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We consider a problem of persistent magnetization precession in a single-domain ferromagnetic nanoparticle
under the driving by the spin-transfer torque. We find that the adjustment of the electronic distribution function
in the particle renders this state unstable. Instead, abrupt switching of the spin orientation is predicted upon
increase of the spin-transfer torque current. On the technical level, we derive an effective action of the type of
Ambegaokar-Eckern-Schön action for the coupled dynamics of magnetization [gauge group SU (2)] and voltage
[gauge group U (1)].
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I. INTRODUCTION

The dynamics of magnetization of single-domain ferromag-
nets (e.g., nanoparticles, quantum dots) under the influence
of spin-transfer torque (STT) [1–3] is a cornerstone of
spintronics. Arguably, the most intriguing regime of behavior
is that of persistent precession of magnetization driven by STT.
This effect is predicted even in ferromagnetic nanoparticles
with no actual anisotropy, i.e., the only preferred direction
is due to the applied field. Here we revisit the semiclassical
magnetization dynamics of such systems and find that this
regime may become unstable owing to the nonequilibrium
distribution on the dot. Consequently, the persistent precession
is replaced by a different steady state spin dynamics, but can
possibly be restored by further introducing internal energy and
spin equilibration processes in the quantum dot.

Spin dynamics in STT driven systems is known to be
very rich. Two main effects, i.e., persistent precession and
stochastic switching, should be distinguished. In systems with
strong magnetic anisotropy and, thus, multiple local stability
at equilibrium, the STT can facilitate stochastic switching
between the stable solutions; see, e.g., Refs. [4,5]. For example
in an easy-axis situation the switching between the north pole
and the south pole of the Bloch sphere can be enhanced by
inducing tunneling spin current between a pinned ferromagnet
and a nanoparticle with freely rotating magnetization (such
an arrangement is usually referred to as magnetic tunnel
junction). The theoretical method of choice in this context
is the stochastic Landau-Lifshitz-Gilbert (LLG) equation with
an additional (Slonczewski’s) term [1,2] due to the STT and
with corresponding Langevin sources.

The other effect, i.e., the persistent precession, is the
main focus of the present analysis. A strong enough STT
current can shift an equilibrium stable solution, e.g. the
magnetization directed along the external magnetic field,
into a different, dynamically stable stationary solution. The
latter may be characterized, e.g., by persistent precession of
the magnetization around the direction of the external field
(or, more generally, around the effective field determined by
the anisotropy). Persistent precession states were predicted
theoretically back in 1996 [1,2], and have been subsequently
observed [6]. Since then the spin-torque nano-oscillators have

been actively investigated (see, e.g., Refs. [7–9]). Rotating
magnetization may, in turn, induce spin and charge currents
across the magnetic tunnel junction [10,11].

Usually the two phenomena (spin current inducing mag-
netization precession and the latter inducing spin and charge
currents) are treated separately, although they are obviously
intimately related. Here, extending Ref. [12], we derive an
effective action of the Ambegaokar-Eckern-Schön (AES) type
[13,14], which governs the dynamics of both the charge [U (1)]
and the spin [SU (2)] degrees of freedom. This allows us
to obtain equations of motion describing simultaneously the
induction of spin precession by current and the generation of
current by rotating magnetization.

Our main result concerns the effect of the non-equilibrium
distribution function of electrons in the nanoparticle generated
by the applied voltage and by the ensuing spin precession. Here
it is important to understand the major difference between,
e.g., molecular systems with large spin and the itinerant
ferromagnetic nanoparticles. In the former case the dynamical
degrees of freedom are restricted to the spin itself, whereas
the dissipation and the driving are provided by macroscopic
electronic reservoirs with fixed distribution functions, which
are coupled to the spin. These reservoirs may be formally
integrated out rendering an effective dissipative action for
the spin alone. By contrast, in an itinerant ferromagnetic
nanoparticle, the internal microscopic state of the electrons
described by the distribution function plays a decisive role.
Formally, this distribution function is completely enslaved
to the trajectory in time of magnetization and voltage as
well as to the boundary conditions in the leads. However,
it may be driven far from equilibrium, which in turn influences
strongly the effective action of the magnetization and voltage
(see the discussion in Chapter 11.6 of Ref. [15]). This has
been indeed realized in Ref. [16], where the magnetization
dynamics was assumed to be slow compared to the relaxation
time of the distribution function; the latter, then, deviated
only slightly from instantaneous equilibrium. In this paper
we focus on the opposite regime of rather fast magnetization
dynamics and high voltage leading to strong non-equilibrium
conditions (cf. Ref. [17]). Note that earlier treatments of
magnetic tunnel junctions overlooked frequently the role of
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FIG. 1. Schematic view of the system: A ferromagnetic quantum
dot (center) is exposed to an external magnetic field and tunnel
coupled to two leads. The left lead is a ferromagnet with a
fixed magnetization direction. The right lead is nonmagnetic. A
nonequilibrium situation is generated by a voltage V that is applied
across the system.

the sink, which drains the current flowing into the dot from the
fixed ferromagnet. We will show that proper treatment of the
sink is crucial for the correct description of the dynamics.

Another possibility to circumvent the nonequilibrium
distribution function is to assume strong energy and spin
relaxation inside the dot [18]. The distribution function
in the dot is, then, Fermi-Dirac, and the effective action
for the magnetization derived in Ref. [18] results in LLG
equations with Slonczewski’s spin-transfer torque term. This,
in turn, results in persistent precession of magnetization and
in interesting fluctuation relations for statistics of charge, spin,
and heat. The latter were studied recently in Ref. [19], using
the effective action of the AES type derived in Ref. [12].

Here we analyze the opposite situation. We assume that the
only relaxation in the dot is due to the tunneling to the leads.
In this case, we obtain the LLG equations again. Yet, the
spin and the charge currents appearing in these equations are
strongly modified by the adjustment of the electron distribution
function to the state of persistent precession. This renders
the state of persistent precession unstable. Upon increasing
the applied voltage, the unique stable solution jumps abruptly
from the magnetization oriented towards the north pole of the
Bloch sphere to its south pole. Neither orientation involves spin
precession. We note in passing that our formalism reproduces
the persistent precession solution of Ref. [18] as well as the
precession generated current of Ref. [11] once we enforce the
equilibrium electron distribution in the dot (nanoparticle).

The paper is organized as follows. In Sec. II we describe
the system under investigation. Sec. III is devoted to the
derivation of the effective action. In Sec. IV we derive the
quasiclassical equations of motion, taking into account the fact
that the distribution function of electrons in the dot is driven
far from equilibrium. We find the stationary regimes of the
driven system and analyze their stability. Finally, in Sec. V we
discuss the obtained results.

II. THE SYSTEM

We consider a quantum dot tunnel coupled to two leads:
one magnetic lead and one nonmagnetic lead; see Fig. 1. The
Hamiltonian for the full system is

H = Hdot + Hl + Hr + Htun.. (1)

The left lead is chosen to be the ferromagnetic one with fixed
magnetization and therefore with fixed exchange field Mfix

along the z axis.1 We also include an electrostatic potential2

on the left lead, V , i.e.,

Hl =
Nl∑

n=1

∑
σ

∫
dk

2π

(
εnk − Mfix

2
σ + V

)
c
†
nk,σ cnk,σ . (2)

Here n counts the channels of the left lead n = {1, . . . ,Nl},
whereas k denotes the wave number in the channel. The right
lead is assumed to be grounded and nonmagnetic, i.e.,

Hr =
Nl+Nr∑
n=Nl+1

∑
σ

∫
dk

2π
εnk c

†
nk,σ cnk,σ . (3)

Here n ∈ {Nl + 1, . . . ,Nr} counts the channels of the right
lead. We employ the universal Hamiltonian for the dot [20]
ignoring the Cooper channel, i.e.,

Hdot = Hdot,0 − BS − JS2 + Ec(N − N0)2, (4)

Hdot,0 =
∑
α,σ

εαa†
α,σ aα,σ , (5)

where J is the exchange constant, Ec is the charging energy,
and N0 represents the background charge. The spin operator
is given by

S = 1

2

∑
α,σ1,σ2

a†
α,σ1

σ σ1,σ2
aα,σ2

, (6)

and the charge operator reads

N =
∑
α,σ

a†
α,σ aα,σ . (7)

In (4) we neglect, inter alia, the magnetic anisotropy, which is
frequently present in real systems. The external magnetic field
is also chosen along the z axis B = (0,0,B). For the tunneling
part of the Hamiltonian, we choose

Htun. =
Nl+Nr∑
n=1

∑
α,σ

∫
dk

2π
tα,n a†

α,σ cnk,σ + H.c. (8)

Note that we have chosen a diagonal form of the single-particle
part of Hdot. This means that the tunneling amplitudes tα,n are
random (at least the signs are).

