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We review our recent theoretical results for mesoscopic f luctuations of the local density of states in the pres-
ence of electron–electron interaction. We focus on the two specific cases: (i) a vicinity of interacting critical
point corresponding to an Anderson–Mott transition, and (ii) a vicinity of non-interacting critical point in
the presence of a weak electron–electron attraction. In both cases, strong mesoscopic f luctuations of the
local density of states exist.
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INTRODUCTION

Since the seminal paper by P.W. Anderson [1], a
study of the localization–delocalization quantum
phase transition in noninteracting disordered systems
has turned into a vast field of research (see [2, 3] for a
review). As any other quantum phase transitions, an
Anderson transition is characterized by a set of critical
exponents, which controls the scaling of a divergent
correlation length and different physical observables.
However, contrary to ordinary quantum phase transi-
tions, for an Anderson transition there is the addi-
tional set of critical exponents , which determines
the scaling behavior of electron wavefunctions. Specif-
ically, the disorder-averaged th moment of an elec-
tron wavefunction (the inverse participation ratio) has
the multifractal behavior at criticality [4, 5]:

(1)

Here,  stands for a system size and  denotes the
averaging over disorder. The multifractal exponents

 are nonlinear functions of . (Here and below,
the superscript (as well as subscript)  is used for
quantities related to the non-interacting critical
point.) Equation (1) implies the existence of strong
mesoscopic f luctuations of wavefunctions.

Multifractality in non-interacting disordered sys-
tems has been remaining for a long time a concept that
was studied either theoretically or in numerical simu-
lations (see [3, 6, 7] for a review). Recently, multifrac-
tality has become a subject of experimental research.
For example, an indication of multifractality has been
reported in scanning tunneling spectroscopy data in
diluted magnetic semiconductor Ga1−xMnxAs [8], in
experimental studies of ultrasound waves propagating
through the system of randomly packed Al beads [9],
and in experimental data on spreading of light waves in
the dielectric nanoneedle array [10].

Multifractality of wavefunctions (1) can be formu-
lated equivalently as the following scaling behavior of
the moments of the local density of states [11]:

(2)
Relations (2) are remarkable not only due to the fact
that  but also for the following reason. Typi-
cally, one expects existence of subleading corrections
to Eq. (2). Such corrections to scaling are completely
absent for the moments of the local density of states.
In fact, it is known [12–14] that many more correla-
tion functions of electron wavefunctions should
demonstrate pure scaling behavior with non-positive
critical exponents similar to Eq. (2). Recently, one of
us, with Gruzberg and Zirnbauer, proposed a method
to construct all such pure scaling observables in terms
of disorder-averaged combinations of electron wave-
functions and demonstrated that their critical expo-1 The article is published in the original.

Δn
q

q

− − −Δ

<

〈 〉 = ψ .∫ ∼

n( 1)2| ( )| qd qd q
q

r L

P d Lr r

L 〈 〉�

Δ ≤n 0q q
n

−Δ
〈ρ , 〉 ∝ .

n

( ) qq E Lr

Δ ≤n 0q

SCIENTIFIC
SUMMARIES



JETP LETTERS  Vol. 106  No. 4  2017

MESOSCOPIC FLUCTUATIONS OF THE LOCAL DENSITY 273

nents obey a set of exact symmetry relations [15].
Mesoscopic f luctuations of electron wavefunctions
have interesting consequences for the Kondo problem
[16–18] and the Anderson orthogonality catastrophe
[19].

The progress in theoretical understanding of multi-
fractality at Anderson transitions has been achieved
for disordered systems without electron–electron
interactions. As is well known, a metal-insulator tran-
sition can survive in the presence of electron–electron
interaction [20–22]. In this case, the metal–insulator
transition is usually termed as Anderson–Mott (or
Mott–Anderson) transition (see [23, 24] for a review).
In most cases, a non-interacting critical point is unsta-
ble towards electron–electron interaction in the
renormalization group sense. The authors are aware of
the only exception when non-interacting Anderson
transition survives in the presence of electron–elec-
tron interaction. This is the case of broken time rever-
sal and spin-rotational symmetries and a short-range
electron–electron interaction. In this situation, the
non-interacting multifractal exponents determine
scaling of the interaction-induced dephasing at criti-
cality [25–27].

