τBKT| = |T − TBKT|/TBKT 	 1
[Eqs. (75), (77), and (79)], which include effects from
quantum, mesoscopic, and thermal fluctuations. We find that
in regime (ii) the superconducting density at temperature
T is determined by the the normal-state conductance at
the temperature 2TMF − T obtained by reflecting about the
mean-field transition temperature TMF. The scale LTX

and
the associated Ginzburg number GiX are provided by the
fermionic nonlinear sigma model RG.

(3) Combining our result for the superconducting density
in regime (ii) with the RG treatment of the BKT transition, we
have found the vortex-unbinding temperature TBKT [Eq. (81)].
Figure 2 depicts the transition temperature as a function of
experimentally controllable parameters in the case of a system
with strong spin-orbit coupling and Coulomb interaction.
Further, we extracted the behavior of the stiffness in the
immediate vicinity of the transition |τBKT| 	 GiX [Eq. (85)].
We thus provided results for the superconducting density in all
regimes below TBKT.

(4) We have proposed a function (91) which interpo-
lates between vortex-dominated (exponentially small) resis-
tance close to the vortex-unbinding temperature and the
Maki-Thompson–type fluctuation resistivity representing the
dominant fluctuation correction further from the transition.
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We find, that the resistance drop occurs in a small temperature
window of strong fluctuations of relative size GiX. Our result
for the resistance is plotted in Fig. 3 for the case of a system
with strong spin-orbit scattering.

(5) We have identified the running charge t(L) of the
NLσM RG scheme of our theory with the electronic con-
tribution to the thermal resistance of the system [see Eq. (92)].

(6) We have performed a derivation of mesoscopic fluc-
tuations of Ginzburg-Landau coefficients, including both the
mass term and the prefactor of the kinetic term, for both cases
of the preserved and broken spin-rotation invariance.

Before closing the paper, we briefly discuss some of
perspective directions for future work.

(a) Our results, and in particular Eqs. (81) and (91),
should be useful for the analysis of experimental data on
TBKT and on resistivity near the transition, including recent
measurements [47–53] and expected future experiments. It
would be also very interesting to prove experimentally our
observation that the distance (TBKT − TMF)/TMF should be of
the order of the dimensionless thermal resistivity.

(b) In our analysis, we considered the case of a time-
reversal-symmetric disorder potential with short-range cor-
relations. Another interesting situation, when the disorder is
smooth, will be addressed in a separate publication. When
the disorder correlation length takes intermediate values, the
impurity potential appears classical to fermions but may lead to
Anderson localization of preformed Cooper pairs. Additional
stimulating directions for future research on the BKT transition
involve magnetic impurities (see, e.g., Ref. [80]).

(c) This paper was devoted to the thermodynamic phase
transition into the superconducting state. While renormal-
izations on intermediate scales were of quantum origin, the
physics in the close vicinity of the transition was governed by
thermal fluctuations. The corresponding transition line ends at
T = 0 at the point of superconductor-insulator transition [1],
which represents a prominent example of a quantum phase
transition and is driven by quantum fluctuations. Contrary to
the finite-temperature transition controlled by a Gaussian fixed
point, the fixed point governing the quantum superconductor-
insulator transition is at strong coupling, which makes its
controllable analytical exploration an extremely difficult task.
While considerable progress has been achieved within theories
of disordered bosons [81–83] and within the fermionic NLσM
RG (see Ref. [3]), development of a controllable theory of the
critical behavior at this quantum phase transition remains an
outstanding challenge for future research.
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APPENDIX A: MICROSCOPIC ORIGIN OF NLσM

This Appendix is devoted to the derivation of the NLσM,
both in the temperature regimes T < TBCS and T > TBCS. The
NLσM is a universal low-energy theory. In this appendix, we
outline its derivation from an exemplary microscopic model,
namely, the disordered BCS model.

We consider the following Matsubara action (we denote the
imaginary time τ̃ ):

S =
∫

x,τ̃

ψ̄(∂τ̃ + H )ψ − gψ̄↑ψ̄↓ψ↓ψ↑ + S
(ρ+σ )
int . (A1)

Here, g is the coupling constant in the Cooper channel
with g > 0 for attraction. The fields ψ,ψ̄ describe spinful
fermions,

H = p2

2m
+ V − μ (A2)

is the single-particle Hamiltonian including kinetic part,
disorder V (x) and chemical potential μ. Since the interest
lies on the superconducting instability, singlet and triplet
interaction channels, included in S

(ρ+σ )
int , will be omitted for

the moment and discussed at the end of this appendix.
In Fourier transformed Matsubara space, Nambu bispinors

are introduced as follows (here C = it12):

�n = 1√
2

(
ψ̄T

n

iσyψn

)
and �̄ = (C�)T . (A3)

Using the replica trick, one can next average over Gaussian
white-noise disorder with correlator

〈V (x)V (x′)〉 = 1

2πντ
δ(x − x′) (A4)

and decouple both disorder-induced and Cooper interactions

S =
∫

x
�̄G−1

M � + πν

8τ
trM2 + 1

gT

∑
αn

�∗
αn�αn, (A5)

where

G−1
M =

[(
−iε̂ + p2

2m
− μ −�̌

�̌† −iε̂ + p2

2m
− μ

)
− i

2τ
M

]
.

