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Helical edge transport in the presence of a magnetic impurity: The role of local anisotropy
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Helical edge modes of 2D topological insulators are supposed to be protected from time-reversal invariant
elastic backscattering. Yet substantial deviations from the perfect conductance are typically observed experi-
mentally down to very low temperatures. To resolve this conundrum, we consider the effect of a single magnetic
impurity with arbitrary spin on the helical edge transport. We consider the most general structure of the exchange
interaction between the impurity and the edge electrons. We take into the account the local anisotropy for the
impurity and show that it strongly affects the backscattering current in a wide range of voltages and temperatures.
We show that the sensitivity of the backscattering current to the presence of the local anisotropy is different for
half-integer and integer values of the impurity spin. In the latter case, the anisotropy can significantly increase
the backscattering correction to the current.
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I. INTRODUCTION

Two-dimensional (2D) topological insulators are the sub-
ject of much recent interest due to their unique helical edge
modes [1,2]. Strong spin-orbit coupling in these materials
leads to spin-momentum locking of the edge electrons [3,4],
which has been detected experimentally in HgTe/CdTe quan-
tum wells [5–9], and holds promise for numerous applications
in spintronics.

In the presence of time-reversal symmetry, elastic
backscattering of the helical electrons is forbidden. Hence,
at low temperatures, ballistic transport along the edge with
quantized conductance of G0 = e2/h is expected. However,
during the last decade this theoretical prediction was ques-
tioned by transport experiments in HgTe/CdTe [5,10–14] and
InAs/GaSb [15–21] quantum wells, as well as bismuth bilay-
ers [22] and WTe2 monolayers [23–25]. Therefore detailed
studies of possible backscattering mechanisms at the helical
edge are of the great importance. Many of the explanations
raised in the literature involve significant electron-electron
interactions at the edge [26–39]. However, since 2D topolog-
ical insulator heterostructures typically contain nearby gates
that effectively screen the interactions, these suggestions can-
not satisfactorily account for all aspects of the experimental
data.

In the absence of the electron-electron interactions or time-
reversal symmetry breaking, the ideal edge transport can still
be affected at finite temperature by coupling to an impurity
with its own quantum dynamics, e.g., a charge puddle that acts
as an effective spin-1/2 impurity [40,41], a quantum magnetic
impurity with spin S = 1/2 [42,43], or S � 1/2 [44–46].

The case S > 1/2 offers a new prospect with respect to
spin 1/2, since a local anisotropy term is generated due to

the impurity’s exchange interaction with nearby electrons
[47,48]. This local anisotropy can dominate the dynamics
of the impurity spin at low temperatures and voltages and,
consequently, affect the helical edge transport. However, it has
largely been overlooked till now.

In this work, we theoretically study how the dc con-
ductance of a noninteracting helical edge deviates from its
ideal quantized value due to scattering off a single magnetic
impurity with an arbitrary spin. Contrary to previous works,
we solve the problem for a generic structure of the matrix
describing the exchange interaction between the edge elec-
trons and the magnetic impurity. As a further generalization
of the model, we take into account the presence of local
anisotropy for the impurity spin. We discuss the cases of
easy-plane and easy-axis anisotropies, as well as of weakly
nonuniaxial anisotropy. A physical case in point is a (001)
CdTe/HgTe/CdTe quantum well contaminated by Mn2+ impu-
rities, which possess spin 5/2. Let us stress, however, that our
theory is not restricted to this type of structure, and is suitable
for the description of other 2D topological insulators as well.

We find that the backscattering current is sensitive to the
parity of 2S and is strongly affected by the local anisotropy in
a much wider range of voltage and temperature [see Eq. (16)]
than it is naively expected, especially for integer S. The
current-voltage characteristics for the backscattering current
possesses a rich phase diagram that is different for integer
and for half-integer spin [see Figs. 1(a) and 1(c)]. Due to
the presence of the local anisotropy, the dependence of the
backscattering current on the voltage at low temperatures
becomes strongly nonmonotonous [see Figs. 1(b) and 1(d), as
well as Secs. V D and VI D].

The outline of the paper is as follows. We start from formu-
lation of the model in Sec. II. In Sec. III, we obtain a general
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FIG. 1. Sketches of different regimes in V -T plane for the half-integer (a) and integer (c) spin. The corresponding corrections to the
current �I [obtained by numerical solution of Eqs. (8)–(13)] are plotted in (b) and (d) for S = 5/2 and S = 1, respectively; �I is normalized
by V �GV =∞, where �GV =∞ denotes to the correction to the conductance in the large voltage limit. The parameters are Dzz = 1, Dxx = 0.01,
Jxx = Jyy = 10−3, Jzz = 1.5Jxx , Jxz = 0.8Jxx , Jzx = 0.3Jxx , and the temperature takes the values T = 10−1 (i), 102 (ii), 105 (iii), and 108

(iv). Voltages of order JT are denoted in (b) and (d) by down-pointing arrows (lower horizontal axes), whereas voltages equal to the temperature
are marked by diamonds (upper horizontal axes).

expression for the backscattering current. The quantum mas-
ter equation which describes the dynamics of the magnetic
impurity coupled to the helical edge is derived in Sec. IV. The
results for the backscattering current in the case of half-integer
and integer spins are presented in Secs. V and VI, respectively.
We end the paper with conclusions (Sec. VII). The details
on some of the derivations are delegated to the appendices.
Throughout the text we use units in which h̄ = kB = −e = 1.

II. MODEL

We start from the following Hamiltonian for a helical edge
coupled to a magnetic impurity located at the position y = y0

along the edge:

H = He + He-i + Hi. (1)

Here, He is the Hamiltonian of the edge electrons, Hi

is the impurity Hamiltonian describing the local magnetic
anisotropy, and He-i is the electron-impurity exchange inter-
action. We take He of the form

He = iv
∫

dy �†(y)σz∂y�(y), (2)

where v denotes the velocity of the edge states, �† (�) is
the creation (annihilation) operator of the edge electrons, and
σx,y,z are the Pauli matrices in the edge states spin space.

The exchange interaction between the helical electrons and
the magnetic impurity is assumed to be local:

He-i = 1
ν
Ji jSis j (y0), s j (y) = 1

2�†(y)σ j�(y). (3)

Here, Si denotes the components of the impurity spin operator,
ν = 1/(2πv) is the density of states per one edge mode, and
the exchange couplings Ji j are real, dimensionless, and small
|Ji j | � 1. It is worthwhile to mention that due to the presence
of spin-orbit coupling in the 2D topological insulators the
exchange matrix Ji j is not necessarily diagonal. For example,
Ji j has four nonzero components, Jxx = Jyy, Jzz, and Jxz, for
an impurity in a HgTe/CdTe quantum well provided the inter-
face inversion asymmetry is negligible [45,46,49]. Taking the
inversion asymmetry of HgTe/CdTe quantum wells [50–57]
into account, all components of the matrix Ji j become finite.
Similar situation is expected to occur in other 2D topological
insulators, e.g., InAs/GaSb quantum wells, bismuth bilayers,
and WTe2 monolayers.

We note that the exchange interaction Ji j acquires Kondo-
type renormalization [58]. In what follows, we assume that
the corresponding Kondo temperature is well below the rel-
evant energy scales (related to the temperature, voltage, and
local anisotropy), so that the renormalization of Ji j can be
neglected (see Appendix A). This is typically justified phys-
ically: for example, for Mn2+ ion in a HgTe/CdTe quantum
well Ji j ∼ 10−3 [46] and the corresponding Kondo tempera-
ture is extremely small (as compared to the energies accessible
in transport experiments).

Finally, the local anisotropy Hamiltonian is given by

Hi = DqpSqSp, (4)

where Dqp is a real symmetric matrix. To keep the discussion
general, for the most part of the text, we do not specify the
mechanism behind the anisotropy and do not make restrictive
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assumptions on the relation between the coupling matrix Ji j

and the anisotropy matrix Dqp. However, it should be noted
that one of the possible sources of the anisotropy is the strong
spin-orbit coupling in the topological insulator. Anisotropy of
that type can be thought of as a result of the indirect exchange
interaction of the magnetic impurity with itself, mediated by
its coupling to both the bulk and the edge electronic states.1

Assuming that all the elements Ji j are of the same order
(we denote the corresponding value as J), one may estimate
Dqp ∼ J2|M|� [59,60], where |M| is the bulk band gap (see
Appendix B). The dimensionless ultraviolet cutoff param-
eter � is of order [v/(|M|aimp)]3. Here, aimp is a typical
range of the impurity potential. Using aimp ∼ 3 nm, we find
Dqp ∼ 0.1 K.

With an appropriate SO(3) rotation R of the impurity spin,
S = RS′, it is always possible to simplify the local anisotropy
(up to the constant energy shift) to the form,

Hi = D′
zzS

′
z
2 + D′

xxS′
x

2
, (5)

with D ≡ |D′
zz| > |D′

xx|. The exchange matrix then becomes
J ′ = R−1J . In what follows, we assume that the local
anisotropy has the form (5) and thus omit the primes.

