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Indirect exchange interaction between magnetic impurities near the helical edge
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The indirect exchange interaction between magnetic impurities located in the bulk of a two-dimensional
topological insulator decays exponentially with the distance. The indirect exchange interaction for magnetic
impurities mediated by the helical states at the edge of the topological insulator demonstrates behavior which
is typical for the Ruderman-Kittel-Kasuya-Yosida interaction in a one-dimensional metal. We have shown that
interference between the bulk and the edge states in the two-dimensional topological insulator results in existence
of an unusual contribution to the indirect exchange interaction which, on the one hand, decays exponentially with
a distance at the length scale controlled by the Fermi energy of the edge states and, on the other hand, oscillates
with distance along the helical edge with the period determined by the Fermi wavelength. We found that this
interference contribution to the indirect exchange interaction becomes dominant for such configurations of two
magnetic impurities that one of them is situated close to the helical edge whereas the other one is located far
away in the bulk.
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I. INTRODUCTION

Two-dimensional (2D) topological insulators have at-
tracted great attention recently due to existence of two spin-
momentum locked edge states caused by a strong spin-orbit
coupling [1,2]. Because of this peculiar structure of the edge
states in a topological insulator (TI), a spin current can
propagate along the edges. This current is the basis of the
quantum spin Hall effect which was predicted theoretically
[3,4] and observed experimentally [5] in HgTe/CdTe quantum
wells. One of the remarkable features of the helical edge is
the perfect transport along it which cannot be suppressed by
any perturbation preserving the time-reversal symmetry (in the
absence of interactions), e.g., by nonmagnetic impurities. In
the presence of interactions backscattering is possible, which
leads to suppression of the edge conductance at finite temper-
atures [6–8]. Moreover, the electron-electron interaction can
lead to the edge reconstruction and spontaneous breakdown of
the time-reversal protection of the perfect edge transport [9].

A local perturbation which breaks the time-reversal sym-
metry such as classical magnetic impurities can also provide
a source for a spin-flipping scattering of the edge states and,
consequently, can affect the transport properties [10,11]. Thus
the transport along the helical edge is sensitive to the properties
of a system of magnetic impurities distributed not far from the
boundary of the 2D TI [12–15]. For rare magnetic impurities
the main source of interaction between them is the indirect
exchange interaction (IEI). If magnetic impurities are situated
exactly at the edge of a 2D TI the IEI mediated by the
helical states has been computed recently [16]. Its dependence
on a distance resembles the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction for a one-dimensional metal [17–19]. We
recall that the main features of the behavior of the RKKY
interaction with the distance between the impurities are power-
law decay and oscillations with period π/kF where kF denotes
the Fermi wave vector of the helical states. The latter favors the
formation of a spin-glass state at low temperatures. However,
the spin structure of the IEI reflects a strong spin-orbit coupling

which exists in a 2D TI: there is interaction between the
in-plane components of the impurity spins only. We note that
considerations of Ref. [16] ignore the fact that the edge states
are composed from the electronlike states with the spin-1/2
and the holelike states with the spin-3/2 as well as the presence
of bulk states.

In the opposite limit, when the magnetic impurities are
located deep in the bulk of a 2D TI, typical semiconductor
behavior of the IEI can be expected. The IEI in three-
dimensional (3D) semiconductors with the chemical potential
pinned to the gap was first studied by Bloembergen and
Rowland [20]. At low temperatures the IEI between magnetic
impurities was found to decay exponentially with the distance.
In the simplest case of an isotropic spectrum with a minimum
(maximum) of the conduction (valence) band at the � point the
sign of the IEI is constant and ferromagnetic ordering of the
magnetic impurities is favored (see Refs. [21,22] for a review).

Recently, the IEI between magnetic impurities situated far
away from the edges of the 2D TI based on a CdTe/HgTe/CdTe
quantum well (QW) has attracted a theoretical interest [23,24].
In this case the IEI has rather complicated spin structure and
decays exponentially with the distance at low temperatures
provided that the chemical potential is pinned to the gap.
It involves anisotropic XXZ Heisenberg interaction, magnetic
pseudodipole interaction, and Dzyaloshinsky-Moriya interac-
tion [24]. Such spin structure is typical for systems with a
strong spin-orbit coupling, e.g., for magnetic impurities at
the surface of a 3D TI [25–32]. The presence of inversion
asymmetry of the CdTe/HgTe/CdTe quantum well [33–36]
results in even more complicated spin structure of the IEI,
which becomes noninvariant under rotations in the plane of
the QW. Additionally, oscillations of the IEI with the distance
appear [24].

In this paper we study theoretically the indirect exchange
interaction between magnetic impurities situated near the
helical edge of a 2D topological insulator, based on the
CdTe/HgTe/CdTe QW. We concentrate on the case of low
temperatures and the chemical potential lying within the
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energy gap of the bulk spectrum. Contrary to all previous
studies we take into account simultaneously the edge and bulk
states; the latter are modified by the presence of the edge. We
find the following interesting features of the indirect exchange
interaction in a 2D TI.

(i) The IEI between magnetic impurities can be split up
into three parts: contribution of the Bloembergen-Rowland
type due to the bulk states which decays exponentially
with the distance; contribution due to the edge states which
resembles RKKY interaction in a one-dimensional metal; and
contribution due to an interference between bulk and edge
states. Depending on positions of the magnetic impurities the
IEI is dominated by one among three contributions.

(ii) The edge state contribution to the IEI involves in-plane
spin components only, in agreement with Ref. [16].

(iii) The interference term in the IEI decays exponentially
with the distance, but the decay length depends explicitly on
the position of the chemical potential within the bulk gap.

The outline of the paper is as follows. In Sec. II we
remind the reader of the Bernevig-Huges-Zhang Hamiltonian
for 2D electron and hole states in the (001) symmetric
CdTe/HgTe/CdTe QW and formulate the problem. In Sec. III
we study the structure of bulk and edge states and compute
the Matsubara Green’s function. The results for the IEI are
presented in Sec. IV. The discussion of the obtained results
and conclusions are given in Sec. V. The technical details of
derivation of different contributions to the IEI interaction are
presented in the Appendices.