(A6)

The Hubbard-Stratonovich field M is a matrix in spin, Nambu,
Matsubara, and replica spaces [84].

As a next step, fermions are integrated out from Eq. (A5):

S = −1

2
Tr ln

[− CT G−1
M

]+ πν

8τ
TrM2 + 1

gT

∑
αn

�∗
αn�αn.

(A7)
The aim is to find a mean-field solution which is static and
homogeneous, i.e., the solution to the following saddle-point
equations:

iπνM = GM (x,x), (A8a)

�α,0

gT
= 1

2
tr

[
GM (x,x)

τx − iτy

2
Lα,0

]
(A8a)= iπν

2
tr

[
M

τx − iτy

2
Lα,0

]
, (A8b)
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�∗
α,0

gT
= −1

2
tr

[
GM (x,x)

τx + iτy

2
Lα,0

]
(A8a)= − iπν

2
tr

[
M

τx + iτy

2
Lα,0

]
. (A8c)

Equation (A8b) is analogous to Eq. (20) of the main text,
which, however, was obtained on the level of NLσM. The
ansatz M = �̄ leads to the BCS equation

�α

gT
= πν�α

∞∑
n=−∞

1√
ε2
n + |�α|2 , (A9)

which is solved in the standard manner. In particular, for T >

TBCS the only solution is �α = 0, in this case M = �.
The derivation of the NLσM can be performed by gradient

expansion. We exploit that not only M = �̄ is a saddle-point
solution but all

M = Q = T −1�̄T , T = T (x) ∈ G (A10)

are also approximate solutions as long as Q contains only
slow momenta (frequencies) as compared to the inverse
mean-free path (scattering rate). Here, G = Sp(8N ′

MNR)
[G = O(4N ′

MNR)] in the presence (absence) of spin-rotation
invariance. We now use Eq. (A10) in Eq. (A7) and expand the
trace of the logarithm to the leading order in momenta and
frequencies of Q. Note that for 〈�α〉 �= 0 the contributions
of the diamagnetic term and of retarded-retarded/advanced-
advanced bubbles to the conductivity tensor do not cancel
up [68]. This is the only substantial difference between the
cases T < TBCS and T > TBCS.

Above (below) TBCS, the gradient expansion yields
Eq. (15b) [Eq. (28)] of the main text. Furthermore, integration
of �α,n fields leads to the (residual) interaction in the Cooper
channel, Eq. (15e) [Eq. (27)]. Interaction terms in singlet
and triplet channels can be included by Hubbard-Stratonovich
decoupling, integration of fermions, expansion of the effective
action, and eventual integration of Hubbard-Stratonovich
fields [16,17]. Essentially, this boils down to “bosonizing” [85]
��̄ → Q in the expressions of charge and spin density [see
Eqs. (15c) and Eqs. (15d)].

APPENDIX B: DERIVATION OF DISORDERED GL
THEORY FROM THE NLσM

In this Appendix, the interreplica corrections to the GL
functional are derived. To this end, the functional integral (55)
is evaluated beyond the saddle-point approximation. The
starting point for the derivation of the interreplica terms of the
GL functional is the action (18), which yields, after integration
of Hubbard-Stratonovich fields �α,n with n �= 0,

S =
∫

x

g

32
tr(∂iQ)2 − 2Zωtr

{
Q

[
ε̂ +

(
0 −i�α

i�∗
α 0

)
Lα

0

]}

− 4Zω

πγcT

∑
α

�∗
α�α + S

s,t,c|n �=0

int . (B1)

The collection of interaction terms (15c)–(15e) (keeping only
nonstatic parts in the Cooper channel) is abbreviated as
S

s,t,c|n �=0

int .