III. CORRECTION TO THE CURRENT

The helical nature of the edge states allows us to express
the backscattering current �I via the rate of change of the z
component of the total spin of the edge electrons:

�I =
〈

d

dt

∫
sz(y)dy

〉
. (6)

Thus, if Sz + ∫
sz(y)dy is conserved, �I = 0 [41,43]. This

conservation can be broken by either sufficiently anisotropic
exchange Ji j [45,46], or by the local anisotropy (5), provided
Dxx is nonzero.

When a finite bias voltage V is applied to the edge (we
assume V > 0), sz develops a nonzero expectation value
νV/2. As a result, the Hamiltonian He-i acquires a nonzero
mean-field shift:

Hmf
e-i = JizSiV/2, (7)

which acts as the effective Zeeman splitting for the magnetic
impurity. We denote eigenstates and energies of Hi + Hmf

e-i as
|ψa〉 and Ea, respectively, where a = S, S − 1, . . . ,−S.

To the second order in J , we derived the following equation
for the backscattering current (see Appendix C):

�I = εzr jJirJlk Im
∑
cd

T jk
V (ωcd )

〈
SiScd

l

〉
S. (8)

Here, εkr j is the Levi-Civita symbol,

Scd
l = |ψc〉〈ψc|Sl |ψd〉〈ψd |, (9)

and ωcd = Ed − Ec. The average 〈. . . 〉S is taken over the
reduced density matrix of the magnetic impurity in the steady

1The higher-order contributions to the local anisotropy associated
with the indirect exchange interaction of the magnetic impurity with
itself are smaller than the quadratic term Hi = DqpSqSp by additional
powers of Ji j , and hence are negligible.

state, ρ
(st)
S . The matrix TV (ω) = T +

V (ω) + T −
V (ω) represents

the spin-spin correlation function of the edge electrons,

T ±
V (ω) = π

2

⎛
⎝ f (ω ± V ) ∓i f (ω ± V ) 0

±i f (ω ± V ) f (ω ± V ) 0
0 0 f (ω)

⎞
⎠, (10)

where we introduced f (ω) = ω/[1 − exp(−ω/T )].
Below we will show that in many cases of interest it is

possible to neglect ωcd in the argument of the matrix TV and
use

TV (0) = πT

⎛
⎝ V

2T coth V
2T −i V

2T 0
i V

2T
V
2T coth V

2T 0
0 0 1

⎞
⎠ (11)

instead. If that is the case, Eq. (8) may be substantially
simplified [46]:

�I =π2

2
G0V

⎡
⎣X j〈S j〉S coth

V

2T
− 2

∑
k=x,y

JmkJnk〈SmSn〉S

⎤
⎦,

(12)

where X j = 2ε jklJkxJly.

IV. THE QUANTUM MASTER EQUATION

In order to evaluate the backscattering current, it is nec-
essary to determine the steady-state density matrix ρ

(st)
S . For

this purpose, we derived the Redfield equation [61], which
governs the time evolution of the reduced density matrix ρS

(see Appendix C):

dρS

dt
= −i

[
Hi + Hmf

e-i , ρS
]

+1

2
Jr jJlk

(∑
cd

T jk
V (ωcd )

[
Scd

r ρS, Sl
] + H.c.

)
. (13)

The first term on the right-hand side of Eq. (13) describes
the unitary dynamics of ρS , while the term quadratic in J
accounts for Korringa-type relaxation due to weak coupling
between the edge electrons and the impurity spin [62]. For
V = 0, the spin-spin correlation function T jk

V =0(ω) = δ jkT0(ω)
satisfies the detailed balance relation: T0(−ω) = e−ω/TT0(ω).
This leads to the thermal density matrix in the equilibrium
steady state ρ

(st)
S ∝ ∑

a exp(−Ea/T )|ψa〉〈ψa| and to the van-
ishing backscattering current.

At nonzero voltage, the unitary dynamics of ρS is con-
trolled by the effective Zeeman field ∼ JV and the local
anisotropy energy D. The relaxation dynamics of ρS is con-
trolled by the Korringa rate τ−1

K ∼ J2 max{T,V,D}. ρ
(st)
S de-

pends on the relative magnitude of JV , D, and 1/τK . This
results in several distinct regimes in the V -T plane for the
steady state ρS and for the backscattering current (see Fig. 1).

In particular, in the regime max{T,V } � D, the relaxation
is approximately insensitive to the local anisotropy [one can
neglect the dependence of T jk

V on ωcd in Eq. (13)]. It is then
possible to rewrite the master equation (13) in the Gorini-
Kossakowski-Sudarshan-Lindblad form (see Ref. [63] for a
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review)

dρS

dt
= − i

[
Hi + Hmf

e-i , ρS
]

+ η jk

(
S jρSSk − 1

2
{ρS, SkS j}

)
, (14)

where [46]

η jk = (
J TV (0)J T

)
jk . (15)

Nonetheless, even for max{T,V } � D the local anisotropy
cannot be always disregarded completely: due to the presence
of the first term on the right-hand side of Eq. (13), the
anisotropy might still be crucial for the steady-state density
matrix, and thus, for the correction to the current. One can
fully neglect Hi only if

max{J2T, JV } � D. (16)

Indeed, at large voltages, V � D/J , the effective Zeeman
field (7) dominates over the anisotropy, while at high temper-
atures, T � D/J2, the smearing ∼ τ−1

K of the energy levels
of Hi due to the relaxation well exceeds the impurity level
spacing. In the absence of Hi, Eq. (13) has been analyzed re-
cently by the present authors [46]. We note, however, that for
spin-orbit coupling, mediated anisotropy D/J2 is of order of
the ultraviolet cutoff �|M| � |M|. In that case, the anisotropy
can be neglected only for temperatures T � D/J2 � |M| for
which the current through the topological insulator is mainly
carried by the bulk states.

In order to illustrate the importance of the local anisotropy
for the backscattering current, we consider both the case of the
easy-plane anisotropy (Dzz > 0) and the case of the easy-axis
anisotropy (Dzz < 0). To simplify the discussion, we assume
a clear hierarchy of scales |Dzz| � |Dxx|.

The level structure of the total impurity Hamiltonian Hi +
Hmf

e-i , while being inherently important for determination of
the backscattering current [as indicated by Eqs. (8) and (13)],
differs qualitatively for integer and half-integer values of the
impurity spin. Therefore we consider these cases separately.

V. BACKSCATTERING CURRENT
FOR A HALF-INTEGER SPIN S

In this section, we consider in details the transport along
a helical edge in the presence of a magnetic impurity with a
half-integer spin S. We begin by inspecting the level structure
of the Hamiltonian Hi + Hmf

e-i .

A. Level structure of the magnetic impurity

We start from the case of no voltage applied to the edge
of the topological insulator. If Dxx = 0 then the eigenstates
of Hi are that of the z projection of the impurity spin,
|ψSz 〉 ≡ |Sz〉, Sz = +S, . . . ,−S. The energy levels are doubly
degenerate: E±Sz = DzzS2

z . According to Kramers theorem, as
long as half-integer spin is concerned, this degeneracy cannot
be lifted by perturbations preserving time-reversal symmetry.
Therefore small Dxx leaves the degeneracy of energy levels
intact while weakly altering the structure of the eigenstates.
As a result, Dxx produces corrections to the backscattering
current proportional to Dxx/Dzz only, which we shall ignore

below. Such an approximation is well justified provided the
matrix J has a generic form. For specific choices of J , a
small Dxx term in the Hamiltonian might still be important.
For instance, if the electron-impurity exchange interaction
preserves the total z projection of angular momentum of the
system, i.e., JXXZ = diag {J⊥,J⊥,Jz}, then Dxx is a sole
source of backscattering. Hereinafter we concentrate on the
generic case and neglect small Dxx for an impurity with a
half-integer spin.

At finite voltage the mean-field part of the impurity Hamil-
tonian, Hmf

e-i = JizSiV/2, alters the level structure signifi-
cantly. It effectively breaks time-reversal symmetry for the
magnetic impurity, leading to voltage-dependent Zeeman-
type splitting of the energy levels. The character of this split-
ting is different for the doublets | ± |Sz|〉 with |Sz| > 1/2 and
|Sz| = 1/2. For small JV/Dzz, states with |Sz| = 1/2 are split
trivially, i.e., the energy of the state |Sz〉 is shifted by JzzSzV/2.
That is because the matrix element 〈±Sz|Sx/y|Sz〉 vanishes. For
Sz = ±1/2, the matrix element 〈−1/2|Hmf

e-i |1/2〉 = 0 and one
has to solve the secular equation in order to extract the level
shifts and the eigenstates. To the lowest order in JV/Dzz, the
corresponding effective Hamiltonian has the form

H eff
±1/2 = 1

4

(
Dzz + VJzz J−V (S + 1

2 )

J+V (S + 1
2 ) Dzz − VJzz

)
, (17)

where J± = Jxz ± iJyz. Its eigenvalues are

E±1/2 = 1

4

(
Dzz ± V

√
J 2

zz + (
J 2

xz + J 2
yz

)(
S + 1

2

)2
)

. (18)

The respective eigenstates, |ψ±1/2〉 ≡ | ± 1/2′〉, are given by(| + 1/2′〉
| − 1/2′〉

)
=

(
cos θ

2 eiφ sin θ
2

−e−iφ sin θ
2 cos θ

2

)(| + 1/2〉
| − 1/2〉

)
,

tan θ =
(

S + 1

2

)√
J 2

xz + J 2
yz

Jzz
, tan φ = Jyz

Jxz
. (19)

This nontrivial modification of level structure is very impor-
tant in the high-energy regime. However, before getting to it,
we start the discussion of the transport properties of the helical
edge with the low-energy regime of small temperatures and
voltages.

