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a b s t r a c t

Weexplore the two-loop renormalization of the specific heat for an
interacting disordered electron system in the case of broken time
reversal symmetry. Within the nonlinear sigma model approach
we derive the two-loop result for the anomalous dimension which
controls scaling of the specific heat with temperature. As an ex-
ample, we elaborate the metal–insulator transition in d = 2 + ϵ
dimensions for the case of broken time reversal and spin rotational
symmetries and in the presence of Coulomb interaction. In this sit-
uation scaling of the specific heat is determined by the anomalous
dimension of the Finkel’stein operator which is the eigenoperator
of the renormalization group complementary to the eigenoperator
corresponding to the second moment of the local density of states.
We find that the absolute values of the anomalous dimensions of
these operators differ beyond one-loop approximation contrary to
the noninteracting case.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The phenomenon of Anderson localization [1] has been attracting a lot of interest for more than
50 years since its discovery (see e.g., [2]). The most intricate situation exists in d = 2 dimension
in which, depending on the symmetry class, a noninteracting electron system can be fully localized,
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fully delocalized or undergoes the Anderson transition. The most convenient tool to study the metal-
lic phase and Anderson transition in noninteracting electron system is the low energy effective action
called nonlinear sigma model (NLSM) [3–8]. This effective theory describes interaction of diffusive
modes on scales larger than the mean free path. In d = 2 this interaction results in logarithmic diver-
gences which are summed by NLSM in a much more convenient way than a standard diagrammatic
technique (see e.g., [9,10]). In the presence of both time reversal and spin rotational symmetry (class
AI of theWigner–Dyson classification [11–13]) the two-dimensional (2D) noninteracting electron sys-
tem is believed to be always localized at zero temperature: there is no Anderson transition [14].

Inevitably electron–electron interaction becomes important at low temperatures. First of all,
inelastic electron–electron scattering with a small (compared to temperature) energy transfer
destroys quantum phase coherence [15–17]. This leads to a temperature (T ) dependence of the
quantum correction to conductivity [17]. Additional dependence of conductivity on T appears due to
virtual electron–electron scattering [18]. Physically, this occurs via coherent scattering electrons off
the Friedel oscillations [19]. Strong in comparison with Fermi liquid temperature dependence exists
also in such thermodynamic quantities as the specific heat and static spin susceptibility (see e.g., [20]).
In d = 2 both weak localization [21] and electron–electron [22] contributions to conductivity are
logarithmic in temperature and opposite in sign. This suggests that the 2D metal–insulator quantum
phase transition is possible in the presence of electron–electron interaction.

The first extension of the one-parameter scaling theory of Ref. [14] to the case of electron–electron
interactions was performed in Ref. [23]. Although this semi-phenomenological theory suffered from
confusion between the local and thermodynamic density of states it put forward an important
idea of the two-parameter scaling description of the metal–insulator transition in the presence of
electron–electron interaction. Such multi-parameter scaling description was proven to be correct
when NLSM has been derived for the case of an interacting electron system [24].With the help of one-
loop renormalization group (RG) analysis of this NLSM an interplay of electron–electron interaction
and disorder was analyzed [25–30]. In 2D case for the symmetry class AI delocalization due to
electron–electron interaction overcomes weak localization in the weak disorder regime. This yields
the metallic behavior of conductivity at low temperatures [30]. This fact supports existence of 2D
metal–insulator transition in the presence of electron–electron interaction.

A change in resistivity from insulating to metallic behavior with increase of electron density
was measured in Si metal-oxide-semiconductor field effect transistor [31,32]. Similar behavior of
resistivity was experimentally observed later in a variety of 2D electron systems (for review, see
[33–37]). Observed temperature and electron density dependence of resistivity resembles the
expected behavior of resistivity near a 2Dmetal–insulator transition andwas found to be in reasonable
agreement with the predictions of the two-parameter scaling theory [38–40]. However, recent
thermodynamics and transportmeasurements in Simetal-oxide-semiconductor field effect transistor
suggest that the observed strong temperature and electron concentration dependence of resistivity
occurs in the regime of nondegenerate Fermi system and, consequently, has nothing to do with
the metal–insulator quantum phase transition [41–45]. These new experimental results call for
development of the transport theory of nondegenerate strongly interacting 2D electron system, on
the one hand, and more detailed understanding of the 2D metal–insulator transition within NLSM
approach, on the other hand.

At present, there is not much known on renormalization of the Finkel’stein NLSM beyond one-
loop approximation (the lowest order in disorder). There are only few results within two-loop
order approximation. The renormalization of the specific heat and static spin susceptibility has been
studied near the Stoner instability [46,47]. It was demonstrated that there is no metal–insulator
transition in 2D electron system with Coulomb interaction and with broken time reversal and spin
rotational symmetries [48]. On the contrary, existence of the metal–insulator transition was shown
in 2D interacting electron system with N → ∞ flavors (the action of NLSM is invariant under
SU(N ) rotations) [49]. Recently, existence of multifractality in moments of local density of states
in the presence of interactions has been established [50,51]. This situation is in sharp contrast to
the knowledge on noninteracting NLSM for which beta-function and anomalous dimensions of RG
eigenoperators are known to the fifth [52–54] and fourth [55–57] loop orders, respectively.
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In this paper, we consider the two-loop renormalization of the specific heat for an interacting
disordered electron system. For simplicity, we assume that the time reversal symmetry is broken,
e.g. by a weak magnetic field. This assumption allows us to avoid contributions from the Cooper
channel. In the absence of electron–electron interaction the system under consideration belongs to
the symmetry class A. We derive the two-loop RG equation for the Finkel’stein parameter which
determines the temperature behavior of the specific heat. In the case of additionally broken spin
rotational symmetry we compare the anomalous dimension of the Finkel’stein operator in the NLSM
actionwith the anomalous dimension of the secondmoment of the local density of states.We find that
(i) these anomalous dimensions have opposite sign and (ii) the absolute values of these anomalous
dimensions are different beyond one-loop approximation.