Two scenarios are possible if a non-interacting crit-
ical point is unstable with respect to interaction. In the
first scenario, an unstable critical point separating
metallic and insulating phases exists at a finite elec-
tron–electron interaction. This Mott–Anderson tran-
sition is characterized by critical exponents, which are
different from critical exponents in a non-interacting
case. In the second scenario, the electron–electron
interaction results in the instability, e.g., supercon-
ducting instability or Stoner instability, at finite renor-
malization group scale. Then a much more compli-
cated phase diagram arises than in the absence of
interaction.

In the first scenario, i.e., at an Anderson–Mott
transition, formulation of multifractality in terms of
moments of electron wavefunctions, Eq. (1), loses its
significance. However, scaling of moments of the local
density states at interacting criticality is well posed
question. A fate of mesoscopic f luctuations of 
in the first scenario, i.e., at an Anderson–Mott transi-
tion, has been not explored until recently. Attempts to
address this question have been performed in numeri-
cal analysis of disordered electrons with Coulomb
interaction in the framework of functional density the-
ory [28, 29] and by numerical implementation of the
Hartree–Fock scheme [30]. Recently, the detailed
theory of mesoscopic f luctuations of the local density
of states has been developed by the present authors
within nonlinear sigma model treatment of disordered
interacting electrons in  dimensions [31–33].
It was demonstrated that moments of the local density
of states at Mott–Anderson transitions behave generi-
cally similar to Eq. (2) although the corresponding

ρ ,( )E r

= + e2d

critical exponents are different from their non-inter-
acting counterparts .

The second scenario with instability due to attrac-
tive interaction in the Cooper channel has been in the
focus of theoretical research during last decade [34–
41]. It was found that in some range of parameters
multifractality favors the superconducting instability,
which results in enhanced superconducting transition
temperature  in comparison with the clean case.
Recently, the present authors have demonstrated that
near the superconducting transition with enhanced 
one can expect enhanced mesoscopic f luctuations of
the local density of states governed by the critical
exponents for the non-interacting critical point [42].

In this brief review, we discuss the mesoscopic
fluctuations of the local density of states for the two
scenarios. The review is based on the results published
recently by the present authors [31–33, 42].

SCALING NEAR INTERACTING 
CRITICAL POINT

We start from discussion of a general scaling behav-
ior of moments of the local density of states near an
interacting critical point, . Here,  stands for the
dimensionless resistance, which is related with the
dimensionless conductance,  measured in units of

: . This critical point describes the
Mott–Anderson transition between metallic and insu-
lating phases and is characterized by the divergent cor-
relation/localization length . Here, 
denotes the mean free path.

It is worthwhile to mention that a fate of multifrac-
tality in the local density of states in the presence of
electron–electron interaction is by no means obvious.
The reason is the phenomenon of strong suppression
of the disorder-averaged local density of states at the
Fermi energy. At strong disorder, this suppression is
known as Coulomb gap [43, 44] whereas at weak dis-
order it is the so-called zero-bias anomaly [45–52].
The evolution of the zero-bias anomaly into Coulomb
gap across the Anderson–Mott transition was inten-
sively studied experimentally [53–58].

At a first glance, the suppression of the disorder-
averaged local density of states should prevent from
multifractal behavior of its moments. However, simi-
lar situation is known to occur in non-interacting sys-
tems of fermions in symmetry class C where in spite of
power-law suppression of the average local density of
states at zero energy, its moments behave multifrac-
tally [3].

The zero bias anomaly translates into the following
scaling behavior of the average local density of states at
the Fermi energy and temperature, , at crit-
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icality (we note that we count the energy from the
Fermi energy) [23, 24]:

(3)

The scaling function  has the following asymptotic
behavior:

(4)

The critical exponent  is determined by the anoma-
lous dimension  of  at the critical point, 
(see below). Suppression of the local density of states
corresponds to . In [31] it was shown that the th
moment of the local density of states at 
obeys the following scaling law:

(5)

The scaling function  has asymptotes at 
and  similar to the function :

(6)

The multifractal critical exponent  is determined by
the anomalous dimension  of the th moment of the

normalized local density of states, , at the
critical point,  (see below).