B. Low-energy transport

1. Easy-plane anisotropy

First, we assume that the local anisotropy is of the easy-
plane type, Dzz > 0, and consider the regime max{T,V } �
Dzz [region I in Fig. 1(a)]. In that case, with exponential
precision the impurity occupies the doubly degenerate ground
state subspace of Hi formed by the states with Sz = ±1/2,
as can be inferred from the master equation (13). Therefore
it is possible to project the Hamiltonian (1) onto the doublet
| ± 1/2〉. The accuracy of such a projection is controlled by a
small parameter max{T,V }/Dzz � 1. Effectively, the projec-
tion maps the problem onto that of a spin-1/2 impurity cou-
pled to the edge states by the effective exchange matrix given
by J̃x j = (S + 1

2 )Jx j , J̃y j = (S + 1
2 )Jy j , and J̃z j =Jz j . The
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master equation (13) transforms into the following Gorini-
Kossakowski-Sudarshan-Lindblad type equation for the 2 × 2
reduced density matrix ρ̃S of the effective spin-1/2:

dρ̃S

dt
= −i

V

2
J̃iz

[
S̃i, ρ̃S

] + η̃ jk

(
S̃ j ρ̃SS̃k − 1

2
{ρ̃S, S̃k S̃ j}

)
.

(20)
Here the matrix η̃ jk is given by Eq. (15) with J̃ instead of
J and S̃i = σi/2 are effective spin-1/2 operators. Knowing
the steady-state density matrix ρ̃

(st)
S , one can calculate the

correction to the current using Eq. (12) with J̃ and S̃i instead
of J and Si. A significant simplification comes from the
relation σiσ j = δi j + iεi jkσk . Extracting the averages of spin
operators in the stationary state from the master equation (20),
one finds

�I = π2

4

⎡
⎣X̃ T �̃−1X̃ V

2T
coth

V

2T
−

∑
k=x,y

J̃mkJ̃mk

⎤
⎦G0V,

�̃i j = 1

πT

(
δi j tr η̃ − η̃i j + η̃ ji

2
+ V εi jkJ̃kz

)
, (21)

where X̃ j = 2ε jkl J̃kxJ̃ly. We stress that the backscattering
current is of the second order in J which is consistent with
Fermi’s golden rule. Importantly, in the regime max{T,V } �
Dzz, the correction to the conductance �I/V saturates as
function of voltage at V ∼ JT instead of the expected estimate
V ∼ T [46].

2. Easy-axis anisotropy

Next, we consider the transport along the helical edge in
the low-energy limit, max {T,V } � |Dzz|, assuming that the
local anisotropy is of the easy-axis type, i.e., Dzz < 0. In this
regime, the impurity is constrained to occupy the subspace
| ± S〉. Consequently, to describe the backscattering current
it is possible to project the Hamiltonian (1) onto the states
{| + S〉, | − S〉}. By doing so, we map the problem onto that
of a spin-1/2 magnetic impurity which interacts with the edge
electrons via a modified exchange matrix J̄ . The components
of J̄ are given by J̄xi = J̄yi = 0 and J̄zi = 2SJzi for i =
x, y, z. Then the master equation (13) can be reduced to the
form of Eq. (20) with J̃ substituted by J̄ . Using the result
(21), we find the following correction to the backscattering
current:

�I = −π2

4

(
J̄ 2

zx + J̄ 2
zy

)
G0V = −π2S2

(
J 2

zx + J 2
zy

)
G0V. (22)

C. Transport at high energies

At max{T,V } � |Dzz| � max{J2T, JV } (region II in
Fig. 1), the relaxation term in Eq. (13) becomes indepen-
dent of the anisotropy and the master equation simplifies to
Eq. (14). Throughout this section we assume that V � JT ,
which leads to the following relation between the energy
scales in the problem: |Dzz| � JV � τ−1

K . This hierarchy
allows us to exploit the rotating wave approximation [63] and
to find the analytical expression for the steady-state density
matrix of the magnetic impurity. The latter is diagonal in the

eigenstate basis |ψm〉 of Hi + Hmf
e-i ,

ρ
(st)
S =

∑
m

p(st)
m |ψm〉〈ψm|. (23)

The coefficients p(st)
m can be found by requiring the relaxation

term in the master equation (13) to be zero for such density
matrix. This condition can be written as∑

n

wm←n pn = pm

∑
n

wn←m,

wn←m = ηi j〈ψn|Si|ψm〉〈ψm|S j |ψn〉. (24)

As it was discussed previously, the states |Sz〉 with |Sz| >

1/2 are approximate eigenstates of H full
i . For the |Sz| = 1/2

subspace, the basis should be rotated as indicated by Eq. (19).
Solving Eq. (24), we find that the stationary state the density
matrix in the basis {|S〉, . . . , |1/2′〉, | − 1/2′〉, . . . , | − S〉} is
given as follows:

ρ
(st)
S ∝ diag{ϑS, . . . , ϑ3/2, a1, a2, bϑ−3/2, . . . , bϑ−S}. (25)

Here we introduce the real parameter

ϑ = ηxx + iηxy − i(ηyx + iηyy)

ηxx − iηxy + i(ηyx − iηyy)
. (26)

The parameters a1 and a2 are given by(
a1

a2

)
= 1

cos θ

(
cos2(θ/2) − b sin2(θ/2)

b cos2(θ/2) − sin2(θ/2)

)
(27)

with b = Tr(�η)/Tr(�T η). Here, � is a Hermitian 3 × 3
matrix whose elements are

�11 =
(

S + 1

2

)2(
1 − 1

2
cos(2φ) sin2 θ

)
− 1

2
sin2 θ,

�22 =
(

S + 1

2

)2(
1 + 1

2
cos(2φ) sin2 θ

)
− 1

2
sin2 θ,

�12 = i

(
S + 1

2

)2(
cos2 θ + i

2
sin2 θ sin(2φ)

)
,

�13 = −
(

S + 1

2

)
eiφ sin θ cos θ,

�23 = i

(
S + 1

2

)
eiφ sin θ cos θ,

�33 = sin2 θ. (28)

It is possible to find the correction to the current by substi-
tuting the obtained density matrix (25) into Eq. (12). The
asymptotic result (25) is valid both for the easy-plane and
easy-axis anisotropy.

At small voltage, V � JT , ρ
(st)
S has nonzero off-diagonal

elements in the eigenbasis |ψm〉. This hinders analytic solution
for the backscattering current.

In region III, max{J2T, JV } � |Dzz| (see Fig. 1), the local
anisotropy is completely irrelevant. For V � JT , the solution
for the steady-state density matrix has a Gibbs form, with an
effective temperature Teff that depends on the ratio V/T [46].
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D. The overall behavior of the backscattering current
for a half-integer spin

The dependence of the backscattering conductance �G =
�I/V on voltage obtained from the numerical solution of
Eq. (13) for S = 5/2 is shown in Fig. 1(b) for several temper-
atures. Curve (i) corresponds to T � Dzz. The backscattering
current at voltage V � Dzz (region I) at first rises and then,
at V ∼ JT , saturates to a plateau, in reminiscence of the
spin-1/2 problem [46]. At the boundary between regions I and
II, V ∼ Dzz, the curve exhibits a cusp. It is associated with the
emergence of transitions of the impurity to the excited states.
The wide minimum in curve (i) corresponds to region II in
which V � T . At the crossover between regions II and III
the minimum turns into the plateau corresponding to �I in
the absence of the anisotropy. Curve (ii) is plotted for the
temperature range Dzz � T � Dzz/J . At V ∼ JT the low-
voltage plateau turns into the wide maximum and, then, into
the minimum. The switching between the minimum and the
maximum occurs at V ∼ T . At V ∼ Dzz/J the mean-field part
of the impurity Hamiltonian Hmf

e-i ∼ JV becomes sufficiently
large to significantly alter the structure of anisotropic energy
levels. This leads to a transition between a minimum corre-
sponding to region II and a high energy plateau corresponding
to region III. A small peak in the backscattering conductance
appears when two impurity levels come close together (a trace
of this peak is also visible in curve (i)). Curve (iii) corresponds
to the temperature Dzz/J � T � Dzz/J2. It starts with a
plateau at V � JT , which then turns into a maximum at
V ∼ Dzz/J , associated with the crossover between regions II
and III. In region III, curve (iii) has a minimum corresponding
to a Gibbs-like steady state with Dzz/J � V � T . [46] At
V � T �G saturates at the plateau. Curve (iv) corresponds
to T � Dzz/J2 so that the local anisotropy is irrelevant at
any V . There are three plateaus in �G positioned at V � JT ,
JT � V � T , and T � V respectively.