The system dynamics is fully defined by specifying the
distribution functions of electrons in the leads. Note that the
distribution function of the dot cannot be chosen freely. Due
to the coupling to the leads the system will “forget” its initial
distribution function in favor of that imposed by the leads on
a time scale of the order of the relaxation time. The latter can
be estimated as the inverse level-broadening of the dot states.
The situation with applied voltage is described by different

1Note that for the present calculation only the density of states
at the Fermi surface is important. The actual direction of the fixed
magnetization might however enter in the renormalization of the
magnetic field [see discussion after Eq. (40)].

2To obtain the physical units, we have to replace V → eV , Vd →
eVd and B → λB, M → λM, Mfix → λMfix, Bexc → λBexc, where
λ ≡ h̄ge/(2mc) and g ≈ 2; note that e < 0 and, thus, λ < 0.
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electrochemical potentials on the left lead and the right
lead. The distribution functions of the leads are thus chosen
as nl(ε) = 1/(eβ[ε−(μ+V )] + 1) and nr (ε) = 1/(eβ(ε−μ) + 1),
where μ is the bare chemical potential. Note that we assume
the bare chemical potential to be the same for both leads, i.e.,
V is the applied voltage.

III. DERIVATION OF THE EFFECTIVE ACTION

A. Decoupling of the interactions

We employ the Keldysh formalism, since we consider a
system driven out of equilibrium. We use the path integral
technique. The Keldysh generating function (we do not specify
the source fields) is then given by

Z =
∫

D[�̄,�]eiS[�̄,�]. (9)

The Keldysh action reads

iS = i

∮
K

dt [�̄ i∂t � − H (�̄,�)], (10)

where �̄,� denote the fermionic fields, and the Keldysh
integral runs from −TK to +TK on the upper part of the contour
(+) and in reverse over the lower part of the contour (−).
We use Hubbard-Stratonovich transformations to decouple the
interaction. In particular, we substitute

eiJ
∮

dt S2 =
∫

DBexc e−i
∮

dt ( B2
exc
4J

−BexcS) (11)

for the exchange interaction, while for the Coulomb interaction
we take

e−iEc

∮
dt (N−N0)2 =

∫
DVd ei

∮
dt (

V 2
d

4Ec
−Vd (N−N0)). (12)

We note that Bexc is the exchange field generated on the dot. It
is proportional to the magnetization, as can be seen by variation
of the action with respect to the quantum component of Bexc,
which leads to the condition Bc

exc = 2J 〈S〉 (the superscript c

denotes the classical Keldysh component). Analogously, Vd is
the electrostatic potential generated by electrons on the dot.
Variation of the action with respect to the quantum component
of Vd , i.e., V

q

d , gives V c
d = 2Ec(〈N〉 − N0). Following the

Hubbard-Stratonovich transformation, the action is quadratic
in the fermionic fields. The latter can be integrated out, and
the resulting determinant can be reexponentiated, leading to

iSM,Vd
= tr ln

⎡
⎣−i

⎛
⎝G−1

l −t
†
l 0

−tl G−1
d,0 + M σ

2 − Vd −tr

0 −t
†
r G−1

r

⎞
⎠

⎤
⎦

− i

∮
K

dt
(M − B)2

4J
+ i

∮
K

dt

(
V 2

d

4Ec

+ VdN0

)
,

(13)

where we introduced M = B + Bexc, which we refer to in the
following as the magnetization.3 The Green’s functions are

3Bexc is proportional to the true magnetization and, in the ferromag-
netic case, |Bexc| � |B| and thus M ≈ Bexc. This justifies referring to
M as the magnetization.

defined as G−1
d,0 = i∂t − Hdot,0 for the dot and G−1

l,r = i∂t −
Hl,r for the leads. By expanding and resumming the tr ln [· · · ]
in the tunneling matrices we obtain

iSM,Vd
= tr ln

[
−i

(
G−1

d,0 + M
σ

2
− Vd − 


)]

− i

∮
K

dt
(M − B)2

4J
+ i

∮
K

dt

(
V 2

d

4Ec

+ VdN0

)
.

(14)

Here we defined 
 = 
l + 
r , where 
l = tl Gl t
†
l and


r = tr Gr t
†
r . We have dropped the terms tr ln[−iG−1

l ] and
tr ln[−iG−1

r ], since they do not contain any source fields. The
time dependence of M and Vd renders the tr ln [· · · ] part of the
action complicated. However, by applying a number of gauge
transformations, we can transform the action to the rotating
frame and, thus, shift the time dependence to the self-energies.
This procedure leads to the AES type of effective action and
allows us to make further progress.

B. The rotating frame

We perform a rotation in spin space, such that M becomes
parallel to the z axis. We closely follow the ideas of Ref. [12].
That is, we split M = Mn into an amplitude M and a direction
n. Then we introduce spin-rotation matrices R, such that
nσ = RσzR

†. We use the Euler angle representation R =
e−i

φ

2 σze−i θ
2 σy ei

φ−χ

2 σz . The rationale behind this choice is that
by construction θ+(−TK ) = θ−(−TK ) between the upper (+)
and lower (−) parts of the contour, and similarly φ+(−TK ) =
φ−(−TK ) + 2πp, where p is an integer. Thus, the boundary
condition R+(−TK ) = R−(−TK ) is satisfied for any choice of
the gauge field χ (t) such that χ+(−TK ) = χ−(−TK ) + 4πm.
The integer m can be chosen arbitrarily.

The time dependent transformation rotating
M to point along the z axis generates the
usual geometric term Q ≡ −iR†Ṙ = Q‖ + Q⊥,
where Q‖ ≡ (1/2)[φ̇ (1 − cos θ ) − χ̇]σz, and Q⊥ ≡
(1/2) exp [iχσz] [φ̇ sin θ σx − θ̇σy] exp [iφσz]. Now, the
action reads

iSM,Vd
= tr ln

[ − i
(
G−1

d,z − Q − Vd − R†
R
)]

− i

∮
K

dt
(M − B)2

4J
+ i

∮
K

dt

(
V 2

d

4Ec

+ VdN0

)
,

(15)

where G−1
d,z = i∂t − Hdot,0 + M

σz

2 is the rotated Green’s func-
tion of the dot.

C. Ferromagnetic regime

In the following, we consider only itinerant ferromagnets
well beyond the Stoner transition, although our analysis may
apply also near the Stoner transition. That is, we assume that a
large magnetization M is built up on the dot. Furthermore, we
assume adiabaticity, meaning that the angular velocity of the
magnetization rotation is much smaller than the magnetization
[measured in units of g|e|/(2mc)]. Thus, in Q we only keep
the Berry phase part Q‖, whereas we neglect the part Q⊥
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responsible for single-electron Landau-Zener transitions. In
the deep ferromagnetic phase fluctuations of the length of the
magnetization, δM , are small compared to M (cf. Ref. [16]).
In the following, we will assume that the magnetization has a
fixed length, M0.

