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a b s t r a c t

We compute the differential Poisson’s ratio of a suspended two-
dimensional crystalline membrane embedded into a space of large
dimensionality d ≫ 1. We demonstrate that, in the regime of
anomalous Hooke’s law, the differential Poisson’s ratio approaches
a universal value determined solely by the spatial dimensionality
dc , with a power-law expansion ν = −1/3 + 0.016/dc + O(1/d2c ),
where dc = d − 2. Thus, the value −1/3 predicted in previous
literature holds only in the limit dc → ∞.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Poisson’s ratio is defined as the ratio of a transverse compression to a longitudinal stretching. In
the classical theory of elasticity, the Poisson’s ratio is given by

νcl =
λ

2µ + (D − 1)λ
,
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where µ and λ are the Lamé coefficients and D is the dimensionality of the elastic body [1]. General
conditions of thermodynamic stability restrict the Poisson’s ratio to the range between −1 and
1/(D − 1). Conventionally, a material contracts in transverse directions when it is stretched in
the longitudinal direction, such that the Poisson’s ratio is positive. However, some exotic, so-called
auxetic [2], materials have a negative Poisson’s ratio. Although examples of suchmaterials, e.g., pyrite,
have been known for a long time [3], the interest to auxeticity started only at the end of 1980s after
the observation of a stretching-induced transverse expansion of polyurethane foam [4]. Nowadays, a
negative Poisson’s ratio is found in variousmaterials and artificially engineered structures (see Ref. [5]
for a review).

An interesting example of auxetic material is a crystalline membrane of dimension D embedded
into the space of dimension d > D. The self-consistent theory of such crystalline membranes [6]
predicts the negative Poisson’s ratio in the thermodynamic limit. This limit is achieved in large mem-
branes, when themembrane size L exceeds the Ginzburg length L∗ ∼ ~/

√
Tµ, where ~ is the bending

rigidity and T stands for the temperature. A crystalline membrane hosts dc = d− D soft out-of-plane
modes, the so-called flexural phonons, which are characterized by strong anharmonicity mediated by
the coupling to conventional in-plane phonons [7]. As a consequence of such anharmonicity, the elas-
tic moduli show a nontrivial power-law scaling with the system size, temperature, and tension. The
scaling of all elastic moduli, λ, µ, ~ is controlled by the universal exponent η which depends only on
dc . The critical exponent η was determined within several approximate analytical schemes [6,8–11],
none of which being controllable in the physical case D = 2 and d = 3. Numerical simulations for
the latter case yielded η = 0.60 ± 0.10 [12], η = 0.72 ± 0.04 [13], and η = 0.85 [14]. It is because
of the nontrivial scaling of the elastic moduli that the linear Hooke’s law fails in the regime of small
tension [9,15–20].

Le Doussal and Radzihovsky [6] found a negative Poisson’s ratio of a two-dimensional crystalline
membrane within the self-consistent screening approximation (SCSA). More specifically, they ob-
tained an entirely universal value ν = −1/3 independent of the spatial dimensionality dc . It is known
that the SCSA is an excellent scheme for the calculation of the critical index η, which, in particular,
yields correctly the 1/dc contribution to η. Absence of such corrections to ν within the same SCSA
scheme suggested that the result ν = −1/3 may in fact be exact. Indeed, Gazit [21] extended the
SCSA scheme and came to the conclusion that ν = −1/3 is an exact result valid to all orders in 1/dc .
More recently, this result was supported by an analysis of the problem within a non-perturbative
renormalization-group formalism in Refs. [22,23]. Furthermore, the result ν = −1/3 was reproduced
by Kosmrlj and Nelson in Ref. [18] by means of a renormalization-group analysis under quite weak
assumptions of a sufficiently largemembrane size L ≫ L∗ and not too strong tension, σ ≪ σ∗ = ~L−2

∗
.

Thus, previous results seemed to provide a strong evidence in favor of a universal, dc-independent
value ν = −1/3.

It turns out, however, that the physics associated with the Poisson’s ratio is much richer than was
suggested by previous works. First of all, as shown by the present authors together with Katsnelson
and Los in a parallel paper [24], the Poisson’s ratio is strongly dependent –already in the zeroth order
with respect to 1/dc –on the way it is measured. In the field-theory terminology, the measurement
scheme defines an infrared regularization of the problem. While the critical index η, of course, does
not depend on the choice of the regularization, the value of the Poisson’s ratio is strongly dependent
on it. In Ref. [24], we have introduced and discussed three different measurement schemes that are
quite natural from the physical point of view:

(i) linear-response Poisson’s ratio, as obtained in a finite system as a response to a weak tension
σ ≪ σL ≡ ~Lη−2L−η

∗ ;
(ii) absolute Poisson’s ratio, as obtained under a stronger uniaxial stress, σx = σ ≫ σL and σy = 0;
(iii) differential Poisson’s ratio, as obtained as a reaction to an infinitesimal stress variation δσx

applied on top of a sufficiently strong isotropic stress, σx = σy = σ ≫ σL.

In the case (i), the infrared regularization is provided by the system size, and the dc → ∞ value
of the Poisson ratio turns out to be dependent on the boundary conditions and on the aspect ratio
of the sample. In the cases (ii) and (iii), the regularization is provided by the stress σ , so that the
result does not depend on the boundary conditions. However, it is dependent on the ratio between the
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components σx and σy of the tension providing the regularization. Specifically, in themost anisotropic
case (ii) the dc → ∞ value of the Poisson ratio is equal to−1, while in the isotropic case (iii) the dc →

∞ result is −1/3. (Of course, one can straightforwardly devise a measurement scheme interpolating
between these two limits.) Thus, even in the dc → ∞ limit, the previous result ν = −1/3 is not a fully
universal value but rather corresponds to a particularmeasurement scheme (iii), with a regularization
provided by a uniform stress — differential Poisson’s ratio.

In this paper,we consider the differential Poisson’s ratio inmore detail and, in particular, explore its
dc dependence. In order to define the differential Poisson’s ratio ν, one needs to consider the response
to an infinitesimally small anisotropic correction to an isotropic tension: σ∥ = σ + δσ and σ⊥ = σ .
Then, the ratio of the infinitesimally small change in transverse, δε⊥, and longitudinal, δε∥, stretching
determines the differential Poisson’s ratio

ν = −
δε⊥

δε∥

. (1)

We demonstrate that in the regime of non-linear elasticity, σL ≪ σ ≪ σ∗, the differential Poisson’s
ratio indeed acquires a universal value. Contrary to the previous results outlined above, this universal
value depends on the dimensionality dc of the embedding space.