VI. BACKSCATTERING CURRENT
FOR AN INTEGER SPIN S

This section is devoted to the transport along the helical
edge in the presence of an impurity with integer spin S.
Similarly to Sec. V, we first discuss the level structure of
Hi + Hmf

e-i .

A. Level structure of the magnetic impurity

Contrary to the case of half-integer spin of the magnetic
impurity, a small Dxx cannot be neglected for integer impurity
spin. Let us start from the equilibrium limit, V = 0, and
diagonalize Hi by treating the Dxx term in it as a perturbation.
To do that, we notice that the energy levels of the unperturbed
Hamiltonian DzzS2

z may be chosen to have a well-defined
spin-z projection Sz. Hence, for a given Sz > 0, a pair of
levels {| + Sz〉, | − Sz〉} is degenerate. The presence of a finite
Dxx lifts this degeneracy. The effective Hamiltonian which
governs the splitting of | ± Sz〉 doublet as well as its overall
energy shift to the lowest nonvanishing order in Dxx is given
by (the basis is {| + Sz〉, | − Sz〉}, where Sz is assumed to be a

positive integer)

H eff
±Sz

=
(DzzS2

z + dSz �Sz

�Sz DzzS2
z + dSz

)
,

(29)

�Sz = Dxx

(Dxx

Dzz

)Sz−1
∏Sz

m=−Sz+2〈m|S2
x |m − 2〉∏Sz−2

m=−Sz+2

(
S2

z − m2
) ,

where dSz = Dxx(S(S + 1) − S2
z )/2. As a result, the | ± Sz〉

states split into a symmetric and antisymmetric combina-
tions, [| + Sz〉 ± | − Sz〉]/

√
2, with energies DzzS2

z + dSz ±
�Sz , respectively. We denote the corresponding energy gap
as δSz = 2|�Sz |. As long as S ∼ 1, the numerical factor in
the expression for �Sz is of order unity and therefore δSz ∼
|Dxx||Dxx/Dzz|Sz−1. In what follows we ignore the overall shift
dSz since it has no significant effect on the backscattering
current in the regimes considered analytically.

Finite voltage tends to split the doublets as well. In partic-
ular, if the anisotropy is purely uniaxial, Dxx = 0, the mean-
field electron-impurity interaction, Hmf

e-i , induces a splitting of
| ± Sz〉 into | + Sz〉 and | − Sz〉 with energies E±Sz = DzzS2

z ±
JzzSzV/2, respectively. When both finite Dxx and nonzero
voltage are introduced, there is a competition between the two
splitting mechanisms. If, for a given Sz > 0, V � δSz/|Jzz|,
then the | ± Sz〉 doublet breaks into a symmetric and anti-
symmetric combinations with the energy separation � δSz . In
the opposite limit, V � δSz/|Jzz|, the doublet splits trivially
into the | + Sz〉 and | − Sz〉 states, which are separated by an
energy � JzzSzV . In what follows we assume that the matrix
J is generic and, therefore, its element Jzz is of order of the
typical value of Ji j , i.e., J . Hence, the crossover between the
two regimes happens at V ∼ δSz/J .

B. Low-energy transport

1. Easy-plane anisotropy

To begin with, we assume the anisotropy of the easy-plane
type, Dzz > 0, and consider the regime of the low-energy
transport, max{T,V } � Dzz [region I in Fig. 1(c)]. In this
limit, it is possible to neglect Dxx since it gives rise only
to small corrections of order of Dxx/Dzz � 1 to the results
for the backscattering conductance. We stress that such an
approximation is not valid at arbitrary energies as well as for
the other sign of Dzz.

For max{T,V } � Dzz, one can project the initial Hamil-
tonian (1) onto the nondegenerate ground state of Hi, which
is the state with Sz = 0 in the absence of Dxx. This implies
that the magnetic impurity becomes frozen and thus �I based
on Eqs. (8) and (13) is exponentially small in T/Dzz. This
exponentially small correction is surpassed by the contribu-
tion from virtual transitions between the ground state and
the pair of the lowest excited nearly degenerate states. These
virtual transitions mediate the effective interaction between
the edge electrons with opposite helicity in the vicinity of
the impurity. In order to estimate this effect, we project the
electron-impurity interaction on the |Sz = 0〉 state to second
order in J and obtain the following low-energy Hamiltonian:

H eff
e−e = − 1

Dzz
JikJ jl sksl

∑
Sz=±1

〈0|Si|Sz〉〈Sz|S j |0〉
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= −S(S + 1)

2Dzz
JikJ jl sksl (δixδ jx + δiyδ jy). (30)

Here all operators si are taken at the position of the magnetic
impurity y0. For the following, it is important to keep in mind
that the electron-impurity interaction has a finite range aimp.
Unless the finite range is taken into the consideration, the
discussed correction to conductance due to virtual transitions
vanishes, as dictated by the Pauli exclusion principle. To
account for aimp = 0, we replace the electron spin density
operators entering (30) by

sk → 1

2

∫
dyg(y − y0)ψ†

α (y)σαβ

k ψβ (y), (31)

where y0 is the position of the magnetic impurity at the
edge and g(y) is a symmetric smooth function satisfying∫

dyg(y) = 1,
∫

dyy2g(y) = a2
imp.

The effective electron-electron interaction (30) mediates
three types of two-particle scattering events,

(1)
∣∣sz,1 = 1

2 , sz,2 = 1
2

〉
�

∣∣sz,1 = − 1
2 , sz,2 = − 1

2

〉
,

(2)
∣∣sz,1 = 1

2 , sz,2 = 1
2

〉
�

∣∣sz,1 = 1
2 , sz,2 = − 1

2

〉
, (32)

(3)
∣∣sz,1 = − 1

2 , sz,2 = − 1
2

〉
�

∣∣sz,1 = 1
2 , sz,2 = − 1

2

〉
,

where sz denotes the spin z projection of helical electrons
and 1,2 indexes enumerate the interacting electrons. Process
(1) corresponds to the simultaneous backscattering of two
electrons. Processes (2) and (3) describe scattering events with
one spin flip. The Fermi golden rule may be employed in order
to evaluate the associated rates [27,28]. A straightforward
calculation yields the following estimates for the contributions
to the backscattering current due to the processes of type (1),
(2), and (3) in (32):

�I1 ∼ −S2(S + 1)2

D2
zzv

4
G0V

∑
k, j,p,r,m,n=x,y

J jkJprJ jmJpn

×(δkrδmn − εkrεmn)(max {T,V })6a4
imp (33)

and

�I2 & 3 ∼ −S2(S + 1)2

D2
zzv

4
G0V

∑
k, j,p=x,y

J jkJpkJ jzJpz

×(max {|μ|, T,V })2(max {T,V })4a4
imp, (34)

where ε jk = ε jkz, |μ| = vkF is the chemical potential. In the
limit max {T,V } � |μ|, processes with one electron spin flip
give a parametrically dominant contribution to the backscat-
tering current at small energies, |�I1| � |�I2 & 3|.

2. Easy-axis anisotropy

Next, we consider the transport along the helical edge
in the low-energy limit, assuming that the local anisotropy
is of the easy-axis type, i.e., Dzz < 0. Similarly to the case
of the impurity with half-integer spin, in this regime the
dynamics of the magnetic impurity is restricted to the sub-
space {| + S〉, | − S〉}. The projection of (1) on this subspace
maps the problem onto that of a spin-1/2 coupled to helical
electrons by the exchange matrix J̄ with the components

J̄xi = J̄yi = 0, J̄zi = 2SJzi, i = x, y, z. (35)

Provided that δS � max {T,V } � |Dzz|, we recover Eq. (22)
for the backscattering current in full analogy with the case of
half-integer spin of the impurity.

If max {T,V } � δS , the impurity is frozen in
its ground state, i.e., either [| + S〉 − | − S〉]/√2 or
[| + S〉 + | − S〉]/√2 depending on the sign of Dxx. Therefore
the leading contribution to the backscattering current is
produced by virtual transitions of the impurity to the lowest
excited state. The evaluation of the corresponding correction
to the helical edge conductance with the help of the Fermi
golden rule yields �I = �Ī1 + �Ī2 & 3, where

�Ī1 ∼ −S4a4
imp

δ2
Sv

4

⎛
⎝∑

k=x,y

J 2
zk

⎞
⎠2

(max {T,V })6G0V, (36)

�Ī2 & 3 ∼ −S4a4
imp

δ2
Sv

4

∑
k=x,y

J 2
zkJ 2

zz

(
max {|μ|, T,V })2

×(max {T,V })4G0V. (37)

We note that the character of the backscattering current for
the easy-axis anisotropy in the regime max {T,V } � δS is
qualitatively similar to that for the easy-plane anisotropy in
the low-energy limit, max {T,V } � Dzz. Indeed, the depen-
dence of �I on voltage and temperature is similar between
Eqs. (36), (37) and Eqs. (33), (34). Yet, the expressions (36)
and (37) are parametrically different from (33) and (34) and
are determined by different combinations of the dimensionless
coupling constants Ji j .