As a next step, the space-dependent Bogoliubov rotation
[analogous to (24)] is performed. For the derivation of
interreplica terms in the GL functional, the fluctuations around
the saddle point are parametrized by q = W + �

√
1 − W 2 ≈

� + W − �W 2/2 with W Hermitian, W� = −W�, and
W = t12W

T t12 (same notation as in Refs. [3,23]). This leads
to

S = g

32
Tr{(∇W )2 + [U�∇U

†
�,�]2 + 2[W,∇W ]U�∇U

†
�

+ 2∇W [U�∇U
†
�,�] + 2W [[U�∇U

†
�,�],U�∇U

†
�]

− [U�∇U
†
�,�][U�∇U

†
�,�W 2] + [U�∇U

†
�,W ]2}

− 2ZωTr
[
ε̂
(
� − 1

2�W 2
)]− 4Zω

πγcT

∑
α

|�α|2+S
s,t,c|n �=0

int .

(B2)

We first present the strategy for the calculation of 〈〈AA〉〉 in
the noninteracting case and consider interaction effects and
other coefficients 〈〈AC〉〉 and 〈〈CC〉〉 afterwards.

1. Fluctuations in GL coefficient A: Noninteracting case

To obtain the coefficient 〈〈AA〉〉, we can omit all ∇U�

terms in Eq. (B2) as well as the interaction terms. Then, the
action can be diagonalized with the parametrization

W =
(

0 w

w̄ 0

)
, (B3)

where we expand [σj = (1σ ,�σ )j ]

wαβ
n1,n2

= 1

2

(
d̃

αβ

n1n2;j −ic
αβ

n1n2;j

ic̃
αβ

n1n2;j d
αβ

n1n2;j

)
τ

σj , (B4a)

w̄βα
n2,n1

= λj

2

(
d

αβ

n1n2;j −ic
αβ

n1n2;j

ic̃
αβ

n1n2;j d̃
αβ

n1n2;j

)
τ

σj . (B4b)

Here, the notation λj means

λj =
{−1, if j ∈ {1,2,3}

1, else. (B5)

We use the convention that negative (zero or positive) Matsub-
ara indices are denoted by even (respectively, odd) subscripts.
The diagonal action is

S0[d,c] = g

16

∫
q

∑
n1n2
αβ

0�j�3

λj

[
D−1

� (q)
]αβ

n1,n2

×[d̃αβ

n1n2;j d
αβ

n1n2;j + c̃
αβ

n1n2;j c
αβ

n1n2;j

]
, (B6)

where

[
D−1

� (q)
]αβ

n1,n2
= q2 + εα

n1
+ ε

β
n2

D
(B7)

and D = g/16Zω. For convergence reasons, the complex
diffuson fields have the property d̃j = λjd

∗
j and analogously

for cooperons.
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The integration of the modes yields a fluctuation determi-
nant or, equivalently, a fluctuation correction to the action

δS = 2βσ

∑
α,β

∑
n1,n2

Tr ln
[
D−1

� (q̂)
]αβ

n1,n2
. (B8)

It is worth noticing that the action (B6) is already diagonal
in the multiindex (α,β,n1,n2). Thus, the trace in Eq. (B8)
does not include trace over replicas and/or Matsubara indices.
However, the action (B6) is not diagonal in momentum and
coordinate space and the symbol “Tr” refers to an operator
trace in this space.

The parameter βσ is βσ = 4 in the quaternionic case with
spin-rotation invariance, with a singlet and three triplet modes
contributing. For broken spin-rotation invariance, when only
the singlet mode contributes, we have βσ = 1.

We now expand the expression εα
n = √

ε2
n + |�α(x̂)|2 in

small |�α|/T . Recall that we are interested in interreplica
correction to the GL functional up to quartic order. It is thus
sufficient to keep the quadratic order in the expansion of εα

n (the
quartic order would lead to quartic intrareplica contributions
with prefactor NR → 0):

εα
n ≈ |εn| + |�α|2

2|εn| . (B9)

The expansion of εα
n leads to the approximate inverse

propagator

[
D−1

� (q̂)
]αβ

n1,n2
= D−1

(
q̂,ωn12

)+ 1

D

[ |�α|2
2|εn1 |

+ |�β |2
2|εn2 |

]
.

(B10)

Here, ωn12 = εn1 − εn2 and D denotes the propagator in a
normal metal obtained from D� by setting � = 0.

We expand the logarithm (B8) to quartic order in � and
keep only terms that survive the replica limit:

δSGL = −βσ

∑
α,β

n1,n2

∫
x,x′

|�α|2x |�β |2x′

2D2εn1 |εn2 |

×D(x − x′,ωn12 )D
(
x′ − x,ωn12

)
. (B11)

As will be discussed in the following, the evaluation of
the Matsubara sums leads to the correlation function for
fluctuations of the GL coefficient A.