II. THE MODEL

We start from the Bernevig-Hughes-Zhang Hamiltonian
which can be used to describe low-energy physics of electron
and hole states in a 2D TI based on the (001) CdTe/HgTe/CdTe
QW [4]. Written in the basis of spatially quantized states of
the QW which are commonly denoted as |E1,+〉, |H1,+〉,
|E1,−〉, |H1,−〉 (for details on structure of these states see
Refs. [4,36,37]), it has the following form:

HBHZ = ε(k) +

⎛
⎜⎜⎜⎝

M(k) Ak+ 0 �

Ak− −M(k) −� 0

0 −� M(k) −Ak−
� 0 −Ak+ −M(k)

⎞
⎟⎟⎟⎠.

(1)

Here we introduce

ε(k) = C − D
(
k2
x + k2

y

)
, M(k) = M − B

(
k2
x + k2

y

)
. (2)

The parameters A, B, C, D, �, and M depend on the width
d of the QW. The term � describes the interface and bulk
inversion asymmetry and, generally, can be comparable to the
gap M [36].

As it was shown in Ref. [24], the terms quadratic in the
momentum in the Hamiltonian (1) are not important for
the calculation of the IEI. Therefore we shall consider a
simplified model given by the Hamiltonian (1) in which we
set B = D = 0. The inversion asymmetry term � results in
oscillating dependence of the IEI on the distance between
magnetic impurities situated in the bulk of the QW [24]. In
order to simplify the calculations of the IEI in the presence

FIG. 1. Sketch of the setup. The 2D topological insulator (shaded
gray) resides at x < 0. In this region the gap M is finite and negative.
At x > 0 the gap is positive and infinite. A pair of helical states (blue
lines) propagates along the edge. Magnetic impurities SA and SB

are located inside the TI. Note that the positions of the impurities
along the z axis determine corresponding electron-impurity coupling
matrices.

of the helical edge we neglect � in the present paper. Thus
the Hamiltonian we shall work with is given by the following
expression:

H =

⎛
⎜⎜⎜⎝

M Ak+ 0 0

Ak− −M 0 0

0 0 M −Ak−
0 0 −Ak+ −M

⎞
⎟⎟⎟⎠. (3)

The Hamiltonian of a magnetic impurity with the spin S

situated at some point {x0,y0,z0} within the (001) QW reads
[24]

Vimp = J δ(x − x0)δ(y − y0), (4)

where the matrix

J =

⎛
⎜⎜⎜⎝

J1Sz −iJ0S+ JmS− 0

iJ0S− J2Sz 0 0

JmS+ 0 −J1Sz −iJ0S−
0 0 iJ0S+ −J2Sz

⎞
⎟⎟⎟⎠ (5)

describes interaction with electron and hole states |E1,+〉,
|H1,+〉, |E1,−〉, |H1,−〉. The coupling constants J0, J1, J2,
and Jm depend on z0 and are determined by the envelope
functions of spatially quantized states in the QW (see Ref. [24]
for the details).

III. THE MATSUBARA GREEN’S FUNCTION

In order to evaluate the expression for the IEI it is convenient
to use the Green’s-function approach. Thus, we start from
examining the Green’s function for a 2D TI with a straight
boundary situated at x = 0. We adopt the approach of Ref. [38]
and assume that the gap M is a function of x such that M(x)
equals a negative constant for x < 0 and M(x) = +∞ for
x > 0 (see Fig. 1).

As we consider a system of noninteracting electrons
described by the Hamiltonian (3) in the presence of the
boundary at x = 0, it is necessary to take into account several
important features. At first, there exist the edge states localized
near the boundary which contribute to the Green’s function.
Secondly, the structure of the bulk states in the presence of the
boundary differs from the case of an infinite sample in which
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kx is a good quantum number. It is convenient to evaluate
the expression for the Green’s function using Lehmann’s
representation:

G(iεn,r,r ′) =
∑
m

ψm(r)ψ†
m(r ′)

iεn + μ − εm

, (6)

where m enumerates eigenstates ψm(r) of the Hamiltonian (3)
with an energy εm. The chemical potential is denoted by μ and
the Matsubara fermionic energy εn = πT (2n + 1).

Lehmann’s representation suggests to split the Green’s
function into two parts: G = Gedge + Gbulk. In Gedge (Gbulk)
summation over the edge (bulk) states is performed only.

A. The Green’s function of the edge states

There exists a pair of the edge states connected via the
time-reversal symmetry. For a given ky one state is associated
with the upper block of 4 × 4 Hamiltonian (3) and the other is
associated with the lower one. They have the following form:

ψedge,↑(ky,r) =

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠ eikyy

√
2πξ

e−|x|/ξ θ (−x), (7)

ψedge,↓(ky,r) =

⎛
⎜⎝

0
0
1
−i

⎞
⎟⎠ eikyy

√
2πξ

e−|x|/ξ θ (−x), (8)

where ξ = A/|M| and θ (x) denotes the Heaviside step
function. The absolute values of x in the exponents in Eqs. (7)
and (8) indicate that the topological insulator is situated in the
region with x < 0.

The energy spectrum of the edge states is linear in
the momentum: εedge,↑/↓(ky) = ±Aky . Integrating over the
momentum ky , we find

Gedge = G
↑
edge + G

↓
edge, (9)

where

G
↑/↓
edge(iε,r,r ′)

= ± i|M|
A2

e−|x+x ′ |/ξ±(ε−iμ)(y−y ′)/Aθ (−x)θ (−x ′)

× [θ (y − y ′)θ (∓ε) − θ (y ′ − y)θ (±ε)]�±. (10)

Here the matrices �± are defined as follows:

�+ =

⎛
⎜⎜⎜⎝

1 −i 0 0

i 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠,

�− =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 i

0 0 −i 1

⎞
⎟⎟⎟⎠. (11)

B. The Green’s function of the bulk states

Now we discuss the structure of the bulk states in the
presence of the boundary as well as the bulk part of the Green’s
function. There are four bulk states for the Hamiltonian
(3). Two of them have positive energy, ε+

bulk,↑/↓(k) = E(k)

where E(k) = √
M2 + A2k2, and two have negative energy,

ε−
bulk,↑/↓(k) = −E(k). It is convenient to introduce the follow-

ing functions:

f ±
x (k) = (Ak± ± i(E(k) ∓ |M|))eikxx + c.c.