Definition of  via the moments of the local den-
sity of states is obviously limited to integer positive val-
ues of . However, similar to the noninteracting case,

 can be extended (by analytic continuation) to all
real (and, in fact, even complex) . This is possible
since the local density of states is a real positive quan-
tity. We note that the multifractal exponents obey the
same general properties as in the non-interacting case:

 and . This implies that
 ( ) for  (otherwise).

At finite energy or temperature, electron–electron
interaction induces the inelastic length  related with
the dephasing time  via a dynamical exponent ,

. We remind that for Coulomb interaction the
scaling with frequency/energy and temperature is the
same such that  and 

, where  and . For
 the inelastic length plays the role of the effec-

tive system size. Therefore, at finite energy and tem-
perature Eq. (5) becomes as follows

(7)

where . The sign of the exponent
 depends on the value of . Since ,
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 remains positive for not too large positive .
The absolute value of  is expected to grow suffi-

ciently fast (typically, as ). Thus,  becomes
negative for large enough . Therefore, we have a
counterintuitive behavior of the local density of states
as opposed to a clean system: its average value is sup-
pressed whereas its sufficiently high moments are
enhanced. This occurs due to a combined effect of
interaction and disorder.

The nontrivial scaling of moments of the local den-
sity of states translates into scaling behavior of fre-
quency and spatial dependence of its correlation func-
tions. For example, the 2-point correlation function of
the local density of states becomes

(8)

It is instructive to discuss the behavior of this
2-point correlation function at zero temperature and
frequency, , and in the infinite system size
limit, . Exactly at the critical point, , the
correlation length diverges, , and the scale

. Then, Eq. (8) implies that the multifractal
correlations persist up to ; i.e., they become
long-ranged near the Fermi energy, . At critical-
ity on the metallic side of the transition, , the
multifractal correlations exist up to the spatial scale

. The competition between  and  deter-
mines the energy scale  which
controls the critical region near the interacting critical
point. Near the Fermi level, , the spatial extent
of the multifractal correlations is controlled by ; i.e.,
the correlations become effectively short-ranged.
Away from the Fermi energy, , the multifractal
correlations exist up to .

On the insulating side of the criticality, the situa-
tion can be more complicated. We assume that Ander-
son transition occurs in the absence of interaction at

; i.e., interaction favors localization. The
complication arises from the dependence of localiza-
tion length  on an excitation energy . The nor-
malization is such that . We remind that
the dependence of localization length on energy is nat-
ural for the Anderson transition in the absence of
interaction due to the existence of the mobility edge,

. In the case of the interacting critical
point, we demonstrated [32] that the mobility edge 
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exists for single-particle excitations (particles and
holes) but it scaling with the distance to the critical
point differs from the non-interacting case:

(9)

The single particle excitations are localized (delocal-
ized) for  ( ). The overall phase dia-
gram of the Anderson–Mott transition discussed
above is sketched in Fig. 1. The localization length

 scales near  as

(10)

where  is the exponent for the corresponding non-
interacting Anderson transition. The zero-tempera-
ture dephasing rate vanishes at  and demon-
strates critical behavior for :

(11)
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The critical behavior of  near the mobility edge
occurs since the zero temperature decay is only possi-
ble in the continuous spectrum. However, the corre-
sponding phase volume tends to zero as  approaches

 from above. An estimate based on the Fermi golden
rule yields  [32].

Derivation of Eq. (9) is valid under the assumption
that , which allows us to neglect the energy
dependence of bare diffusion coefficient (included in
). We note that the condition  holds for many

examples of Anderson–Mott transitions in the pres-
ence of interaction.

We note that a phase diagram qualitatively similar
to the phase diagram shown in Fig. 1 was obtained in
[30] based on the numerical modeling within Har-
tree–Fock wavefunctions of the Mott–Anderson
transition on a 3D cubic lattice of a linear size of .