2. Fluctuation of GL coefficient C and interaction effects

We now return to the derivation of the full, disordered
GL functional, keeping terms up to quartic order in �/T .
To this end, we consider Eq. (B2). It is apparent from the
above derivation of the disorder correlations 〈〈A(x)A(x′)〉〉
that interaction terms S

s,t,c|n �=0

int do not directly play a role for the
derivation of the disordered GL functional. Indeed, interaction
effects only appear in the propagators [D−1

� (q)]
αα

n1,n2
. These

terms cannot lead to interreplica terms, as is evident in view of
Eq. (B8). Further, the first line of Eq. (B2) produces the kinetic
term of the normal-state diffusion propagator and the standard
(saddle-point) kinetic term of the GL functional. The terms
of the third line of Eq. (B2) are unimportant since they only
affect the replica diagonal channel. Therefore, in addition to

terms from Trε̂�W 2 we need to consider the following terms,
of which the first two (last two) stem from line 2 (respectively,
line 4) of Eq. (B2):

δS[W,�] = g

32
Tr
{

2[W,∇W ]U�∇U
†
� − [U�∇U

†
�,�]

×[U�∇U
†
�,�W 2] + [U�∇U

†
�,W ]2}. (B12)

As before, we expand to the second order in �/T . This
yields

U�∇U
†
� = −i

∑
n�0,α

P α
|n|

{
�y

2|εn|∇�α + �f α
n τz

}
. (B13)

Here, we have introduced the following matrix in Nambu
space:

�α =
(

0 −i�α

i�α,∗ 0

)
, (B14)

and the vector field

�f α
n = i

8ε2
n

(�α∇�α,∗ − �α,∗∇�α). (B15)

We first consider the second and third terms in the square
bracket of Eq. (B12). It is sufficient to keep terms up to linear
order O(�1

α) in U�∇U
†
�. We thus obtain from the second and

third terms

δS2,3 = g

16

∑
α;n�0

Tr

[
P α

|n|

(−i�y

2|εn| ∇�α

)2

W 2

]

+ g

16

∑
α,α′

n,n′�0

Tr

[(
P α

|n|
−i�y

2|εn| ∇�α

)
W

×
(

P α′
|n′|

−i�y

2|εn′ | ∇�α′
)

W

]
. (B16)

The effect of these terms is twofold: The first term from
δS2,3 yields a shift of the propagator (B7) [D−1

� (q̂)]
αβ

n1,n2
→

[D̃−1(q̂)]
αβ

n1,n2
with

[D̃−1(q̂)]αβ
n1,n2

≡ [
D−1

� (q̂)
]αβ

n1,n2
− 1

4

( |∇�α|2
ε2
n1

+ |∇�β |2
ε2
n2

)
.

(B17)

Second, the last terms from δS2,3 produce couplings between
cooperons and diffusons of opposite Matsubara frequencies:

δSb
2,3 = g

16

∫
x

∑
n1 ,n2
α,β

0�j�3

1

4|εn1εn2 |

×
⎡
⎣( d̃

αβ
n1,n2

d̃
βα

−n2−1,−n1−1

)T

j

M
(d)
α,β

(
d

αβ
n1,n2

d
βα

−n2−1,−n1−1

)
j

+
(

c̃
αβ
n1,n2

c
βα

−n2−1,−n1−1

)T

j

M
(c)
α,β

(
c
αβ
n1,n2

c̃
βα

−n2−1,−n1−1

)
j

⎤
⎦,

(B18)
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with

M
(d)
α,β =

(
0 ∇�∗,α∇�β

∇�α∇�∗,β 0

)
, (B19a)

M
(c)
α,β =

(
0 ∇�α∇�β

∇�∗,α∇�∗,β 0

)
. (B19b)

We now consider the first term (with the single commu-
tator) in the square bracket of Eq. (B12). Since W 2 and
W∇W are block diagonal in Matsubara space, Tr�yW

2 =
0 = Tr�yW∇W . Thus, only terms stemming from the term
proportional to �f α

n in U�∇U
†
� survive the trace operation. The

first term thus yields the contribution

δS1 = g

32

∑
j=0,...,3

λj

∫
p,q

{
d̃

αβ

n1n2;j

[ �f α
n1

(q) − �f β
n2

(q)
]
(2 p + q)dαβ

n1n2;j

+ c̃
αβ

n1n2;j

[ �f α
n1

(q) + �f β
n2

(q)
]
(2 p + q)cαβ

n1n2;j

}
. (B20)

In the replica limit we will be only interested in contributions
from the crossed terms which cancel out between cooperons
and diffusons in view of the different sign of contributions. We
therefore do not need to consider δS1 any longer.

The fluctuation determinant leads thus to a correction of
GL action of the form

δSGL = 1

2

∑
α,β,n1,n2;j

Tr ln

[[
D−1(q̂)

]αβ

n1,n2
+ (−λj )

2εn1 |εn2 |
M

(d)
α,β

]

+ 1

2

∑
α,β,n1,n2;j

Tr ln

[[
D−1(q̂)

]αβ

n1,n2
+ (−λj )

2εn1 |εn2 |
M

(c)
α,β

]
.