C. Transport at high energies

Contrary to the case of half-integer spin, the behavior of �I
in the region II, max{T,V } � Dzz � max{J2T, JV }, is sensi-
tive to the presence of nonzero Dxx. The competition between
the effective Zeeman splitting Hmf

e-i , the Korringa rate 1/τK ,
and the splittings δSz leads to crossovers at max{J2T, JV } ∼
δSz with Sz = 1, . . . , S [see Fig. 1(c)]. In the subsequent
sections, we explore the character of backscattering in the re-
gion II, separately considering the limits of strongly smeared
impurity levels, V � JT (i.e., the Korringa rate τ−1

K is much
larger than the Zeeman-type splitting ∼JV ), and the limit of
well separated impurity levels, V � JT . We note that the
results presented below are applicable for both the easy-plane
and the easy-axis anisotropies.

1. Strongly smeared energy levels, V � JT

In the regime V � JT , the steady-state density matrix of
the magnetic impurity is close to equipartitioning,(

ρ
(eq)
S

)
Sz,S′

z
= 〈Sz|ρ (eq)

S |S′
z〉 = 1

2S + 1
δSz,S′

z
. (38)

The deviations of ρ
(st)
S from ρ

(eq)
S are proportional to V/T .

Therefore we expand

ρ
(st)
S = ρ

(eq)
S + V

T
δρS + . . . , ηi j = η

(0)
i j − i

V

T
η

(1)
i j + . . .

(39)
and examine the structure of δρS . It is worthwhile to mention
that η

(0)
i j is a symmetric matrix, whereas η

(1)
i j is antisymmetric.
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Substituting the decompositions (39) into Eq. (14) and pro-
jecting the resulting equation onto the states |Sz〉 and |S′

z〉, we
find(

S2
z − S′2

z

)
(δρS )Sz,S′

z
= −Dxx

Dzz

([
S2

x , δρS
])

Sz,S′
z

−i
η

(0)
i j

Dzz

(
SiδρSS j − 1

2

{
S jSi, δρS

})
Sz,S′

z

+εi jk

η
(1)
i j

Dzz
(Sk )Sz,S′

z
. (40)

Notice that we disregarded the mean-field part of the electron-
impurity interaction Hamiltonian Hmf

e-i in Eq. (40). It is jus-
tified since we consider the regime V � JT . In Eq. (40),
|η(0,1)

i j /Dzz| ∼ J2T/|Dzz| � 1 and |Dxx/Dzz| � 1 are small
parameters. Hence, it is possible to neglect the components
(δρS )Sz,S′

z
with |Sz| = |S′

z| as compared to those with |Sz| =
|S′

z| and, consequently, solve (40) in the diagonal subspace
|Sz| = |S′

z|. An immediate consequence of such separation is
that |〈Sx,y〉S| � |〈Sz〉S|. This observation, as well as the fact
that the steady-state density matrix is close to ρ

(eq)
S , allows us

to reduce the expression for the backscattering current (12) to

�I = π2 S(S + 1)

3

[
T

V

3Xz

S(S + 1)
〈Sz〉S − g

]
G0V,

g =
∑

k=x,y

JmkJmk . (41)

Next we note that in the regime V � JT a hierarchy of
temperatures arises: the backscattering current is sensitive to
whether the Korringa relaxation rate, τ−1

K ∼ J2T , surpasses
δSz with different Sz > 0.

If δ1 � J2T � |Dzz| [region II1 in Fig. 1(c)], the doublets
with all possible |Sz| are well smeared. Thus it is possible
to disregard the Dxx term in the right-hand side of Eq. (40).
From the remaining system of equations for the diagonal
components of δρS , we find

(δρS )Sz,Sz
= Sz

2ε jkzη
(1)
jk(

η
(0)
xx + η

(0)
yy
)
(2S + 1)

= Sz
Xz

(�0)zz(2S + 1)
,

(42)

where �0 = Tr(JJ T ) − JJ T . Therefore

〈Sz〉S = S(S + 1)

3

V

T

Xz

(�0)zz
(43)

and

�I = −π2 S(S + 1)

3

(
g − X 2

z

(�0)zz

)
G0V. (44)

In the regime δ2 � J2T � δ1 [region II2 in Fig. 1(c)], the
doublet | ± Sz〉 with Sz = 1 is well split, whereas all other
doublets are smeared. Solving Eq. (40) to the leading order
in J2T/δ1 while keeping in mind that J2T � δ2, we obtain
the following expression for the diagonal components of δρS:

(δρS )Sz,Sz
=

⎧⎪⎨
⎪⎩

(Sz−1)Xz

(�0 )zz (2S+1) , Sz > 1,

0, |Sz| � 1,
(Sz+1)Xz

(�0 )zz (2S+1) , Sz < −1.

(45)

Then we find

〈Sz〉 = 2

3

(S2 − 1)S

2S + 1

Xz

(�0)zz

V

T
(46)

and, consequently,

�I = −π2 S(S + 1)

3

(
g − 2(S − 1)

2S + 1

X 2
z

(�0)zz

)
G0V. (47)

The expressions for the backscattering current may be de-
rived in other regions δSz+1 � J2T � δSz , Sz > 1, in a similar
manner.

2. Well separated impurity levels, V � JT

Provided that V � JT , the splitting of each doublet | ± Sz〉
with Sz > 0 exceeds the level smearing due to relaxation. In
this regime, the rotating wave approximation may be used to
describe the dynamics of the impurity. The steady-state den-
sity matrix acquires the diagonal form (23) with coefficients
satisfying Eq. (24).

The next steps are sensitive to the precise structure of
the impurity levels |ψm〉. As discussed above, this structure
strongly depends on the ratio between the mean-field interac-
tion ∼JV and the splittings δSz .

In particular, if δ1 ∼ |Dxx| � JV � |Dzz| [region II1 in
Fig. 1(c)], the splittings of all doublets are determined pre-
dominantly by Hmf

e-i , and each | ± Sz〉 pair simply splits into
| + Sz〉 and | − Sz〉. Enumerating the energy levels as |ψm〉 =
|Sz = m〉, m = S, . . . ,−S, we reduce Eq. (24) to a tridiagonal
system of differential equations, Mm,n p(st)

n = 0, with a matrix
Mm,n which has the following nonzero elements:

Mm±1,m = (ηxx ± iηxy) ∓ i(ηyx ± iηyy)

×(S(S + 1) − m(m ± 1))/4, (48)

Mm,m = −
∑
s=±1

(ηxx + isηxy) − is(ηyx + isηyy)

×(S(S + 1) − m(m + s))/4. (49)

Then the steady-state solution can be readily found explicitly:

p(st)
m = Nϑm, (50)

where ϑ is defined in Eq. (26) and N is a normalization
constant, which ensures that

∑
m p(st)

m = 1. Alternatively, this
result may be rewritten in the operator form:

ρ
(st)
S = NϑSz . (51)

Therefore the steady-state density matrix has the Gibbs form
in the eigenbasis of Sz. The explicit expression (51) for the
density matrix allows for a straightforward evaluation of the
backscattering current with the help of Eq. (12).

In the case δ2 ∼ |Dxx||Dxx/Dzz| � JV � |Dxx| ∼ δ1 [re-
gion II2 in Fig. 1(c)], the level structure is somewhat more
complicated. The doublets | ± Sz〉 with Sz > 1 are split by
the mean-field interaction into | + Sz〉 and | − Sz〉 states,
whereas the doublet with Sz = 1 is split by Dxx into symmetric
and antisymmetric superpositions [| + 1〉 ± | − 1〉]/√2. The
modification of the eigenstates structure alters the matrix M,
and it loses its tridiagonal form. Nonetheless, the analytic
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solution for the steady-state density matrix can still be found.
It has a non-Gibbs form, and is given by

ρ
(st)
S ∝ diag

{
ϑS−1, . . . , ϑ, 1, 1, 1, ϑ−1, . . . , ϑ−S+1

}
. (52)

We emphasize that the result (52) implies equal probabilities
of states with Sz = 1, 0,−1, i.e., the impurity spin in the
presence of nonzero Dxx and voltage tends to behave partially
as a classical spin.

