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h i g h l i g h t s

• At weak disorder entanglement entropy and particle-number cumulants obey area law.
• At weak disorder entanglement entropy is universally proportional to number variance.
• Entanglement entropy scales logarithmically with the mean free path.
• For weak disorder higher particle-number cumulants are small compared to variance.
• Entanglement entropy is nonanalytic with disorder across Anderson transition.
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a b s t r a c t

We study the entanglement entropy and particle number cumu-
lants for a system of disordered noninteracting fermions in d di-
mensions. We show, both analytically and numerically, that for a
weak disorder the entanglement entropy and the second cumulant
(particle number variance) are proportional to each other with a
universal coefficient. The corresponding expressions are analogous
to those in the clean case but with a logarithmic factor regularized
by the mean free path rather than by the system size. We also
determine the scaling of higher cumulants by analytical (weak
disorder) and numericalmeans. Finally, we predict that the particle
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number variance and the entanglement entropy are nonanalytic
functions of disorder at the Anderson transition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The entanglement entropy of many-body quantum systems has been attracting a great deal of
interest during the last decade. A particularly extensive body of theoretical and numerical studies of
entanglement was devoted to translationally invariant interacting quantum systems in d = 1 spatial
dimension, see Refs. [1–3] for a review. It was found that the entanglement entropy is a useful tool to
characterize different phases and to detect quantum phase transitions between them. The progress in
understanding the entanglement of interacting quantum many-body systems in higher dimensions,
d > 1, was more modest.

A paradigmatic model for study of the entanglement entropy is a system of noninteracting
fermions. It is known [4–6] that in the absence of disorder and interaction the entanglement entropy of
fermions which fill a Fermi sea in a spatial volume ∼ Ld is proportional to (kF L)d−1 ln(kF L) for the case
kF L ≫ 1, where kF is the Fermi momentum. A numerical coefficient depends on a geometric shape
of the region in the real space as well as on a form of the Fermi surface. Interestingly, the variance
of the number of particles in d dimensions depends on the parameter kF L in a similar way [7]. In
fact, this resemblance between the number of particles variance and the entanglement entropy is not
occasional. For noninteracting fermions the latter can be expressed via the very same eigenvalues of
wave functions overlaps as the full counting statistics of the number of particles [4,8–10]. This allows
to express the entanglement entropy as a sum over the particle-number cumulants of even orders [8].

The logarithmic enhancement of the entanglement entropy and of the particle-number variance
for noninteracting fermions in comparisonwith the area law is relatedwith a sharp Fermi surface and
with ballistic propagation of particles on spatial scales between the Fermi length λF and the system
size L. In the presence of disorder with a mean free path l ≪ L, the ballistic motion is possible only at
length scales between λF and l. Thus, one may expect that the infrared logarithmic divergence in the
expressions for the entanglement entropy and the particle-number variancewill be regularized by the
mean free path rather than L. Therefore, it is natural that the entanglement entropy and the number
of particles variance for disordered noninteracting fermions are proportional to (kF L)d−1, i.e. obey the
area law. Indeed, the area law for the entanglement entropy was shown recently in the localized
phase [11], with an upper boundary for the prefactor related to the localization length. In Ref. [12]
a behaviour of the type (kF L)d−1 ln(kF l) (with undefined numerical coefficients) was found for the
entanglement entropy and for the particle-number variance. The area-law scaling of the entanglement
entropy was confirmed numerically in Ref. [13].

In the presence of disorder, fermions can undergo an Anderson transition from a metallic to an
insulating phase. Some aspects of the behaviour of the entanglement entropy near the Anderson
transition have been addressed in recent works. In particular, for the problem of a single fermion in a
randompotential, itwas found that the entropy at theAnderson transition is determined byproperties
of the singularity spectrumwhich characterizes the scaling ofmoments of thewave functions [14,15].
In d = 1 dimension the Anderson transition can occur in the presence of interaction. In this case the
logarithmic dependence of the entanglement entropy on the system size was found to saturate at a
scale of the order of the localization length [16–18].

In this paper we study the entanglement entropy and moments of the number of particles in
a system of disordered noninteracting fermions which fill the Fermi sea at zero temperature. We
combine analytical (for weak disorder and near the Anderson transition) and numerical approaches.
Our key results are as follows:

(i) In the weak-disorder regime, λF ≪ l ≪ L, the particle-number variance and the entanglement
entropy are proportional to (kF L)d−1 ln(kF l). We determine the numerical factors in these
expressions and establish a universal relation between these two quantities, see Eqs. (28) and
(48). These analytical results are supported by numerical simulations.
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(ii) We determine, both analytically and numerically, the scaling of higher cumulants of the
number of particles.

(iii) Near the Anderson transition, the particle-number variance and the entanglement entropy
obey the area law with a factor which depends in a nonanalytic way on the distance to the
critical point, see Eqs. (40) and (51).

The paper is organized as follows. In Section 2 we remind the general formalism for calculation
of the particle-number variance in noninteracting electron system. The results for the variance in a
dirty metal are derived in Section 3. In Section 4, the scaling of the particle-number variance near
the Anderson transition is studied. In Section 5 we explore the behaviour of the particle-number
cumulants and their relation to the entanglement entropy. Numerical results for the cumulants of
the number of particles and for the entanglement entropy are presented in Section 6. We end the
paper with conclusions, Section 7. Technical details are given in Appendices.