(B21)

Here, the first two lines stem from diffusons and the third
and fourth lines from cooperons. The symbol Tr denotes trace
in momentum/coordinate space and in the space of the 2 × 2
matrices introduced in Eq. (B18). It does not include the trace
over replica and/or Matsubara indices. The expansion of the
trace to fourth order in � leads to

δSGL
dis = −

∑
α,β

n1 ,n2

∫
x,x′

D
(
x − x′,ωn12

)
D
(
x′ − x,ωn12

)

×βσ

{ |�α|2x |�β |2x′

2D2εn1 |εn2 |
− |∇�α|2x |�β |2x′

2Dεn1 |εn2 |2

+ 1

8ε2
n1

ε2
n2

[|∇�α|2x |∇�β |2x′

+ (∇�∗
α∇�β)x(∇�α∇�∗

β)x′

+ (∇�α∇�β)x(∇�∗
α∇�∗

β)x′
]}

. (B22)

This expression is the origin of Eq. (57) of the main text.

3. Discussion of disordered GL functional

All in all, our derivation yields the following interreplica
corrections to the GL functional to the leading order in the

expansion |�|/T :

δSGL
dis = − 1

2T 2

∑
αβ

∫
x,x′

{
〈〈A(x)A(x′)〉〉|�α|2x |�β |2x′

+ 2〈〈A(x)C(x′)〉〉|∂i�α|2x |�β |2x′

+〈〈C(x)C(x′)〉〉
2

[
|∂i�α|2x |∂i�β |2x′

+ (∇�∗
α∇�β)x(∇�α∇�∗

β)x′

+ (∇�α∇�β)x(∇�∗
α∇�∗

β)x′
]}

. (B23)

We will be interested in the limit when the field � is
smooth on the length scale of LT . In Eq. (57) of the main
text, we presented only the delta-correlated part of fluctuating
GL parameters. Here, we will go beyond this approximation.
In general, the Gaussian statistics of GL parameters is dictated
by mean values given in Eqs. (54) and fluctuations〈〈(

A(x)
2πT
D

C(x)

)T(
A(x′)

2πT
D

C(x′)

)〉〉

= βσ

D(2π )3T

(
γAA(x − x′) −γAC(x − x′)

−γAC(x − x′) γCC(x − x′)

)
. (B24)

It is convenient to present the correlation functions entering
Eq. (B24) in Fourier space:

γAA(q) =
∫ 1

0

du

4π

∑
n1,n2

1

D−1ωn12 + q2(u − u2)

(2πT )3

Dεn1 |εn2 |

≈ 1

4π

(
S

(a)
1 − 1

6
S

(b)
1

Dq2

2πT
+ 1

30
S

(c)
1

[
Dq2

2πT

]2)
,

(B25a)

γAC(q) =
∫ 1

0

du

4π

∑
n1,n2

1

D−1ωn12 + q2(u − u2)

(2πT )4

2Dεn1ε
2
n2

≈ 1

8π

(
S

(a)
2 − 1

6
S

(b)
2

Dq2

2πT

)
, (B25b)

γCC(q) =
∫ 1

0

du

4π

∑
n1,n2

1

D−1ωn12 + q2(u − u2)

2(2πT )5

4Dε2
n1

ε2
n2

≈ 1

8π
S3. (B25c)

In the approximate evaluation, we only kept terms yielding
terms ∂n(�/T )m with n � m � 4 in the GL functional. We
will use the notation γAA for γAA(q = 0) and analogously for
γAC, γCC. The sums entering these expressions are

S
(a)
1 =

∑
n1,n3

1

(n1 + n3 + 1)(n1 + 1/2)(n3 + 1/2)
= 7ζ (3),

(B26a)

S
(b)
1 =

∑
n1,n3

1

(n1 + n3 + 1)2(n1 + 1/2)(n3 + 1/2)
≈ 5.2,

(B26b)
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S
(c)
1 =

∑
n1,n3

1

(n1 + n3 + 1)3(n1 + 1/2)(n3 + 1/2)
≈ 4.5,

(B26c)

S
(a)
2 =

∑
n1,n3

1

(n1 + n3 + 1)(n1 + 1/2)(n3 + 1/2)2
= π4

8
,

(B26d)

S
(b)
2 =

∑
n1,n3

1

(n1 + n3 + 1)2(n1 + 1/2)(n3 + 1/2)2
= S3/2,

(B26e)

S3 =
∑
n1,n3

1

(n1 + n3 + 1)(n1 + 1/2)2(n3 + 1/2)2

= 7π2ζ (3) − 62ζ (5). (B26f)