On the technical level, the dependence of the differential Poisson’s ratio on dc can be traced back
to the symmetry properties of the polarization operator Παβ,γ δ that describes ‘‘screening’’ of the in-
plane elastic moduli, see Eq. (28). An assumption that this operator is fully symmetric with respect to
permutation of all indexes leads to the dc-independent value −1/3 for the Poisson’s ratio. However,
it is known since Ref. [16] that this assumption is generally unjustified. Here we show explicitly that
the full symmetry is intact only for dc = ∞.

We perform calculations which are controlled by the small parameter 1/dc ≪ 1 and find that the
differential Poisson’s ratio of the two-dimensional crystalline membrane is given by

ν = −
1
3

+
0.016
dc

+ O
(
d−2
c

)
, σL ≪ σ ≪ σ∗. (2)

Thus, the differential Poisson’s ratio at σL ≪ σ ≪ σ∗ is universal (in the sense of independence from
material parameters) but represents a nontrivial function of dc .

The paper is organized as follows. In Section 2 we present the general formalism for the compu-
tation of the differential Poisson’s ratio of a two-dimensional crystalline membrane. The details of
evaluation of the differential Poisson’s ratio to the first order in 1/dc are presented in Section 3. We
end the paper with a summary of results, Section 4. Technical details are given in Appendices.

2. Formalism

We start from the following imaginary-time Lagrangian written in terms of the D-dimensional
vector r:

L[r] = ρ(∂τ r)2 +
~

2
(△r)2 +

µ

4

(
∂αr∂βr − δαβ

)2
+

λ

8

(
∂αr∂αr − 2

)2
. (3)

Here Greek indices correspond to the 2D coordinates (x, y) ≡ x parameterizing the membrane.
Substituting the following parameterization r = {ξxx + ux, ξyy + uy, h1, . . . , hdc } into Eq. (3) allows
one to write the partition function of a two-dimensional crystalline membrane in terms of the
functional integral over in-plane, u = {ux, uy}, and out-of-plane, h = {h1, . . . , hdc } phonons (see
Refs. [20,25,26]):

Z =

∫
D[u, h] exp(−S).

Here the action in the imaginary time is given by (β = 1/T )

S =

∫ β

0
dτ
∫

d2x

{[µ

4
δαβ +

λ

8

][(
ξ 2
α − 1 + Kα

) (
ξ 2
β − 1 + Kβ

)
− KαKβ

]
+

ρ

2

[
(∂τu)2 + (∂τh)2

]
+

~

2

[
(∆h)2 + (∆u)2

]
+ µuαβuβα +

λ

2
uααuββ

}
, (4)
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where

uαβ =
1
2

(
ξβ∂αuβ + ξα∂βuα + ∂αu∂βu + ∂αh∂βh

)
, (5)

and

Kα =
1

βL2

∫ β

0
dτ
∫

d2x Kα, Kα = ∂αu∂αu + ∂αh∂αh. (6)

The free energy per unit area, f = −TL−2 ln Z , is a function of the stretching factors ξx and ξy,
i.e. f ≡ f (ξx, ξy). With the function f (ξx, ξy), the diagonal components of the tension tensor can be
found as

σx =
1
ξx

∂ f
∂ξx

, σy =
1
ξy

∂ f
∂ξy

. (7)

We emphasize that Eq. (7) determines the dependence of the tension tensor {σx, σy} on the stretching
tensor {ξx, ξy}, i.e., Eq. (7) is the equation of state.

In order to find the differential Poisson’s ratio ν, we consider the case of slightly anisotropic
stretching factors, ξα = ξ +δεα , and adjust the ratio ν = −δεy/δεx in such away that the components
of the tension tensor, σx = σ + δσ and σy = σ , differ only by an infinitesimal addition δσ in σx. Then,
we find

ν =

(
∂σy
∂ξx

)
ξy(

∂σy
∂ξy

)
ξx

=

∂2f
∂ξy∂ξx

∂2f
∂ξ2y

− σ
. (8)

Here the derivatives are taken at ξx = ξy = ξ .
We note that instead of independent variables ξx and ξy, one can choose as independent variables

the components of the tension tensor, σx and σy. Eq. (8) can be then rewritten in an alternative form:

ν = −

(
∂ξy
∂σx

)
σy(

∂ξx
∂σx

)
σy

= −

∂2g
∂σx∂σy

∂2g
∂σ2

x

, (9)

where the derivatives are assumed to be calculated for σx = σy = σ . As usual, the free energy g(σx, σy)
is related to the free energy f (ξx, ξy) via the Legendre transform:

g(σx, σy) = f (ξx, ξy) − σx(ξ 2
x − 1)/2 − σy(ξ 2

y − 1)/2, (10)

where ξα is expressed in terms of σα with the help of the equation of state (7). We note that the
expression (9) has been used for the numerical evaluation of the Poisson’s ratio in Ref. [27] (though
with the different form of the free energy). Although, both formulations (8) and (9) are completely
equivalent, in what follows we will use the formulation in which the stretching factors ξα are the
independent variables.

Using the exact form (4) of the action, one finds the following expressions for the secondderivatives
of the partition function f :

∂2f
∂ξy∂ξx

⏐⏐⏐⏐⏐
ξx=ξy=ξ

= ξ 2λ − ξ 2
∫

dτ ′dx′
⟨⟨Ly(x, τ ) · Lx(x′, τ ′)⟩⟩, (11)

∂2f
∂ξ 2

y

⏐⏐⏐⏐⏐
ξx=ξy=ξ

= σ + ξ 2(2µ + λ) + (2µ + λ)
⟨
(∂yuy)2

⟩
+ µ

⟨
(∂xuy)2

⟩
−

2µ + λ

ξ
⟨uyy∂yuy⟩

−
2µ
ξ

⟨uxy∂xuy⟩ − ξ 2
∫

dτ ′dx′
⟨⟨Ly(x, τ ) · Ly(x′, τ ′)⟩⟩. (12)
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Here the average ⟨. . . ⟩ is defined with respect to the action (4), ⟨⟨A · B⟩⟩ = ⟨AB⟩ − ⟨A⟩⟨B⟩ and

Lx =
2µ + λ

2
Kx +

λ

2
Ky +

2µ + λ

2ξ
uxx∂xux +

2µ
ξ

uyx∂yux +
λ

ξ
uyy∂xux, (13)

Ly =
2µ + λ

2
Ky +

λ

2
Kx +

2µ + λ

2ξ
uyy∂yuy +

2µ
ξ

uxy∂xuy +
λ

ξ
uxx∂yuy. (14)

Eqs. (8), (11), and (12) express the Poisson’s ratio in terms of correlation functions of elastic deforma-
tions. The actual computation of these correlation functions of the in-plane and flexural phonons is
complicated due to interaction between these phonon modes.