2. Formalism

We start from the standard Hamiltonian describing noninteracting fermions in d dimensions in the
presence of a random potential U(r):

H =

∫
ddr ψ†(r)

[
−

∇
2

2m
+ U(r)

]
ψ(r). (1)

Here m denotes a particle mass and ψ†, ψ stand for the creation and annihilation operators. For the
sake of simplicity, we will ignore the electron spin in calculations below. The operator of the number
of particles in a given volume VL is defined as follows

N̂L =

∫
VL

ddr ψ†(r)ψ(r), (2)

where the spatial integration is restricted to the domain r ∈ VL. We assume that the volume VL is not
isolated but rather is a part of a system ofmuch larger size. Then the number of particles in the volume
VL is a fluctuating quantity, and its variance averaged over disorder realizations can be written as

⟨⟨N̂2
L ⟩⟩ =

∫
VL

ddr
∫
VL

ddr ′

∫
∞

−∞

dω dE dE ′ nF (E ′)
[
1 − nF (E)

]
δ(E ′

− E − ω)F (E, E ′
; r, r ′). (3)

Here the Fermi distribution, nF (E) = 1/[1 + exp((E − µ)/T )], is parametrized by the temperature T
and the chemical potential µ, and the bar denotes the disorder averaging. The dynamical structure
factor F (E, E ′

; r, r ′) can be conveniently expressed in terms of the exact eigenfunctions, φα(r), and
eigenenergies, εα , of the Hamiltonian (1):

F (E, E ′
; r, r ′) =

∑
αβ

φ∗
α(r)φβ (r)φα(r ′)φ∗

β (r ′)δ(E − εβ )δ(E ′ − εα). (4)

In what follows, we concentrate on the case of the zero temperature, T = 0. Then, Eq. (3) reduces
to the following expression:

⟨⟨N̂2
L ⟩⟩ =

∫
∞

0
dωω

∫
ddq
(2π )d

J 2
L (q) F (EF , EF + ω, q), (5)

where EF stands for the Fermi energy. For a sake of simplicity, we assume that the volume VL is
bounded by a sphere of the radius L, i.e.

JL(q) =

∫
VL

ddr eiqr ≡

∫
ddr θ

(
L − r

)
eiqr , (6)

where θ (x) denotes the Heaviside step function. In this case

JL(q) =
(2π )d/2Ld

(qL)d/2
Jd/2(qL), (7)

where Jν(x) denotes the Bessel function.



I.S. Burmistrov et al. / Annals of Physics 383 (2017) 140–156 143

Before discussing behaviour of the variance of the number of particles in a disordered metal, we
remind the reader its behaviour in the absence of disorder. As is well known, for kF L ≫ 1 the particle-
number variance becomes [4,19,20]:

⟨⟨N̂2
L ⟩⟩cl = cd

(kF L)d−1

π2 ln kF L. (8)

The numerical constant cd depends on the geometry of the spatial region VL. For the considered case
of a spherical volume VL one finds (see Appendix A)

cd =
SdSd−1

(d − 1)2dπd−1 . (9)

Here Sd = 2πd/2/Γ (d/2) stands for the surface of the d dimensional unit sphere. We note that the
logarithm in Eq. (8) appears due to integration over momentum q between scales 1/L and kF .

3. Particle-number variance in a disordered metal with kF l ≫ 1

Now let us consider the variance of the number of particles in the presence of a weak disorder. In
what follows we assume that the condition L ≫ l ≫ λF is satisfied. We consider the cases of two
and three dimensions. For three dimensions the condition kF l ≫ 1 implies that the system is on the
metallic side far away from the Anderson transition. In the case of two dimensions we assume that
the size L is much shorter than the localization length, L ≪ ξloc = l exp(πkF l/2), i.e., electron states
in the volume VL do not suffer from strong localization.

3.1. Ballistic to diffusion crossover in d = 2

We remind that the dynamical structure factor (4) can be related to the imaginary part of the
polarization operator (see e.g., Ref. [21]):

F (E, E + ω; r, r ′) =
1
πω

ImΠR(ω, r − r ′). (10)

Wenote that this expression is valid provided one neglects energy dependence of the density of states.
Thus the disorder-averaged dynamical structure factor for a two-dimensional disordered metal can
be read off from expression for the polarization operator (see for example Ref. [22]):

ΠR(ω, q) = ν2

⎡⎣1 +
iω√

q2v2F + (1/τ − iω)2 − 1/τ

⎤⎦ . (11)

Here vF and τ denote the Fermi velocity and the mean free time, respectively. We note that this
expression is valid for |ω| ≪ EF and q ≪ kF . In order to regularize the ultraviolet divergence
and to be able to use the asymptotic expression (11), it is convenient to consider the difference
∆⟨⟨N̂2

L ⟩⟩ = ⟨⟨N̂2
L ⟩⟩ − ⟨⟨N̂2

L ⟩⟩cl in the variance of the number of particles between disordered, ⟨⟨N̂2
L ⟩⟩,

and clean, ⟨⟨N̂2
L ⟩⟩cl, cases:

∆⟨⟨N̂2
L ⟩⟩ =

ν2

π

∫
∞

0
dωω

∫
d2q
(2π )2

J 2
2 (qL)

× Re

[
1√

q2v2F + (1/τ − iω)2 − 1/τ
−

1√
q2v2F − ω2

]
. (12)

Here ν2 = m/(2π ) stands for the density of states. Performing integration over frequency ω, we find

∆⟨⟨N̂2
L ⟩⟩ ≈

kF L2

π l

∫
∞

0

dx
x
J21

(
xL
l

)[
f2(x) − x

]
, (13)
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where the function

f2(x) = Re
∫

∞

0
dy

y√
x2 + (1 − iy)2 + 1 − 1

(14)

has the following asymptotic behaviour

f2(x) =

{
x2 ln(

√
2/x), x ≪ 1,

x, x ≫ 1.
(15)

Then, performing integration over x, we find

∆⟨⟨N̂2
L ⟩⟩ =

kF L
π2

[
− ln(L/l) + a2

]
, (16)

where a2 is a numerical constant given by

a2 =

∫ 1

0

dx
x2

f2(x) +

∫
∞

1

dx
x2

[
f2(x) − x

]
− π

∫ 1

0
dxJ21 (x) −

∫
∞

1

dx
x

[
πxJ21 (x) − 1

]
≈ 0.8. (17)

3.2. Ballistic to diffusion crossover in d = 3

The disorder averaged polarization operator in d = 3 at small frequencies, |ω| ≪ EF , and
momentum, q ≪ kF , can be written as

ΠR(ω, q) = ν3

[
1 + iω

(
qvF

arctan[ql/(1 − iωτ )]
−

1
τ

)−1
]
. (18)