The paper is organized as follows. In Section 2 we introduce NLSM approach. Next we present
details of the two-loop computations of the Finkel’stein parameter in d = 2+ϵ dimensions (Section 3).
In Section 4 we consider the metal–insulator transition in d = 2 + ϵ dimensions in the electron
systemwith broken time reversal and spin rotational symmetries.We end the paperwith Conclusions
(Section 5). Some additional details of two-loop calculations are given in the Appendix.

2. Formalism

2.1. Nonlinear sigma model action

For the case of preserved spin rotational but broken time reversal symmetries the action of NLSM
is given as the sum of the noninteracting part, Sσ , and contributions arising from the interactions in
the particle–hole singlet and triplet channels, Sint (for review, see [58,59]):

S = Sσ + SF. (1)

Here the noninteracting part is given as

Sσ = −
g
16


dr Tr(∇Q )2, (2)

where g = 2πνD is the total Drude conductivity (in units e2/h and including spin). The Finkel’stein
part of the action which involves interaction is as follows

SF = −
πT
2


α,n

3
j=0

Γj


dr Tr


Iαn σjQ


Tr

Iα
−nσjQ


+ 4πTzω


dr Tr η(Q − Λ)

− 2πTzω


dr Tr ηΛ. (3)

Here Γ0 = Γs and Γ1 = Γ2 = Γ3 = Γt denote the interaction amplitudes in the particle–hole singlet
and triplet channels, respectively. The parameter zω is frequency renormalization factor introduced
by Finkel’stein [24]. We use the following matrices

Λαβ
nm = sgn n δnmδαβσ0, ηαβ

nm = n δnmδαβσ0, (Iγk )αβ
nm = δn−m,kδ

αβδαγ σ0, (4)

where α, β = 1, . . . ,Nr are replica indices. Integer numbers n and m correspond to the Matsubara
fermionic energies εn = πT (2n + 1) and εm = πT (2m + 1). The four Pauli matrices,

σ0 =


1 0
0 1


, σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1


, (5)

operate in the spin space. Thematrix fieldQ (r) acting in the replica, Matsubara, and spin spaces obeys
the following constraints: Q 2

= 1 and TrQ = 0.
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2.2. F -algebra and F -invariance

The NLSM action (1) involves the matrices in the Matsubara frequency space. Formally, Matsubara
frequencies runs fromminus to plus infinity which makes matrices of infinite size. To perform actual
calculations with such matrices we introduce an ultraviolet cutoff N ′

M for the Matsubara frequencies.
Following Ref. [60], we introduce additional cutoff NM < N ′

M which separates non-trivial and trivial
(beyond which the Q matrix equals Λ) parts of the Q matrix. At the end of calculations the limit
NM ,N ′

M → ∞ should be taken.
As known [60,61], rotations of the Q matrix with a matrix exp(iχ̂) where χ̂ =


α,n χα

n I
α
n σ0 play

an important role. Such rotations correspond to the gauge transformations in the original fermionic
language. In the limitNM ,N ′

M → ∞ andNM/N ′

M → 0, the set of rules known asF algebra [60] allows
one to establish the following relations (j = 0, 1, 2, 3):

Tr Iαn σjeiχ̂Qe−iχ̂
= Tr Iαn σjQ + 4inχα

−nδj0,

Tr ηeiχ̂Qe−iχ̂
= Tr ηQ +


α,n

inχα
n Tr Iαn σ0Q − 4


α,n

n2χα
n χα

−n.
(6)

Using Eq. (6), one can check that, provided Γs = −zω , the NLSM action is invariant under global
rotations of the matrix Q with the matrix exp(iχ̂) (so called F invariance). We remind that the
constraintΓs = −zω corresponds to the case of Coulomb interaction [24]. Since the relationΓs = −zω
allows additional symmetry of the NLSM action, this relation remains fulfilled under the RG flow.

2.3. Thermodynamic potential

The thermodynamic potential per unit volume is determined by the NLSM action:

Ω = −
T
V

ln


D[Q ] exp S, (7)

where V stands for a sample volume. At the classical level, for Q = Λ, the thermodynamic potential
is equal toΩ = −TSF [Λ] = 2πzωT 2 Tr ηΛ. The quantum corrections to the thermodynamic potential
determine the renormalized value of the frequency renormalization parameter [62]:

z ′

ω =
1

2π Tr ηΛ

∂

∂T
Ω

T
= zω

⟨SF [Q ]⟩

SF [Λ]
. (8)

We note that z ′
ω is responsible for the non Fermi-liquid temperature behavior of the specific heat [63].