Below we limit the analysis to the case of high temperature, T ≫ ~2/(µL2) in which one can
consider the phonons to be quasistatic. In this regime, one can also neglect the term ∂αu∂βu in
comparison with ∂αh∂βh in the expressions for uαβ and Kα . Then we can simplify Eqs. (11) and (12).
Indeed, by making the following change of variables: uα → ξαuα , we can recast the partition function
as:

Z =

∫
D[u, h] exp(−Ẽ/T ), (15)

where

Ẽ =

∫
d2x

{[
µ

4
δαβ +

λ

8

][(
ξ 2
α − 1 + K̃α

)(
ξ 2
β − 1 + K̃β

)
− K̃αK̃β

]
+

~

2
(∆h)2

+ µũαβ ũβα +
λ

2
ũαα ũββ

}
. (16)

Here we have introduced the following notations:

ũαβ =
1
2

(
∂αuβ + ∂βuα + ∂αh∂βh

)
, K̃α =

1
L2

∫
d2xK̃α, K̃α = ∂αh∂αh. (17)

Since the action (16) becomes quadratic in the in-plane phonons, we can integrate them out and
express the partition function as an integral over static flexural phonons,

Z =

∫
D[h] exp(−E/T ), (18)

where the energy E for a given configuration of the flexural phonon field h(x) is given by [20]

E =

∫
d2x

[
µ

4
δαβ +

λ

8

][(
ξ 2
α − 1 + K̃α

)(
ξ 2
β − 1 + K̃β

)]
+

µ

2L2

(∫
d2x ∂xh∂yh

)2

+
~

2

∫
d2x (∆h)2 +

2µ(µ + λ)
4(2µ + λ)

∫
′ d2kd2k′d2q

(2π )6
[k × q]2

q2
[k′

× q]2

q2

×
(
hk+qh−k

)(
h−k′−qhk′

)
. (19)

The ‘prime’ sign in the last integral means that the interaction with q = 0 is excluded: the ‘zero-
mode’ termwith q = 0 from the contributions ũαβ ũβα and ũαα ũββ to the energy Ẽ in Eq. (16) has been
combined with the term K̃αK̃β , yielding exactly the term with ∂xh∂yh in Eq. (19).

Since now ξα does not enter the interaction part of the free energy which depends on u, we obtain
a much simpler equation of state:(

σx
σy

)
=

1
2
M
(

ξ 2
x − 1 + ⟨K̃x⟩

ξ 2
y − 1 + ⟨K̃y⟩

)
, M =

(
2µ + λ λ

λ 2µ + λ

)
. (20)
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Here the average ⟨. . . ⟩ is with respect to the energy (19). The second derivatives of the free energy
with respect to the stretching factors become

∂2f
∂ξy∂ξx

⏐⏐⏐⏐⏐
ξx=ξy=ξ

= ξ 2λ − ξ 2β

∫
dx′

⟨⟨L̃y(x) · L̃x(x′)⟩⟩, (21)

∂2f
∂ξ 2

y

⏐⏐⏐⏐⏐
ξx=ξy=ξ

= σ + ξ 2(2µ + λ) − ξ 2β

∫
dx′

⟨⟨L̃y(x) · L̃y(x′)⟩⟩, (22)

where L̃α = Mαβ K̃β/2.
The energy functional E involves two types of interaction of flexural phonons. The terms in the first

line of Eq. (19) correspond to the interaction with zero momentum transfer (‘zero mode’). The first
term on the right-hand side of Eq. (19) describes interaction between two-flexural-phonon operators
K̃α with the kernel proportional to the matrix M . In the case of large membrane size, σ ≫ σL, this
zero-mode interaction can be treated in the random phase approximation. Then, we find

β

2

∫
d2x′

⟨⟨K̃α(x) · K̃β (x′)⟩⟩ =

[
Π

(
1 +

1
2
MΠ

)−1
]

αβ

, (23)

where Π denotes the polarization operator (at zero momentum) irreducible with respect to the
interaction with the zero-momentum transfer:

Παβ =
β

2

∫
d2x′

⟨⟨K̃α(x) · K̃β (x′)⟩⟩irr. (24)

We note that the second term of Eq. (19) does not contribute to the correlation function (23) for
symmetry reasons.

The polarization operator Παβ has two independent components: Πxx = Πyy and Πxy = Πyx.
Using Eqs. (21) and (22), we express the differential Poisson’s ratio in terms of the components of Π :

ν =
ν0 − Y0Πxy/2
1 + Y0Πxx/2

. (25)

Here

ν0 =
λ

2µ + λ
, Y0 =

4µ(µ + λ)
2µ + λ

(26)

denote the bare values of the Poisson’s ratio and Young modulus for the two-dimensional crystalline
membrane, respectively.

In order to clarify the meaning of Πxx and Πxy, it is useful to consider a general form of the
polarization operator at finite momentum q:

Π̂αβ,γ δ(q) =
1
2

∫
d2x′ e−iq(x−x′)

⟨⟨
(
∇αh(x)∇βh(x)

)
·
(
∇γ h(x′)∇δh(x′)

)
⟩⟩. (27)

Due to the rotation symmetry and the symmetry under permutation of the indices α and β (as well
as γ and δ), the polarization operator at zero momentum is expressed as follows [16]

Π̂αβ,γ δ(0) = Πxyδαβδγ δ +
1
2

(
Πxx − Πxy

)(
δαγ δβδ + δαδδβγ

)
. (28)

We emphasize that, in general, there are no reasons for Π̂αβ,γ δ to be fully symmetric with respect
to permutations of all its indices as it was assumed in the self-consistent screening approximation
analysis of Refs. [6,21]. The assumption of the full symmetry –which results in the universal relation
Πxx = 3Πxy –is unjustified at finite value of dc , as we shall demonstrate below. It is this assumption
that led the author of Ref. [21] to a conclusion of an exact value −1/3 for the Poisson’s ratio,
independent of dc .
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Eq. (25) yields the most general expression for the differential Poisson’s ratio. We also note that
Eq. (25) can be written as (see Appendix A)

ν =
λ′

2µ′ + λ′
, (29)

where λ′ and µ′ are the screened Lamé coefficients:

µ′
=

µ

1 + (Πxx − Πxy)µ
, B′

=
B

1 + (Πxx + Πxy)B
. (30)

Here we have introduced bare and screened bulk moduli: B = µ + λ and B′
= µ′

+ λ′, respectively.
In order to find how ν depends on parameters of the problem, e.g., on the number of flexural

phonon modes dc , one needs to compute Πxx and Πxy. In the next section we remind the reader on
the results of the self-consistent screening approximation and then compute corrections in 1/dc .