Here ν3 = mkF/(2π2) denotes the density of states at the Fermi energy. The difference in the variance
of the number of particles between disordered and clean cases is given as follows

∆⟨⟨N̂2
L ⟩⟩ =

ν3

π

∫
∞

0
dωω

∫
d3q
(2π )3

J 2
3 (qL)

×

[
Re
(

qvF
arctan[ql/(1 − iωτ )]

−
1
τ

)−1

−
πθ (qvF − ω)

2qvF

]
. (19)

Integrating over ω, we find:

∆⟨⟨N̂2
L ⟩⟩ =

k2F L
3

2π l

∫
∞

0

dx
x
J23/2

(
x
L
l

)
[f3(x) − x] , (20)

where the function

f3(x) =
4
π

Re
∫

∞

0
dy y

(
x

arctan x
1−iy

− 1

)−1

(21)

has the following asymptotic behaviour

f3(x) =
1
3π

{
4x2 ln(3/x2), x ≪ 1,
3πx, x ≫ 1. (22)

Now performing integration over x, we obtain

∆⟨⟨N̂2
L ⟩⟩ =

k2F L
2

2π2

[
− ln(L/l) + a3

]
, (23)

where

a3 =

∫ 1

0

dx
x2

f3(x) +

∫
∞

1

dx
x2

[
f3(x) − x

]
− π

∫ 1

0
dxJ23/2(x) −

∫
∞

1

dx
x

[
πxJ23/2(x) − 1

]
≈ 1.1. (24)
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3.3. Diffusive contribution

The main contribution (proportional to ln kF l) to the particle-number variance in a disordered
metal with kF l ≫ 1 comes from the ballistic scales, i.e. from integration over momentum q in the
range between l−1 and kF . This can be seen by computing the contribution to the variance from the
diffusive region. We use Eq. (10) and the expression for the polarization operator in the diffusive
approximation:

ΠR(ω, q) = νd
D(q, ω)q2

D(q, ω)q2 − iω
, (25)

where νd = Sdkd−1
F /((2π )dvF ) denotes the density of states at the Fermi energy. Then, we rewrite the

diffusive contribution to the variance of the number of particles as

⟨⟨N̂2
L ⟩⟩diff =

νd

π

∫
q<Λq

ddq
(2π )d

J 2
L (q)

∫ Λω

0
dω Im

D(q, ω)q2

D(q, ω)q2 − iω
(26)

wherewe introduce two ultraviolet cutoffs:Λω ∼ 1/τ andΛq ∼ 1/l. In themetallic case the diffusive
coefficient is the constant, D(q, ω) ≡ D = v2F τ/d. Hence, the diffusive contribution is given as

⟨⟨N̂2
L ⟩⟩diff ≈

νdSdLd−1

π2

∫ Λq

L−1

dq
q2

∫ Λω

0
dω

ωDq2

(Dq2)2 + ω2 = βdiff
d

(kF L)d−1

π2 . (27)

We thus see that the diffusive contribution satisfies the area law. The numerical constantβdiff
d depends

on the ratio vFΛq/Λω since the integrals over q and ω are dominated by the ultraviolet. Thus, βdiff
d

cannot be determined accurately within such calculation. However, we stress that it is independent
of the disorder for kF l ≫ 1. We note that the result (27) in the case of d = 3 has been derived recently
in Ref. [12].

3.4. The number of particles variance in a disordered metal

The results obtained above imply that the variance of the number of particles averaged over
disorder realizations can be written in a metallic case, L ≫ l ≫ λF , as

⟨⟨N̂2
L ⟩⟩ = cd

(kF L)d−1

π2

(
ln kF l + const

)
. (28)

The numerical coefficient cd in Eq. (28) is exactly the same as in the clean case, Eq. (9). We note that
the result (28) was obtained for d = 3 in Ref. [12]. However, the numerical factor cd in this formula
was not determined there.

The result (28) has a transparent physical explanation. As follows from Eqs. (16), (23) and (27),
the main contribution to the particle-number variance comes from ballistic momentum scales, 1/l ≪
q ≪ kF . For such momenta the variance of the number of particles can be evaluated in the same way
as in the absence of disorder. The only difference is in the infrared cutoff for the logarithmic integral
over momentum: 1/l instead of 1/L.

4. Scaling of the particle-number variance near the Anderson transition

In this section we consider disordered noninteracting fermions near an Anderson transition. Let
us denote by g∗ the value of the dimensionless conductance at which the Anderson transition occurs.
We are interested in the behaviour of the variance of the number of particles in the critical region,
|g0 − g∗|/g∗ ≪ 1. Here g0 is the bare conductance at the length scale of the order of the mean free
path which can be estimated as g0 ∼ kF l. In a 3D system, an Anderson transition occurs at the value
of the dimensionless conductance of the order unity, g∗ ∼ 1. Therefore, since we are interested in
the critical region where the bare conductance g0 ∼ g∗ ∼ 1, the ballistic contribution to the variance
of the number of particles cannot be computed accurately. Roughly, it can be estimated by Eq. (28)
with kF l substituted by g0. We expect that the ballistic contribution is a regular function of g0 near the
Anderson transition. Below we consider the diffusive contribution to the particle-number variance.
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4.1. Exactly at criticality

At criticality, the diffusion coefficient acquires a frequency and momentum dependence. Exactly,
at the critical point, g0 = g∗, this dependence can be written in the scaling form as [23]:

D(q, ω) =
g∗

νd
qd−2F

(
νdω

g∗qd

)
. (29)

Here a regular function F(X) has the following asymptotic behaviour

F(X) ∝

{
X−∆2/d, X ≪ 1,
X (d−2)/d, X ≫ 1,

(30)

with∆2 standing for themultifractal exponent controlling the scaling of the fourthmoment of a wave
function. Using Eq. (27), the diffusive contribution to the variance of the number of particles can be
written as

⟨⟨N̂2
L ⟩⟩diff =

νdSdLd−1Λω

dπ2Λq
r−1/d

∫
∞

r
dz z1/d−2

∫ z

0
dX

XF(X)
X2 + F2(X)

= αdiff
d

(kF L)d−1

π2 , (31)

where r = νdΛω/(g∗Λ
d
q) ∼ 1. The dimensionless constant

αdiff
d =

S2d
(d − 1)(2π )d

Λω

vFΛq
r−1/d

∫
∞

0
dX
(
max{r, X}

)1/d−1 XF(X)
X2 + F2(X)

(32)

is expected to be of order unity sinceΛω/(vFΛq) ∼ 1.
Interestingly, at the critical point the diffusive contribution to the number of particles variance is

similar to the diffusive contribution in the metallic phase far away from criticality. However, in the
metallic phase with g0 ≫ g∗ the diffusive contribution is much smaller than the ballistic one whereas
at the critical point the diffusive and ballistic contributions are of the same order of magnitude.