We note that for S = 1 the steady-state density ma-
trix is ρ

(st)
S ≈ diag{1/3, 1/3, 1/3} for max(V, T ) � |Dzz| and

max(JV, J2T ) � δ1 [see Eqs. (45) and (52)]. This implies that
in a broad range of V and T the backscattering current is given
by

�IS=1 = −(2π2/3)gG0V. (53)

In accordance with general expectations, �IS=1 remains finite
even for the exchange interaction matrix close to JXXZ =
diag {J⊥,J⊥,Jz} due to the presence of finite Dxx.2 Interest-
ingly, for J = JXXZ and for S = 1 the backscattering current
does not contain smallness in Dxx/Dzz in contrast to the case
of half-integer spin of the impurity. Thus, Eq. (53) implies
a parametrically large enhancement of the backscattering
current due to the presence of nonzero Dxx for max(V, T ) �
|Dzz| and max(JV, J2T ) � δ1. The discussed enhancement is
not specific for S = 1, it is present for all integer S > 1. In
principle, every interval of voltages δSz+1 � JV � δSz , Sz >

0, may be analyzed in a similar fashion.

D. The overall behavior of the backscattering current
for an integer spin

The backscattering conductance as a function of voltage
obtained from the numerical solution of Eq. (13) for S = 1 and
for different T is shown in Fig. 1(d). Curve (i) corresponds to
T � Dzz. The backscattering current in region I, V � Dzz, is
exponentially small. The evolution of �I near the maximum
corresponds to the crossover from region I to region II2 and
then to region II1. The wide minimum in curve (i) is associated
with the structure of the steady-state solution ρ

(st)
S in the

region II1. Switching from the minimum to the plateau around
V ∼ Dzz/J corresponds to the crossover between regions II1

and III. Curve (ii) is plotted for the temperature Dzz � T �
δ1/J2. Around V ∼ Dxx/DzzJ , �I drops down from the low-
voltage plateau due to the crossover between the regions II2

and II1. The minimum in curve (ii) corresponds to region
II1 in which V � T . The crossover between regions II and
III at V ∼ Dzz/J causes switching from the minimum to
the high-voltage plateau. We emphasize that the low-voltage
plateaus of the curves (ii) in Figs. 1(b) and 1(d) are different
due to the effect of Dxx in the case of integer spin. Curves
(iii) and (iv) in Fig. 1(d) are plotted for temperatures obeying
δ1/J2 � T � Dzz/J2 and Dzz/J2 � T , respectively. Since at
these temperatures the effect of Dxx on �I is negligible, these
curves are qualitatively very similar to the corresponding
curves in Fig. 1(b).

2We note that in the case J = JXXZ the anisotropy mediated by
spin-orbit coupling [see discussion after (4)] is uniaxial, Dxx = 0.

VII. CONCLUSIONS

To summarize, we presented the results of a detailed study
of the dc transport along the helical edge in the presence of
a magnetic impurity. We considered a realistic model with
an arbitrary value of the impurity spin S, with a general
form of the exchange matrix, and with a local anisotropy.
We found that the backscattering current is strongly affected
by the local anisotropy at voltage and temperature satisfying
max{J2T, JV } � D, for which the energy splittings of the
impurity states due to the local anisotropy Hamiltonian Hi are
non-negligible. We revealed that the local anisotropy makes
the backscattering current sensitive to the parity of 2S. For
integer S, we found that the local anisotropy can significantly
increase the correction to the current in a certain range of V
and T .

Our results predict that the backscattering correction to
the linear conductance is almost independent of the tem-
perature down to very low temperatures (well below D) for
all cases except the case of integer spin and the easy-plane
anisotropy for which strong temperature dependence (∼ T 4)
sets at temperature of the order of D. The backscattering
correction which is independent of T in wide temperature
range is consistent with experimental findings. In the case of
HgTe/CdTe quantum wells, for temperatures T � D, a typ-
ical backscattering correction to the linear conductance due
to a single impurity can be estimated as [46] |�G(0)|/G0 ∼
10−4–10−3.

Let us assume that there is a finite 1D density nimp of
magnetic impurities at the helical edge of length L. Then, ne-
glecting correlations in the backscattering processes on differ-
ent magnetic impurities, the total edge resistance R is simply
the sum of the individual single-impurity resistances, δR =
|�G|/G2

0. Then we find that the total resistance is proportional
to the length of the edge, R = Lnimp|�G|/G2

0, in accordance
with experimental observations of Refs. [11,13,15,21,64].
This estimate for R holds under assumptions that the im-
purities are uncorrelated, 1/nimp > LT = v/T . Now, in a
HgTe/CdTe quantum well at T = 4.2 K, the thermal length
LT is of the order of a micron (taking v = 0.4 eV nm).
On the other hand, resistive behavior with resistance of the
order of h/e2 typically starts for samples which are a few
micrometers long. Since each impurity contributes �G/G0 �
10−3, as mentioned above, the 1D distance between impurities
along the edge should be 1/nimp � 10−2 μm, well below LT .
Thus one would need to go beyond the independent-impurity
approximation, which has not yet been done for fully-
anisotropic S � 1/2 impurities (see Refs. [29,30,33,44]). We
leave that for future work.

We also note that our results can be extended to take into
account the effect of electron-electron interactions within the
Luttinger liquid description of the helical edge. In this case,
one can use the quantum master equation (13) and the expres-
sion for the current (8) but with the kernel T jk

V (ω) modified
by the electron-electron interaction in a way described in
Refs. [28,34,65].

Finally, our theoretical results indicate that the backscat-
tering current can serve as a probe for the level structure of
the magnetic impurities contaminating the helical edge. Our
theory can thus provide a basis for a systematic experimental
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study of rare magnetic impurities through the transport along
the helical edge.
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APPENDIX A: KONDO RENORMALIZATION

In this appendix, we discuss the renormalization of the
electron-impurity coupling constants Ji j . As long as the run-
ning energy scale E is larger than the local anisotropy scale,
E � D, the one-loop renormalization group (RG) equations
for Ji j have the following form [46,58]:

dJi j

dτ
= 1

2
εikpε jmnJkmJpn, τ = ln (|M|/E ). (A1)

To simplify the system of equations, we perform a singular
value decomposition of the coupling matrix: J = R<λR>.
Here the matrices R> and R< are orthogonal, R> and R< ∈
SO(3), and λ = diag(λ1, λ2, λ3). For the RG flow of the
singular values, we find

dλ1

dτ
= λ2λ3,

dλ2

dτ
= λ3λ1,

dλ3

dτ
= λ1λ2, (A2)

while the matrices R> and R< do not flow. When two of λis are
zero, the remaining coupling stays constant with the change of
the energy scale. If two couplings are equal, e.g. λ1 = λ2 = 0,
λ3 � 0, and |λ1| � |λ3|, then λ1 goes to zero while λ3 satu-
rates at some finite value as E is decreased. In all other cases, a
finite Kondo energy scale TK exists at which λis blow up. The
Kondo energy may be estimated as TK ∼ |M| exp (−1/J 0),
where J 0 is a dimensionless parameter of order of J at τ =
0. As TK is approached, the coupling constants tend to the
manifold |λ1| = |λ2| = |λ3| with λ1λ2λ3 > 0.

Physically, the running energy scale is always determined
by either the temperature or the voltage. Hence, the above
analysis is applicable provided max {T,V } � D, whereas
at lower energies the RG equations alter significantly [66].
Throughout the main text of the article we assume that TK

is much smaller than max {T,V,D} and therefore the renor-
malization of the exchange couplings can be neglected at
the relevant energy scales. This assumption is typically well-
justified. For instance, for a Mn2+ impurity in a topological
insulator based on CdTe/HgTe/CdTe quantum well with width
of 7 nm the typical value of the exchange coupling J (τ = 0)
is of order of 10−3 [46]. Thus TK is extremely small.

APPENDIX B: THE LOCAL MAGNETIC ANISOTROPY

In this appendix, we demonstrate how the local anisotropy
of the magnetic impurity can be generated by the exchange
interaction between the impurity and the electron states (both
bulk and edge ones) in a 2D topological insulator. To simplify
derivation, we consider a CdTe/HgTe/CdTe quantum well and
neglect the inversion asymmetry. In order to describe the
electronic states in this structure, we employ the linearized
Bernevig-Hughes-Zhang Hamiltonian,

He =

⎛
⎜⎝

M vk+ 0 0
vk− −M 0 0

0 0 M −vk−
0 0 −vk+ −M

⎞
⎟⎠, (B1)

where M is a band gap, v will turn out to be the
edge states velocity, and k± = kx ± iky. The Hamiltonain
He is written in the basis of spatially quantized states
{|E1,+〉, |H1,+〉, |E1,−〉, |H1,−〉} (see Ref. [4] for details).
Notice that the Hamiltonian He is rotationally invariant: for
simplicity, we disregarded symmetry-lowering interface in-
equivalence [54] in the discussion of the magnetic anisotropy.
To account for the presence of the edge in the system we
follow the approach of Ref. [67] and assume that the gap
is a function of x coordinate such that the band inversion is
realized at x = 0, i.e., for x < 0, M(x) is a negative constant,
whereas M(x > 0) → +∞.