D. Choice of gauge

Ideally, we would have liked to choose χ̇ = φ̇(1 − cos θ )
as a gauge on the entire contour, since this would eliminate
Q‖ [12] (from now on we identify Q with Q‖ as Q⊥ is
neglected). However, we have to respect the boundary con-
ditions χ+(−TK ) − χ−(−TK ) = 4πm. Due to these boundary
conditions we cannot eliminate the quantum component Qq .
We can eliminate though the classical component by choosing
a gauge such that Q+ = −Q−. This is achieved by

χ̇± = φ̇cpc + 1

4
φ̇qpq ±

(
1

2
φ̇qpc + 1

2
φqṗc

)
, (16)

where p = (1 − cos θ ) and we have chosen the specific bound-
ary condition m = 0. For the quantum part we obtain Qq =
Q+ − Q− = (1/2)(φ̇cpq − φqṗc)σz. Up to second order in
the quantum components of φ and θ , this choice is the same
as in Ref. [12].

E. U(1) gauge transformation

Besides rotating the magnetization, we also transfer the
potential Vd to the self energy part by a U (1) gauge transfor-
mation e−iψ (this is the original AES transformation [13,14]).
We would like to eliminate the complete potential by the choice
ψ̇ = Vd on the Keldysh contour. However, we have to respect
the boundary conditions again, i.e., ψ−(−TK ) − ψ+(−TK ) =
2πk, with integer k. And again, in this semiclassical limit, in
which charge quantization is neglected (strong tunnel coupling
between the dot and one or both leads), we can restrict
ourselves to a single value of k, e.g., k = 0. We, therefore,
do not gauge out the zero frequency quantum component
V

q

d 0 (cf. Ref. [21]), since ψ−(−TK ) − ψ+(−TK ) = ∮
K

dt Vd =∫ TK

−TK
dt (V +

d − V −
d ) = ∫ TK

−TK
dt V

q

d = V
q

d 0. Our choice for the
gauge field is

ψ̇+ = V +
d − 1

2
V

q

d 0,

ψ̇− = V −
d + 1

2
V

q

d 0, (17)

which leaves the zero-frequency quantum component V
q

d 0
untouched but gauges out the rest of Vd .

F. Keldysh rotation

Employing the combined U (1) × SU (2) gauge transfor-
mations with U = R e−iψ and introducing the Keldysh matrix
structure, we obtain the following effective action:

iSM,Vd
= tr ln

[
− i

(
τzG

−1
d,z − Qq

2
τ0 − V

q

d 0

2
τ0 − Û †
̂Û

)]

+ i

∫
dt

BMq

2J
+ i

∫
dt

(
V c

d V
q

d

2Ec

+ V
q

d N0

)
,

(18)

where 
̂ = (

++ −
+−

−
−+ 
−−

)
and Û = (

U+ 0
0 U−

) = Uc τ0 +
(1/2)Uq τz. Finally, we perform the standard “bosonic” ro-

tation [22] with L = 1√
2

(1 1
1 −1

)
and obtain

iSM,Vd
= tr ln

[
− i

(
G̃−1

d,z − Qq

2
τ0 − V

q

d 0

2
τ0 − Ũ †
̃Ũ

)]

+ i

∫
dt

BMq

2J
+ i

∫
dt

(
V c

d V
q

d

2Ec

+ V
q

d N0

)
,

(19)

where Ũ ≡ L†ÛL = Uc τ0 + (1/2)Uq τx , G̃−1
d,z ≡

L†τzG
−1
d,zL = τxG

−1
d,z, and 
̃ ≡ L†
̂L = ( 0 
A


R 
K

)
.

IV. STATIONARY QUASICLASSICAL TRAJECTORIES

A. General considerations

A saddle-point trajectory of magnetization and voltage
Usp(t) can be found by considering a variation, U (t) =
Usp(t) + δU (t), expanding the effective action in components
of δU and requiring the linear order of the expansion to vanish.
This strategy, in the laboratory frame, was pursued in Ref. [16].
For semiclassical trajectories Usp(t) would be purely classical
(no quantum components) and the expansion (up to the linear
order) is effectively in the quantum components of U (t). (More
general saddle point solutions, e.g., instantons [23], would
require special care.) The expansion can be performed by
splitting the Keldysh rotated [see Eq. (19)] self-energy Ũ †
̃Ũ

into the saddle point part U
†
sp
̃Usp and the rest, i.e.,

iSM,Vd
= tr ln

[
− i

(
G̃−1

d,z − U †
sp
̃Usp − Qq

2
τ0 − V

q

d 0

2
τ0

− (Ũ †
̃Ũ − U †
sp
̃Usp)

)]

+ i

∫
dt

BMq

2J
+ i

∫
dt

(
V c

d V
q

d

2Ec

+ V
q

d N0

)
. (20)

To perform the expansion in Qq , V q

d 0, and Ũ †
̃Ũ − U
†
sp
̃Usp,

one would have to find the zeroth-order Green’s function

G̃d ≡ (G̃−1
d,z − U †

sp
̃Usp)−1. (21)

For a general nonstationary trajectory Usp(t) this task is akin to
solving a time-dependent kinetic equation. Then, expanding,
we obtain the following effective action:

iSM,Vd
= iSWZNW + iSzero mode + iSAES

+ i

∫
dt

BMq

2J
+ i

∫
dt

(
V c

d V
q

d

2Ec

+ V
q

d N0

)
.

(22)

Here the first term is the standard Berry phase action also
known as Wess-Zumino-Novikov-Witten (WZNW) action,

iSWZNW = −1

2

∫
dt tr

[
G̃K

d (t,t)Qq(t)
]
. (23)
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The second term is given by

iSzero mode = −1

2

∫
dt tr

[
G̃K

d (t,t)V q

d 0

]
. (24)

Finally, the third term of Eq. (22) is the AES action:

iSAES = −tr[G̃d (Ũ †
̃Ũ − U †
sp
̃Usp)]

= −tr[G̃dŨ
†
̃Ũ ]. (25)

Curiously, the term U
†
sp
̃Usp drops due to Usp being purely

classical.

B. Nonequilibrium stationary distribution function

Solving the kinetic equation (21) for an arbitrary (yet
unknown) saddle point trajectory, Usp, may be rather com-
plicated (in Ref. [16] this has been achieved assuming very
slow dynamics of the magnetization). We thus pursue a less
ambitious task: we presume a stationary solution, solve the
stationary kinetic equation corresponding to this solution and
check the presumed solution for stability and consistency. By
doing so we consider only the long-time limit so that the
electron distribution function of the dot has already adjusted
itself.

We assume the stationary solution of the form θ (t) = θ0,
φ̇(t) = −B0, and ψ̇(t) = Vd (t) = Vd0 (if sin θ0 = 0 the choice
of φ̇ is immaterial). These relations hold on both parts of the
Keldysh contours (the upper and the lower); we are thus talking
about a purely classical trajectory. We introduce a purely
classical U0, which emerges from U under the substitutions
θ (t) → θ0, φ(t) → −B0 t , and ψ(t) → Vd0 t . Next we rewrite
Eq. (21) as

G̃d ≡ (
G̃−1

d,z − U
†
0 
̃U0 − (U †

sp
̃Usp − U
†
0 
̃U0)

)−1
. (26)

Formally, we can expand in (U †
sp
̃Usp − U

†
0 
̃U0), i.e.,

G̃d = G̃d0 + G̃d0(U †
sp
̃Usp − U

†
0 
̃U0)G̃d0 + · · · , (27)

where G̃d0 ≡ (G̃−1
d,z − U

†
0 
̃U0)

−1
. We keep, however, only the

lowest-order term and approximate

G̃d ≈ G̃d0. (28)

This approximation is definitely sufficient for finding the
stationary trajectories, since in this case Usp = U0. The validity
of this approximation for the stability analysis of the stationary
solutions will be discussed below.

We now solve Eq. (28). We only keep the contributions
diagonal in spin and orbital space. To neglect the spin off-
diagonal contributions is justified, since we assume M0 to be
the largest energy scale in the problem. The randomness in the
coupling to the leads as well as the assumption of the large
number of weakly conducting (tunneling) transverse channels
justify the dropping of the orbital off-diagonal contributions
(see Appendix A). The system is, thus, described by just three
tunneling rates �

↑
l ,�

↓
l ,�r (see Appendix A). Here �σ

l is the
tunneling rate (inverse lifetime) of an orbital state to states of
the left lead with spin projection σ . Analogously �r = �

↑
r =

�
↓
r is the (spin resolved) inverse life time due to the right lead.