The eigenvalues of the matrix of γ̂ are positive in the limit
Dq2/T 	 1. At q = 0 they are approximately 15/4π and
2.8/4π . In the main text, we further used

(∂i�
∗
α∂i�β)(∂j�α∂j�

∗
β) + (∂i�α∂i�β)(∂j�

∗
α∂j�

∗
β)

= (∂i�
∗
α∂i�α)(∂j�β∂j�

∗
β)

+ (∂i�
∗
α[sx]ii ′∂i ′�α)(∂j�β[sx]jj ′∂j ′�∗

β)

+ (∂i�
∗
α[sz]ii ′∂i ′�α)(∂j�β[sz]jj ′∂j ′�∗

β). (B27)

APPENDIX C: DERIVATION OF THE THERMAL
CONDUCTIVITY

In this Appendix, we present the derivation of the quasipar-
ticle contribution to thermal conductance in the disordered
superconductor. Upon taking � → 0, this discussion also
treats the normal conducting case. The thermal conductance
is calculated on the level of the Kubo formula introduced in
Ref. [86] for both normal metals and superconductors. In the
conductivity bubble, the electrical charge in each current vertex
is replaced by the half-sum of adjacent fermionic Matsubara
frequencies. Within the superconducting, interacting NLσM
approach (see Sec. II C 2), this amounts to introducing an
energy-dependent vector potential as a source field [87]

Sσ = g

32

∫
x

tr[(DiQ)2] − 2Zω

∫
x

tr

[(
ε̂ +

∑
α

�τyLα,0

)
Q

]
.

(C1)
The covariant derivative is

Di = ∂i + i

[
Aα

i,n

(−[Iα
n ]T

Iα
n

)
τ

,•
]
. (C2)

For the calculation of electrical conductivity, one replaces
Iα

n → eIα
n , where e is the electrical charge. Instead, for the

calculation of thermal conductivity, we introduce

(
Iα0

n0

)αβ

nm
= δα0αδα0βδn−m,n0 i

εn + εm

2
. (C3)

To obtain the thermal conductance including all quantum
corrections stemming from scales L ∈ (l,LTc

) we perform RG
up to the infrared cutoff scale and then evaluate the gradient
term of the NLσM in the saddle-point approximation Q = �̄.
We use

tr

[(−[Iα
n ]T

Iα
n

)
τ

�̄

(−[Iα
−n]T

Iα
−n

)
τ

�̄

]

= 2
∑
k,l

⎧⎨
⎩[Iα

n ]Tkl

εl√
ε2
l + �2

[Iα
−n]Tlk

εk√
ε2
k + �2

+ [Iα
n ]kl

εl√
ε2
l + �2

[Iα
−n]lk

εk√
ε2
k + �2

− [Iα
n ]Tkl

�√
ε2
l + �2

[Iα
−n]−(l+1),−(k+1)

�√
ε2
k + �2

− [Iα
n ]kl

�√
ε2
l + �2

[Iα
−n]T−(l+1),−(k+1)

�√
ε2
k + �2

⎫⎬
⎭ (C4)

to determine the effective action for the source fields of the
heat current

Sheat[A
α
i,n] = −g

4

∑
α,n

Aα
i,nA

α
i,−n

×
∑

k

⎡
⎢⎣ εkεk+n + �2√

ε2
k + �2

√
ε2
k+n + �2

− 1

⎤
⎥⎦[i εk + εk+n

2

]2

. (C5)

For comparison, we present the same formula for the source
fields of the electric current

Sel[A
α
i,n] = −g

4

∑
α,n

e2Aα
i,nA

α
i,−n

×
∑

k

⎡
⎢⎣ εkεk+n − �2√

ε2
k + �2

√
ε2
k+n + �2

− 1

⎤
⎥⎦, (C6)

which can be evaluated to obtain the Mattis-Bardeen ac
conductivity formula in the superconductor including all quan-
tum corrections stemming from scales L ∈ {l, min(Lω,LTc

)}.
When evaluating this expression in the limit � → 0 we obtain

Sel =
∑
α,n

ge2

2π

|ωn|
2T

Aα
i,nA

α
i,−n, (C7)

i.e., the normal-state dc conductivity of σ = ge2/2π = ge2/h.
We proceed with the evaluation of the thermal conductivity

κ entering the effective action of source fields as

Sheat =
∑
α,n

κ

T

|ωn|
2T

Aα
i,nA

α
i,−n, (C8)
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and thus being for the superconductor (for simplicity we
concentrate on ωn > 0)

κ = g

2ωn

∑
k

⎡
⎢⎣ εkεk+n + �2√

ε2
k + �2

√
ε2
k+n + �2

− 1

⎤
⎥⎦[εk + εk+n

2

]2

�→0= −g

ωn

(πT )2
n−1∑
k=0

(2k + 1 − n)2

︸ ︷︷ ︸
=(−n+n3)/3

= g

2π

π2

3
T , (C9)

where we analytically continued ωn → ω + i0. We thus
recovered the Wiedemann-Franz law in the normal state (but
including renormalization [79]).