On the insulating side of criticality, the mesoscopic
fluctuations of the local density of states are governed
by competition between multifractality at the interact-
ing and non-interacting critical points as well as by
localization of single-particle excitations for .
At , the presence of the mobility edge is
immaterial and the moments of the local density of
states behave in the same way as on the metallic side of
the criticality:

(12)

Near the mobility edge from above, ,
the mesoscopic f luctuations of  are further
enhanced due to non-interacting critical behavior
near :

(13)

Since for , the zero-temperature dephasing
length is infinite and the mesoscopic f luctuations of
the local density of states are controlled by the system
size . Nonzero temperature induces a finite (albeit
large) dephasing length . Under the assumption
that , we find for :

(14)

The presence of the mobility edge at 
affects also the spatial correlations of the local density
of states on the insulating side of the interacting criti-
cality. Since the system at  is controlled by
interacting critical point the 2-point correlation func-
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tion of the local density of states obeys the following
power-law scaling for :

(15)

In the vicinity of the mobility edge from above,
, there are the interacting multifrac-

tal scaling of the 2-point correlation function up to the
scale  and the non-interacting multifractal scaling for

:

(16)

For energies below but close to , ,
the system shows first the interacting multifractal scal-
ing up to the scale , then the non-interacting multi-
fractality up to the scale , and finally, insulator-
like f luctuations up to the scale :

(17)

At energies well below , , the
localization length  is of the order of . Therefore,
for  we find

(18)

Multifractal behavior of the 2-point correlation
function of the local density of states as a function of
energy and distance across the Anderson–Mott tran-
sition is illustrated in Fig. 2. We note that qualitatively
the behavior of the 2-point correlation function pre-
sented in Figs. 2a and 2b is consistent with the experi-
mental findings of [8].

ANOMALOUS DIMENSION 
The anomalous dimension that governs the scaling

behavior of moments of the local density of states can
be computed near two dimensions as a perturbative
expansion in the dimensionless resistance . In the
most general case when both time reversal and spin
rotational symmetries are preserved we obtained the
following result [33]:

(19)

Here, , , and  are dimensionless parameters
which describe electron–electron interaction in the
singlet and triplet particle-hole channels and in the
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Cooper channel, respectively. The function  is
defined as follows

(20)

where  denotes the polylogarithm.
We remind that the anomalous dimension that con-
trols scaling behavior of the averaged local density of
states is given as follows (see [23, 24] for a review):

(21)
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Typical contributions that lead to the results (21) and
(19) are shown in Fig. 3. In the case of broken time
reversal and/or spin rotational symmetries, the results
(19) should be modified. The corresponding results
are summarized in Table 1.

To illustrate our general results we consider the
case of the Anderson–Mott transition in 
dimensions in the presence of Coulomb interaction
( ) and in the absence of time-reversal and
spin-rotational symmetries. This situation can be real-
ized in the presence of magnetic impurities. In the case
under consideration, the dimensionless resistance  is
renormalized as follows [59]:

(22)

where  is the running renormalization
group scale and

(23)

Here,  and  stand for the Riemann
zeta-function and the Catalan constant, respectively.
The critical point  follows from
the solution of the equation . In the absence
of interaction, the situation we consider corresponds
to the unitary Wigner–Dyson class A. In this case, the
non-interacting -function is known up to the five-
loop order [61–63]:
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The non-interacting critical point is given as
. The critical expo-

nents for the interacting and non-interacting critical
points are compared in Table 2. We note that near two
dimensions , therefore, as discussed above,
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Fig. 3. Representative diagrams for the disorder-averaged
local density of states (a) and two-loop contribution to the
second moment of the local density of states (b). Solid
lines denote electron Green’s functions, while wavy lines
denote the dynamically screened Coulomb interaction.
Ladders of dashed lines, e.g., dressing the interaction ver-
tices, represent diffusions.