(a) (b)

FIG. 2. The figure presents schematically the distribution func-
tion of Eq. (31). Here nσ

d (ε) ≡ [1 − F σ
d (ε)]/2.

We obtain for the Green’s function

G̃d =
(

GK
d GR

d

GA
d 0

)
, (29)

where

G
R/A

d = 1

ε − εα − (M0/2)σ ± i�σ (θ0)
. (30)

Here �σ (θ0) = cos2 θ0
2 �σ

l + sin2 θ0
2 �σ̄

l + �r and σ̄ denotes the
spin projection opposite to σ . Using the ansatz GK

d = GR
d Fd −

FdG
A
d , we obtain the following spin-dependent distribution

function:

Fσ
d (ε) = 1

�σ (θ0)

[
cos2 θ0

2
�σ

l F (ε − σB− + Vd0 − V )

+ sin2 θ0

2
�σ̄

l F (ε − σ̄B+ + Vd0 − V )

+ cos2 θ0

2
�rF (ε − σB− + Vd0)

+ sin2 θ0

2
�rF (ε − σ̄B+ + Vd0)

]
. (31)

Here we introduce F (ε) ≡ tanh ( ε−μ

2T
) and B± ≡ B0(1 ±

cos θ0)/2. The strong nonequilibrium character of the distribu-
tion function in the rotating frame (which represents far from
equilibrium conditions in the laboratory frame) is obvious: it is
a sum of four equilibrium distribution functions with different
energy shifts. We demonstrate this schematically in Fig. 2.
Note that this “distribution function” is an auxiliary quantity
defined in the rotating frame, and is not necessarily equal to
the actual distribution function (Keldysh Green’s function) of
the dot.

C. The WZNW and the AES terms of the action

For the Berry-phase (WZNW) action (23) we obtain

iSWZNW = −1

2

∫
dt tr[G̃K

d (t,t)Qq(t)]

= −iS

∫
dt sin θc(θqφ̇c − φqθ̇ c), (32)

where we introduced the total spin length S, which is about
half the number of orbital states between μ − M0/2 and μ +
M0/2 (we assume low enough temperature, kBT � M0). For
details of the calculation, see Appendix C. The self consistency
discussed in Sec. III A requires M0 ≈ 2JS.
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Now we evaluate the AES-like action given by Eq. (25).
One significant difference between the AES-like action iSAES

and the original AES action [13,14] is the spin-structure under
the trace. To handle this complication, we introduce

U = A↑↑σ↑ + A↓↓σ↓ + A↓↑σ+ + A↑↓σ−,

U † = A∗
↑↑σ↑ + A∗

↓↓σ↓ + A∗
↓↑σ− + A∗

↑↓σ+, (33)

where σ↑/↓ = 1
2 (σ0 ± σz), σ± = 1

2 (σx ± iσy), and

A↑↑ = cos
θ

2
ei(− χ

2 −ψ), A↓↑ = − sin
θ

2
ei(−φ+ χ

2 −ψ),

A↓↓ = cos
θ

2
ei( χ

2 −ψ), A↑↓ = sin
θ

2
ei(φ− χ

2 −ψ). (34)

Now, we can explicitly take the trace over the spin space to
obtain

iSAES = −
∑
σσ ′

tr[G̃d (σ ) Ã∗
σσ ′
̃σ ′Ãσσ ′], (35)

which resembles four copies of the AES problem, one for
each combination of σ,σ ′. Note, however, that the four
combinations Aσσ ′ are not independent, since they only
describe three coordinates φ,ψ,θ . The calculation of the
AES-like action is straightforward (for details see Appendix D)
and we obtain iSAES = iSR

AES + iSK
AES, where the retarded part

and the Keldysh part are given by

iSR
AES =−i

∫
dt dt ′

∑
σσ ′

Im
[
A∗

c,σσ ′(t ′) αR
σσ ′(t − t ′) Aq,σσ ′ (t)

]
,

(36)

iSK
AES = −1

4

∫
dt dt ′

×
∑
σσ ′

A∗
q,σσ ′ (t ′) αK

σσ ′(t − t ′) Aq,σσ ′ (t). (37)

The retarded kernel, αR
σσ ′(ε) = gσσ ′

l αR
l,σ (ε) + gσσ ′

r αR
r,σ (ε), and

the Keldysh kernel, αK
σσ ′(ε) = gσσ ′

l αK
l,σ (ε) + gσσ ′

r αK
r,σ (ε), have

contributions from both leads. The conductances are given by
gσσ ′

l = 2ρσ
d �σ ′

l and gσσ ′
r = 2ρσ

d �r (gσσ ′
r is independent of σ ′),

where ρσ
d is the spin dependent density of states of the dot (see

Appendix D). The retarded kernel functions are given by

Re
[
αR

l,σ (ε)
] = 1

2

∫
dω

[
Fσ

d (ω + ε) − Fl(ω)
]

= ε + V + Ṽσ (θ0), (38)

Re
[
αR

r,σ (ε)
] = 1

2

∫
dω

[
Fσ

d (ω + ε) − Fr (ω)
]

= ε + Ṽσ (θ0), (39)

where

Ṽσ (θ0) = Vd0 − V + �rV − �� sin2 θ0
B0
2

�σ (θ0)
. (40)

Here �� ≡ 1
2 (σ�σ

l + σ̄�σ̄
l ) = 1

2 (�↑
l − �

↓
l ). We disregard the

imaginary parts of the kernel functions, since these contribu-

tions lead to a renormalization of the magnetic field, which is
included in B. The Keldysh kernel functions are presented in
Appendix D.

Note that had we enforced a Fermi distribution function,
Fd (ε) = F (ε), in the dot (in the rotating frame), which is
also the distribution function of the right lead, we would have
Ṽσ (θ0) = 0 and the kernel functions (38), (39) would assume
the usual AES form.

In what follows we will need the following conductances
(cf. Ref. [18]). The usual conductances for the charge current

are given by gl(θ ) = cos2( θ
2 )

4 (g↑↑
l + g

↓↓
l ) + sin2( θ

2 )
4 (g↑↓

l + g
↓↑
l )

for left contact and analogously for the right contact gr . The
conductances related to the dissipation of the magnetization

read g̃l(θ ) = sin2( θ
2 )

4 (g↑↑
l + g

↓↓
l ) + cos2( θ

2 )
4 (g↑↓

l + g
↓↑
l ) for left

contact and analogously for the right contact gr . The spin
conductance is defined as gs = 1

4 (g↑↑
l − g

↓↓
l − g

↑↓
l + g

↓↑
l ).

Note that there is no spin conductance appearing for the
right lead, since it is not magnetic. It also follows that gr

is independent of θ and furthermore g̃r = gr .

D. Quasiclassical equations of motion

We derive the quasi-classical equations of motion by
varying the action, Eq. (22), with respect to the quantum
components,4 θq,φq,ψq (for details see Appendix E). For
this purpose only the retarded part of the AES-like action,
Eq. (36), is relevant, as it contains contributions linear in
the quantum components. Thus, we disregard the (at least
quadratic in quantum components) Keldysh part of the action
[Eq. (37)], which would render the quasiclassical equations of
motion stochastic by generating Langevin terms [22,24].

For our setup with B = (0,0,B) and with the fixed magne-
tization of the left lead parallel to this field, and employing the
self consistency relation M0 ≈ 2JS, we obtain the Landau-
Lifshitz-Gilbert equation [25] supplemented by a spin-torque
term

dM
dt

= −B × M − α(θ )
M
M0

× dM
dt

+ 1

S

M
M0

× (Is × M).