2
√
E(k)(E(k) + Aky)

θ (−x), (12)

where k± = kx ± iky . In terms of these functions one can
present the bulk eigenstates as

ψ±
bulk,↑(k,r) =

⎛
⎜⎜⎜⎝

±f ±
x (±k)

±if ∓
x (±k)

0

0

⎞
⎟⎟⎟⎠eikyy

2π
,

ψ±
bulk,↓(k,r) =

⎛
⎜⎜⎜⎝

0

0

∓f ±
x (∓k)

±if ∓
x (∓k)

⎞
⎟⎟⎟⎠eikyy

2π
. (13)

The upper index “±” indicates whether the electron (+) or
hole (−) band is concerned. The Green’s function of the bulk
states can be written in the following form:

Gbulk(iε,r,r ′) =
∑
s=±

∫
d2k

(2π )2
eiky (y−y ′) θ (kx)Bs(k,x,x ′)

iε + μ − sE(k)
,

(14)

where Bs is the following 4 × 4 block-diagonal matrix:

Bs(k,x,x ′) =
(

b̂s(sk,x,x ′) 0̂

0̂ b̂T
s (−sk,x ′,x)

)
,

b̂s(k,x,x ′) =
(

f s
x (k)f s

x ′ (k) −if s
x (k)f −s

x ′ (k)

if −s
x (k)f s

x ′ (k) f −s
x (k)f −s

x ′ (k)

)
. (15)

The superscript T denotes the matrix transposition.

IV. THE INDIRECT EXCHANGE INTERACTION

Let us now turn to the calculation of the indirect exchange
interaction in case of the chemical potential lying in the bulk
spectrum gap, |μ| < |M|. To the second order in J the IEI is
given by a polarization operator diagram. The corresponding
effective Hamiltonian that describes the interaction of two
magnetic impurities situated at points {RA,zA} and {RB,zB}
(see Fig. 1) can be written as

HIEI = T
∑
εn

TrJ AG(iεn,RA,RB)J BG(iεn,RB,RA). (16)

Here J A (J B) is the electron-impurity interaction matrix (5)
which depends on the position zA (zB) of the impurity in the
z direction. In this paper we focus on the case of the zero
temperature only. Thus, we shall replace the summation over
the Matsubara frequencies in Eq. (16) by the integration.
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(a) (b) (c)

FIG. 2. A sketch of electron transitions that determine different types of the IEI: (a) bulk states mediated exchange, (b) edge states mediated
exchange, and (c) interference contribution to the IEI. The bulk bands (depicted in blue) are located between the branches of edge states (red
lines). The chemical potential is depicted with a horizontal dashed line. See text.

Since the Hamiltonian (16) involves a product of two
Green’s functions under the sign of Tr and each of them is
a sum of the edge and bulk contributions, one can decompose
the IEI as a sum of the following three terms:

HIEI = H bulk
IEI + H

edge
IEI + H int

IEI. (17)

The first term in the right-hand side of this equation, H bulk
IEI , is

related to the bulk states only: it involves the product of two
bulk Green’s functionsGbulk. The second term, H edge

IEI , is related
to the edge states. It contains the edge Green’s function, Gedge,
only. The last term, H int

IEI, describes the interference between
the bulk and the edge states and involves the edge and bulk
Green’s functions simultaneously.

Each of these contributions has clear physical interpreta-
tion. The contribution to the IEI due to the bulk states, H bulk

IEI ,
is associated with the virtual transitions of quasiparticles from
the valence to the conduction band [a schematic illustration
is presented in Fig. 2(a)]. These virtual processes are limited
in time: the excited quasiparticle can reside in the conduction
band over time inversely proportional to the band gap ∼1/|M|,
as dictated by the uncertainty principle. During this time, the
quasiparticle can move for a spatial distance of the order of
A/|M|. Therefore, the contribution H bulk

IEI is short ranged with
the characteristic distance ξ ∼ A/|M|.

The contribution to the IEI due to the edge states, H
edge
IEI ,

is associated with the transitions between different chiral
branches of the edge spectrum [see Fig. 2(b)]. There is no
energy gap to suppress these processes. Hence, the typical 1D
metal behavior is expected for H

edge
IEI .

The interference contribution to the IEI, HIEI, is caused by
the virtual transitions of quasiparticles between the edge states
located below the chemical potential to the conduction band
(as well as the transitions from the valence band to the edge
states above chemical potential). These virtual processes are
constrained in time by the uncertainty principle, and, therefore,
a finite-ranged IEI is expected. However, in contrast to H bulk

IEI ,
the energy gap that controls these transitions depends explicitly
on the position of the chemical potential within the bulk gap
[see Fig. 2(c)]. Hence, the range of HIEI is expected to depend
on the position of the chemical potential with respect to the
bottom of the conduction band or the top of the valence band.

Before proceeding with the results for the three dif-
ferent contributions to the IEI, let us briefly discuss the
notations. Hereinafter, we denote RA/B ≡ (xA/B,yA/B ), R =
RA − RB ≡ (xAB,yAB), n = R/R, xAB ≡ xA + xB , R =
(xAB,yAB), and ν = R/R, where R =

√
y2

AB + x2
AB . In ad-

dition, we assume below that yAB > 0.

A. Bulk and edge contributions to the IEI

The part of the IEI mediated by the bulk states has the
complex form with nontrivial spin structure in general. In the
absence of the boundary, the asymptotic expression for the IEI
at the distances R � ξ reads [24]

H bulk
IEI = 1

|M|ξ 4

(
ξ

4πR

)3/2

e−2R/ξ
{
JA

m JA
m (SA

‖ · SB
‖ )

+ 2
[
JA

0 JB
z (SA

‖ · n)SB
z − JA

z JB
0 SA

z (SB
‖ · n)

]
− 4JA

0 JB
0

(
SA

‖ · n
)(

SB
‖ · n

) + JA
z JB

z SA
z SB

z

}
, (18)

where J
A/B
z = J

A/B

1 + J
A/B

2 . In the presence of the boundary
the bulk states acquire nontrivial structure, Eqs. (13), that com-
plicates the form of the IEI. The large distance asymptote of the
full expression is presented in Appendix A. Additional terms,
which appear, can be interpreted as the interaction between a
magnetic impurity and the mirror image of the other impurity
with respect to the boundary. (This is somewhat similar to the
appearance of the mirror charges in electrostatics problems
with the boundary.) These additional terms in the IEI decay
in a different way: ∼ exp[−(R + R)/ξ ] and ∼ exp(−2R/ξ ).
Therefore, in the presence of the boundary Eq. (18) is valid
provided the following inequalities are satisfied:

|xA|,|xB | � ξ. (19)

The result (18) has been derived for the zero temperature. At
finite temperature, this result is valid provided the following
inequality holds [24]:

M2

T 2
min

{
1,

T

|μ|
(

1 − μ2

M2

)}
� R

ξ
� 1. (20)

If the condition above is satisfied, the intraband transitions,
that become possible at finite temperature only, are negligible,

115430-4



INDIRECT EXCHANGE INTERACTION BETWEEN . . . PHYSICAL REVIEW B 95, 115430 (2017)

and the IEI mediated by the bulk states is still dominated by
the interband transitions.