4.2. Slightly off criticality: metallic side

Away from the critical point the correlation/localization length ξ is finite. Slightly off criticality,
|g0/g∗ − 1| ≪ 1, the correlation/localization length is determined by the corresponding critical ex-
ponent ν, ξ = l|g0/g∗ − 1|−ν . The frequency and momentum dependence of the diffusion coefficient
on the metallic side from the Anderson transition reads [23]:

D(q, ω) = (g∗/νd)ξ 2−dR(ω/∆ξ , qξ ), (33)

where ∆ξ = g∗/(νdξ d) stands for the mean single-particle level spacing in the volume ξ d. A regular
function R(Ω,Q ) has the following asymptotic behaviour

R(Ω,Q ) ∝

⎧⎪⎪⎨⎪⎪⎩
1, |Ω| ≪ 1, Q ≪ 1,
|Ω|

(d−2)/d, |Ω| ≫ 1, Q ≪ |Ω|
1/d,

Q d−2+∆2 |Ω|
−∆2/d, |Ω| ≫ 1, Q ≫ |Ω|

1/d,

Q d−2+∆2 , |Ω| ≪ 1, Q ≫ 1.

(34)

It is convenient to choose normalization of the functionR(Ω,Q ) in such a way that F
(
νdω/(g∗qd)

)
=

limξ→∞Q 2−dR(Ω,Q ). Then, for L ≫ ξ the diffusive contribution to the particle-number variance
becomes

⟨⟨N̂2
L ⟩⟩diff = αdiff

d
(kF L)d−1

π2 + βmet
d

(
L
ξ

)d−1

, (35)

where

βmet
d =

g∗Sd
π2

∫
∞

0

dQ
Q 2

∫
∞

0
dΩ

{
ΩQ 2R(Ω,Q )

[Q 2R(Ω,Q )]2 +Ω2 −
ΩQ dF(Ω/Q d)

[Q dF(Ω/Q d)]2 +Ω2

}
. (36)

The numerical coefficient βmet
d is expected to be of the order unity and is determined by the behaviour

of the diffusion coefficient on the metallic side of the critical region of the Anderson transition.
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4.3. Slightly off criticality: insulating side

The frequency andmomentum dependence of the diffusion coefficient on the insulating side from
the Anderson transition should be consistent with the Mott’s formula [24,25]. We thus find [26]:

R(Ω,Q ) ∝

⎧⎪⎪⎨⎪⎪⎩
−iΩ + cΩ2lnd+1(1/|Ω|), |Ω| ≪ 1, Q ≪ 1,
|Ω|

(d−2)/d, |Ω| ≫ 1, Q ≪ |Ω|
1/d,

Q d−2+∆2 |Ω|
−∆2/d, |Ω| ≫ 1, Q ≫ |Ω|

1/d,

Q d−2+∆2 (−iΩ + cΩ2lnd+1(1/|Ω|)), |Ω| ≪ 1, Q ≫ 1.

(37)

Using this formula, we find the diffusive contribution to the variance of the number of particles for a
system size exceeding the localization length, L ≫ ξ ,

⟨⟨N̂2
L ⟩⟩diff = αdiff

d
(kF L)d−1

π2 + β ins
d

(
L
ξ

)d−1

, (38)

where

β ins
d =

g∗Sd
π2

∫
∞

0

dQ
Q 2

∫
∞

0
dΩ

{
ΩQ 2 ReR(Ω,Q )

[Q 2 ReR(Ω,Q )]2 + [Ω − Q 2 ImR(Ω,Q )]2

−
ΩQ dF(Ω/Q d)

[Q dF(Ω/Q d)]2 +Ω2

}
. (39)

The numerical coefficient β ins
d is expected to be of the order unity and is determined by the behaviour

of the diffusion coefficient in the critical region on the insulating side.
We note that the results (35) and (38) can be guessed on the basis of the following suppositions.

First, the particle-number variance in the critical region scales with the system size as Ld−1 (area law)
and is finite at the critical point. Second, in addition to L there is a single length scale – the correlation
length ξ – that determines the behaviour of deviation of the area-law prefactor from its value at the
critical point. This leads to Eqs. (35) and (38).

The results (35) and (38) imply that in the critical region of Anderson transition, |g0/g∗ − 1| ≪ 1,
the particle-number variance can be written as

⟨⟨N̂2
L ⟩⟩ =

(
L
l

)d−1
{
αd + β̃met

d (g0 − g∗)ν(d−1), g0 ⩾ g∗,

αd + β̃ ins
d (g∗ − g0)ν(d−1), g0 < g∗,

(40)

where αd is a regular function of g0 − g∗. The numerical coefficients β̃met
d and β̃ ins

d are related in an
obvious way to the numerical coefficients βmet

d and β ins
d .

The result (40) implies a nonanalytic behaviour of ⟨⟨N̂2
L ⟩⟩ as a function of disorder, g0, in the vicinity

of the critical point g∗. For Anderson transitions in two and three dimensions the exponent ν(d − 1)
is larger than 2. Thus a singular behaviour of the particle-number variance manifests itself only in its
sufficiently high derivatives with respect to g0.