Using the equation of state (20), we can express the stretching factors ξα via tensions σα . Then,
with the help of Eq. (9), we find the following representation for the differential Poisson’s ratio

ν =

ν0 +
Y0
2

(
∂⟨K̃y⟩
∂σx

)
σy

1 −
Y0
2

(
∂⟨K̃x⟩
∂σx

)
σy

. (31)

Here ⟨K̃α⟩ is expressed in terms of σx and σy. After taking derivatives in Eq. (31), one sets σx = σy = σ .
Below we demonstrate how the two representations of the differential Poisson’s ratio, (25) and (31),
are related.

The irreducible polarization operator at the zero momentum can be exactly expressed via the full
triangular vertex Γβ (k, k):

Παβ =

∫
d2k
(2π )2

k2αG
2
kΓβ (k, k). (32)

Here

Gk =
T

~k4 + (ξ 2
α − 1)Mαβk2β/2 − Σk

denotes the propagator for the flexural phonons,withΣk being the exact self-energy. The bare value of
the triangular vertex Γβ (k, k) is equal to k2β/T . The full triangle vertex satisfies the following identity:

Γβ (k, k) =
∂G−1

k

∂σβ

. (33)

As a consequence of this identity, we obtain

Παβ = −
∂

∂σβ

∫
d2k
(2π )2

k2αGk = −
∂⟨K̃α⟩

∂σβ

. (34)

Therefore, expressions (25) and (31) are identical.

3. Evaluation of the differential Poisson’s ratio

3.1. Self-consistent screening approximation

The interaction between flexural phonons with finite momentum transfer results in renormaliza-
tion of the bending rigidity at k ≪ q∗ ≡ L−1

∗
[6,10,16],

~ → ~(k) = ~(q∗/k)ηf (k/qσ ). (35)
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Here, qσ = q∗(σ/σ∗)1/(2−η) and the function f (x) has the following asymptotic behavior [28]:

f (x) =

{
1, x ≫ 1,
xη, x ≪ 1. (36)

The simplest approach for computing the irreducible polarization operator is to neglect the vertex
corrections. As we shall see below, this can be justified for dc ≫ 1. Then, we find

Π
(0)
αβ = dc

∫
d2k

(2π )2T
k2αk

2
β G2

k . (37)

Independently of the form of the exact propagator Gk, we find the irreducible polarization operator as

Π
(0)
αβ = dcγ ⟨n2

αn
2
β⟩n, γ =

∫
d2k

(2π )2T
k4 G2

k . (38)

Here n stands for the two-dimensional unit vector and ⟨. . . ⟩n denotes the averaging over directions
of n. Thus, neglecting the vertex corrections yields the following relation:

Π (0)
xx = 3Π (0)

xy . (39)

Relation (39) implies that Π̂αβ,γ δ is fully symmetric with respect to permutation of indices. This
assumption is used in the self-consistent screening approximation.

Motivated by the renormalization of bending rigidity (35) and theWard identity (see Appendix B),
we use the following ansatz for the exact propagator:

Gk =
T

~(k)k4 + σk2
. (40)

The integral over k in Eq. (37) is then dominated by k ∼ qσ and we obtain

γ ∼
T

~σ

(σ∗

σ

)η/(2−η)
. (41)

Then, from Eq. (25) we find at σ ≪ σ∗ that the differential Poisson’s ratio becomes

ν ≈ −
Π

(0)
xy

Π
(0)
xx

= −
1
3
. (42)

It is exactly the result that was obtained within the self-consistent screening approximation [6].

3.2. Vertex corrections to the polarization operator

Corrections to the result (42) stem from the violation of the relation (39). In order to refine the
differential Poisson’s ratio, we expand the right-hand side of Eq. (25) in the difference 3Πxy − Πxx:

ν ≈ −
1
3

+
3Πxy − Πxx

9Π (0)
xy

(43)

As we shall see below, the correction to the value −1/3 will be of the order of 1/dc .
There are three diagrams with non-trivial vertex corrections (see Fig. 1) that contribute to Παβ at

order d0c . They yield the following corrections:

Π
(a)
αβ = −2dc

∫
d2kd2q
(2π )4T 2 G

2
kG

2
k−q

[k × q]4

q4
N ′

qk
2
α(kβ − qβ )2, (44)

and

Π
(b+c)
αβ = 4d2c

∫
d2kd2k′d2q
(2π )6T 3 G2

kGk−qG2
k′Gk′−q

[k × q]4

q4
[k′

× q]4

q4
N ′2

q k2αk
′2
β . (45)

Here N ′
q denotes the screened interaction between flexural phonons (see Appendix A),

N ′

q =
Y0/2

1 + 3Y0Π
(0)
q /2

, (46)
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Fig. 1. The diagrams of the first order in 1/dc for the polarization operators Πxx and Πxy at zero momentum transfer. The solid
line denotes the propagator Gk . The wavy line depicts the screened interaction between flexural phonons, which is equal to
1/[3Π (0)

q ] in the universal regime, q < q∗ .

where Π
(0)
q stands for the polarization operator at finite momentum calculated without vertex

correction. We note that Π
(0)
xx = 3Π (0)

xy = 3Π (0)
q=0. The polarization operator Π

(0)
q is given by following

expression:

Π (0)
q =

dc
3

∫
d2k

(2π )2T
[k × q]4

q4
GkGk−q. (47)

Since we are interested in the regime q ≪ q∗, we can approximate N ′
q by 1/[3Π (0)

q ]. Then,
combining both contributions together, we find

3Πxy − Πxx

9Π (0)
xy

= −
2dc

27Π (0)
xy

∫
d2kd2k′

(2π )4T 2 G
2
kG

2
k′

{
[k × k′

]
4

|k − k′|
4

1

Π
(0)
k−k′

−
2dc
3

∫
d2q

(2π )2T
Gk−qGk′−q

×
[k × q]4

q4
[k′

× q]4

q4

(
1

Π
(0)
q

)2}[
3k2xk

′2
y − k2xk

′2
x

]
. (48)

We note that this expression can be written in a rotationally invariant way. Indeed, in the first term,
the expression under the integral sign depends on the angle θ between k and k′ only. Averaging over
directions of k, we find∫ 2π