(41)

Here the Gilbert dissipation coefficient α(θ ) = 1
S

(g̃l(θ ) + g̃r )
depends on the angle θ . Furthermore, we obtain Kirchhoff’s
law

CV̇d = Il − Ir , (42)

where Il is the current flowing into the dot from the left lead
and Ir is the current flowing out of the dot into the right lead
(see Fig. 1). The above equations of motion can be written
explicitly in terms of the Euler angles. They read

sin θ φ̇ = − sin θB − α(θ ) θ̇ ,

sin θ θ̇ = sin2 θ [α(θ )φ̇ − Is/S],

CV̇d = Il − Ir . (43)

4The resulting equations of motion are for the classical components
of the corresponding fields. We drop the superscript c for brevity.
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For the spin-torque current, we obtain

Is = gs(V − Vd ) + gs(Vd0 − V )

+ S α(θ0)
2���rV − �2

� sin2 θ0 B0

�2

 − cos2 θ0�

2
�

, (44)

where �
 ≡ (�↑
l + �

↓
l )/2 + �r . The last two terms in Is arise

due to the nonequilibrium character of the electron distribution
function Fσ

d in the quantum dot or nano-particle [see Eq. (31)].
Had we enforced an equilibrium distribution by setting Fd =
F (ε) in Eqs. (38) and (39), the spin-torque current would
reduce to I

eq.
s = gs(V − Vd ) as, e.g., in Ref. [18].

For the charge currents we obtain

Il = 4gl(V − Vd ) − gs sin2 θφ̇ + 4gl(Vd0 − V )

+
[

cos2 θ
2 g

↑↑
l + sin2 θ

2 g
↑↓
l

�↑(θ0)
+ cos2 θ

2 g
↓↓
l + sin2 θ

2 g
↓↑
l

�↓(θ0)

]

×
(

�rV − �� sin2 θ0
B0

2

)
(45)

and

Ir = 4grVd + 4gr (V − Vd0)

−
[

cos2 θ
2 g

↑↑
r + sin2 θ

2 g
↑↓
r

�↑(θ0)
+ cos2 θ

2 g
↓↓
r + sin2 θ

2 g
↓↑
r

�↓(θ0)

]

×
(

�rV − �� sin2 θ0
B0

2

)
. (46)

Here again, the last two terms in Il and the last two terms in
Ir arise due to the nonequilibrium character of the distribution
function and would therefore vanish for the enforced equilib-
rium distribution, i.e., I eq.

r = 4grVd and I
eq.

l = 4gl(V − Vd ) −
gs sin2 θφ̇. For the left junction (magnetic tunnel junction),
besides the ohmic term, the charge current I eq.

l contains also the
current pumped by the precessing magnetization, −gs sin2 θφ̇,
as predicted in Refs. [10,11].

We emphasize that the structure of the Landau-Lifshitz-
Gilbert equation (41) and of the Kirchhoff’s law (42) is
preserved, whereas the three currents, Is , Il , and Ir , are strongly
modified due to the nonequilibrium character of the electron
distribution function (31). Furthermore, as the magnetization
and the electrostatic potential of the dot are treated on an equal
footing, we are able to describe their coupled dynamics. The
coupling is mediated by the spin-torque current, Is , and by the
pumped current, −gs sin2 θφ̇. The intimate relation between
the two was always clear, but is now explicitly demonstrated
as both are derived from the same effective action (see also
[19]).

E. Stationary solutions

The possible stationary solutions, θ0,B0,Vd0, are obtained
by substituting φ̇ = −B0, Vd = Vd0, θ = θ0 into Eqs. (43)
and solving for θ0,B0,Vd0. Assuming the stationary solution
is such that sin θ0 �= 0, the first equation of Eqs. (43) would
immediately lead to B0 = B. The second equation of (43)
gives then

0 = α(θ0)
[(�2


 − �2
�)B + 2�r��V ]

�2

 − cos2 θ0�

2
�

. (47)

(a) (b)

FIG. 3. The stationary solutions and their stability: solid red ↔
stable, dotted blue ↔ unstable, dashed purple ↔ critical solutions.
(a) Here cos θ0 is shown for applied V . For V �= Vsw the only
stationary solutions are at the poles. For V < Vsw the north pole
is stable. For V > Vsw the south pole is stable. (b) In the stationary
regime Il = Ir = I . For V �= Vsw the conductance differs between the
steady state solution in the north pole and that in the south poles [cf.
Eqs. (48) and (49)]. For either case we obtain Ohm’s law, i.e., straight
lines (with different slopes) starting at the origin. The scenario shown
is for g

↑↑
l + g

↓↓
l > g

↑↓
l + g

↓↑
l which results in a higher conductance

when the magnetization points at the north pole. In the opposite case,
the conductance of the south pole is higher. The stability for voltage
biased regime, however, is the same in both cases. In addition, we
assume here B > 0 and �

↓
l > �

↑
l , which results in gs < 0 and in

Vsw/B > 0.

Since α(θ0) and �2

 − cos2 θ0�

2
� are always positive, there

are no solutions with sin θ0 �= 0. Thus only north and south
pole solutions are possible. This is in contrast to the persistent
precession (sin θ0 �= 0) solutions discussed, e.g., in Ref. [18].

With θ = θ0 and sin θ0 = 0 the first equation of Eqs. (43)
is automatically satisfied for arbitrary B0. This is because the
dynamics of φ is meaningless for sin θ0 = 0. It is also easy
to see that the currents given by Eqs. (44), (45), (46) become
independent of Vd0 and, in turn, the third equation of Eqs. (43)
(Kirchhof’s law) is satisfied for arbitrary value of Vd0. This fact
will be discussed below (Sec. IV G). For the charge current,
I = Il = Ir , in the two stationary states we obtain

Iθ0=0 =
[

g
↑↑
l g

↑↑
r

g
↑↑
l + g

↑↑
r

+ g
↓↓
l g

↓↓
r

g
↓↓
l + g

↓↓
r

]
V (48)

and

Iθ0=π =
[

g
↑↓
l g

↑↓
r

g
↑↓
l + g

↑↓
r

+ g
↓↑
l g

↓↑
r

g
↓↑
l + g

↓↑
r

]
V. (49)

F. Stability of the stationary solutions

We now analyze the stability of the two stationary solutions
with sin θ0 = 0. We define θ = θ0 + δθ and Vd = Vd0 + δVd

and eliminate the fast variable φ̇ using the first of Eqs. (43).
We observe, then, that to the lowest order in δθ and δVd the
dynamics of δθ decouples from that of δVd and is governed by

δθ̇ = −cos θ0 α(θ0)

1 + α2(θ0)

[
B + 2���r

�2

 − �2

�

V

]
δθ + O(δθ · δVd ).

(50)

The stability of the stationary solutions at the north pole
(cos θ0 = 1) and at the south pole (cos θ0 = −1) is completely
determined by the sign of [B + 2���r

�2

−�2

�

V ]. For example, if
B > 0 and �� < 0 (the situation depicted in Fig. 3), this sign
is positive for V < Vsw and negative for V > Vsw, where the
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switching voltage is given by

Vsw = − (�2

 − �2

�)B

2�r��

. (51)

For V < Vsw, the north pole is stable while the south pole
is unstable; whereas for V > Vsw, the situation reverses (cf.
Fig. 3).

In general, the stability analysis of the type of performed
around Eq. (50) should be done with care. Eq. (50) describes
the relaxation of the fluctuations of a collective variable, θ ,
under the assumption that the distribution function remains
unchanged, i.e., it is still determined by θ0 and Vd0 [approxi-
mation of Eq. (28)]. Should a collective variable deviate from
the stationary value for a time longer than the relaxation time
of the distribution function, the latter would adjust itself to the
new conditions [we would have to take into account higher
order terms in Eq. (27)]. Note that, close to the switching
voltage, Vsw, where [B + 2���r

�2

−�2

�

V ] tends to 0, the relaxation
of δθ becomes very slow. This can be viewed as a critical
slowing down near a driven phase transition. Thus, we expect
a richer dynamics close to the switching voltage.