3. Two-loop renormalization of zω

3.1. Perturbative expansion

For the perturbative treatment (in 1/g) of the NLSM action (1) we shall use the square-root
parametrization

Q = W + Λ

1 − W 2, W =


0 w
w̄ 0


. (9)

The blocks w and w̄ are independent matrix variables. They have the following nonzero elements in
the Matsubara space: wn1n2 and w̄n2n1 with n1 > 0 and n2 < 0. It is convenient to represent w and w̄

as the linear combinations of the Pauli matrices: wαβ
n1n2 =


j(w

αβ
n1n2)jσj and w̄

βα
n2n1 =


j(w

βα
n2n1)jσj. In

what follows, we use the convention: n1, n3, n5, . . . > 0 and n2, n4, n6, . . . < 0.
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Expanding the NLSM action (1) to the second order inW , we obtain the following propagators for
diffusive modes (j = 0, 1, 2, 3):

[wj(q)]α1β1
n1n2 [w̄j(−q)]β2α2

n4n3


=

4
g
δα1α2δβ1β2δn12,n34Dq(iω12)

×


δn1n3 −

16πTΓj

g
δα1β1D (j)

q (iω12)


, (10)

where q stands for the momentum, n12 = n1 − n2 and ω12 = εn1 − εn2 . The standard propagator for
diffuson is given as (ωn = 2πTn):

D−1
q (iωn) = q2 + 8zω|ωn|/g. (11)

The diffusive modes renormalized by interaction in the singlet (D (0)
q (iω) ≡ D s

q(iω)) and triplet
(D (1)

q (iω) = D
(2)
q (iω) = D

(3)
q (iω) ≡ D t

q(iω)) particle–hole channels are as follows

[D s
q(iωn)]

−1
= q2 + 8(zω + Γs)|ωn|/g,

[D t
q(iωn)]

−1
= q2 + 8(zω + Γt)|ωn|/g.

(12)

For the purpose of regularization in the infrared, it is convenient to add the term to theNLSMaction
(see Ref. [48] for details):

S → S +
gh2

8


dr TrΛQ . (13)

This leads to the shift of the momentum squared, q2 → q2 + h2, in the propagators (11) and (12).

3.2. One-loop perturbative results

Before going to the two-loop results we remind briefly the one-loop perturbative results for zω .
Expanding the NLSM action to the second order in W and using Eq. (10), we find the one-loop
perturbative result:

∂

∂T
Ω(1)

T
= −

SF [Λ]

TV


1 +

2
g

3
j=0

γj


q
D (j)

q (0)


. (14)

Here we use the following notations: γj = Γj/zω and

q ≡


ddq/(2π)d. Evaluating integral over

momentum in d = 2 + ϵ dimensions and using Eq. (8), we obtain [24]:

z ′

ω = zω


1 −

thϵ

ϵ
(γs + 3γt)


. (15)

Here we introduce resistivity t = 4Ωd/g , where Ωd = Sd/[2(2π)d] and Sd = 2πd/2/Γ (d/2) is the
area of the d-dimensional sphere.

3.3. Two-loop perturbative results

The two-loop contribution to the thermodynamic potential can be written as

Ω(2)
= −

T
V


S(4)
0 + S(4)

int +
1
2


S(3)
int

2
. (16)

Here the term,

S(3)
int =

πT
2

3
j=0

Γj


α,n


dr Tr Iαn σjW Tr Iα

−nσjΛW 2, (17)



I.S. Burmistrov / Annals of Physics 364 (2016) 120–135 125

appears from the expansion of the NLSM action to the third order in W . The fourth order terms are
given as

S(4)
0 = −

g
64


qj

δ


3

j=0

qj

 
β1β2β3β4


n5n6n7n8

sp

wβ1β2

n5n6 (q0)w̄
β2β3
n6n7 (q1)w

β3β4
n7n8 (q2)w̄

β4β1
n8n5 (q3)


×


2h2

+
16zω
g

(ω56 + ω78) − (q0 + q1)(q2 + q3) − (q0 + q3)(q1 + q2)


(18)

and

S(4)
int = −

πT
8

3
j=0

Γj


α,n


dr Tr Iαn σjΛW 2 Tr Iα

−nσjΛW 2. (19)

The symbol sp denotes the trace over the spin space only. Performing contraction with the help of the
Wick theorem and Eq. (10), we obtain

⟨S(4)
0 ⟩ = −

2πTNrV
g


8
g

2 
p,q


m,n>0

min{ωm, ωn}


D−1

q (iωn) + D−1
p (iωm)


×

3
j=0

ΓjDq(iωn)D
(j)
q (iωn)

3
j′=0

Γj′Dp(iωm)D (j′)
p (iωm), (20)

⟨S(4)
int ⟩ = −

4πTNrV
g


8
g

2 
p,q


m,n>0

min{ωm, ωn}Dq(iωm+n)


3Γt(Γs − Γt)Dp(iωm)D t

p(iωm)

+ Γs(Γs + 3Γt)Dp(iωm)D s
p(iωm)


+

32πTNrV
g2

Γs


p,q


m,n>0

ωmDp(iωm)Dq(iωm)