0

dφ
2π

cos2 φ

[
3cos2 (φ + θ ) − sin2 (φ + θ )

]
= sin2 θ. (49)

In the second term, the expression under the integral sign depends on the angles θ and θ ′ between k
and q, and between k′ and q, respectively. Averaging over directions of q, we find∫ 2π

0

dφ
2π

cos2 (φ + θ )
[
3cos2 (φ + θ ′) − sin2 (φ + θ ′)

]
= sin2 (θ − θ ′). (50)

Therefore, we obtain
3Πxy − Πxx

9Π (0)
xy

= I (a) + I (b+c), (51)

where

I (a) = −
2dc

27Π (0)
xy

∫
d2kd2k′

(2π )4T 2

[k × k′
]
6

|k − k′|
4

G2
kG

2
k′

Π
(0)
k−k′

,

I (b+c)
=

4d2c
81Π (0)

xy

∫
d2kd2k′d2q
(2π )6T 3 [k × k′

]
2 [k × q]4

q4Π (0)
q

[k′
× q]4

q4Π (0)
q

Gk−qGk′−qG2
kG

2
k′ .

(52)

3.3. Correction to the self-energy

The results (51) and (52) can be derived in a different way using the relation (33) between the
triangular vertex at zero momentum and the inverse Green’s function. In view of Eq. (34), in order
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Fig. 2. The diagram for the self energy (see text).

to find the differential Poisson’s ratio one needs to compute the change of the Green’s function upon
applying an infinitesimally small tension δσ along the x direction.

In the presence of δσ , the Green’s function can be written in terms of the self-energy Σk:

Gk =
T

~k4 + σk2 − Σk
. (53)

We mention that the ansatz (40) used above for δσ = 0 corresponds to Σk = [~ − ~(k)]k4. We also
note that the trivial term δσk2x is included into Σk for the sake of convenience.

In order to find the change ofΣk inducedby the infinitesimally small tension δσ , weuse the lowest-
order diagram for the self-energy (see Fig. 2):

Σk =
2
3

∫
d2q
(2π )2

[k × q]4

q4
Gk−q

Π
(0)
q

, (54)

We note that, as above, the dominant contribution comes from momenta q ≪ q∗ such that the
interaction line is determined by the inverse polarization operator.

As one can see from the diagram in Fig. 2, the variation of the self-energy in the presence of δσ

arises from the variation of the Green’s function:

δGk−q = G2
k−qδΣk−q, (55)

as well as from the change of the polarization operator (see Eq. (47))

δΠ (0)
q =

2dc
3

∫
d2k
(2π )2

[k × q]4

q4
δGkGk−q =

2dc
3

∫
d2k
(2π )2

[k × q]4

q4
G2
kGk−qδΣk . (56)

Now the correction δΣk can be found from the variation of Eq. (54):

δΣk = −δσk2x +
2
3

∫
d2q
(2π )2

[k × q]4

q4

[
δGk−q

Π
(0)
q

−
Gk−qδΠ

(0)
q[

Π
(0)
q
]2

]
. (57)

Since the right-hand side of this equation is linear in δΣk , it can be rewritten as

(1 + α̂)δΣ = −δσk2x , (58)

where we formally introduce the linear integral operator α̂ as:

α̂ δΣk = −
2
3

∫
d2k′

(2π )2
G2
k′

[
(k × k′)4

|k − k′|
4Π

(0)
k−k′

−
2dc
3

∫
d2q
(2π )2

[k × q]4

q4Π (0)
q

[k′
× q]4

q4Π (0)
q

Gk′−qGk−q

]
δΣk′ . (59)

It is worthwhile to mention that the linear operator α̂ conserves the angular momentum, as follows
from the rotational invariance of Eq. (59). Therefore, it is convenient to split α̂ into the zeroth and
second harmonics:

α̂k2x =
1
2
α̂+k2 +

k2x − k2y
2k2

α̂−k2. (60)
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The formal solution of Eq. (58) can be then written as

δΣk = −
δσ

2

(
1

1 + α̂+

+
k2x − k2y

k2
1

1 + α̂−

)
k2. (61)

Although Eq. (61) yields a formal solution for δΣk , it is not justified to keep α̂± beyond the lowest
order: not all the terms of the order 1/d2c can be generated from the diagram in Fig. 2. After a
straightforward calculation, we obtain

ν ≈ −
1
3

+
4
9

⟨
α̂+ − α̂−

⟩
k, (62)

where

⟨α̂±⟩k =

∫
d2k k2G2

k α̂±k2∫
d2k k4G2

k
. (63)

Expressing the difference ⟨α̂+−α̂−⟩k in the rotationally invariant way, we obtain from Eq. (62) exactly
the same expression as in Eqs. (51) and (52).

3.4. Evaluation of the vertex corrections

Aswe shall see below, all the integrals determining the 1/dc correction to the differential Poisson’s
ratio are dominated by the momenta of the order of qσ . Since the dependence of the bending rigidity
on q is controlled by η ≃ 2/dc , we can neglect this dependence in the calculation of the correction
(51). Therefore, in what follows, we approximate the propagator of the flexural phonons by Eq. (40)
with the bare bending rigidity. Then, we find

Π (0)
q =

dcT
16π~2q2

P
(
q
√

~
√

σ

)
, (64)

where the dimensionless function P(Q ) is given as

P(Q ) =
8
3
Q 2
∫

d2K
(2π )2

[K × Q ]
4

Q 4

1
K 2(K 2 + 1)

1
|Q − K |

2(|Q − K |
2
+ 1)

. (65)

The function P(Q ) can be evaluated exactly with the help of the following set of transformations:

P(Q ) =
8
3
Q 2
∫

∞

0
dt1dt2

[
1 − e−t1

] [
1 − e−t2

]
×

∫
d2K
(2π )2

[K × Q ]
4

Q 4 e−t1K2
−t2|K−Q |

2
= Q 2

∫
∞

0

dt1dt2
(t1 + t2)3

×
[
1 − e−t1

] [
1 − e−t2

]
e−Q 2 t1t2

t1+t2

=
Q 2

4

∫
∞

−∞

dz
cosh4 z

∫
∞

0

dτ
τ 2 e

−Q 2τ/2
∏
σ=±

[
1 − e−τeσ z cosh z

]

=
Q 4

8

∫
∞

−∞

dz
cosh4 z

{(
1 +

4cosh2 z
Q 2

)
ln
(
1 +

4cosh2 z
Q 2

)

− 2
(
1 +

2ez cosh z
Q 2

)
ln
(
1 +

2ez cosh z
Q 2

)}

=
1
3

{
1 + Q 4 lnQ − (1 + Q 2)3

ln(1 + Q 2)
Q 2 + Q (4 + Q 2)3/2 ln

√
4 + Q 2 + Q

2

}
. (66)
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Here we used the parameterization t1,2 = τe±z cosh z. We note that the function P(Q ) has the
following asymptotic behavior:

P(Q ) =

⎧⎪⎨⎪⎩
Q 2

2
−

Q 4

6
(1 − 2 lnQ ), Q ≪ 1

1 −
1

2Q 2 (1 + 4 lnQ ), Q ≫ 1.
(67)

In particular, we find that Π
(0)
xy = dcT/(32π~σ ).