The expression for the contribution to the IEI due to the
edge states only can be derived exactly at T = 0 within the
help of Eqs. (9) and (10). The result is as follows:

H IEI
edge = − e−2|xAB |/ξ

2πyAB |M|ξ 3
JA

m JB
m [cos(2kF yAB)(SA

|| · SB
|| )

+ sin(2kF yAB)[SA × SB]z], (21)

where kF = μ/A denotes the Fermi wave vector of the edge
states. We mention that our result (21) for magnetic impurities
situated exactly at the boundary, xA = xB = 0 coincides with
the result derived in Ref. [16]. We note that a magnetic impurity
situated away from the boundary interacts by means of the
helical edge states with the mirror image of the other impurity
with respect to the boundary only. This is the consequence
of the absence of the translational invariance perpendicular
to the boundary (along the x axis). The dependence of the
IEI mediated by the edge states has a typical one-dimensional
metallic behavior: it decays inversely proportionally to the
distance and oscillates in space with the period π/kF . A
feature of the result (21) is that the edge contribution to the
IEI couples in-plane components of the impurity spins only.
This peculiarity could be expected from the explicit form of the
electron-impurity interaction matrix (5). Indeed, this part of the
IEI is mediated by the processes in which the chirality of the
edge states changes. Such transition between chiral branches
is associated with a spin flip. The only terms in Eq. (5) that
allow for the spin flips are the terms JmS+ and JmS− which
contain only in-plane components of the impurity spin. Hence,
only in-plane components of the impurity spin are present in
the IEI mediated by the edge states. We will discuss later why
this behavior may be crucial for the IEI if the on-site spin
anisotropy is present.

At finite temperature one can perform summation over Mat-
subara frequencies in Eq. (16). Then one finds that at distances
|yAB |/ξ � |M|/(πT ) the contribution to the IEI due to the
edge states decays exponentially as exp [−2πT |yAB |/(ξ |M|)].
This additional suppression of H

edge
IEI is not important provided

the following inequality holds:

|yAB |/ξ  |M|/(πT ). (22)

Therefore, at finite temperature the result (21) is valid at
distances |yAB | restricted from above by condition (22).

B. Interference contribution to the IEI

The evaluation of the interference contribution to the IEI
is complicated for an arbitrary disposition of the magnetic
impurities. In order to obtain analytic results we consider two
limiting cases: (i) at least one of the impurities is situated far
away from the boundary and (ii) both impurities are located
near the boundary. In addition, we assume that the chemical
potential is not pinned to the center of the bulk gap, μ �= 0. For
μ = 0 the interference contribution has the same decay length
as the bulk contribution and, thus, is of no special interest.

1. A magnetic impurity away from the boundary

We start from the case when at least one of the impurities is
located far away from the boundary, |xA| � ξ or |xB | � ξ . In
order to obtain the expression for the interference contribution
to the IEI in this case, it is convenient to separate the bulk
Green’s function into two parts:

Gbulk = G i
bulk + Gni

bulk, (23)

where G i
bulk (Gni

bulk) is the translationally invariant (noninvari-
ant) part. The translationally invariant part of the bulk Green’s
function depends only on the relative position of the impurities,
while the translationally noninvariant part is suppressed when
both impurities are far away from the edge.

Splitting the bulk Green’s function into translationally
invariant and noninvariant parts allows us to express the
interference contribution to the IEI as a sum of the two terms:

H int
IEI = H

int, i
IEI + H

int, ni
IEI , (24)

where the former is given by the product of the edge Green’s
function and the invariant part of the bulk Green’s function,
while the latter can be expressed as the product of the edge
Green’s function and the noninvariant part of the bulk Green’s
function.

For the sake of convenience, we introduce a set of coupling
constants K defined as follows:

H
int, i/ni
IEI =

∑
a,b=x,y,z

SA
a K

int, i/ni
ab SB

b . (25)

The large distance asymptote of the matrix K int, i which
determines the invariant part of the interference contribu-
tion to the IEI is given by the following expressions (see
Appendix B):

K int,i
xx = 2Fμ(R)gμ(yAB)

[
(1 − sin θμ)JA

m JB
m − 2(sin θμ − i cos θμny)JA

0 JB
0

] + c.c.,

K int,i
yy = 2Fμ(R)gμ(yAB)

[
(1 − sin θμ)JA

m JB
m − 2(sin θμ + i cos θμny)JA

0 JB
0

] + c.c.,

K int,i
zz = 2Fμ(R)gμ(yAB)

[
(1 − sin θμ)JA

1 JB
1 − (1 + sin θμ)JA

2 JB
2 + cos θμn+JA

1 JB
2 − cos θμn−JA

2 JB
1 )

] + c.c.,

K int,i
xy = 2iFμ(R)gμ(yAB)

[
(1 − sin θμ)JA

m JB
m + 2JA

0 JB
0 (1 − cos θμnx)

] + c.c.,

K int,i
xz = 2Fμ(R)gμ(yAB)

[
(1 − sin θμ − cos θμn−)JA

0 JB
1 − (1 + sin θμ − cos θμn+)JA

0 JB
2

] + c.c.,

K int,i
yz = −2iFμ(R)gμ(yAB)

[
(1 − sin θμ + cos θμn−)JA

0 JB
1 + (1 + sin θμ + cos θμn+)JA

0 JB
2

] + c.c.