+
48πTNrV

g


8
g

2 
p,q


m,n>0

ωm


Dp(iωm) + D t

q(iωm+n)


D t

p(iωm)Dq(iωm+n), (21)

and 
1
2


S(3)
int

2
=

16πTNrV
g


8
g

2 
p,q


m,n>0

min{ωm, ωn}Dp+q(iωm+n)

×


2ωn

g


Γ 2
t D t

q(iωn) − Γ 2
s D s

q(iωn)


×

3
j=0

ΓjDp(iωm)D (j)
p (iωm) −

8ωn

g
ΓsΓ

2
t D t

q(iωn)Dp(iωm)D s
p(iωm)

+
1
4


Γ 2
s D s

q(iωn)D
s
p(iωm) + 6ΓsΓtD

s
q(iωn)D

t
p(iωm) − 3Γ 2

t D t
q(iωn)D

t
p(iωm)


−

48πTNrV
g


8
g

3 
p,q


m,n>0

ωmωnΓ
3
t D t

q(iωn)Dp(iωm)D t
p(iωm)Dp+q. (22)

Next we combine the two-loop contributions (21)–(22) and rewrite them in the form


m>0 ωm

Y (iωm) with the help of following identity:


m,n>0 min{m, n}y(m, n) =


m,n>0 m

y(m, n + m) +

y(n + m,m)

. Taking the limit ωm → 0 and evaluating the momentum integrals and Matsubara fre-

quency sum, we find (see Appendix)

z ′

ω = zω


1 +

b1hϵt
ϵ

+
h2ϵt2

ϵ2


b2 + ϵb3


+ O(t3)


. (23)
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Here we add the one-loop contribution (15) and introduce the following functions of interaction
parameters:

b1 = −γs − 3γt , b2 = (3γt + γs)

f (γs) + 3f (γt)


+ 6γ 2

t − 2γs, (24)

and

b3 =
3γt + γs

2

3
j=0


2f (γj) + ln(1 + γj) − 2 −

(1 + γj) ln2(1 + γj)

2γj
−

2 + 3γj

γj
li2(−γj)


− 6γt [γt − li2(−γt)]. (25)

Here f (x) = 1−(1+1/x) ln(1+x) and lik(x) =


∞

m=1 x
m/mk stands for the polylogarithm (Jonquière’s

function).

3.4. Anomalous dimension of zω

Since operator TrΛQ determines the local single-particle density of states, the momentum scale
h acquires renormalization [62]. The corresponding renormalized momentum scale h′ is defined
according to

gh2
⟨TrΛQ ⟩ = g ′h′2 TrΛ2, (26)

where g ′ stands for the renormalized conductivity. Within the one-loop approximation, one can
find [62]

h′
= h


1 −

hϵt
2ϵ

3
j=0


2f (γj) + ln(1 + γj)


, (27)

and [18,20,22,24,28]

g ′
= g


1 + a1

hϵt
ϵ


, a1 = 2

3
j=0

f (γj). (28)

Also we remind the one-loop results for the renormalization of interaction parameters [24,28]:

γ ′

s = γs + cs,1
hϵt
ϵ

, cs,1 = (1 + γs)(3γt + γs),

γ ′

t = γt + ct,1
hϵt
ϵ

, ct,1 = (1 + γt)(γs − γt).

(29)

In order to extract the anomalous dimension of zω from the perturbative result (23), we use the
minimal subtraction scheme [64]. Let us introduce the dimensionless resistance t̄ = t ′h′ϵ . Then using
Eqs. (27)–(29) and (23), we express t , γj and zω via t̄ , γ ′

j and z ′
ω:

t = (h′)−ϵ t̄ Zt(t̄, γ ′

s , γ
′

t ), γj = γ ′

j Zγj(t̄, γ
′

s , γ
′

t ), zω = z ′

ω Zzω (t̄, γ ′

s , γ
′

t ). (30)

To the first order in t̄ we find

Zt = 1 + a1
t̄
ϵ
, Zγj = 1 −

cj,1
γ ′

j

t̄
ϵ
, (31)

where a1, cs,1, and ct,1 are the functions ofγ ′
s , γ

′
t now. To the secondorder in t̄ the function Zzω becomes

Z−1
zω = 1 +

b1 t̄
ϵ

+
t̄2

ϵ2


b2 + a1b1 −

3
j=0

∂b1
∂γ ′

j
cj,1 + ϵ


b3 + b1

3
j=0


f (γj) +

1
2
ln(1 + γj)


.