5. Scaling of the entanglement entropy and of particle-number cumulants

We remind the reader that the entanglement entropy SL of a volume VL is defined via the reduced
density matrix ρL = TrVLρ, where the trace is taken over the states in the region VL which is
complementary to VL:

SL = − Tr ρL ln ρL. (41)

In the noninteracting case the entanglement entropy SL can be expressed as follows [4,8–10]

SL = −

∑
j

[
λj ln λj + (1 − λj) ln(1 − λj)

]
, (42)
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where 0 < λj < 1 denotes eigenvalues of the following single-particle correlation function

ΦL(r, r ′) =

∑
α

φ∗

α(r)φα(r
′)δ(EF − εα), r, r ′

∈ VL. (43)

The variance of the number of particles at zero temperature can be expressed via the same eigenval-
ues:

⟨⟨N̂2
L ⟩⟩ =

∑
j

λj(1 − λj). (44)

The particle-number variance provides the lowbound for the entanglement entropy, SL ⩾ 4 ln 2 ⟨⟨N̂2
L ⟩⟩

[4].
The set of eigenvalues λj determines the characteristic function of the full counting statistics of the

number of particles in the volume VL [27]:

χ (θ ) =

⟨
eiθ N̂L

⟩
=

∏
j

(
1 − λj + eiθλj

)
. (45)

This characteristic function encodes information about fluctuations of the number of particles and can
be expressed via cumulants Cm =

⟨(
N̂L − ⟨N̂L⟩

)m⟩:
lnχ (θ ) =

∞∑
m=1

(iθ )mCm

m!
. (46)

In Ref. [8], these relations have been used in order to express the entanglement entropy as the
following infinite series:

SL = 2
∞∑

m=1

ζ (2m)C2m . (47)

Here ζ (m) denotes the Riemann zeta function.
The results obtained recently in Ref. [28] for the full counting statistics in the absence of disorder

for d = 1 imply that the cumulants C2m withm ⩾ 2 are independent of kF Lprovided L ≫ λF . Therefore,
the leading behaviour of the entanglement entropy for kF L ≫ 1 in d = 1 is determined by the particle-
number variance only:

SL ≃
π2

3
C2. (48)

For arbitrary dimension d, the cumulants C2m with m ⩾ 2 in the clean case are calculated in
Appendix B. The result reads

C2m = a(d)2m(kF L)
d−1, kF L ≫ 1. (49)

Thus, contrary to the variance, higher cumulants (m ≥ 2) obey a conventional area law, without a
logarithmic enhancement. Therefore, the variance (m = 1) is larger, due to the logarithmic factor,
than higher cumulants, so that Eq. (48) is valid for an arbitrary dimension d in the absence of
disorder [29–31].We note a subtle point related to summation of the series in Eq. (47). Specifically, the
coefficients a(d)2m grow factorially, e.g., |a(d=1)

2m | ∼ (2m)!/[(2π2)mm!] [28], so that the series is formally
not convergent. However, since the even cumulants have alternating signs, the series (47) can be
summed up using the integral representation of the zeta-function (see Appendix C). Alternatively,
one can derive another expansion of the entanglement entropy in terms of the even cumulants,
which yields a series that can be summed up directly [29–32]. As shown in Appendix C, both ways
lead to equivalent results. This confirms the validity of Eq. (48), with the total contribution of higher
cumulants being smaller by a logarithmic factor.
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In the case of a dirty metal, the disorder-averaged cumulants with m ⩾ 2 have the same
dependence on the size L ≫ l ≫ λF as for the clean case (see Appendix B):

C2m = ã(d)2m(kF L)
d−1, k−1

F ≪ l ≪ L. (50)

The validity of Eq. (48) is supported also by numerical calculations presented in the next section.
Also, our numerics demonstrate that coefficients ˜a2m

(d) with m ⩾ 2 tend to constants at kF l ≫ 1, in
consistency with the clean-limit behaviour.

Therefore, the results of the previous section for the particle-number variance in a dirty metal can
be directly applied to the disorder-averaged entanglement entropy SL. In particularly, this implies that
the disorder-averaged entanglement entropy obeys the area law, SL ∼ (kF L)d−1, in agreementwith the
results of Refs. [11,12]. Moreover, since the second cumulant C2 is parametrically larger than the other
ones, C4, C6, . . ., for kF l ≫ 1, Eq. (48) remains valid for the disordered averaged quantities in this case.

Near the critical point of the Anderson transition, the second cumulant C2 has a non-analytic
behaviour controlled by the critical scaling of the correlation/localization length ξ (see Eqs. (35) and
(38)). As outlined in the end of Section 4, these results can be anticipated on the basis of simple
qualitative arguments. First, the number of particle variance scales with the system size as Ld−1 in the
critical region and is finite at the critical point. Second, the deviation of the corresponding prefactor
from its value at the critical point is determined only by the single length scale, ξ . These arguments are
expected to apply to the other cumulants C2m as well. Therefore, in analogy with (40), the disorder-
averaged entanglement entropy should have a nonanalytic dependence on the bare dimensionless
conductance at the Anderson criticality, |g0/g∗ − 1| ≪ 1:

SL =

(
L
l

)d−1
{
α̌d + β̌met

d (g0 − g∗)ν(d−1), g0 ⩾ g∗,

α̌d + β̌ ins
d (g∗ − g0)ν(d−1), g0 < g∗,

(51)

where α̌d is a regular function of (g0 − g∗), and β̌met
d and β̌ ins

d are some constants. Since in the case
of the Anderson transitions in two and three dimensions the exponent ν(d − 1) is larger than 2, the
non-analytic behaviour of SL can be observed in its high derivatives with respect to g0 only.

6. Particle-number cumulants and entanglement entropy: Numerical results

In this section, we supplement our analytical findings by numerical simulations. We recall that, in
view of Eq. (47), the properties of entanglement entropy SL can be straightforwardly inferred from
those of the cumulants C2m. In the preceding Section, we have shown that in a disordered metal,
higher-order (m ≥ 2) cumulants scale with L in the same way as C2, but are smaller (no logarithmic
enhancement) in the limit of kF l ≫ 1. In this sectionwe check this result numerically for 2D Anderson
model. In particular, we study the size-dependence of the first few cumulants and confirm Eq. (50).
As we have mentioned above, this implies the remarkable identity (48), which we explicitly check
numerically as well.