(26)
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Here n± = nx ± iny and the phase θμ satisfies the following
relations:

sin θμ = μ

|M| , cos θμ =
√

1 − μ2

M2
. (27)

The dimensionless function gμ(y) is defined as follows:

gμ(y) = eikF y

sin θμ + i cos θμny

. (28)

The function

Fμ(R) =
√

cos θμ

2|M|ξ 4

(
ξ

2πR

)3/2

e−|xAB |/ξ−R/ξμ (29)

determines the spatial decay of the translationally invariant part
of the interference contribution to the IEI. The corresponding
decay length scale is given by

ξμ = ξ/
√

1 − μ2/M2. (30)

The remaining set of matrix elements of K
int, i
ab can be obtained

from the ones presented above: K int, i
yx , K int, i

yz , and K int, i
zx can be

read from K int, i
xy , K int, i

zy , and K int, i
xz , respectively, upon change

of R to −R and swap of subscripts A and B.
Appearance of the decay length ξμ that depends explicitly

on the position of the chemical potential μ is in agreement with
qualitative arguments [see Fig. 2(c)]. This feature allows one
to tune electrically the range of the interference interaction. It
is worth mentioning that ξμ diverges as the chemical potential
approaches the bulk spectrum.

In addition to the term −R/ξμ in the exponent of Fμ(R)
there is a term −|xAB |/ξ , which induces the decay of the

interference contribution to the IEI for the impurities situated
far away from the edge. Besides the features mentioned above,
the matrix elements K

int,i
ab oscillate with the distance along

the edge with a period 2π/kF which is two times longer
than the period of oscillations of the contribution to the IEI
mediated by the edge states only. These particular features of
the interference contribution to the IEI are descendants of the
properties of the edge Green’s function.

The result (26) is obtained in the saddle-point approxima-
tion and is valid for the large distances

R � ξμ/ sin2 θμ = ξ

μ2

M2

√
1 − μ2

M2

. (31)

Note that the right-hand side of this inequality diverges at
μ = ±|M|, i.e., when the chemical potential touches the bulk
bands, as well as at μ = 0. The latter implies that the result
(26) is not applicable when the chemical potential is pinned
exactly to the middle of the bulk gap. This limitation of our
results has no physical meaning and is due to the saddle-point
treatment of the integrals in the course of calculations (see
Appendix B for details). However, the case of the chemical
potential close to the middle of the bulk gap is not interesting
since in this case ξμ ≈ ξ and, consequently, the interference
contribution to the IEI is smaller than the contribution due
to either the edge states or the bulk states (see discussion in
Sec. V below).

At finite temperatures the result (26) is valid for not too
large distance between the impurities:(

x2
AB sin2 θμ + y2

AB

)1/2/
ξ  |M|/(πT ). (32)

The matrix elements of K
int, ni
ab of the noninvariant part of the

interference contribution to the IEI are given by the following
expressions (see Appendix B):

K int, ni
xx = −2Fμ(R)gμ(yAB)

[
(uμ − u∗

−μ + ivμ + iv∗
−μ)JA

0 JB
0 + u∗

μJA
m JB

m

] + c.c.,

K int, ni
yy = −2Fμ(R)gμ(yAB)

[
(uμ − u∗

−μ − ivμ − iv∗
−μ)JA

0 JB
0 + u∗

μJA
m JB

m

] + c.c.,

K int, ni
zz = −2Fμ(R)gμ(yAB)

[
uμJA

1 JB
1 − u∗

−μJA
2 JB

2 + ivμJA
1 JB

2 + iv∗
−μJA

2 JB
1

] + c.c.,

K int, ni
xy = −2iFμ(R)gμ(yAB)

[
(uμ + u∗

−μ − ivμ + iv∗
−μ)JA

0 JB
0 + u∗

μJA
m JB

m

] + c.c.,

K int, ni
xz = −2Fμ(R)gμ(yAB)

[
(uμ + iv∗

−μ)JA
0 JB

1 − (u∗
−μ − ivμ)JA

0 JB
2

] + c.c.,

K int, ni
yz = 2iFμ(R)gμ(yAB)

[
(uμ − iv∗

−μ)JA
0 JB

1 + (u∗
−μ + ivμ)JA

0 JB
2

] + c.c.

(33)

Here ν± = νx ± iνy and we introduce the dimensionless
functions

gμ(y) = eikF y

sin θμ + i cos θμνy

(34)

and

uμ = −1

2

(ν+ cos θμ + sin θμ − 1)2

sin θμ + iνy cos θμ

,

vμ = i cos θμ(cos θμ − νx − iνy sin θμ)

sin θμ + iνy cos θμ

.

(35)

The elements K int, ni
yx and K int, ni

yz are equal to −K int, ni
xy and

−K int, ni
zy after interchange of subscripts A and B as well as

vμ and v∗
−μ, respectively. The element K int, ni

zx can be obtained
from K int, ni

xz by swapping A to B and vμ to v∗
−μ.

The applicability conditions for the answer for the nonin-
variant part of the interference contribution to the IEI are sim-
ilar to Eqs. (31) and (32): R � ξμ/ sin2 θμ and (x2

AB sin2 θμ +
y2

AB)1/2/ξ  |M|/(πT ). Typically, the noninvariant part of
the interference contribution to the IEI is smaller than the
invariant part. However, if one of the impurities is situated
strictly at the edge, such that R = R and |xAB | = |xAB |, the
spatial decay of the noninvariant part is exactly the same
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as the spatial decay of the invariant part. Next, as one can
check, in the case of both impurities located exactly at the
boundary, xA = xB = 0, the invariant and noninvariant parts of
the interference contribution to the IEI compensate each other.
Therefore, for the case of both impurities situated exactly at
the edge one needs to compute the asymptotic expressions for
K int

ab more accurately.

2. Magnetic impurities situated at the edge

Within the second-order expansion in the steepest descent
method we calculate the interference contribution to the IEI
for two impurities which are located strictly at the edge, xA =
xB = 0 (see Appendix C). The corresponding Hamiltonian
reads

H int
IEI = −4ξ cos θμ

yAB

Fμ(0,yAB)
{
JA

m JB
m

[
cos (kF yAB)(SA

|| · SB
|| )

− sin(kF yAB)[SA × SB]z
]

− [
4JA

0 JB
0 SA

x SB
x + 2

(
JA

0 JB
z SA

x SB
z + JB

0 JA
z SB

x SA
z

)
+ JA

z JB
z SA

z SB
z

]
cos(kF yAB + 2θμ)

}
. (36)

We mention that the power-law dependence of the result (36)
on the distance is y

−5/2
AB rather than y

−3/2
AB . The additional power

is due to the next order expansion in the steepest descent
method. At finite temperature the condition of applicability of
the result (36) is similar to that for the contribution due to the
edge states, |yAB |/ξ  |M|/(πT ).