(32)
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Here a1, b1,2,3, cs,1, and ct,1 are the functions of γ ′
s , γ

′
t . The RG equations can be found from the standard

condition that t , γs,t and zω are independent of h′. In this way we obtain the following two-loop result
for the anomalous dimension of zω:

−
d ln zω
dy

= ζz(t, γs, γt) = b1t + 2


b3 + b1

3
j=0


f (γj) +

1
2
ln(1 + γj)


t2. (33)

We note that we used the relation

b2 =
1
2


b21 − a1b1 +

3
j=0

∂b1
∂γ ′

j
cj,1


. (34)

This relation guarantees the renormalizability of the theory within the two-loop approximation,
i.e. the absence of terms in the right hand side of Eq. (33) which diverge in the limit ϵ → 0. Using
Eqs. (24) and (25), we obtain

−
d ln zω
dy

= ζz(t, γs, γt) = −t(γs + 3γt) − t2

(γs + 3γt)

3
j=0


c(γj) + 2li2(−γj)


+ 12γt


γt − li2(−γt)


, (35)

where y = ln h/h′ and we introduce the function (see Refs. [50,51])

c(γ ) = 2 +
2 + γ

γ
li2(−γ ) +

1 + γ

2γ 2
ln2(1 + γ ). (36)

For a brevity, we omitted the prime and bar signs. Eq. (35) is the main result of our paper.
We note that in the limit γt ≫ 1 (Stoner instability corresponds to γt = ∞), the anomalous

dimension (35) becomes ζ = −3γt t − 12γ 2
t t

2 in agreement with the result of Belitz and Kirkpatrick
(see Eq. (6.60c) from Ref. [59]). This result indicates that toward Stoner instability the loop expansion
is controlled by the small parameter γt t ≪ 1 rather than t ≪ 1 as in the case of noninteracting
electrons. The two-loop result (35) for the anomalous dimension of zω interpolates between the result
of Ref. [62] for the case when the interaction in the triplet channel is absent, γt = 0 and the result of
Refs. [46,47] for the case γt → ∞.

In Ref. [49] it was demonstrated that the metal–insulator transition exists in d = 2. In the
considered case of preserved spin rotational but broken time reversal symmetry the transition is
expected to occur at the critical point with values of t , γs and γt of the order of unity. Then our result
(35) suggests the non-trivial anomalous dimension of zω at this critical point.

The following remark is in order here. As a consequence of the particle number conservation,
the quantity z + Γs has no renormalization [24]. Therefore, the renormalization of the interaction
parameter γs is fully determined by the anomalous dimension ζz :

−
dγs

dy
= βγs = −(1 + γs)ζz(t, γs, γt). (37)

Thus we also derived the two-loop RG equation for the singlet channel interaction parameter γs.

4. Scaling analysis

As example of application of our result (35), we consider the case of Coulomb interaction, γs = −1
and fully broken spin rotational symmetry such that the triplet channel is absence. Since time reversal
symmetry is also absent, this situation can be realized in the systemof disordered interacting fermions
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withmagnetic impurities. In notations of Ref. [59], this case is referred as the symmetry class ‘‘MI(LR)’’.
The anomalous dimension (35) becomes

ζz(t) = t +


2 +

π2

6


t2 + O(t3). (38)

We mention that the numerical coefficient (2 + π2/6) in front of the t2 term is different from the
result (3+π2/6) found in Ref. [62]. We suppose that this mismatch is due to the erroneous treatment
of terms singular in 1/(1 + γs) in Ref. [62] (see Appendix).

The RG equation for the dimensionless resistance t is known up to the two-loop order [48]:

−
dt

d ln y
= βt = ϵt − 2t2 − 4At3 + O(t4), (39)

where the constant

A =
1
16


139
6

+
(π2

− 18)2

12
+

19
2

ζ (3) +


16 +

π2

3


ln2 2 −


44 −

π2

2
+ 7ζ (3)


ln 2

+16G −
1
3
ln4 2 − 8li4


1
2


≈ 1.64. (40)

Here G ≈ 0.915 stands for the Catalan constant and ζ (3) ≈ 1.2 denotes the Riemann zeta. As usual,
the zero of the β-function, βt(t∗) = 0, determines the critical point in d = 2 + ϵ dimensions:

t∗ =
ϵ

2
(1 − Aϵ) + O(ϵ3). (41)

This critical point separates the metallic (t < t∗) and insulating (t > t∗) phases. At this critical point
the correlation/localization length diverges

ξ = h−1
|t − t∗|−ν, ν = −


dβt

dt


t=t∗

−1

=
1
ϵ

− A + O(ϵ). (42)

The value of the anomalous dimension

ζ ∗

z = ζz(t∗) =
ϵ

2
+

ϵ2

4


2 − 2A + π2/6


+ O(ϵ3) (43)

at the critical point determines the dynamical exponent

z = d − ζ ∗

z = 2 +
ϵ

2
+

ϵ2

4


2A − 2 − π2/6


+ O(ϵ3). (44)

We remind that the dynamical exponent z determines the length scales induced by energy and
temperature, LE ∼ |E|

−1/z and LT ∼ T−1/z , at the critical point. Interestingly, the very same dynamical
exponent is responsible for the deviation of the specific heat cv from the Fermi-liquid-type behavior,
cv ∼ T d/z at the criticality [63].

In the considered case of the symmetry class MI(LR) the anomalous dimension of the Finkel’stein
parameter ζz determines the renormalization of the Finkel’stein part of the NLSM action. The term SF
is an example of the operator bilinear in the matrix Q . This operator is F invariant, local and does
not involve spatial gradients, consequently, it is also invariant with respect to spatial rotations of the
matrix Q by matrix exp(iχ̂). Such spatial and time dependent rotations of Q correspond to the gauge
transformation of the original fermions [60]. Since the anomalous dimension of zω is finite in the limit
ϵ → 0 within the two-loop approximation, the operator SF is eigenoperator with respect to the RG.
We emphasize that ζz(t) > 0 in the two-loop approximation.