We study non-interacting spinless particles hopping over a 2D square lattice with periodic
boundary conditions in a potential disorder described by the Hamiltonian

H = −

∑
⟨i,j⟩

(
a+

i aj + a+

j ai
)
+

∑
i

ϵia+

i ai, (52)

where the first sum is over the nearest-neighbour sites of the lattice. The energies ϵi are independent
random variables sampled from a uniform distribution on [−W/2,W/2]. All states in this model are
known to be localized, but in the middle of the band the localization length is exponentially large
at moderate W . In this situation, effects of strong localization are immaterial for not too large L that
can be studied in numerical simulations, and the treatment of disorder carried out above should be
sufficient. On the other hand, for strong disorder (large W ), the strong localization effects should
manifest themselves already in relatively small systems.

Let us first consider the cumulant C2. The disorder-averaged ratio C2/L is shown in Fig. 1 for several
values of disorder parameterW as a function of the system size. Note that weak (logarithmic) growth
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Fig. 1. Size-dependence of the cumulant C2 of a 2D disordered system. For a series of disorder values (see legend for W ), the
value of C2(L)/L is shown. Note the unbounded growth of C2(L)/L with increase of L atW → 0.

Fig. 2. Size-dependence of the cumulant C4 . For a series of disorder values (see legend for W ), the value of C4(L)/L is shown.
Note that C4(L)/L tends to saturate at all disorder values, including the limit ofW → 0.

of C2(L)/L for relatively small systems is succeeded by saturation at a finite disorder-dependent value.
This is in line with our expectations and corresponds to ballistic–diffusive crossover from Eqs. (8) to
(28).

A similar analysis can be performed for higher cumulants, with the results for m = 2 (all other
higher cumulants behave in a qualitatively similar way) shown in Fig. 2. In this figure, the values of
the ratio C4(L)/L are shown for various system sizes. The saturation at a disorder-dependent value
is manifested in these plots. In Fig. 3 we present the disorder dependence of the saturation value
of the ratio limL→∞C2m(L)/L for m = 1, 2, 3. These numerical results demonstrate clearly our key
observation: unbounded growth of limL→∞C2(L)/L as W → 0 and boundedness of limL→∞Cm>2(L)/L
for all disorder values. In the inset to Fig. 3 we illustrate that in the case of strong disorder the ratio
C4(L)/L approaches the constant as a linear function of 1/L.

Finally, we verify numerically the relation, Eq. (48), between the entanglement entropy and the
particle-number variance. In order to do so, we plot in Fig. 4 the ratio 3SL/[π2C2] at not too high
disorder values and for various system sizes.We observe a saturation of this ratio at a value fairly close
to the unity, as expected from our analysis for the case of weak disorder. The saturation takes place at
system sizes consistentwith ballistic–diffusive crossover observed in Fig. 1. In the clean case, the value
of the ratio 3SL/[π2C2] remains slightly below (around 3%) for our largest system size, L = 18. The
approach to the unity for the clean system is quite slow, in agreement with its analytically expected
logarithmic character. It is interesting that the limiting value of 3SL/[π2C2] deviates only weakly (a
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Fig. 3. Disorder-dependence of the cumulant C2m(L)/L at L → ∞ form = 1, 2, 3 (see legend form). Note the unbounded growth
of limL→∞C2(L)/L atW → 0 and finiteness of limL→∞C4,6(L)/L. The inset shows C4(L)/L as a function of 1/L forW = 16.

Fig. 4. Size-dependence of 3SL/[π2C2(L)] for different values of disorderW (see legend forW ).

few percent) from the unity even for quite strong disorder (W = 4), which is a manifestation of a
numerical smallness of higher cumulants, see Fig. 3.

It is worth emphasizing that, in the weak-disorder regime, the prefactor in the area law for the
entropy and the number variance is controlled by the mean free path l and not by the localization
length ξ (which is much larger in a 2D system). Therefore, in this situation, the upper boundary for
this prefactor found in Ref. [11] is totally different from its actual value.

7. Conclusions

To summarize, we have studied the behaviour of the particle-number cumulants and of the
entanglement entropy for a d-dimensional system of noninteracting fermions in the presence of
disorder at zero temperature. All of these quantities were found to obey the area law. We have
shown that for a weak disorder the entanglement entropy and the second cumulant (particle number
variance) are proportional to each other with a universal coefficient, see Eq. (48). The corresponding
expressions for both quantities are analogous to those in the clean case but with a logarithmic factor
regularized by the mean free path rather than by the system size, i.e. ln kF L replaced by ln kF l, see
Eq. (28). Higher cumulants do not show the logarithmic enhancement forweak disorder.We have also
shown that the particle-number cumulants and the entanglement entropy have a non-analyticity at
the point of the Anderson transition. This non-analyticity is controlled by the exponent ν(d−1)where
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ν is the localization length exponent, see Eqs. (40) and (51). Our theoretical results are supported by
numerical calculations of the cumulants and of the entanglement entropy for 2D disordered systems.

Before closing the paper, we briefly discuss possible extensions of our result. One of interesting
directions is to study the entanglement entropy and the particle-number cumulants in a disordered
fermionic system at finite temperature T . In particular, it would be interesting to see what is a fate of
the relation between the particle-number variance and the entanglement entropy at finite T .

The second, and much richer, direction for expected extension of our results is inclusion of
the electron–electron interaction in addition to disorder. A natural guess is that the weak-disorder
behaviour of the entropy and of number cumulants (area law, with logarithmic enhancement of the
entanglement entropy and of the number variance in theweak-disorder regime) remains qualitatively
the same as long as the system is in the Fermi-liquid phase. On the other hand, it is a priori not clear
whether the relation between the entropy and the variance should survive. In fact, the arguments
presented in Ref. [7] for a clean system suggest that this relation does not survive, since the entropy is
affected by the Landau interaction parameter, while the variance is not. A systematic analysis in the
presence of disorder remains to be carried out.