G. Role of the (quantum) zero mode

So far, we ignored the zero mode V
q

d 0. The importance of
this mode was realized in Ref. [21] and in subsequent papers
[26,27]. We perform the variation of the action in Eq. (22) with
respect to V

q

d 0, which yields

CVd0 = − i

2
tr
[
G̃K

d

] − N0. (52)

This equation determines the electrostatic potential on the dot,
Vd0 = V c

d 0, fixed by the excess charge − i
2 tr[G̃K

d ] − N0, and
the capacity C. We are now, finally, able to determine the
electrostatic potential of the dot Vd0. Indeed, the equations
of motion (43) leave this quantity completely arbitrary. They
contain only the combination Vd − Vd0, which vanishes once
the stationary solution is achieved. The stationary value of
Vd = Vd0 should, thus, be determined from Eq. (52). Assuming
the background charge, N0, is such that at V = 0 the total
charge of the nanoparticle is zero, we obtain

CVd0 =
∑

σ

ρσ
d

∫
dε

1

2

[
F (ε) − Fσ

d (ε)
]
, (53)

where Fσ
d (ε) is given by Eq. (31) and depends on Vd0 itself.

Solving this equation for Vd0 we obtain

Vd0 = 1

C + ρ
↑
d + ρ

↓
d

∑
σ

ρσ
d

�σ (θ0)

×
[(

cos2 θ0

2
�σ

l + sin2 θ0

2
�σ̄

l

)
V + �� sin2 θ0

B0

2

]
.

(54)

For the two stationary states this gives

Vd0(θ0 = 0) = V

C + ρ
↑
d + ρ

↓
d

(
ρ

↑
d �

↑
l

�
↑
l + �r

+ ρ
↓
d �

↓
l

�
↓
l + �r

)
(55)

and

Vd0(θ0 = π ) = V

C + ρ
↑
d + ρ

↓
d

(
ρ

↑
d �

↓
l

�
↓
l + �r

+ ρ
↓
d �

↑
l

�
↑
l + �r

)
. (56)

V. SUMMARY AND DISCUSSION

The setup studied here is paradigmatic in the field of
spintronics. We have revisited the dynamics of magnetization
of a single-domain ferromagnetic nanoparticle (quantum dot)
under the influence of spin-transfer torque (STT). Earlier
studies have predicted persistent precession of magnetization
driven by STT. This effect is predicted even in ferromagnetic
nanoparticles with no actual anisotropy, i.e., the only preferred
direction is due to the applied field. Analyzing the semiclassi-
cal magnetization dynamics of such a system we have found
that this regime of persistent precession may become unstable
owing to the nonequilibrium distribution of electrons on the dot
[Eq. (31)]. Consequently, the persistent precession is replaced
by a different steady state spin dynamics, leading to stable spin
orientation either along the north pole or the south pole of the
Bloch sphere [Eqs. (47) and (50); Fig. 2(a)]. Each of these
precessionless spin orientations is associated with different
values of Ohmic conductance [Eqs. (48) and (49); Fig. 2(b)].
The traditional physics of spin precession may be restored
by further introducing internal energy and spin equilibration
processes in the quantum dot. Such processes are known to be
important in spintronics (see, e.g., Ref. [28]).

The effect we report here is rather subtle. One could pursue
the following erroneous strategy. Assuming the right lead
(sink) is coupled to the quantum dot much stronger than the
left lead, �r � �σ

l , one could approximate in Eq. (31)

Fσ
d (ε) ≈ cos2 θ0

2
F (ε − σB− + Vd0)

+ sin2 θ0

2
F (ε − σ̄B+ + Vd0), (57)

which would lead in (40) to Vσ (θ0) ≈ Vd0. In addition, one
could argue (correctly) that in this regime almost the entire
voltage drops on the left junction, implying Vd = Vd0 � V .
We would then obtain Is ≈ gsV , and the second equation of
(43) would read

θ̇ = − sin θ [−α(θ )φ̇ + (gs/S)V ]. (58)

This would lead to the persistent precession solution as in
Ref. [18].

The reason why this seemingly plausible line of reasoning
does not work is the following. We recall that the Gilbert
coefficient is given by α(θ ) = 1

S
(g̃l(θ ) + g̃r ). For �r ∝ g̃r →

∞ the Gilbert friction is large and one would need a very
large voltage V in (58) to set the right-hand side of Eq. (58)
to zero (still keeping sin θ finite). The angle dependent part of
α(θ ), which is crucial for the emergence of the spin-precession
solution with sin θ0 �= 0, is now a small correction on top of the
main, θ -independent part determined by g̃r . This correction
should now be compared with the small nonequilibrium
corrections to the spin-torque current related to the parts of
the distribution function dropped in Eqs. (57) [cf. Eq. (31)].
The reason why these parts of the distribution function Fσ

d are
important is as follows. The proper distribution function (31)
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has the usual two-step structure around the electrochemical
potentials of the left and the right leads (each step is in addition
split to two by spin precession). In the regime �r � �σ

l the
step due to the left lead has a very small height. Thus, it seems
reasonable to neglect it. Yet, if the voltage V is high, the
weight of this step (integrated over energies) is not negligible.
In Appendix B we discuss the case of enforced distribution
function in the dot, in which case Eq. (58) holds and one does
get persistent precession.

We note in passing that the regime g̃r � g̃l seems to be
realized in real spin-torque nano-oscillators [7–9]. Indeed,
in Refs. [7–9] the coupling of the free ferromagnetic layer
(nanoparticle) to the fixed ferromagnet is via a tunnel junction,
whereas the contact with the (nonferromagnetic) sink is the
direct one. At the same time, our model disregards the strong
anisotropy, crucial in real systems, as well as the internal
dissipation within the nanoparticle. Further studies are then
necessary to establish the applicability of our results to systems
like those investigated in Refs. [7–9].

Finally, let us put our analysis in the general framework
of charge and spin transport, referring to the analysis of
Sec. IV G. The stationary distribution function (31), and the
parameters controlling it, i.e., θ0, Vd0, B0, are determined,
inter alia, by the stationary Kirchhoff’s condition Il = Ir .
Had we have full equilibration in the dot, this condition
would define the electrochemical potential of the dot. This
procedure is not restricted to equilibrium conditions. Under
nonequilibrium conditions it is possible to define a (spin
resolved) electrochemical potential. This is done by weakly
coupling (as a gedanken experiment) the dot to thermodynamic
spin-polarized reservoirs, and adjusting their respective elec-
trochemical potentials such that no current flows from/to these
reservoirs. By contrast, the electrostatic potential of the dot,
Vd , is not defined by Kirchhoff’s condition. Rather it is defined
by the requirement that the charge of the dot (determined by
the distribution function) is equal to CVd . Clearly, the value of
the chemical potential should be determined to be consistent
with the electrochemical and the electrostatic potentials of the
dot.
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APPENDIX A: OFF-DIAGONAL ELEMENTS OF THE
SELF-ENERGY

1. Self-Energies and relaxation rates

The self-energies due to the left lead are given by



R/A

l,αβ,σ (ε) =
Nl∑

n=1

∫
dk

2π

tα,n t∗β,n

ε − εnk + Mfix
2 σ − V ± i0

,


K
l,αβ,σ (ε) = −2πi

Nl∑
n=1

∫
dk

2π
tα,n t∗β,n

× δ

(
ε − εnk + Mfix

2
σ − V

)
Fl(ε), (A1)

where Fl(ε) ≡ 1 − 2nl(ε). We remind that the left lead
distribution function reads nl(ε) = 1/(eβ(ε−(μ+V )) + 1), where
μ is the bare chemical potential. Neglecting the principal value
parts gives