Recently, it was shown [50,51] that the polynomial in Q operators corresponding to the moments
of the local density of states are eigenoperators of the RG. The second moment of the local density of
states is expressed in terms of the operator K2 which is bilinear in Q similar to the Finkel’stein term.
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However, contrary to SF , the operator K2 is not F invariant due to lack of gauge invariance in the local
density of state. For the symmetry class MI(LR) the anomalous dimension of the operator K2 within
two-loop approximation is given as [50]:

ζ2(t) = −t −


2 −

π2

6


t2 + O(t3). (45)

At the critical point the anomalous dimension of K2 is negative:

∆2 = ζ2(t∗) = −
ϵ

2
−


2 − 2A −

π2

6


ϵ2

4
+ O(ϵ3). (46)

In the two-loop approximation the anomalous dimension of the qth moment of the local density of
states is expressed via the anomalous dimension of the second moment, ∆q = [q(q − 1)/2]∆2. They
are negative and nonlinear functions of q. Thus themoments of the local density of states demonstrate
the multifractal behavior in the presence of Coulomb interaction. We mention that within one-loop
approximation the anomalous dimensions ζ2 and ζz are the same except the sign. At the two-loop
order they become essentially different.

One can construct the polynomial in Q eigenoperators which corresponds to the higher moments
of the local density of states [50,51]. Similarly, one can study the higher order in Q eigenoperators
which are F invariant. However, at present they are not known beyond the operators with four Q
matrices [65].

It is instructive to compare the scaling results obtained above for the case of Coulomb interaction
with the results for the system of fermions with short-range singlet interaction (−1 < γs 6 0). The
case of short-ranged singlet interaction lies in an attraction region of the noninteracting fixed point.
In the absence of interaction the symmetry class MI(LR) is just the unitaryWigner–Dyson class A. The
Anderson transition in the class A is described by the following β-function [52–54]

β
(0)
t = ϵt −

1
2
t3 −

3
8
t5 + O(t6). (47)

The critical point and correlation length exponent are given as

t(0)
∗

= (2ϵ)1/2

1 −

3ϵ
4


+ O(ϵ5/2), ν(0)

=
1
2ϵ

−
3
4

+ O(ϵ). (48)

The anomalous dimensions of the operator K2 within the four-loop approximation is as follows
[55–57]

ζ
(0)
2 (t) = −t −

3t3

8
−

3ζ (3)
8

t4 + O(t5), (49)

In the noninteracting case the multifractal exponent for the operator K2 becomes

∆
(0)
2 = ζ

(0)
2 (t(0)

∗
) = − (2ϵ)1/2 −

3ζ (3)
2

ϵ2
+ O(ϵ5/2). (50)

In addition, to the operator K2 there is the other eigenoperator bilinear in Q . Its anomalous dimension
is also known up to the four-loop order [55–57]:

µ
(0)
2 (t) = t +

3t3

8
−

3ζ (3)
8

t4 + O(t5), (51)

The corresponding critical exponent is given as

µ∗

2 = µ
(0)
2 (t∗) = (2ϵ)1/2 −

3ζ (3)
2

ϵ2
+ O(ϵ5/2). (52)

We note that the anomalous dimensions µ
(0)
2 and ζ

(0)
2 are different only by sign up to the third-loop

order. Their absolute values become different only at the fourth loop order. We mention that at the
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one-loop approximation the anomalous dimensions µ
(0)
2 and ζ

(0)
2 for noninteracting case coincide

with the anomalous dimensions ζz and ζ2 for the case of Coulomb interaction. Therefore, one can
expect that the eigenoperator bilinear in Q with the anomalous dimension µ

(0)
2 transforms into the

Finkel’stein operator in the case of Coulomb interaction.

5. Conclusions

To summarize, we studied the two-loop renormalization of the Finkel’stein parameter zω which
anomalous dimension ζ ∗

z controls the scaling of the frequency and the temperature dependence of
specific heat for an interacting disordered electron system. For simplicity, we considered the case
of broken time reversal symmetry in order to avoid additional difficulty due to the Cooper channel.
Under this assumption we derived the two-loop RG equation for zω (see Eq. (35)) the right hand side
of which depends on the interaction parameters in the singlet and triplet channels. Our result (35)
interpolates between the result of Ref. [62] for γt = 0 and the result of Refs. [46,47] for γt → ∞. As a
particular example, we consider the metal–insulator transition in d = 2+ ϵ dimensions in the case of
the symmetry class MI(LR), i.e. with broken time reversal and spin rotational symmetries and in the
presence of Coulomb interaction. In this case,we computed the anomalous dimension ζ ∗

z to the second
order in ϵ. For themetal–insulator transition in d = 2 our result (35) suggests the non-zero anomalous
dimension ζ ∗

z and, as a consequence, the non-Fermi liquid temperature behavior of the specific heat.
Wenote that newprecise experimentalmethod to study the specific heat of two-dimensional electron
systems has been developed recently [44]. It can be used to study the temperature behavior of the
specific heat near the d = 2 metal–insulator transition.