The Hamiltonian of the local electron-impurity
exchange interaction is given by He-i = JqSqδ(r −
r0), where Jx,y,z are 4 × 4 matrices in the basis
{|E1,+〉, |H1,+〉, |E1,−〉, |H1,−〉}, summation over q is
assumed, r0 is a position of the impurity in the quantum well,
and S is the impurity spin operator. An analysis based on the
k · p method yields [45,59]:

JqSq =

⎛
⎜⎝

J1Sz −iJ0S+ JmS− 0
iJ0S− J2Sz 0 0
JmS+ 0 −J1Sz −iJ0S−

0 0 iJ0S+ −J2Sz

⎞
⎟⎠, (B2)

where S± = Sx ± iSy and J0, J1, J2, and Jm are real parameters
that depend on the microscopic details of the exchange inter-
action as well as on the structure of the envelop functions of
the spatially quantized states |E1,±〉 and |H1,±〉. For the sake
of universality, throughout this section we assume that all Jqs
have a generic form and do not refer to the explicit form (B2).

The local magnetic anisotropy is generated by the indirect
exchange interaction of the magnetic impurity with itself. A
zero-temperature expression for the indirect exchange, evalu-
ated to second order in the coupling parameters Jq, is given
by Eq. (4) with

Dqp = 1

2

∫
dε

2π
Tr G(iε, r0, r0)JqG(iε, r0, r0)Jp. (B3)

The Matsubara Green’s function G(iε, r1, r2), which enters
this expression, can be conveniently expressed as a sum over
states,

G(iε, r1, r2) =
∑

j

ψ j (r1)ψ†
j (r2)

iε − Ej + μ
, (B4)
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where ψ j (r) are the eigenstates of He, Ej denotes the cor-
responding energies, and μ is the chemical potential. The
representation (B4) allows to divide the Green’s function into
two parts, G = Gbulk + Gedge, where Gbulk incorporates the sum
over the bulk states and Gedge includes the sum over the edge
states. As a result, it is possible to split the anisotropy matrix
Dqp into three terms of different nature:

Dqp = Dbulk
qp + Dedge

qp + Dint
qp, (B5)

where

Dbulk (edge)
qp = 1

2

∫
dε

2π
Tr Gbulk (edge)(iε, r0, r0)Jq

×Gbulk (edge)(iε, r0, r0)Jp, (B6)

Dint
qp = 1

2

∫
dε

2π
Tr Gbulk (iε, r0, r0)JqGedge(iε, r0, r0)Jp

+(q ↔ p). (B7)

The explicit structure of the eigenstates is required to estimate
each of the contributions in Eq. (B5). In the described setting
the edge states wave functions are given by

ψ
↑
edge(ky, r) =

⎛
⎜⎝

1
i
0
0

⎞
⎟⎠θ (−x)

e−|x|/ξ
√

2πξ
eikyy,

(B8)

ψ
↓
edge(ky, r) =

⎛
⎜⎝

0
0
1
−i

⎞
⎟⎠θ (−x)

e−|x|/ξ
√

2πξ
eikyy,

where θ (x) is a Heaviside step function and ξ = |M|/v. They
are characterized by a dispersion which is exactly linear in the
model (B1), E↑/↓

edge(ky) = ∓vky.
Due to the presence of the edge, the bulk states acquire a

more complicated structure as compared to that in the infinite
sample (for the details, see Ref. [60]):

ψ±
bulk,↑(r) =

⎛
⎜⎝

± f ±
x (±k)

±i f ∓
x (±k)
0
0

⎞
⎟⎠eikyy

2π
,

(B9)

ψ±
bulk,↓(r) =

⎛
⎜⎝

0
0

∓ f ±
x (∓k)

±i f ∓
x (∓k)

⎞
⎟⎠eikyy

2π
.

The dimensionless functions f ±
x (k) which enter the expres-

sions above are

f ±
x (k) = θ (−x)

(vk± ± i(E (k) ∓ |M|))eikxx + c.c.

2
√
E (k)(E (k) + vky)

. (B10)

Here, E (k) = √
M2 + v2k2. The corresponding energies are

E±
bulk,↑(k) = E±

bulk,↓(k) = ±E (k).
When the magnetic impurity is far away from the edge,

|x| � ξ , Dedge
qp and Dint

qp are exponentially suppressed in com-
parison with the bulk contribution, Dbulk

qp , while the latter

equals Dbulk
qp = −�bulk

∞ |M|3 Tr (JqJp)/v4 with the dimension-
less factor

�bulk
∞ ∼

∫
dε

2π

d2k1

(2π )2

d2k2

(2π )2

v4ε2/|M|3
(ε2 + E (k1)2)(ε2 + E (k2)2)

∼ v4

|M|3
∫

dk1

(2π )2

dk2

(2π )2

1

E (k1) + E (k2)
. (B11)

The integral diverges at high momenta and should be regular-
ized. The ultraviolet cutoff momentum kuv is determined by
the size of the impurity potential aimp, kuv ∼ 1/aimp. Then one
estimates �bulk

∞ ∼ (ξ/aimp)3.
When the impurity is exactly at the edge, x = 0, Dbulk

qp ,

Dedge
qp , and Dint

qp have a similar matrix structure, although they
feature parametrically different numeric prefactors:

Dbulk
qp = −�bulk

0
|M|3
v4

Tr
(
PJqPJp

)
,

Dedge
qp = −�

edge
0

|M|3
v4

Tr
(
PJqPJp

)
, (B12)

Dint
qp = −�int

0
|M|3
v4

Tr
(
PJqPJp

)
,

where the matrix P equals

P =

⎛
⎜⎝

1 −i 0 0
i 1 0 0
0 0 1 i
0 0 −i 1

⎞
⎟⎠, (B13)

and the prefactors are given by

�bulk
0 =

∫
dε

2π

d2k1

(2π )2

d2k2

(2π )2

4v4ε2/|M|3
(ε2 + E (k1)2)(ε2 + E (k2)2)

× v4k2
x,1k2

x,2

E (k1)E (k2)(E (k1) + vky,1)(E (k2) + vky,2)

∼ v4

|M|3
∫

d2k1

(2π )2

d2k2

(2π )2

1

E (k1) + E (k2)
∼ (ξ/aimp)3,

�
edge
0 =

∫
dε

2π

dky,1

2π

dky,2

2π

v2ε2/|M|(
ε2 + v2k2

y,1

)(
ε2 + v2k2

y,2

)
∼ 1

|M|
∫

dε ∼ 1,

�int
0 =

∫
dε

2π

d2k1

(2π )2

dky,2

2π

4v3ε2/M2

(ε2 + E (k1)2)(ε2 + v2ky,2)

× v2k2
x,1

E (k1)(E (k1) + vky,1)
∼ 1

|M|
∫

dε ∼ 1. (B14)

In the last two estimates, we have taken into account that the
energy of the edge states is limited by εuv ∼ |M|.

The size of the impurity potential aimp can be reliably
estimated to be of order of several lattice spacings, ∼ 1 nm.
For example, for a manganese ion Mn2+ embedded into CdTe
lattice, we find aimp � aBεCdTeme/2mCdTe � 3 nm, where aB is
the Bohr radius, mCdTe � 0.1me is the electron band effective
mass in CdTe, me is the bare electron mass, and εCdTe � 10
is the dielectric constant of CdTe. At the same time, ξ � 40
nm for the realistic parameters of a CdTe/HgTe/CdTe quantum
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well with width of 7 nm (see Ref. [4] for details). Hence,
ξ/aimp � 1 can be considered a large parameter. It means that
the anisotropy is mainly induced by the interaction between
the impurity and the bulk states, Dbulk

qp � Dedge
qp , Dint

qp . This
conclusion is independent of the distance |x| between the im-
purity and the edge. It is worthwhile to mention that �bulk

0 is of
the same order as �bulk

∞ . Therefore as the impurity is displaced
from the edge into the bulk, the local anisotropy roughly pre-
serves its value, while its matrix structure gradually changes
from Tr (PJqPJp) to Tr (JqJp) on a length scale �x ∼ ξ .

Finally, we note that for the impurity located precisely at
the edge, Dbulk (edge, int)

qp can be equivalently rewritten as

Dbulk (edge, int)
qp = −2π2�

bulk (edge, int)
0 |M|(JJ T )qp, (B15)

where J is the matrix of dimensionless couplings introduced
in the main text.