R/A

l,αβ,σ (ε) ≈ ∓i�σ
l,αβ (ε),


K
l,αβ,σ (ε) ≈ −2i�σ

l,αβ (ε) Fl(ε), (A2)

where �σ
l,αβ(ε) = π

∑Nl

n=1 ρn(ε + Mfix
2 σ − V ) tα,nt

∗
β,n. Due to

the large value of Mfix the densities of states for spin up and
down are different. Thus, the matrices �σ

l,αβ are spin dependent.
For the self-energies due to the right lead we obtain



R/A

r,αβ,σ (ε) =
Nl+Nr∑

n=Nl+1

∫
dk

2π

tα,n t∗β,n

ε − εnk ± i0
,


K
r,αβ,σ (ε) = −2πi

Nl+Nr∑
n=Nl+1

∫
dk

2π
tα,n t∗β,n

× δ(ε − εnk) Fr (ε), (A3)

where Fr (ε) ≡ 1 − 2nr (ε) and nr (ε) = 1/(eβ(ε−μ) + 1). Ne-
glecting the principal value contributions we obtain



R/A

r,αβ,σ (ε) ≈ ∓i�r,αβ (ε),


K
r,αβ,σ (ε) ≈ −2i�r,αβ (ε) Fr (ε), (A4)

where �r,αβ(ε) = π
∑Nl+Nr

n=Nl+1 ρn(ε) tα,nt
∗
β,n. As the right lead

is nonmagnetic, the rates �r,αβ(ε) are spin-independent. We
assume that the densities of states ρn do not depend strongly
on energy on the scale of V or B. Thus we can assume that
�σ

l,αβ and �r,αβ are independent of ε for |ε| � |V |,|B|.

2. Reason for neglecting the off-diagonal elements

Here we consider only one lead, e.g., the right one. The
self-energy of the lead reads


αβ(ε) =
∑

n

∫
dk

2π

tα,n t∗β,n

ε − εnk + i0

≈ −iπ
∑

n

∫
dk

2π
δ(ε − εnk)︸ ︷︷ ︸

=ρn(ε)

tα,n t∗β,n

= −i
∑

n

�n,αβ(ε), (A5)

where, in the first step, we neglected the principal part, and we
defined �n,αβ (ε) = πρn(ε)tα,n t∗β,n, where ρn(ε) is the density
of states for the nth channel.

We assume that tα,n are random. This randomness will affect
�n,αβ . Note that, �n,αα > 0, whereas �n,αβ may be complex or
negative for α �= β. We define the total broadening �αβ as a
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sum over all channels, i.e.,

�αβ =
∑

n

�n,αβ . (A6)

Since �n,αα > 0, we expect

�αα =
∑

n

�n,αα ≈ γ1 N, (A7)

whereas for α �= β we expect

�αβ =
∑

n

�n,αβ ≈ γ1

√
N, (A8)

where γ1 is the average broadening per channel and N is the
number of channels. For the tunneling regime, we assume
γ1 ≈ π |t |2ρ1 � δd , where ρ1 is the average density of states
per channel and δd is the mean level spacing in the dot.

Now, we consider the consequence for the Green’s function
and for the AES kernel α [see Eq. (E2)]. In what follows we
disregard the Keldysh structure, as it is not important for the
estimates. We obtain

G−1
αβ = (ε − εα − 
αα)︸ ︷︷ ︸

=:G−1
0,α

δαβ − δ
αβ, (A9)

where we defined δ
αβ = 
αβ(1 − δαβ). From G−1G = 1 we
obtain

Gαβ = G0,α δαβ + G0,α δ
αβ G0,β

+
∑

γ

G0,α δ
αγ G0,γ δ
γβ G0,β + · · · . (A10)

For the AES kernel we obtain (the Keldysh and spin structures
are omitted for clarity)

α(ε) ∼
∑

α

G0,α
αα +
∑
α �=β

G0,α δ
αβ G0,β δ
βα + · · · .

(A11)

Note that, G0,α = (ε − εα + i�αα)−1 and at the resonance
G0,α ∝ (Nγ1)−1, whereas δ
αα ∼ �αα ∝ Nγ1 and δ
αβ ∼
�αβ |α �=β ∝ √

Nγ1 (here we used the retarded G0,α , but the
argument holds for all Keldysh components). The leading
term of (A11) is, thus, of order (Nγ1)−1(Nγ1)(Nγ1/δd ) ∼
(Nγ1/δd ) ∼ g, where g is dimensionless conductance. Here
the last multiplier Nγ1/δ is the number of resonant con-
tributions. The next term in the expansion (A11) is of or-
der (Nγ1)−2(

√
Nγ1)2(Nγ1/δd )2 ∼ g2/N [there are (Nγ1/δd )2

resonant contributions here]. The tunneling approximation is
justified if g/N ∼ γ1/δd � 1. The higher order terms in the
expansion (A11) can be analyzed similarly. Thus, in the limit
N � 1 we can restrict ourselves to the leading term in (A11).

We conclude that in the limit of large number of weakly
coupled (tunneling) transverse channels it is allowed to replace
the matrices �σ

l,α,β and �r,α,β by diagonal ε-independent
matrices, i.e., �σ

l,α,β → �σ
l δα,β and �r,α,β → �rδα,β . Thus the

system is described by just three rates, �
↑
l , �

↓
l , and �r .

APPENDIX B: ENFORCED DISTRIBUTION FUNCTION

To relate our results to those in the literature, we enforce
an equilibrium distribution function on the dot in the rotating

frame, Fσ
d (ε) = F (ε). In this case we obtain Is = gs(V − Vd ),

Il = 4gl(V − Vd ) − gs sin2 θ φ̇, Ir = 4grVd . This gives the
following equations of motion:

sin θ φ̇ = − sin θB − α(θ ) θ̇ ,

sin θ θ̇ = sin2 θ [α(θ )φ̇ − gs(V − Vd )/S],

CV̇d = 4gl(V − Vd ) − gs sin2 θ φ̇ − 4grVd. (B1)

The second equation would again predict a persistent preces-
sion state (cf. [18]), if we were able to control the voltage on
the left junction Vl ≡ V − Vd .

The distribution function enforced here could emerge due
to strong energy and spin relaxation. In this case, however, one
could expect an extra internal contribution to Gilbert damping
coefficient.

APPENDIX C: CALCULATION OF i SWZNW

Here, we calculate the Berry-phase (WZNW) action. We
start from

iSWZNW = −1

2

∫
dt tr[G̃K

d (t,t)Qq(t)]. (C1)

We use Qq = (φ̇cpq − φqṗc) σz

2 and take the trace over spin
space to obtain

iSWZNW = −1

4

∫
dt (φ̇cpq − φqṗc)

× tr
[
G̃K

d↑(t,t) − G̃K
d↓(t,t)

]
. (C2)

With G̃K
dσ (t,t) = ∫

dε
2π

G̃K
dσ (ε) = −i

∫
dε 1

π

�σ (θ)

(ε−εα+ M0
2 σ )

2+�σ (θ)2

Fσ
d (ε) we obtain

1

2
tr
[
G̃K

d↑(t,t)−G̃K
d↓(t,t)

] = −i

2

∫
dε

[
ρd

(
ε+ M0

2
,�↑

)
F

↑
d (ε)

− ρd

(
ε − M0

2
,�↓

)
F

↓
d (ε)

]

≈ −i

2

∫
dε ρd (ε)

[
F

↑
d

(
ε − M0

2

)

−F
↑
d

(
ε + M0

2

)]
=: 2iS, (C3)

where we define the coarse-grained density of states
ρd (ε,�σ ) ≡ ∑

α
1
π

�σ (θ)
(ε−εα)2+�σ (θ)2 . We approximate ρd (ε,�↑) ≈

ρd (ε,�↓) =: ρd (ε) in the second line of (C3) (the difference
is only in the broadening �σ ). As defined in (C3), the total
spin, S, is about half the number of states in the interval
[μ − M0

2 ,μ + M0
2 ]. Putting everything together, we obtain

Eq. (32).
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APPENDIX D: CALCULATION OF i SAES

Here, we provide details of the calculation of the integral kernels αR
σσ ′(ε) and αK

σσ ′(ε), which appear in iSAES [see Eqs. (E2)
and (37)]. For the retarded kernel we obtain