We compared the anomalous dimension of the Finkel’stein operator SF in the NLSM action with
the anomalous dimension of the second moment of the local density of states. Within one-loop
approximation both anomalous dimensions coincide in absolute value and are equal to ones in the
absence of interaction. However, in the two-loop approximation their absolute values deviate from
each other and from anomalous dimensions without interaction [50,51]. We note that the anomalous
dimension of the second moment of the local density of states can be extracted from the analysis of
the scanning tunneling microscopy data [66].

Finally, we mention that in order to explore the metal–insulator transition in the presence of
spin rotational symmetry results for the two-loop renormalization of the spin susceptibility and
conductivity are need. They will be published elsewhere.
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Appendix. Evaluation of two-loop integrals

At first, we combine the two-loop contributions (21)–(22) together. Next we rewrite them
in the form


m>0 ωmY (iωm). We used the following identity:


m,n>0 min{m, n}y(m, n) =

m,n>0 m

y(m, n + m) + y(n + m,m)


. Finally, taking the limit ωm → 0, we find

Ω(2)
= 4TNr


m>0

ωmδzω, (A.1)

where

δzω =
16πTz2ω

g


4
g

2 
p,q


n>0


3γt + γs

4

3
j=0


γjD

(j)
p (iωn)D

2
q (0) + γjDp(iωn)D

(j)
p (iωn)Dq(0)

− γjD(iωn)D
(j)
p (iωn)Dq(iωn) − 2γjD

(j)
p (iωn)Dq(0)Dp+q(iωn)
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+ γ 2
j ωnD

(j)
p (iωn)D

2
q (0)Dp+q(iωn) − γjDp(iωn)D

2
q (0)


+ 3γ 2

t


−Dp(iωn)D

(j)
p (iωn)Dq(0) + Dp(iωn)D

(j)
p (iωn)Dq(iωn)

+ D (j)
p (iωn)Dq(0)Dp+q(iωn) + Dp(iωn)Dq(0)Dp+q(iωn)


−

8γszω
g2


p,q

Dp(0)Dq(0). (A.2)

Nowwe set the temperature to zero and will study the dependence of δzω on the momentum scale h
only. Then we find

δzω =
16zω
g2


3γt + γs

4

3
j=0

γj


J0020(γj) + J0110(γj) − J0101(γj) − 2J0011(γj) + γjJ1021(γj) − J0020(0)


− 3γ 2

t


J0110(γt) − J0101(γt) − J0011(γt) − J0011(0)


−

γs

2
J0


. (A.3)

Here we introduced

Jδνµη(γj) =


8Tzω
g

1+δ 
p,q


∞

0
dω ωδDν

p (iω)D (j)
p (ω)Dµ

q (0)Dη
p+q(iω) (A.4)

and

J0 =


p
Dp(0)

2
. (A.5)

A.1. The integrals J0, J0020 and J0110

Using the result
q
Dq(0) = −

2ΩdhϵΓ (1 + ϵ/2)Γ (1 − ϵ/2)
ϵ

, (A.6)

we find

J0 =
4Aϵh2ϵ

ϵ2
, Aϵ = Ω2

dΓ 2(1 − ϵ/2)Γ 2(1 + ϵ/2). (A.7)

Next, with the help of the results
q
D2

q (0) = Ωdhϵ−2Γ (1 + ϵ/2)Γ (1 − ϵ/2),

8zω
g


∞

0
dω

q
D (j)

q (iω) =
4Ωdhϵ+2Γ (1 + ϵ/2)Γ (1 − ϵ/2)

(1 + γj)ϵ(2 + ϵ)
,

(A.8)

we obtain

J0020(γj) =
4Aϵh2ϵ

(1 + γj)ϵ(2 + ϵ)
. (A.9)

Using the following relation between integrals

8zω
g


∞

0
dω

q
Dq(iω)D (j)

q (iω) =
ln(1 + γj)

γj


q
Dq(0), (A.10)
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we find

J0110(γj) =
4Aϵh2ϵ

ϵ2

ln(1 + γj)

γj
. (A.11)

A.2. The integral J0101

Next we consider the integral J0101. With the help of the Feynman trick (see, e.g. Ref. [64]), we write

J0101(γj) = −
AϵΓ (1 − ϵ)h2ϵ

ϵΓ 2(1 − ϵ/2)
T01(γj), (A.12)

where (see Eq. (A26) of Ref. [48])

T01(γj) =


3

k=1

 1

0
dxk


δ


3

k=1

xk − 1


x−1−ϵ/2
3 x−1−ϵ/2

12

x1 + (1 + γj)x2 + x3
. (A.13)

Performing the change of variables from x1, x2 and x3 to s and u:

x1 =
1 − u
s + 1

, x2 =
u

s + 1
, x3 =

s
s + 1

, 0 6 u 6 1, 0 6 s < ∞, (A.14)

and integrating over s, we find

T01(γj) =
2Γ 2(1 − ϵ/2)
γjϵΓ (1 − ϵ)

 1

1+γj

du
u1+ϵ/2 2F1(−ϵ/2, −ϵ, 1 − ϵ, 1 − u). (A.15)

Here 2F1(α, β, γ , z) denotes the hypergeometric function. Rewriting the integral as

T01(γj) = −
1
γj

 1

1+γj

du

2Γ (1 − ϵ/2)Γ (1 + ϵ/2)

−ϵ
u−1−ϵ/2(1 − u)ϵ

−
4Γ 2(1 − ϵ/2)