APPENDIX C: DERIVATION OF THE QUANTUM MASTER
EQUATION AND THE EXPRESSION FOR THE CURRENT

In this appendix, we derive the quantum master equation,
which governs the behavior of the reduced density matrix
of the magnetic impurity, and find the expression for the
backscattering current. We assume that the unperturbed den-
sity matrix of the helical edge electrons is given by

ρ0 = exp
[ − 1

T

∫
dy�†(y)

(
iσzv∂y − σzV

2 − μ
)
�(y)

]
Tre exp

[ − 1
T

∫
dy�†(y)

(
iσzv∂y − σzV

2 − μ
)
�(y)

] .
(C1)

Here, μ is the chemical potential of the edge electrons, V is
the voltage applied to the helical edge, and Tre is the trace over
the states of the edge electrons. Note that while the density
matrix ρ0 is stationary, it describes a nonequilibrium situation
with finite expectation of the edge spin density

〈s j〉0 = Tre
(
ρ0�

†(y)(σ j/2)�(y)
) = δ jzνV/2. (C2)

To derive the quantum master equation for the reduced density
matrix of the magnetic impurity, we employ second-order per-
turbation theory in the electron-impurity coupling constants
Ji j . To this end, we first decompose the electron-impurity
interaction into a mean-field part and an “irreducible” part:

He-i = Ji j

ν
Sis j (y0) = Ji j

ν
Si〈s j (y0)〉0

+Ji j

ν
Si[s j (y0) − 〈s j (y0)〉0] = V

2
JizSi︸ ︷︷ ︸
Hmf

e-i

+ Ji j

ν
Si : s j (y0) :︸ ︷︷ ︸

H irred
e-i

.

(C3)

Thus the Hamiltonian of the whole system is given by

H = iv
∫

dy�†(y)σz∂y�(y)︸ ︷︷ ︸
He

+DqpSqSp + V

2
JizSi︸ ︷︷ ︸

H full
i

+ Ji j

ν
Si : s j :︸ ︷︷ ︸
H irred

e-i

. (C4)

We stress that H full
i = Hi + Hmf

e-i contains no operators asso-
ciated with the edge electrons. Next we introduce the joint
density matrix of the impurity and the electrons: ρ(t ) =
|ψ (t )〉〈ψ (t )|, where |ψ (t )〉 is the wave function of the whole
system at time t . The evolution of ρ(t ) is governed by
the standard von-Neumann equation dρ(t )/dt = −i[H, ρ(t )].
The goal of the subsequent derivation is to use this equation
to extract the equation for the evolution of the reduced density
matrix of the magnetic impurity, ρS (t ) = Treρ(t ). First of all,
we go to the interaction picture:

dρI (t )

dt
= −i[VI (t ), ρI (t )], ρ(t ) = U (t )ρI (t )U −1(t ),

U (t ) = Ui(t )Ue(t ) = Ue(t )Ui(t ),
(C5)

VI (t ) = U −1(t )H irred
e-i U (t ), Ue(t ) = exp (−iHet ),

Ui(t ) = exp
( − iH full

i t
)
.

In order to make the perturbative treatment possible, we
formally solve the evolution equation (C5) and substitute the
result back into (C5):

dρI

dt
= −i[VI (t ), ρI (−∞)] +

∫ t

−∞
dt ′[VI (t ), [ρI (t ′),VI (t ′)]].

(C6)
Tracing out electrons, we obtain

dρS,I (t )

dt
= − iTre[VI (t ), ρI (−∞)]

+
∫ t

−∞
dt ′Tre([VI (t ), [ρI (t ′),VI (t ′)]]), (C7)

where ρS,I (t ) = Ui(t )ρS (t )U −1
i (t ). We assume that the

electron-impurity interaction is switched on adiabatically, so
that the distribution of the edge electrons is unperturbed at t =
−∞. Therefore Tre[VI (t ), ρI (−∞)] = 0, as V contains only
irreducible electron operators. Moreover, in the weak coupling
regime, J � 1, it is possible to approximately write ρI (t ) =
ρS,I ⊗ ρ0 on the right-hand side of the master equation [63].
Finally, substituting the explicit form of the perturbation V ,
we find

dρS,I

dt

= Jr jJlk

∫ t

−∞
dt ′(K jk

V (t−t ′)
[
SI

r (t ′)ρS,I (t ′), SI
l (t )

]+H.c.
)
,

(C8)

where

K jk
V (τ ) = 1

ν2
Tre

(
ρ0 : sI

k (y0, τ ) :: sI
j (y0, 0) :

)
,

sI
k (y0, τ ) = U −1

e (τ )sk (y0)Ue(τ ), (C9)

SI
l (t ) = U −1

i (t )SlUi(t ).

Next we employ the Markov approximation, i.e., we
change ρS,I (t ′) to ρS,I (t ). This approximation is justified
because the correlators K jk

V decay over a time proportional
to either 1/V or 1/T , while the relaxation time of ρS,I has
an additional large factor of J −2. Switching back to the
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Heisenberg picture, we get

dρS (t )

dt
= −i

[
H full

i , ρS (t )
]

+Jr jJlk

∫ +∞

0
dτ

(
K jk

V (τ )
[
SI

r (−τ )ρS (t ), Sl
]+H.c.

)
.

(C10)

Now we introduce the eigenstates |ψc〉 of the full impurity
Hamiltonian, H full

i |ψc〉 = Ec|ψc〉. Here the index c takes one
of 2S + 1 values. Then it is possible to decompose the spin
operators as

Sr =
∑
cd

Scd
r , Scd

r = |ψc〉〈ψc|Sr |ψd〉〈ψd |.

Defining ωcd = Ed − Ec and introducing K jk
V (ω) =∫ +∞

0 dτeiωτK jk
V (τ ), we obtain

dρS (t )

dt
= −i

[
H full

i , ρS (t )
]

+Jr jJlk

(∑
cd

K jk
V (ωcd )

[
Scd

r ρS (t ), Sl
] + H.c.

)
.

(C11)

In order to write down the final form of the master equation,
we calculate the correlators K jk

V (ω). This yields

K jk
V (ω) = i

4

∑
σ1,σ2

∫
dξ1dξ2 σ

σ1σ2
k σ

σ2σ1
j

1 − nF
(
ξ2 − σ2V

2

)
ω + ξ1 − ξ2 + i0

×nF (ξ1 − σ1V /2), (C12)

where nF (ε) = 1/[e(ε−μ)/T + 1].
The correlator can be split into a Hermitian and an anti-

Hermitian parts:

K jk
V (ω) = 1

2T
jk

V (ω) + iQ jk
V (ω), TV = T †

V , QV = Q†
V ,

(C13)
where

T jk
V (ω) = π

2

∑
σ1,σ2

∫
dξ1dξ2 σ

σ1σ2
k σ

σ2σ1
j δ(ω + ξ1 − ξ2)

×(1 − nF (ξ2 − σ2V/2))nF (ξ1 − σ1V/2) (C14)

and

Q jk
V (ω) = 1

4

∑
σ1,σ2

p.v.

∫
dξ1dξ2 σ

σ1σ2
k σ

σ2σ1
j nF

(
ξ1 − σ1V

2

)

× (1 − nF (ξ2 − σ2V/2))
ω + ξ1 − ξ2

, (C15)

where p.v. denotes the Cauchy principal value. Q jk contains
only logarithmically and linearly diverging (with the high
energy cutoff ∼|M|) contributions. The corresponding terms
in the master equation (C11) can be cast in the form of the
unitary dynamics, i.e., they provide a renormalization of H full

i .
The logarithmically divergent contributions to Q jk describe
the Kondo renormalization (discussed in Appendix A) of the
coupling constants J jk in Hmf

e-i . As we previously explained,
we neglect the Kondo renormalization. The linearly diverging
terms in Q jk are consistent the with generation of the local
anisotropy terms under the course of renormalization group
flow in the Kondo problem with anisotropic exchange inter-
action [47,48]. In Eq. (C11), the corresponding terms can be
viewed as correction to the local anisotropy Hamiltonian Hi.
However, the local anisotropy generated in this way due to
edge states in parametrically smaller (it does not contain the
large parameter �bulk

0 ) than the bulk contribution. Therefore
we can safely neglect it.

Tossing out Q jk , we finally obtain the quantum master
equation in the form of Eq. (13). The explicit calculation of
the Hermitian part T jk

V of the correlator matrix K jk
V shows

that TV (ω) = T +
V (ω) + T −

V (ω), where T ±
V (ω) are given by

Eq. (10).
The master equation allows us to find the reduced density

matrix ρS in the steady state. The next step is to employ this
density matrix to evaluate the backscattering current mediated
by the magnetic impurity. Once again, we switch to the
interaction picture and, using Eq. (6), find

�I = Tr

(
i

[
H,

∫
dysz(y)

]
ρ(t )

)

= −Tr

(Jir

ν
Siεrz j : s j (y0) : ρ(t )

)

= −Tr

(Jir

ν
SI

i (t )εrz j : sI
j (y0, t ) : ρI (t )

)
. (C16)

Substituting the formal solution of the von Neumann equation
into the expression above, we obtain

�I = i
JirJlk

ν2
εrz j

∫ t

−∞
dt ′tr

(
SI

i (t ) : sI
j (y0, t ) :

×[
SI

l (t ′) : sI
k (y0, t ′) :, ρI (t ′)

])
. (C17)

The subsequent calculations are similar to those in the deriva-
tion of the master equation. As a result, we find Eq. (8).
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