For impurities situated close to the edge, |xA|,|xB |  ξ , the
interference contribution to the IEI is given as a sum of the
results (26) and (33) as well as the generalization of the result
(36). It has features similar to the result (36): the exponential
decay at the length scale ξμ as well as oscillations with the
spatial period 2π/kF .

V. DISCUSSION AND CONCLUSIONS

The results for the IEI reported above were derived within
the lowest order in the exchange coupling constants J0, J1, J2,
and Jm. The typical value of the IEI is given by the energy
scale T∗ ∼ max{J 2

z ,J 2
0 ,J 2

m}/(|M|ξ 4) which can be estimated
to be of the order of 10−3–10−4 K for the manganese impurities
in the CdTe/HgTe/CdTe QW with the width d = 7 nm [24].
For the validity of our perturbative calculation the following
inequality has to be satisfied: T∗/|M|  1. In Ref. [24] the
ratio T∗/|M| was estimated to be of the order of 10−3 for the
case mentioned above. Such estimate guarantees validity of
the perturbation theory in the exchange interaction.

In the presence of the helical edge states in a 2D TI the
IEI between magnetic impurities is determined by the three
physically different contributions: contribution due to bulk
states [see Eq. (18)], contribution due to edge states [see
Eq. (21)], and contribution due to interference between bulk
and edge states [see Eqs. (26) and (33)]. With exponential
accuracy the spatial dependence of these three contributions
can be estimated as

H bulk
IEI ∼ e−2R/ξ , H

edge
IEI ∼ e−2|xAB |/ξ ,

H int
IEI ∼ e−|xAB |/ξ−R/ξμ . (37)

We note that for the CdTe/HgTe/CdTe QW with the width
d = 7 nm the decay length ξ was estimated to be about 40 nm
[24]. We mention that ξ is much larger than the decay length
for the IEI in a 3D bulk CdTe crystal which is known to be
equal to 0.1–1 nm [20]. Contrary to ξ , the other decay length,
ξμ, depends on the chemical potential μ and ξμ can be much
larger than ξ for |M| − |μ|  |M|.

In the case of two impurities situated deep in the bulk, far
away from the edge, the bulk contribution to the IEI dominates.
For impurities which are placed near the edge of a 2D TI the
main contribution to the IEI is provided by the edge states.
However, this edge contribution to the IEI couples only the
in-plane components of the impurity spins [16]. At the same
time, the interference contribution to the IEI between magnetic
impurities situated at the edge involves interaction between z

components of the impurity spins [see Eq. (36)]. Although
this interaction is exponentially suppressed for the distances
along the edge which are larger than ξμ and is of the order of
T

(μ)
∗ = T∗(1 − μ2/M2)3/2, it can become more important than

the contribution due to the edge states, Eq. (21), in the case
of strong on-site easy axis anisotropy, Hanis = −D0S

2
z with

D0 > 0. The easy axis anisotropy constricts spins to be aligned
along the z axis with S‖ = 0. In Ref. [24] the on-site anisotropy
was estimated to be 103–105 times larger than T∗. Since the
IEI between z components of spins is an oscillating function
of the distance with the period 2π/kF we expect formation of
a spin-glass state below the temperature T

(μ)
∗ for randomly

distributed magnetic impurities with the 1D density larger
than 1/ξμ.

Although effects caused by on-site anisotropy might be
crucial, the interference contribution to the IEI can be dominant
for specific disposition of the impurities even without the
anisotropy. Let us consider the following illustrative example:
impurity A is located strictly at the edge while the impurity B

is displaced at the distance |xB | = X away from the boundary
towards the bulk of a 2D TI. We will suppose that the distance
between the impurities along the edge is equal: yAB = X. In
this situation the three different contributions to the IEI can be
estimated as

H bulk
IEI ∼ e−2

√
2X/ξ , H

edge
IEI ∼ e−2X/ξ ,

H int
IEI ∼ e−X/ξ e−√

2X/ξμ . (38)

Provided |μ| > |M|/√2, the interference contribution to the
IEI has the smallest decay length and, therefore, dominates
over bulk and edge contributions.

To illustrate the importance of the interference term further,
we consider the following situation: the impurity A situated in
the bulk at some arbitrary fixed distance xA from the edge
whereas the impurity B can be located anywhere. In this
situation for μ = 0 the IEI is always dominated either by the
bulk or by the edge contribution. Indeed, this follows from
estimates:

H bulk
IEI /H int

IEI ∼ H int
IEI/H

edge
IEI .

However, for μ �= 0, the decay length of the interference
contribution to the IEI increases in comparison with the case of
μ = 0. For some positions of the impurity B, the interference
contribution can become the most significant. The comparison
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FIG. 3. The regions in which different contributions to the IEI are dominant are presented for the case of μ = 0 (the left figure) and
μ = 0.6|M| (the right figure) for different positions of the impurity B. The impurity A is situated at |xA| = ξ . The white color depicts the
dominance of the IEI meditated by the bulk states, the gray color indicates the region in which the interference contribution to the IEI is
dominant, and the dark gray color denotes the dominance of the IEI mediated by the edge states.

of the exponential factors for different positions of the impurity
B at a given position of the impurity A is shown in Fig. 3.
The figure illustrates that for nonzero value of μ there exists
the region for which the interference contribution to the IEI
is dominant. This area separates the region in which the IEI
is mostly due to the bulk states from the region where the
interaction due to the edge states is dominant.

Finally, we mention that although the characteristic energy
scale T∗ of the IEI is rather small, nevertheless, the fine
structure of energy levels of a pair of magnetic impurities
caused by the IEI can be probed experimentally by broadband
electron-spin-resonance technique coupled with an optical
detection scheme [39].