Of particular interest is the behaviour near the localization transition in the presence of interaction.
The structure of the polarization operator of an interacting system in the diffusive regime remains the
same as in the noninteracting case. Therefore, we expect that the nonanalytic contribution to ⟨⟨N̂2

L ⟩⟩ at
the critical region of the Anderson transition survives in the presence of electron–electron interaction.
Interestingly, the behaviour of the entanglement entropy with increase of disorder consistent with
Eq. (51) was recently observed in numerical simulations of disordered interacting electrons at filling
factor 1/3 [33].
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Appendix A. Particle-number variance in a clean metal

In this Appendix, we remind the reader the behaviour of the variance of the number of particles in
a clean metal, which is a necessary prerequisite for its analysis in the disordered case. In the absence
of disorder, the dynamical structure factor becomes

F (EF , EF + ω, q) =

∫
ddk
(2π )d

δ

(
EF + ω −

(k + q)2

2m

)
δ

(
EF −

k2

2m

)
. (A.1)

Performing integration over momentum k under assumptions, |ω| ≪ EF and q ≪ kF , we find

F (EF , EF + ω, q) = νd⟨δ(ω − vFqn)⟩n, (A.2)

wheren stands for the d dimensional unit vector and ⟨. . . ⟩n denotes the averaging over directions ofn.
Performing integration over frequency in Eq. (5) and using asymptotic expression for JL(q) at qL ≫ 1,
we obtain with logarithmic accuracy

⟨⟨N̂2
L ⟩⟩cl =

SdνdvF Ld−1

π
⟨nxθ (nx)⟩n

∫ kF

1/L

dq
q
. (A.3)

Here nx stands for a component of the vector n. Using the following result

⟨nxθ (nx)⟩n =
Γ ( d2 )

(d − 1)
√
πΓ ( d−1

2 )
, (A.4)

we derive Eq. (8).
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Appendix B. The fourth-order cumulant

In this Appendixwe present details for estimates of the fourth-order cumulant C4 = ⟨
(
N̂L−⟨N̂L⟩

)4
⟩.

We start from the following general expression

C4 =

∫
ddq1ddq2ddq3

(2π )3d
JL(q1)JL(|q1 − q2|)JL(q3)JL(|q3 − q2|)

∫
dEdω1dω2dω3

× nF (E)
[
1 − 3nF (E + ω2) − 3nF (E + ω3) + 6nF (E + ω2)nF (E + ω3)

]
×
[
1 − nF (E + ω1)

] ∫ ddk
(2π )dπ4 ImGR(E, k)

3∏
j=1

ImGR(E + ωj, k + qj). (B.1)

Here GR(E, k) denotes the exact single-particle Green’s function for a given random potential:

GR(E, k) =

∫
ddr eikr

∑
α

φ∗
α(r)φα(0)

E − εα + i0+
. (B.2)

At zero temperature Eq. (B.1) can be written as

C4 =

∫
ddq1ddq2ddq3

(2π )3d
JL(q1)JL(|q1 − q2|)JL(q3)JL(|q3 − q2|)

∫
∞

0
dω1

∫
∞

−∞

dω2dω3

× f4(ω1, ω2, ω3)
∫

ddk
(2π )dπ4 ImGR(EF , k)

3∏
j=1

ImGR(EF + ωj, k + qj). (B.3)

Here the function f4(ω1, ω2, ω3) is defined as follows

f4(ω1, ω2, ω3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1, ω2 < 0, ω3 < 0,
ω1 − 3ω3, ω2 < 0, 0 ⩽ ω3 < ω1,

−2ω1, ω2 < 0, ω1 ⩽ ω3,

ω1 − 3ω2, 0 ⩽ ω2 < ω1, ω3 < 0,
ω1 + 3(ω3 − ω2), 0 ⩽ ω2 < ω1, 0 ⩽ ω3 < ω2,

ω1 + 3(ω2 − ω3), 0 ⩽ ω2 < ω1, ω2 ⩽ ω3 < ω1,

−2ω1 + 3ω2 0 ⩽ ω2 < ω1, ω1 ⩽ ω3,

−2ω1, ω1 ⩽ ω2, ω3 < 0,
−2ω1 + 3ω3, ω1 ⩽ ω2, 0 ⩽ ω3 < ω1,

ω1, ω1 ⩽ ω2, ω1 ⩽ ω3.

(B.4)

We note that this function is symmetric under interchange of the second and third arguments,
f4(ω1, ω2, ω3) = f4(ω1, ω3, ω2). In the clean case the fourth-order cumulant can be estimated by
setting q1 ∼ q2 ∼ q3 ∼ L−1 and ω1 ∼ ω2 ∼ ω3 ∼ vF/L. This leads to the estimate C4 ∼ (kF L)d−1.

Within the above estimate procedure, a logarithmic factor of the type ln(kF L) could be missed.
To show the absence of such logarithmic factors, we perform a more accurate analysis. We begin by
recalling that the function JL(q) is zero in average for qL ≫ 1 due to fast oscillations. Therefore,
the main contribution to the integrals over momenta in Eq. (B.3) comes from the regions in the
momentum space where arguments of each pair of functions JL are close. Hence, in the clean case
we can rewrite Eq. (B.3) as

C4 ≈ νd

∫
ddq1ddq3

(2π )2d
J 2
L (q1)J

2
L (q3)

∫
′ ddq2

(2π )d

∫
∞

0
dω1

∫
∞

−∞

dω2dω3

[
f4(ω1, ω2, ω3)

+ f4(ω1, ω1 + ω2, ω1 + ω3) + f4(ω1, ω2 + ω3, ω1 + ω3)
] ∫ ddn

Sd

3∏
j=1

δ(ωj − vFnqj), (B.5)

where ‘prime’ sign for the integral over q2 denotes that the absolute value of q2 is small in comparison
with L−1, q2 < L−1. Taking into account that the frequency ω2 is small due to smallness of the