Table 1. The two-loop results for anomalous dimension  derived in [33]. One needs to distinguish the cases of spin-orbit
coupling (SO) and of the Zeeman splitting (MF) in which the spin-rotational symmetry is broken but in a different way

Time-reversal sym. Spin-rotational sym. Anomalous dimension

No No

No Yes

Yes No (SO)

Yes No (MF)
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the mobility edge for the single particle excitations
exists at the insulating side of the transition, . In
the case , we find from Eq. (9) that

. In addition, we note that
the combination  is positive for . For

, the expansion in  is parametrically controlled,
the Coulomb interaction weakens multifractality, e.g.,
for  we find  versus 
(see Table 2). A qualitative reason for this is “localiz-
ing” effect of the Coulomb interaction in the absence
of time reversal and spin rotational symmetries. In the
presence of interaction the transition occurs at smaller
values of disorder, , which results in weaken-
ing of multifractality.

MESOSCOPIC FLUCTUATIONS
OF  ABOVE 

Equation (19) demonstrates that the anomalous
dimensions of the moments of local density of states
are affected by the interaction in the Cooper channel.
Since the Cooper channel interaction diverges as the
system approaches the superconducting transition
temperature , one can expect enhancement of
mesoscopic f luctuations of  in this case. To illus-
trate this effect we consider the case of weak short-
ranged interaction in the particle-hole and particle-
particle channels. In addition, we assume that in the
absence of interaction the system undergoes Anderson
transition. Provided attraction in the Cooper channel
dominates repulsion in the particle-hole channel, the
system adjusts itself to the line 
under the renormalization group flow [36]. The corre-
sponding renormalization group equation for 
and  can be written as follows:

(25)

> ∗t t
= + e2d

ξ ξ= Δ Δe @exp(1/ 2 )cE
θ + Δqq < e4/q

e ! 1 t

=e 1/9 Δ = − .(n)
2 0 48 Δ = − .2 0 047

∗ ∗!
(n)t t

ρ( )E cT

cT
ρ( )E

γ = −γ = −γ ≡ −γs t c

γ !| | 1
− ∗ !

(n)| | 1t t

−= ν − + ηγ.∗
1 (n)

n ( )dt t t
dy

The second term in the right hand side of Eq. (25)
describes the interaction correction to the conductiv-
ity. In turn, the renormalization of  is described by
the following equation:

(26)

Here, the constant  is a universal number, which is
determined by the properties of composite operators at
the noninteracting fixed point. We assume that the
superconducting instability occurs by means of a stan-
dard BCS scenario; i.e., . Equations (25) and
(26) allow one to estimate the transition temperature
for case of initially weak interaction, . In this
case, we neglect the second term in the right hand side

of Eq. (26) and find . At finite , the
renormalization group flow is stopped at the length
scale . [We note that  in this case.] Estimating
the transition temperature from the condition

, we find [34, 36]:

(27)
where  denotes the mean free time.

For  the renormalization group flows toward
the metallic phase. After the length scale

, the disorder-induced renormal-
ization of  is stopped and the standard disorder-free

BCS mechanism with attraction 
yields the superconducting instability at temperature
[36]:

(28)

Here,  denotes the typical level spac-
ing in a volume of size . It is analogous to the scale

 since for non-interacting critical point .

γ
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2
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Table 2. Anderson transitions in  with and without Coulomb interaction. The value of  in the interacting case
has been obtained in [59, 60]

Interacting Non-interacting
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Equation (28) interpolates between  at  and

 at .

For  the non-interacting system is in the
insulating phase. In the presence of interaction, there
are two possibilities. For  approaches unity
in the critical region. Then, the superconducting
phase is expected to be established at . For

 becomes unity while . Thus, in this
case one can expect localization. Therefore, we can
estimate position of the quantum phase transition
between superconducting and insulating phases as fol-
lows . The latter is equivalent to the following

relation:  (see Fig. 4). We note that in

[35] superconducting state with  was found to
survive in the localized regime, , due to Mott-
type rare configurations.

Within plain perturbation theory, the average den-
sity of states near  is strongly affected by Cooper
channel attraction [64–66]. These classical results can
be extended to incorporate the renormalization group
flow near the non-interacting critical point [42].