Nowwe compute the contribution I (a) in Eq. (51) from the diagram in Fig. 1a. This contribution can
be written as

I (a) = −
2dc

27Π (0)
xy

∫
d2kd2q
(2π )4T 2 G

2
kG

2
k−q

[k × q]6

q4
1

Π
(0)
q

= −
(32π )2

27dc

∫
d2Q
(2π )2

Q 2

P(Q )
Y1(Q ), (68)

where the function Y1(Q ) is given by

Y1(Q ) =

∫
∞

0
dt1dt2

⎛⎝∏
j=1,2

[
tj − 2 + (2 + tj)e−tj

]⎞⎠∫ d2K
(2π )2

[K × Q ]
6

Q 4 e−t1K2
−t2|K−Q |

2

=
15
32π

∫
∞

0

dt1dt2
(t1 + t2)4

⎛⎝∏
j=1,2

[
tj − 2 + (2 + tj)e−tj

]⎞⎠ e−Q 2 t1t2
t1+t2 . (69)

Performing the transformation t1,2 = τe±z cosh z and integrating over τ , we find

Y1(Q ) =
15Q 2

256π

∫
∞

−∞

dz
cosh6 z

{(
(1 + 2Q 2)cosh2 z +

Q 4

2

)
ln

Q 4
+ 4(1 + Q 2)cosh2 z
Q 4 + 4Q 2cosh2 z

− 2cosh2 z

}

= −
1

32πQ 2

{
Q 4(5 + 10Q 2

+ 2Q 4) lnQ + (1 + Q 2)2
[
2 +

(
2 − 9Q 2

+ 6Q 4
+ 2Q 6) ln(1 + Q 2)

Q 2

]
+ Q

√
4 + Q 2(−10 − 3Q 2

+ 6Q 4
+ 2Q 6) ln

√
4 + Q 2 + Q

2

}
. (70)

The contribution I (b+c) in Eq. (51) from the diagrams in Fig. 1b and Fig. 1c can be computed in a
similar way. We rewrite I (b+c) as follows:

I (b+c)
=

(32π )3

81dc

∫
∞

0
dt1dt ′1dt2dt

′

2

⎛⎝∏
j=1,2

[
tj − 2 + (2 + tj)e−tj

]
[1 − e−t ′j ]e

−Q 2
tj t

′
j

tj+t′j

⎞⎠∫ d2Q
(2π )2

Q 4

P2(Q )

×

∫
d2K1d2K2

(2π )4
[K1 × K2]

2

⎛⎝∏
j=1,2

[Kj × Q ]
4

Q 4 e
−(tj+t ′j )(Kj−Q

t′j
tj+t′j

)2
⎞⎠ . (71)

Then, integrating over K1 and K2, we get

I (b+c)
=

2(32π )3

81dc

∫
d2Q
(2π )2

Q 4

P2(Q )
Y2(Q )

[
Y2(Q ) + Y3(Q )

]
, (72)

where

Y2(Q ) =
15
32π

∫
∞

0

dt1dt ′1
(t1 + t ′1)4

[
t1 − 2 + (2 + t1)e−t1

][
1 − e−t ′1

]
e
−Q 2 t1t

′
1

t1+t′1 , (73)

and

Y3(Q ) =
3

16π

∫
∞

0

dt1dt ′1
(t1 + t ′1)4

[
t1 − 2 + (2 + t1)e−t1

][
1 − e−t ′1

][
−2 + Q 2 t ′21

t1 + t ′1

]
e
−Q 2 t1t

′
1

t1+t′1 . (74)
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Using the parameterization t1 = τez cosh z and t ′1 = τe−z cosh z, and integrating over τ , we obtain

Y2(Q ) =
15

256π

∫
∞

−∞

dz
cosh6 z

{
− cosh2z −

Q 2

4
(Q 2

+ 1 + e−2z) ln
(
1 +

1 + e−2z

Q 2

)

+ (Q 2
+ 1 + e−2z)

(Q 2

4
+ cosh2 z

)[
ln(Q 2

+ 4cosh2 z) − ln(Q 2
+ 1 + e−2z)

]}
. (75)

Integrating over z, we arrive at

Y2(Q ) =
1

256π

{
−

2
Q 4

(
6 + 7Q 2

+ 6Q 4)
−

4
Q 6

(
1 + Q 2)3(2Q 4

+ 4Q 2
− 3

)
ln
(
1 + Q 2)

+ 4Q 2(2Q 2
+ 5

)
lnQ +

4
Q

(
2Q 2

+ 3
)(
4 + Q 2)3/2 ln √4 + Q 2 + Q

2

}
. (76)

The function Y3(Q ) can be conveniently expressed as

Y3(Q ) = −
4
5
Y2(Q ) + Ỹ3(Q ), (77)

where the function Ỹ3(Q ) after the integration over τ acquires the following form:

Ỹ3(Q ) =
3Q 2

512π

∫
∞

−∞

dz
cosh6 z

e−2z

{
(2Q 2

+ 1 + e2z) ln
(
1 +

1 + e2z

Q 2

)
− (2Q 2

+ 1 + e−2z
+ 4cosh2 z)

×

[
ln(Q 2

+ 4cosh2 z) − ln(Q 2
+ 1 + e−2z)

]}
. (78)

Integration over z yields

Ỹ3(Q ) =
1

160π

{
− Q 2(5 + 6Q 2) lnQ +

(1 + Q 2)2(6Q 6
+ 8Q 4

+ 8Q 2
− 9)

Q 6 ln(1 + Q 2)

+
18 + 11Q 2

+ 18Q 4

2Q 4 −

√
4 + Q 2

Q
(26 + 23Q 2

+ 6Q 4) ln

√
4 + Q 2 + Q

2

}
. (79)

Then, we obtain the following expression

Y3(Q ) = −
Q−4

128π

{
− 3(2 + Q 2

+ 2Q 4) + 2Q 6(1 + 2Q 2) lnQ − 2(−3 + 3Q 2
+ 2Q 4

+ 2Q 6)

×
(1 + Q 2)2

Q 2 ln(1 + Q 2) + 2Q 3(8 + 7Q 2
+ 2Q 4)

√
4 + Q 2 ln

√
4 + Q 2 + Q

2

}
. (80)

3.5. Final result for the differential Poisson’s ratio

Combining together the results for the contributions I (a) and I (b+c), we express the difference of the
polarization operators responsible to the 1/dc correction to ν through a single integral:

3Πxy − Πxx

9Π (0)
xy

=
16
81dc

∫
∞

0

dQ H(Q )
P2(Q )

, (81)

where

H(Q ) = 96πQ 3
{
−Y1(Q )P(Q ) +

64π
3

Q 2Y2(Q )[Y2(Q ) + Y3(Q )]
}
. (82)
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Fig. 3. The plot of the function H(Q )/P2(Q ) (see text).