To summarize, we studied the IEI between magnetic
impurities near the edge of a 2D topological insulator. This
interaction can be divided into three physically different
contributions. The first contribution is the IEI mediated by
the virtual interband transitions of the bulk electron states. It
decays exponentially with the distance between the impurities
and has two parts: a rotationally invariant part which was
analyzed previously in Ref. [24] in detail and the part which
is not invariant under in-plane rotations. The latter appears if
we take into account the change of the bulk states due to the
presence of the edge. The second contribution is the RKKY
interaction between the impurities due to the helical edge states
of a 2D topological insulator. In accordance with the general
expectations this contribution decays with distance between
the impurities as a power law and oscillates with the period
π/kF . This contribution is suppressed if both impurities are
situated deep in the bulk. This edge contribution couples only
in-plane components of the impurity spins. Finally, the last
contribution to the IEI can be interpreted as the interaction,
mediated by the interference between the bulk and edge states.
This term oscillates with kF and decays exponentially with the
distance between the impurities. Interestingly, the decay length
of this interference contribution is controlled by the position

of the chemical potential within the bulk gap. This fact makes
the interference contribution to the IEI dominant in the case of
some specific disposition of magnetic impurities.
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APPENDIX A: THE CONTRIBUTION TO THE IEI
DUE TO BULK STATES

In this appendix we present details of the calculation of the
contribution due to bulk states to the IEI. Using Eqs. (16), we
find the following expression valid at zero temperature:

H bulk
IEI = 1

4

∑
s,s ′=±

∫
dε

2π

dkx

2π

dky

2π

dzx

2π

dzy

2π
ei(ky−zy )yAB

× Tr[J ABs(k,xA,xB )J BBs ′ (z,xB,xA)]

[iε + μ − sE(k)][iε + μ − s ′E(z)]
. (A1)

Assuming that the chemical potential is pinned within the
bulk gap, we can integrate over energy ε and obtain

H bulk
IEI = −1

4

∑
s ′=±

∫ ∞

0
dt Tr[J AB̃s(xA,xB,yAB)

× J B B̃−s(xB,xA,yBA)]. (A2)

Here we introduced integration over an auxiliary variable t and

B̃s(xA,xB,yAB) =
∫

d2k
(2π )2

eikyyAB−tE(k)Bs(k,xA,xB). (A3)
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To proceed further, we need to evaluate the integral over
momentum k. Since we are interested in the asymptotic
behavior of the IEI at large distance, it is enough to evaluate the
integral over momentum in the saddle-point approximation. In
particular, we shall use the following general result:∫

d2q
(2π )2

F (q)eiqr−u
√

1+q2 ≈ uF (q0)

2π (r2 + u2)
e−√

r2+u2
, (A4)

where q0 = ir/
√

r2 + u2. This result is valid provided√
r2 + u2 � 1. With the help of Eq. (A4), one finds

B̃s(xA,xB,yAB) = s

⎛
⎜⎜⎜⎝

Ĩ1,s Ĩ2,s 0 0

−Ĩ ∗
2,−s −Ĩ ∗

1,−s 0 0

0 0 Ĩ ∗
1,s Ĩ ∗

2,s

0 0 −Ĩ2,−s −Ĩ1,−s

⎞
⎟⎟⎟⎠.

(A5)

Using the relation B̃s(xB,xA,yBA) = B̃†
s (xA,xB,yAB), one can

obtain the expression for B̃−s(xB,xA,yBA) from Eq. (A5) by
substituting −Ĩ ∗

1,−s for Ĩ1,s and vice versa. Here, the functions
Ĩ1 and Ĩ2 are given as follows:(

Ĩ1,s

Ĩ2,s

)
=

(−1 + Ats√
R2+A2t2

in+R√
R2+A2t2

)
e−√

R2+A2t2/ξ

2πξ (R2 + A2t2)1/2

+
⎛
⎝ i

(
Rν+√

R
2+A2t2

+ sAt√
R

2+A2t2
− 1

)2

∣∣ Rν+√
R

2+A2t2
− 1

∣∣2 − 2iνysAtR

R
2+A2t2

− A2t2

R
2+A2t2

⎞
⎠

× e−
√

R
2+A2t2/ξ

4πξ (νyR − isAt)
. (A6)

We note that under the interchange of the points RA and RB the
functions Ĩ1,s and Ĩ2,s transfer to Ĩ ∗

1,s and −Ĩ2,s , respectively.
To perform integration over t , we can simplify expressions for
Ĩ1,s and Ĩ2,s by expanding in t the square root in the exponents
and neglecting t in all other places:(

Ĩ1,s

Ĩ2,s

)
≈

(
I1

I2

)
=

(−1

in+

)
1

2πξR
e−R/ξ−A|M|t2/2R

+
(

i(ν+ − 1)2

|ν+ − 1|2
)

1

4πξνyR
e−R/ξ−A|M|t2/2R. (A7)

This is allowed provided the following inequalities hold:

R

ξ
� t |M| � 1,

R

ξ
� t |M| � 1. (A8)

Then using Eqs. (A5) and (A7), we integrate over t (notice that
the scale of convergence of the corresponding integrals over
t makes inequalities above well justified provided R/ξ � 1,
R̄/ξ � 1) and obtain

H bulk
IEI =

∑
a,b=x,y,z

SA
a Kbulk

ab SB
b , (A9)

where

Kbulk
xx = JA

m JB
mF2 − 2JA

0 JB
0 (F2 + F3) + c.c.,

Kbulk
xy = −iJ A

m JB
mF2 − 2iJ A

0 JB
0 (F2 − F3) + c.c.,

Kbulk
xz = −2iJ A

0 JB
z F6 + c.c.,

Kbulk
yx = iJ A

m JB
mF2 + 2iJ A

0 JB
0 (F2 + F3) + c.c.,

Kbulk
yy = JA

m JB
mF2 − 2JA

0 JB
0 (F2 − F3) + c.c.,

Kbulk
yz = 2JA

0 JB
z F6 + c.c.,

Kbulk
zx = 2iJ A

z J B
0 F5 + c.c.,

Kbulk
zy = 2JA

z JB
0 F5 + c.c.,

Kbulk
zz = 2

[
JA

1

(
F1J

B
1 + F4J

B
2

) + JA
2

(
F4J

B
1 + F1J

B
2

)]
.