Now, let us consider the superconducting state. First, we
note that the sum in Eq. (C9) is formally UV divergent. This is
a well-known property of the Kubo expression for the thermal
conductance in superconductors. This divergence is canceled
by terms stemming from the time derivative of time-ordering
Heaviside functions (see, e.g., discussion in Ref. [88]) which
is equivalent to disregarding the large εk contribution in the
contour integration.

We define

f (iεk,iεk+n) =

⎡
⎢⎣ εkεk+n + �2√

ε2
k + �2

√
ε2
k+n + �2

− 1

⎤
⎥⎦[εk + εk+n

2

]2

(C10)
and evaluate the sum S(ω) entering κ = g

−i2ω
S(ω + i0)|ω→0:

S(iωn) =
∑

k

f (iεk,iεk+n) =
∫ ∞

�

dε
tanh(ε/2T )

2πiT

×[f (ε + i0,ε + iωn) − f (ε − i0,ε + iωn)

+f (ε + i0,ε − iωn) − f (ε − i0,ε − iωn)]. (C11)

It follows that

S(ω + i0) =
∫ ∞

�

dε
tanh([ε + ω]/2T ) − tanh(ε/2T )

πiT

×
(

ε + ω

2

)2
[

ε(ε + ω) − �2

√
ε2 − �2

√
(ε + ω)2 − �2

]

−i

∫ �

�−ω

dε
tanh([ε + ω]/2T )

πiT

×
(

ε + ω

2

)2
[

ε(ε + ω) − �2

√
�2 − ε2

√
(ε + ω)2 − �2

]
(C12)

Expanding in ω we obtain Eq. (92) from the main text. On the
Drude level for electrons with quadratic dispersion we have
g/2π = nτ/m, and thus our result reduces to the formula of
Ambegaokar and Griffin. [89]

APPENDIX D: LIST OF NOTATIONS

This Appendix consists of a list of notations used through-
out the paper. We order the symbols alphabetically, starting
with latin letters and continuing with greek letters.

A,Ã prefactor of quadratic term in GL theory
Av parameter entering interpolation

functions for resistivity
B,B̃ prefactor of quartic term in GL theory
b parameter entering BKT

coherence length
C,C̃ prefactor of kinetic term in GL theory
D = g/16Zω (diffusion coefficient)
EL = D(EL)/L2 (energy-length conversion)
g = 2/(πt) (NLσM coupling constant,

value at scale l [LTX
]: gD [gX])

Gi = 7ζ (3)/(π 3gD) (Ginzburg number)
GiX = 7ζ (3)/(π 3gX) (Ginzburg number)
I current
(I α0

n0
)αβ

nm
= δα0αδα0βδn−m,n0

K (K̄) (mean) stiffness
l mean-free path
LE = √

D(LE)/E (energy-length conversion)
(Lα0

n0
)αβ

nm
= δα0αδα0βδn+m+1,n0

N ′
M number of Matsubara frequencies

NR number of replicas
Q NLσM field in electronic basis
q NLσM field in Bogoliubov basis
t = 2/(πg) (NLσM coupling constant,

bare value: tD)
tSIT t at superconductor-insulator transition
T temperature of system
TBCS BCS transition temperature
TBKT vortex-unbinding temperature
Tc scale at which γc diverges
TMF mean-field transition temperature
TX defined by γc(LTX

)t(LTX
) = −1

vF Fermi velocity
V voltage
y running RG scale
Zω NLσM coupling constant, bare value πν/4
zv (z̄v) (mean) vortex fugacity
βσ = 4 (= 1) when spin-rotation invariance

is preserved (broken)
�c = Zωγc (coupling constant in Cooper

channel, bare value πνγ (0)
c /4)

�s = Zωγs (coupling constant in singlet
channel, bare value πνγ (0)

s /4)
�t = Zωγt (coupling constant in triplet

channel, bare value πνγ
(0)
t /4)

γAA,γCC , γAC parameters of mesoscopic
fluctuations in GL theory

� mean-field gap
�(x) order-parameter field
ε = (T − TMF)/TMF

εc = (T − Tc)/Tc

ε̂αβ
nm = εnδ

αβδnm (εn is Matsubara frequency)
ε̂αβ

n,m = sgn(εn)εα
n δn,mδα,β (εα

n = √
ε2
n + |�α|2)