Using Eqs. (66), (70), (76), and (80), we obtain the following lengthy explicit expression for H(Q ):

H(Q ) = −
1

8Q 3

{
−4Q 12(5 + 8Q 2)ln2Q + 4(1 + Q 2)6(9 − 30Q 2

+ 26Q 4)
ln2(1 + Q 2)

Q 4

− 4(1 + Q 2)2
ln(1 + Q 2)

Q 2

[
18 + 3Q 2

− 26Q 4
− 34Q 6

− 58Q 8
− 20Q 10

+ 2Q 3
√
4 + Q 2

(
−30 − 3Q 2

+ 97Q 4
+ 38Q 6

+ 4Q 8) ln √4 + Q 2 + Q
2

]
+

(
36 + 60Q 2

+ 77Q 4
+ 28Q 6

+ 20Q 8
− 4Q 3

√
4 + Q 2

(
60 + 96Q 2

+ 143Q 4

+ 100Q 6
+ 20Q 8) ln √4 + Q 2 + Q

2
+ 4Q 6(4 + Q 2)3(11 + 8Q 2)ln2

√
4 + Q 2 + Q

2

)
+ 4Q 4

(
2(1 + Q 2)2(9 + 5Q 2

− 6Q 4
+ 4Q 6) ln(1 + Q 2) − Q 2(18 + 37Q 2

+ 56Q 4
+ 20Q 6

− 2Q 3
√
4 + Q 2(16 + Q 2) ln

√
4 + Q 2 + Q

2

))
lnQ

}
. (83)

The function H(Q ) has the following asymptotic behavior:

H(Q ) =

⎧⎨⎩5Q 5/8, Q ≪ 1,(
485
72

−
65
3

lnQ + 10ln2Q
)

/Q 3, Q ≫ 1.
(84)

The function H(Q )/P2(Q ) is shown in Fig. 3. As one can see, it changes sign twice which leads to
a partial compensation of the corrections from diagrams on Fig. 1a–c. Numerically evaluating the
integral in Eq. (81) and substituting it into Eq. (43), we find the result (2).

4. Conclusions

To summarize, we have computed the differential Poisson’s ratio of a suspended two-dimensional
crystalline membrane embedded into a space of large dimensionality d ≫ 1. Our result (2) demon-
strates that, for σL ≪ σ ≪ σ∗, the differential Poisson’s ratio of a crystalline membrane is a universal
but non-trivial function of dc . This results invalidates a common belief (based on results of the self-
consistent screening approximation) that the Poisson’s ratio is equal to −1/3 independently of dc .
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In the physical case of a two-dimensional membrane (dc = 1), one may speculate that the
differential Poisson’s ratio is not too far from the value −1/3 since the correction of the order
1/dc in Eq. (2) is numerically small. Clearly, a comparison with computational results would be of
great interest. Unfortunately, the existing numerical results the Poisson’s ratio of two-dimensional
membranes (including graphene) are, however, quite controversial. This may be partly related with a
very delicate character of the problem, see a detailed analysis in Ref. [24]. As has been mentioned in
Section 1, the Poisson ratio in the linear-response regime σ ≪ σL depends on boundary conditions.
In order to get rid of such finite-size effects but still to be in the regime of universal elasticity, the
stress should be in the intermediate range σL ≪ σ ≪ σ∗. To resolve well this regime in numerical
simulations, sufficiently large systems should be considered. Furthermore, in this regime, a care
should be exerted in order to distinguish between the differential and the absolute Poisson ratio [24].

Finally, we mention that it would be interesting to extend our analytical result for the 1/dc-
expansion of the differential Poisson’s ratio of a two-dimensional membrane in two directions. First,
one can address in a similar way the absolute Poisson ratio. (In this case, the zeroth-order term
corresponding to the limit dc = ∞ is equal to −1, see Ref. [24].) Second, the case of a disordered
membrane [25] is of interest.
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Appendix A. Screening of the elastic modulus µ and λ

In this Appendix, we present technical details of the calculation of screening of elasticmodulus.We
start from rewriting the term in Eq. (19) which describes the interaction between flexural phonons in
a symmetric form [6]:

1
4

∫ ⎛⎝ 4∏
j=1

dDkj

(2π )2

⎞⎠ δ

⎛⎝ 4∑
j=1

kj

⎞⎠ k1αk2βk3γ k4δRαβ,γ δ(k1 + k2)
(
hk1hk2

)(
hk3hk4

)
. (A.1)

Here we consider a membrane of dimensionality D. The interaction kernel reads

Rαβ,γ δ(q) =
N

D − 1
PαβPγ δ + µ

(
Pαγ Pβδ + PαδPβγ

2
−

PαβPγ δ

D − 1

)
, (A.2)

where N = µ(2µ + Dλ)/(2µ + λ). The projection operator is given as

Pαβ = δαβ −
qαqβ

q2
. (A.3)

The screened interaction kernel obeys [6]:

R̃αβ,γ δ(q) = Rαβ,γ δ(q) − Rαβ,γ ′δ′ (q)Π̂γ ′δ′,α′β ′ (q)R̃α′β ′,γ δ(q). (A.4)

The polarization operator at finite momenta can be written as [16]

Π̂γ ′δ′,α′β ′ (q) = Πxy(q)δγ ′δ′δα′β ′ +
1
D

(
Πxx(q) − Πxy(q)

)(
δγ ′α′δδ′β ′ + δγ ′β ′δδ′α′

)
+ Π1(q)

(
δγ ′δ′qα′qβ ′ + δα′β ′qγ ′qδ′

)
+ Π2(q)