154 I.S. Burmistrov et al. / Annals of Physics 383 (2017) 140–156

momentum q2, we can simplify Eq. (B.5) as follows:

C4 ≈ νd

∫
ddq1ddq3

(2π )2d
J 2
L (q1)J

2
L (q3)

∫
′ ddq2

(2π )d

∫
∞

0
dω1

∫
∞

−∞

dω2 ω2

∫
∞

−∞

dω3

[
sgnω3

+ θ (ω3)θ (ω1 − ω3)
] ∫ ddn

Sd

3∏
j=1

δ(ωj − vFnqj). (B.6)

Hence, we find the following estimate:

C4 ∼ νdvF L2d−2
∫ kF

L−1

dq1
q21

∫ kF

L−1

dq3
q23

∫ L−1

0
dq2 qd2 ∼ (kF L)d−1. (B.7)

We note that this result is in agreement with an exact calculation of the fourth-order cumulant for
d = 1 [28]. We emphasize that the absence of the factor ln kF L in the result (B.6) is related to a partial
cancellation of three contributions in Eq. (B.5). The sum of these three contributions is proportional
to the small frequency ω2 instead of the large frequency ω1 or ω3, as one might expect naively.

In order to estimate the fourth-order cumulant for the case of a dirty metal, we use Eq. (B.3). In the
absence of translational invariance one cannot expect that three terms in Eq. (B.5) cancel each other
substantially and lead to the small frequency ω2. Therefore, to restrict all momenta to the diffusive
regime we rewrite Eq. (B.3) as follows:

C4 ∼ νdL2d−2
∫ l−1

L−1

dq1
q21

∫ l−1

L−1

dq3
q23

∫ L−1

0
dq2 qd−1

2 Ω(q1, q2, q3). (B.8)

Here Ω(q1, q2, q3) denotes the function of momenta whose dimension is given by the frequency.
Since in the diffusive regime a natural scaling of the frequency is momentum squared, the function
Ω(q1, q2, q3) can be equal (with logarithmic accuracy) to the linear combination of the following
quantities Dq21, Dq

2
2, Dq1q2, Dq1q3. The largest contribution corresponds to the choiceΩ(q1, q2, q3) →

Dq21. Then one finds

C4 ∼ νdDL2d−2
∫ l−1

L−1
dq1

∫ l−1

L−1

dq3
q23

∫ L−1

0
dq2 qd−1

2 Ω(q1, q2, q3) ∼ (kF L)d−1. (B.9)

Wenote that the dependence of the fourth-order cumulant on the system size L in the diffusive regime
is exactly the same as for the clean metal. Our analytical estimate is supported by the numerical
computations in Section 6. Similar arguments imply that the results (B.7) and (B.9) are valid for
cumulant C2m of arbitrary even powerm ⩾ 2.

Appendix C. Resummation of the series (47) for the entanglement entropy

In this Appendix, we discuss the convergence of Eq. (47). As mentioned in the main text, the series
in Eq. (47) is formally ill-defined due to factorial growth of the cumulants C2m with m. Therefore, in
order to extract the entanglement entropy from Eq. (47) some resummation procedure is needed.

In Refs. [29,31] the following convergent expression for the entanglement entropy has been
derived:

SL = lim
K→∞

[(K+1)/2]∑
m=1

α2m(K )C2m, αn(K ) = 2
K∑

j=n−1

S1(j, n − 1)
jj!

. (C.1)

Here [x] denotes the integer part of a real number x and S1(j, n − 1) are unsigned (positive) Stirling
numbers of the first kind. These numbers satisfy, in particular, the relation

∑
∞

j=n−1S1(j, n− 1)/(jj!) =

ζ (n). Alternatively, one can perform a resummation of the series (47) as illustrated below. It is
instructive to compare the result for the entanglement entropy which one can obtain using the
expansions (47) and (C.1).
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As a particular example, we consider clean fermions in d = 1. In this case, it is known [28] that the
even cumulants have the following asymptotic behaviour for kF L ≫ 1:

C2m = (−1)m+1 ζ (2m − 1)(2m)!
2m+1π2mm!

, m ⩾ 2. (C.2)

We start from Eq. (C.1). Since the series (C.1) for the entanglement entropy is convergent, we can
write at kF L ≫ 1:

SL =
π2

3
C2 + s. (C.3)

Calculations with the help of Eq. (C.1) produce the following estimates for the constant a depending
on the choice of K :

K 50 100 200 400 600
s −0.0252315 −0.0273874 −0.0285558 −0.0291619 −0.0293667 (C.4)

We turn now to the alternative approach: the direct resummation of the series (47). We note
that the even cumulants are alternating in sign, which indicates that such a resummation should
be possible. Indeed, the series in Eq. (47) can be resummed very efficiently by using the integral
representation of zeta-function:

s = 2
∞∑

m=2

ζ (2m)C2m =

∞∑
m=2

(−1)m+1 ζ (2m)ζ (2m − 1)(2m)!
(2π2)mm!

=

∞∑
m=2

(−1)m+1(2m)!
(2π2)mm!(2m − 2)!(2m − 1)!

×

∫
∞

0

dudv u2m−2v2m−1

(eu − 1)(ev − 1)
= −2

∫
∞

0

dudv u−2v−1

(eu − 1)(ev − 1)

∞∑
m=2

1
(m − 1)!(2m − 2)!

(
−

u2v2

2π2

)m

= −2
∫

∞

0

dudv u−2v−1

(eu − 1)(ev − 1)

(
u2v2

2π2

)[
1−0F2

(
{} ,

{
1
2
, 1
}
,−

u2v2

2π2

)]
≈ −0.029787.

(C.5)

Here qFp denotes the hypergeometric function.
Comparing Eqs. (C.4) and (C.5), we see that both approaches yield equivalent results for the total

contribution s of higher cumulants. Therefore, the divergence of the series in Eq. (47) is only formal
and the total contribution of the cumulants C2m withm ⩾ 2 to the entanglement entropy is finite and
parametrically smaller (by a logarithmic factor) than the contribution of the second cumulant.
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