κ thermal conductivity
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�αβ
nm = sgn(n)δαβδnm

�̄ see definition (21)
�x,y,z Pauli matrices in retarded/advanced space
λF Fermi wavelength
λ (3D) London penetration depth
μ chemical potential
ν density of states
ξ = ξGL(T ) (GL coherence length at

temperature T )
ξBKT coherence length extracted from BKT flow

ξHN function interpolating between ξ and ξBKT

ξ� physical coherence length [cf. Eqs. (1), (2)]
ρ electrical resistance
σx,y,z Pauli matrices in spin space
τ elastic scattering time
τ̃ Matsubara time
τBKT = (T − TBKT)/TBKT

τx,y,z Pauli matrices in Nambu space
ωD Debye frequency
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[7] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[8] There exist different definitions for Gi in the literature. Here,

it is defined via the temperature TBCS(1 + Gi) at which the
fluctuation correction to heat capacity is comparable to the
mean-field jump in the same observable. The ratio of Gi in this
convention as compared to the definition by means of the scale
where the Aslamazov-Larkin contribution reaches the value of
gD is given by the parameter Av in Eq. (10).

[9] A. Larkin and A. A. Varlamov, Theory of Fluctuations in
Superconductors (Clarendon, Oxford, 2005).

[10] A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 35,
1558 (1959) [Sov. Phys.–JETP 8, 1090 (1959)].

[11] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[12] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[13] Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 64, 719 (1973) [Sov.

Phys.–JETP 37, 366 (1973)].
[14] A. M. Finkel’shtein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov.

Phys.–JETP 57, 97 (1983)].
[15] A. M. Finkel’stein, Z. Phys. B 56, 189 (1984).
[16] A. M. Finkel’stein, in Soviet Scientific Reviews, Section A:

Physics Reviews, Vol. 14, part 2, edited by I. M. Khalatnikov
(Harwood Academic, New York, 1990).

[17] D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
[18] A. M. Finkel’stein, in 50 Years of Anderson Localization, edited

by E. Abrahams (World Scientific, Singapore, 2010).
[19] S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 51, 1380

(1982).
[20] H. Takagi and Y. Kurdoa, Solid State Commun. 41, 643

(1982).
[21] A. M. Finkel’shtein, Pis’ma Zh. Eksp. Teor. Fiz. 45, 37 (1987)

[Sov. Phys.–JETP Lett. 45, 46 (1987)].
[22] A. M. Finkel’stein, Phys. B (Amsterdam) 197, 636 (1994).

[23] I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett.
108, 017002 (2012).

[24] L. Dell’Anna, Phys. Rev. B 88, 195139 (2013).
[25] J. Mayoh and A. M. Garcia-Garcia, arXiv:1412.0029.
[26] M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. A.

Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).
[27] M. Feigel’man, L. Ioffe, V. Kravtsov, and E. Cuevas, Ann. Phys.

(NY) 325, 1390 (2010).
[28] M. R. Beasley, J. E. Mooij, and T. P. Orlando, Phys. Rev. Lett.

42, 1165 (1979).
[29] L. G. Aslamazov and A. I. Larkin, Fiz. Tverdogo Tela 10, 1104

(1968) [Sov. Phys.–Solid State 10, 875 (1968)].
[30] K. Maki, Prog. Theor. Phys. 39, 897 (1968).
[31] R. S. Thompson, Phys. Rev. B 1, 327 (1970).
[32] B. L. Al’tshuler, A. A. Varlamov, and M. Yu. Reizer, Zh. Eksp.

Teor. Fiz. 84, 2280 (1983) [Sov. Phys.–JETP 57, 1329 (1983)].
[33] B. I. Halperin, G. Refael, and E. Demler, in BCS: 50 Years, edited

by L. Cooper and D. Feldman (World Scientific, Singapore,
2011).

[34] V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
Phys. Rev. Lett. 40, 783 (1978).

[35] V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
Phys. Rev. B 21, 1806 (1980).

[36] B. Halperin and D. Nelson, J. Low Temp. Phys. 36, 599
(1979).

[37] L. Benfatto, C. Castellani, and T. Giamarchi, Phys. Rev. B 80,
214506 (2009).

[38] J. Pearl, Appl. Phys. Lett. 5, 65 (1964).
[39] V. G. Kogan, Phys. Rev. B 75, 064514 (2007).
[40] A. T. Fiory, A. F. Hebard, and W. I. Glaberson, Phys. Rev. B 28,

5075 (1983).
[41] A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 50, 1603

(1983).
[42] J. W. P. Hsu and A. Kapitulnik, Phys. Rev. B 45, 4819

(1992).
[43] P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
[44] R. W. Crane, N. P. Armitage, A. Johansson, G. Sambandamurthy,
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