For , the anomalous dimension gov-
erning scaling behavior of the th moment of the local
density of states can be written in the form of series
expansion in :

(29)

Here,  are some universal coefficients characterizing
critical behavior at the non-interacting fixed point.
The following comments are in order here: (i) the
expansion of  in interaction parameter is consistent

∗
cT ξ

∗δ ∼ cT
−= τ − / γBCS 1 exp( 1 | |)cT ξδ τ∼ 1/
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γ

ζ = Δ − γ.n
q q qb

qb

ζq

with the expansion in powers of  (see Table 1); (ii) in
the case of short-ranged interaction one needs to dis-
tinguish between the scales  and

 on the one hand, and the dephasing length
, on the other hand. The dephasing time  is

expected to have a power-law dependence on energy
and temperature, . Interaction
correction in Eq. (29) is stopped at the scale

 whereas the non-interacting renormal-
ization is extended up to the dephasing length . Typ-
ically, the following condition holds: .

On the metallic side of the transition (including the
critical point), , Eqs. (26) and (29) imply the
following result for the moments of the local density of
states:

(30)

where  and .
For , interaction at the scale  is small,

. Then from Eq. (26) we find .
Therefore, the moments of the local density of states
are scaled in the same way as in the absence of interac-

tion: .

At criticality, , and in the vicinity of tran-
sition temperature, , the moments of the
local density of states are enhanced significantly for
energies , due to divergence of  at

:

(31)

where  is evaluated at . On the insulating side
at , we find standard insulating behavior for
the non-interacting critical point:

(32)

CONCLUSIONS
In conclusion, we reviewed our recent results for

mesoscopic f luctuations of the local density of states
in the presence of electron–electron interaction. Spe-
cifically, we focused on two cases: (i) a vicinity of an
Anderson–Mott transition and (ii) vicinity of the
non-interacting critical point in the presence of a weak
electron–electron attraction.
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Fig. 4. (Color online) Sketch of the phase diagram in dis-
order ( ) and interaction ( ) plane near the superconduc-
tor–insulator transition. The solid black curve denotes the
transition. The dashed black curve corresponds to the con-

dition  and indicates the critical region. The red
solid curve illustrates the dependence of the supercon-
ducting transition temperature on the distance from the
critical point.
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For a Mott–Anderson transition, we found that
the strong mesoscopic f luctuations (multifractality) of
the local density of states survive in the presence of
electron–electron interaction. Within two-loop
expansion in disorder, we check that the multifractal
spectrum in the presence of interaction is different
from the multifractal spectrum known in the absence
of interaction. In addition, we demonstrated that in
some cases on the insulating side of the Anderson–
Mott transition the mobility edge for single particle
excitations can exist. The mobility edge has a nontriv-
ial scaling with the distance from the interacting criti-
cal point. We note that many-body delocalization
driven by long-range (Coulomb) interaction may
affect the localization transition at  [67]. The
detailed discussion of this issue is beyond the scope of
the present paper.

For the case of vicinity of the non-interacting crit-
ical point in the presence of weak electron–electron
attraction, we found enhancement of mesoscopic
fluctuations at temperatures close to the supercon-
ducting transition temperature, . At high
temperatures the mesoscopic f luctuations of  are
the same as in the non-interacting case.

The predicted strong mesoscopic f luctuations of
local density of states imply strong point-to-point
fluctuations of tunneling spectra, which can be mea-
sured in scanning tunneling microscopy experiments.
We note that our theoretical results are consistent with
available data on scanning tunneling microscopy in
disordered interacting systems, in particular, for a
strongly disordered 3D system [68], for various 2D
semiconductor systems and graphene [69–72], for a
magnetic semiconductor Ga1−xMnxAs near metal-
insulator transition [8], for metallic and insulating
phases near superconductor–insulator transition in
TiN, InO, and NbN films [73–78].

Finally, we mention that the moments of the local
density of states in the presence of interaction are rep-
resented as pure-scaling local operators of Finkel’stein
nonlinear sigma model. Recently, in the presence of
electron–electron interaction, the wide set of pure-
scaling local operators has been constructed by one of
us with Repin [79]. This set of pure-scaling local oper-
ators is a generalization of operators constructed for
non-interacting case [12–14].
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