(2 + ϵ)Γ (1 − ϵ) 2
F1(1 − ϵ/2, 1, 2 + ϵ/2, u)


, (A.16)

and using that 2F1(1 − ϵ/2, 1, 2 + ϵ/2, u) → − ln(1 − u)/u in the limit ϵ → 0, we find

T01(γj) = −
Γ 2(1 − ϵ/2)
γjΓ (1 − ϵ)


2 ln(1 + γj)

ϵ
−

1
2
ln2(1 + γj)


. (A.17)

Hence, we obtain

J0101(γj) =
Aϵh2ϵ

γj


2 ln(1 + γj)

ϵ2
−

ln2(1 + γj)

2ϵ


. (A.18)

A.3. The integral J0011

Using the Feynman trick (see, e.g. Ref. [64]), we write

J0011(γj) = −
AϵΓ (1 − ϵ)h2ϵ

ϵΓ 2(1 − ϵ/2)
S0(γj), (A.19)

where (see Eq. (A23) of Ref. [48])

S0(a) =


3

k=1

 1

0
dxk


δ


3

k=1

xk − 1


(x1x2 + x2x3 + x3x1)−1−ϵ/2

(1 + γj)x1 + x3
. (A.20)
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Changing variables from x1, x2, x3 to s and u (see Eq. (A.14)) and evaluating integral over s, we obtain

S0(γj) = −
2
ϵ

 1

0

du[u(1 − u)]−ϵ/2

(1 + γj)u + 1 − u 2
F1(1, −ϵ, 1 − ϵ/2; 1 − u(1 − u)). (A.21)

Rewriting the integral as

S0(γj) =
2
ϵ

 1

0

du[u(1 − u)]−ϵ/2

(1 + γj)u + 1 − u 2
F1(1, −ϵ, 1 − ϵ/2; u(1 − u))

−
4
ϵ

 1

0

du[u(1 − u)]ϵ/2

(1 + γj)u + 1 − u
, (A.22)

and using that 2F1(1, −ϵ, 1 − ϵ/2; u(1 − u)) → 1 + ϵ ln[1 − u(1 − u)] in the limit ϵ → 0, we find
the following result

S0(γj) = −
2
ϵ

ln(1 + γj)

γj
−

2
γj


li2(−γj) +

1
4
ln2(1 + γj)


. (A.23)

Here we have used the identities

li2(a) − li2(1) + ln a ln(1 − a) = −li2(1 − a), 0 6 a 6 1,

−li2(1/a) + li2(1) + ln(a − 1) ln a −
1
2
ln2 a = −li2(1 − a), a > 0.

(A.24)

Hence we obtain

J0011(γj) =
Aϵh2ϵ

γj


2 ln(1 + γj)

ϵ2
+

2
ϵ


li2(−γj) +

1
4
ln2(1 + γj)


. (A.25)

A.4. The integral J1021

As above we use the Feynman trick (see, e.g. Ref. [64]) to write

J1021(a) = −
AϵΓ (1 − ϵ)h2ϵ

ϵΓ 2(1 − ϵ/2)
S12(γj), (A.26)

where

S12(γj) =


3

k=1

 1

0
dxk


δ


3

k=1

xk − 1


(x1x2 + x2x3 + x3x1)−1−ϵ/2 x2

((1 + γj)x1 + x3)2
. (A.27)

Changing variables from x1, x2, x3 to s and u (see Eq. (A.14)) and evaluating integral over s, we obtain

S12(γj) =
4

ϵ(2 + ϵ)

 1

0

du [u(1 − u)]1−ϵ/2

((1 + γj)u + 1 − u)2 2
F1(2, −ϵ, 1 − ϵ/2, 1 − u(1 − u)). (A.28)

Rewriting the integral as

S12(γj) =

 1

0

du [u(1 − u)]1−ϵ/2

((1 + γj)u + 1 − u)2


−

2
2 + ϵ 2

F1(1, −ϵ, −ϵ/2, 1 − u(1 − u))

+
2
ϵ 2

F1(1, −ϵ, 1 − ϵ/2, 1 − u(1 − u))

, (A.29)



134 I.S. Burmistrov / Annals of Physics 364 (2016) 120–135

and using that 2F1(1, −ϵ, −ϵ/2, 1 − u(1 − u)) → [2 − u(1 − u)]/[u(1 − u)] in the limit ϵ → 0, we
obtain the following result

S12(γj) = −
2
ϵ

2γj − (2 + γj) ln(1 + γj)

γ 3
j

−
2

1 + γj
+

2(2 + γj) ln(1 + γj)

γ 3
j

+
2(2 + γj)

γ 3
j


li2(−γj) +

1
4
ln2(1 + γj)


. (A.30)

Hence, we find

J1021(γj) = Aϵh2ϵ

4γj − 2(2 + γj) ln(1 + γj)

γ 3
j ϵ2

+
2

(1 + γj)ϵ
−

2(2 + γj) ln(1 + γj)

γ 3
j ϵ

−
2(2 + γj)

γ 3
j ϵ


li2(−γj) +

1
4
ln2(1 + γj)


. (A.31)

Finally, substituting the results for the integrals into Eq. (A.3) we obtain the result (23).
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