(A10)

Here the functions F1,...,6 are defined as follows:

F1 = 1

2

∫ ∞

0
dt |I1|2 = F(R,R) + R

2

4y2
AB

|ν+ − 1|4F(R,R)

+ i
R

2yAB

[
(ν− − 1)2 − (ν+ − 1)2

]
F(R,R),

F2 = 1

2

∫ ∞

0
dtI 2

1 = F(R,R) − R
2

4y2
AB

(ν+ − 1)4F(R,R)

− i
R

yAB

(ν+ − 1)2F(R,R),

F3 = − 1

2

∫ ∞

0
dtI 2

2 = n2
+F(R,R) − R

2

4y2
AB

|ν+ − 1|4F(R,R)

− i
R

yAB

n+|ν+ − 1|2F(R,R),

F4 = 1

2

∫ ∞

0
dt |I2|2 = F(R,R) + R

2

4y2
AB

|ν+ − 1|4F(R,R)

+ i
R

2yAB

(n+ − n−)|ν+ − 1|2F(R,R),

F5 = 1

2

∫ ∞

0
dtI ∗

1 I2 = −in+F(R,R)

− i
R

2

4y2
AB

(ν− − 1)2|ν+ − 1|2F(R,R)

+ R

2yAB

[
n+(ν− − 1)2 − |ν+ − 1|2]F(R,R),

F6 = − 1

2

∫ ∞

0
dtI ∗

1 I ∗
2 = −in−F(R,R)

+ i
R

2

4y2
AB

(ν− − 1)2|ν+ − 1|2F(R,R)

+ R

2yAB

[
n−(ν− − 1)2 + |ν+ − 1|2]F(R,R). (A11)

The function F(R,R′) describes the exponential decay of the
IEI:

F(R,R′) = |M|3
16A4

√
2ξ 3

π3RR′(R + R′)
e−R/ξ−R′/ξ . (A12)
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The result (A10) is valid provided the following inequalities are fulfilled:

R � ξ, R � ξ. (A13)

In the case of both impurities located in the bulk far away from the boundary, |xA|,|xB | � ξ , i.e., the distance R  R, the result
(A10) transforms into the expression (18).

APPENDIX B: INTERFERENCE CONTRIBUTION TO THE IEI

In this appendix we present details of derivation of the interference contribution to the IEI. Using Eqs. (10) and (14), we can
express the interference contribution to the IEI at zero temperature and for yAB > 0 as follows:

H int
IEI = i|M|

2A2
e−|xAB |/ξ ∑

s,s ′=±

∫
dε

2π

∫
d2k

(2π )2

s ′θ (−s ′ε)

iε + μ − sE(k)
es ′(ε−iμ)yAB/A[eikyyAB TrJ ABs(k,xA,xB)J B�−s ′

+ eikyyBA TrJ A�s ′J BBs(k,xB,xA)]. (B1)

After introducing an integration over a variable t to raise the denominator iε + μ − sE(k) into the exponent, we can integrate
over ε and obtain

H int
IEI = − |M|

4πA2
e−|xAB |/ξ ∑

s,s ′=±

∫ ∞

0
dt

eis ′kF yAB+sμt

t + iss ′yAB/A
Tr

[
J AB̃s(xA,xB,yAB)J B�s ′ + J A�−s ′J B B̃s(xB,xA,yBA)

]
. (B2)

Next, we find

H int
IEI = ∑

s ′=± Tr
[
J AB̂s ′ (xA,xB,yAB)J B�s ′ + J B B̂†

s ′ (xA,xB,yAB)J A�s ′
]
, (B3)

where

B̂s ′ (xA,xB,yAB) = − |M|
4πA2

e−|xAB |/ξ ∑
s=±

∫ ∞

0
dt

eis ′kF yAB+sμt

t + iss ′yAB/A
B̃s(xA,xB,yAB). (B4)

After inspection of Eq. (A6), we see that one can evaluate the integral over t within the saddle-point approximation, provided R

and R are large enough. We note that in the sum over s the term with s = sgn μ yields the leading contribution only. In particular,
we use the following result for 1 > a > 0:∫ ∞

0
duF (u)eau−√

r2+u2 ≈
√

2πr

(1 − a2)3/4
F (u0)e−r

√
1−a2

, (B5)

where u0 = ar/
√

1 − a2. This saddle-point result is valid provided r � 1/(a2
√

1 − a2). In terms of R and R this condition
implies that R,R � ξ (M3/μ2

√
M2 − μ2).

Performing integration over t in Eq. (B4) with the help of the saddle-point result (B5), we find

B̂s ′ (xA,xB,yAB) = eis ′kF yAB

sin θμ + is ′ny cos θμ

Fμ(R)

⎛
⎜⎝

1 − sin θμ −in+ cos θμ 0 0
−in− cos θμ −1 − sin θμ 0 0

0 0 1 − sin θμ in− cos θμ

0 0 in+ cos θμ −1 − sin θμ

⎞
⎟⎠

− eis ′kF yAB Fμ(R)

sin θμ + is ′νy cos θμ

⎛
⎜⎜⎝

uμ vμ 0 0
−v∗

−μ −u∗
−μ 0 0

0 0 u∗
μ v∗

μ

0 0 −v−μ −u−μ

⎞
⎟⎟⎠. (B6)

Next, performing summation over s ′, we obtain the results (26) and (33): the first term in Eq. (B6) results in the invariant part of
the interference IEI (26), while the second term results in the noninvariant part (33) [see Eq. (24)].

APPENDIX C: INTERFERENCE CONTRIBUTION TO THE IEI BETWEEN THE IMPURITIES SITUATED
EXACTLY AT THE EDGE

In this Appendix we present details of derivation of the interference contribution to the IEI for magnetic impurities situated
exactly at the edge of the 2D topological insulator, i.e., for the case xA = xB = 0. In this case the expressions (A6) for the
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integrals Ĩ1,s and Ĩ2,s vanish identically. Therefore, one has to compute the integrals over k more accurately. We find that

Ĩ1,s = iĨ2,s =
∫

d2k
(2π )2

eiskyyAB−tE(k) sA2k2
x

E(k)[E(k) + Aky]
. (C1)

Evaluating the integral over k in the saddle-point approximation, we find

Ĩ1,s = iĨ2,s = s

2π

1

At + isyAB

e−
√

y2
AB+A2t2√

y2
AB + A2t2

. (C2)

Performing integration over t in Eq. (B4) with the help of Eq. (B5), we find

B̂s ′ (0,0,yAB ) = s ′eis ′kF yAB+is ′θμ
ξ cos θμ

yAB

Fμ(0,yAB)

⎛
⎜⎜⎝

eiθμ −ieiθμ 0 0
ieiθμ eiθμ 0 0

0 0 −e−iθμ −ie−iθμ

0 0 ie−iθμ −e−iθμ

⎞
⎟⎟⎠. (C3)

Using this expression, we find the result (36) for the interference contribution to the IEI for the case of magnetic impurities
situated exactly at the edge.
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