(
δγ ′β ′qδ′qα′ + δγ ′α′qδ′qβ ′ + δδ′α′qγ ′qβ ′ + δδ′β ′qγ ′qα′

)
+ Π3(q)qα′qβ ′qγ ′qδ′ . (A.5)

Because of the projection operators entering Rαβ,γ ′δ′ , the components Π1(q), Π2(q), and Π3(q) of the
polarization operator drop from Eq. (A.4). This equation can be solved by R̃αβ,γ δ which has exactly the
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same structure as Rαβ,γ δ , Eq. (A.2), but with the screened coefficients N ′ and µ′ instead of N and µ,
respectively:

µ′(q) =
µ

1 +

(
Πxx(q) − Πxy(q)

)
µ

, N ′(q) =
N

1 +

(
2Πxx(q) + (D − 2)(D + 1)Πxy(q)

)
N/D

. (A.6)

Within the SCSA the following relation holds:Πxx(q) = (D+1)Πxy(q) ≡ (D+1)Π (0)
q , andwe reproduce

the results of Ref. [6].
For D = 2, we can rewrite these equations in the following way:

µ′(q) =
µ

1 +

(
Πxx(q) − Πxy(q)

)
µ

, B′(q) =
B

1 +

(
Πxx(q) + Πxy(q)

)
B
. (A.7)

The result (A.7) generalizes Eq. (30) to a finite momentum transfer.

Appendix B. Ward identity

In this Appendixwe discuss theWard identity for the elastic action and its consequences for small-
momentum behavior of exact propagators of flexural phonons. While the main text focuses on the
high-temperature regime, herewe discuss amore general case of arbitrary temperatures. For the sake
of simplicity, we consider the case d = 3.

B.1. Basic equations

The Lagrangian (3) for D = 3 is manifestly invariant under O(3) rotations of the vector r . These
rotations can be parameterized as

rj → rj + εatajkrk, (B.1)

where εa
→ 0 are some constants and tajk = ϵajk are generators of O(3) group. In order to explore

implications of this symmetry, we shall follow a standard approach [29,30]. Let us consider the
functional Φ[Σ̂] defined as follows

exp
(
−Φ[Σ̂]

)
=

∫
D[r] exp

{
−

∫ β

0
dτ
∫

d2x
(
L[r] − Σjα∂αrj

)}
. (B.2)

At this stage, Σjα are arbitrary functions of x and y; as will become clear soon, they have a meaning of
components of the stress tensor σjα [9,16]. The average deformation

∂αRj = ⟨∂αrj⟩ (B.3)

can be found as

∂αRj = −
δΦ[Σ̂]

δΣjα
. (B.4)

Evidently, Rj transform according to Eq. (B.1) under rotation.
Let us now consider the Legendre transform of Φ[Σ̂]:

F[R] = Φ[Σ̂] +

∫ β

0
dτ
∫

d2xΣjα∂αRj. (B.5)

Here Σjα should be found from the solution of Eq. (B.4). There is also the reciprocal relation between
Σαj and ∂αRj:

Σjα =
δF[R]

δ∂αRj
. (B.6)
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Wenote thatF[R] coincides with the free energy evaluated under the constraint ⟨∂αrj⟩ = ∂αRj, where
R is a given function of x and y.

Now let us introduce the two-point correlation function Sαβ

jk (q, ω) as the second variation of the
functional F[R]:

Sαβ

jk (xτ , x′τ ′) =
δ2F[R]

δ∂αRj(xτ )δ∂βRk(x′τ ′)
. (B.7)

We note that the propagator of displacements,

Gjk(xτ , x′τ ′) = −
⟨
Tτ rj(xτ )rk(x′τ ′)

⟩
Σ
, (B.8)

where ⟨· · · ⟩ is defined with respect to the Lagrangian L[r] − Σjα∂αrj and Tτ denotes the ordering
along the imaginary time contour, is related with the two-point correlation function Sαβ

jk (q, ω) in the
following way:

G−1
jk (xτ , x′τ ′) =

∂2

∂xα∂x′

β

Sαβ

jk (xτ , x′τ ′). (B.9)

The rotation symmetry (B.1) implies that

Φ[Σ̂] = Φ[Σ̂ ′
], (B.10)

where Σ ′

jα = Σjα − εatajkΣkα . Expanding this equation to the lowest order in εa, we find the Ward
identity:

0 = εatajk

∫ β

0
dτ
∫

d2xΣkα
δΦ[Σ̂]

δΣjα
= −εatajk

∫ β

0
dτ
∫

d2x ∂αRj
δF[R]

δ∂αRk
. (B.11)

In order to use the Ward identity for analysis of the two-point correlation function, it convenient to
perform a variation of the last part of Eq. (B.11) with respect to ∂γ Rl(x′, τ ′). This yields

εatalkΣkγ (x′, τ ′) + εatajk

∫ β

0
dτ
∫

d2x ∂αRj(x, τ )S
αγ

kl (xτ , x′τ ′) = 0. (B.12)

B.2. The propagator of flexural phonons

With the choice ε = {ε, 0, 0}, Eq. (B.12) reduces to

txzyΣyγ (x′, τ ′) + txyz

∫ β

0
dτ
∫

d2x ∂αRy(x, τ ) Sαγ
zz (xτ , x′τ ′) = 0. (B.13)

Now we consider the function R(x, τ ) which has the following form:

R(x, τ ) = R(ξ )
= {ξxx, ξyy, 0}, (B.14)

where ξx and ξy are arbitrary constants. The functional F[R(ξ )
] corresponds to the free energy

evaluated under the constraint ⟨∂αrj⟩ = ξαδαj, where the average is taken with respect to the
Lagrangian L[r]. This is exactly the action S (see Eq. (4)) discussed in the main text. Using Eq. (B.13),
we find

ξy lim
ω,q→0

Syy
zz (q, ω) = Σyy =

∂ f
∂ξy

, ξy lim
ω,q→0

Syx
zz (q, ω) = 0,

ξx lim
ω,q→0

Sxx
zz (q, ω) = Σxx =

∂ f
∂ξx

, ξx lim
ω,q→0

Sxy
zz (q, ω) = 0. (B.15)

We recall that the physical stress is defined by Eq. (7). Therefore, we obtain

lim
ω,q→0

Sαγ
zz (q, ω) = σαδαγ . (B.16)
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By virtue of Eq. (B.9), this implies that the inverse propagator of the flexural phonons for q → 0 has
the following exact form:

lim
ω→0

G−1
zz (q, ω) = σxq2x + σyq2y + . . . (B.17)

We note that Eq. (B.17) extends the statement of Refs. [9,16] to the case of σx ̸= σy.
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