αR
σσ ′(ε) =

∫
dε′

2π
tr
[
GK

dσ (ε′)
A
σ ′(ε′ − ε) + GR

dσ (ε′)
K
σ ′ (ε′ − ε)

]
=

∫
dε′

2π

∑
α

[
GK

dασ (ε′)
A
αασ ′(ε′ − ε) + GR

dασ (ε′)
K
αασ ′(ε′ − ε)

]
. (D1)

Drawing on the discussion in Appendix A, we approximate 
A
αασ ′(ε′ − ε) ≈ i(�σ ′

l + �r ) and 
K
αασ ′(ε′ − ε) ≈ −2i[�σ ′

l Fl(ε′ −
ε) + �rFr (ε′ − ε)] and obtain

αR
σσ ′(ε) =

∫
dε′

2π

∑
α

[
2(�σ ′

l + �r )�σ (θ0)Fσ
d (ε′)(

ε′ − εα + M0
2 σ

)2 + �2
σ (θ0)

− 2i(�σ ′
l Fl(ε′ − ε) + �rFr (ε′ − ε))

ε′ − εα + M0
2 σ + i�σ (θ0)

]
. (D2)

Now, we calculate the real part and obtain

Re
[
αR

σσ ′(ε)
] = 2ρσ

d �σ ′
l︸ ︷︷ ︸

gσσ ′
l

1

2

∫
dε′[Fσ

d (ε′) − Fl(ε
′ − ε)] + 2ρσ

d �r︸ ︷︷ ︸
gσσ ′

r

1

2

∫
dε′[Fσ

d (ε′) − Fr (ε′ − ε)], (D3)

where ρσ
d (ε) ≡ ρd (ε + M0

2 σ ) and we assume that ρσ
d (ε) is approximately ε independent on the scale of |ε| � M0. Analogous

to the calculation of the WZNW action (Appendix C), we disregard small correction to the density of states arising from the
difference in �↑(θ0) and �↓(θ0). The connection to Eqs. (38) and (39) is now straightforward.

The Keldysh component,

αK
σσ ′(ε) =

∫
dε′

2π
tr
[
GK

dσ (ε′)
K
σ ′ (ε′ − ε) + GR

dσ (ε′)
A
σ ′(ε′ − ε) + GA

dσ (ε′)
R
σ ′(ε′ − ε)

]
, (D4)

can be calculated similarly. We obtain αK
σσ ′(ε) = gσσ ′

l αK
l,σ (ε) + gσσ ′

r αK
r,σ (ε) with

αK
l,σ (ε) = −

∫
dε′[Fσ

d (ε′)F (ε′ − ε − V ) − 1
]

= �σ
l cos2 θ0

2

�σ (θ0)
2(ε − σB− + Vd0) coth

ε − σB− + Vd0

2T
+ �σ̄

l sin2 θ0
2

�σ (θ0)
2(ε − σ̄B+ + Vd0) coth

ε − σ̄B+ + Vd0

2T

+ �r cos2 θ0
2

�σ (θ0)
2(ε − σB− + Vd0 + V ) coth

ε − σB− + Vd0 + V

2T

+ �r sin2 θ0
2

�σ (θ0)
2(ε − σ̄B+ + Vd0 + V ) coth

ε − σ̄B+ + Vd0 + V

2T
(D5)

and

αK
r,σ (ε) = −

∫
dε′[Fσ

d (ε′)F (ε′ − ε) − 1
]

= �σ
l cos2 θ0

2

�σ (θ0)
2(ε − σB− + Vd0 − V ) coth

ε − σB− + Vd0 − V

2T

+ �σ̄
l sin2 θ0

2

�σ (θ0)
2(ε − σ̄B+ + Vd0 − V ) coth

ε − σ̄B+ + Vd0 − V

2T

+ �r cos2 θ0
2

�σ (θ0)
2(ε − σB− + Vd0) coth

ε − σB− + Vd0

2T
+ �r sin2 θ0

2

�σ (θ0)
2(ε − σ̄B+ + Vd0) coth

ε − σ̄B+ + Vd0

2T
. (D6)

Using αK
σσ ′(ε) one could calculate, e.g., the statistics of spin and charge currents similarly to Ref. [19].

APPENDIX E: DERIVATION OF THE QUASICLASSICAL
EQUATIONS OF MOTION

Here, we provide the details of the derivation of the
quasiclassical equations of motion. First, we use the retarded
kernel, αR

σσ ′(ε) = gσσ ′
l αR

l,σ (ε) + gσσ ′
r αR

r,σ (ε), with the kernel

functions provided in Eqs. (38) and (39) and obtain

iSR
AES = −i

∫
dt

∑
σσ ′

Im[gσσ ′
r (i Ȧ∗

c,σσ ′ Aq,σσ ′

+ Ṽσ (θ0) A∗
c,σσ ′ Aq,σσ ′ )
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+ gσσ ′
l (i Ȧ∗

c,σσ ′ Aq,σσ ′

+ {Ṽσ (θ0) + V }A∗
c,σσ ′ Aq,σσ ′ )]. (E1)

Now, we use Eq. (34) and express the fields Aσσ ′ in terms of the
coordinates θ , φ, and ψ . We also fix the gauge in accordance
with Eq. (16). Then, linearization in quantum components
θq,φq,ψq yields

iSR
AES = −i

∫
dt {θq (g̃l + g̃r ) θ̇ + φq sin2 θ [(g̃l + g̃r ) φ̇

− gs(V − ψ̇) − �Is]

+ψq[gs sin2 θφ̇ − 4gl (V − ψ̇)

−�Il + 4grψ̇ + �Ir ]}. (E2)

Here, for notational clarity we drop the θ,θ0 dependence of
the conductances gl,g̃l . We also define explicitly the parts of
the currents Is [Eq. (44)], Il [Eq. (45)], and Ir [Eq. (46)] that
are related to the adjustment of the distribution function of the
dot. These are given by

�Is = 1

4

(
g

↑↑
l Ṽ↑ − g

↑↓
l Ṽ↑ + g

↓↑
l Ṽ↓ − g

↓↓
l Ṽ↓

)
, (E3)

�Il = + cos2 θ

2

(
g

↑↑
l Ṽ↑ + g

↓↓
l Ṽ↓

)
+ sin2 θ

2

(
g

↑↓
l Ṽ↑ + g

↓↑
l Ṽ↓

)
, (E4)

�Ir = − cos2 θ

2

(
g↑↑

r Ṽ↑ + g↓↓
r Ṽ↓

)
− sin2 θ

2

(
g↑↓

r Ṽ↑ + g↓↑
r Ṽ↓

)
, (E5)

where the voltages Ṽσ (θ0) are defined in Eq. (40).

The terms of the action related to the Hubbard-Stratonovich
decoupling, expanded to the linear order in quantum compo-
nents θq,φq,ψq , read

i

∫
dt

BMq

2J
= −i

∫
dt

BM0

2J
θq sin θ, (E6)

i

∫
dt

V c
d V

q

d

2Ec

= −i

∫
dt

ψ̈

2Ec

ψq, (E7)

where we used B = (0,0,B).
The Berry-phase action [cf. Eq. (32)] is given by

iSWZNW = −iS

∫
dt sin θ (θqφ̇ − φqθ̇ ). (E8)

The zero mode action, iSzero mode, and the contribution
linear in N0 both contain only the quantum zero mode, V q

d 0, and
no other field variables. Therefore, a variation of these terms
does not lead to additional terms in the equations of motion.
However, these contributions are important, as discussed in
Sec. IV G.

Now, to determine the equations of motion, we add up all
relevant contributions of the action and perform the variation
with respect to the quantum components θq,φq,ψq . This
immediately yields the equations of motion, Eq. (43), written
in terms of the Euler angles, when the relations ψ̇ = Vd ,
S = M0/2J , and Ec = 1/2C are used. Writing these equations
of motion in the vector form gives rise to the Landau-Lifshitz-
Gilbert equation, Eq. (41), with the additional spin-torque
term.
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