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Hydrodynamic charge transport is at the center of recent research efforts. Of particular interest is
the nondissipative Hall viscosity, which conveys topological information in clean gapped systems. The
prevalence of disorder in the real world calls for a study of its effect on viscosity. Here we address this
question, both analytically and numerically, in the context of disordered noninteracting 2D electrons.
Analytically, we employ the self-consistent Born approximation, explicitly taking into account the
modification of the single-particle density of states and the elastic transport time due to the Landau
quantization. The reported results interpolate smoothly between the limiting cases of a weak (strong)
magnetic field and strong (weak) disorder. In the regime of a weak magnetic field our results describe the
quantum (Shubnikov–de Haas type) oscillations of the dissipative and Hall viscosity. For strong magnetic
fields we characterize the effects of the disorder-induced broadening of the Landau levels on the viscosity
coefficients. This is supplemented by numerical calculations for a few filled Landau levels. Our results
show that the Hall viscosity is surprisingly robust to disorder.
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Introduction.—Ordinary fluid motion is described by the
theory of hydrodynamics, one of whose cornerstones is
viscosity, which serves as the source of dissipation. Under
certain conditions, charge transport in an electronic system
can also be dominated by hydrodynamic viscous flow [1,2].
The discovery of graphene stimulated renewed theoretical
[3–11] and experimental [12–18] interest in the hydro-
dynamic description of charge conduction.
In the absence of time-reversal symmetry the viscosity

tensor has nondissipative antisymmetric components. In the
presence of a magnetic field B, this nondissipative Hall
viscosity (ηH) was studied theoretically in the classical limit
of high temperature plasmas [19–23], and for low temper-
ature electron gas [24]. Later, interest in the Hall viscosity
was rekindled in quantum systems with a gapped spectrum,
due to the connection between ηH and the geometric
response [25–31], and its expected quantization in the
presence of translational and rotational symmetries [29]. It
was understood that beyond the Hall conductivity and
viscosity there are additional nondissipative electromag-
netic and geometrical response functions in gapped quan-
tum systems [32–44]. Within the hydrodynamic description
of electron transport, nonzero ηH influences significantly
the structure of the electron flow [45–50], which allows one
to access ηH experimentally [51]. Also, it was argued that
the dissipative and Hall viscosity affect the spectrum of
edge magnetoplasmons [52–54].
For noninteracting electrons in the absence of disorder

each filled Landau level (LL) gives a contribution to the Hall

viscosity equal ℏð2nþ 1Þ=ð8πl2BÞ [25], where n denotes the
LL index and lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=ðeBÞp
stands for the magnetic

length. This result is stable against perturbations of the
Hamiltonian which preserve translational and rotational
invariance [29]. However, the fate of this result in the
presence of disorder has not been studied yet. Therefore,
it is not clear how the clean result obtained within the
quantum treatment of the electronmotion in amagnetic field
connects to the result ηH ¼ ν0μ

2ωcτ
2
tr;2=½1þ 4ω2

cτ
2
tr;2� deri-

ved for a classical disordered electron gas [24]. Here μ de-
notes the chemical potential, τtr;2 the second transport time,
ωc ¼ eB=ðmecÞ the cyclotron frequency, ν0 ¼ me=ð2πℏ2Þ
the density of states at B ¼ 0, and me the effective
electron mass.
In this Letter we report the results of an analytical and

numerical study of the dissipative and Hall viscosities of
noninteracting 2D electrons in the presence of disorder.
Contrary to previous studies we explicitly take into
account the Landau quantization of the electron spectrum.
Analytically, within the self-consistent Born approximation
(SCBA) [55] we derive expressions for the dissipative and
Hall viscosities, which smoothly interpolate between the
results known in the literature for a classical magnetic field
[19–23,45] and for the strong magnetic field in the absence
of disorder [25]. Since the SCBA is rigorously justified for
high LLs only, we perform numerical calculation of ηH
for a few lowest LLs. The obtained numerical results are in
a perfect agreement with the SCBA predictions. They
demonstrate a surprising resilience of the Hall viscosity
to disorder.
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Model.—Noninteracting electrons confined to a 2D
plane are described by the following Hamiltonian:

H ¼ ð−i∇ − eAÞ2=2me þ VðrÞ; ð1Þ

where VðrÞ stands for a random potential and A for the
vector potential corresponding to the static perpendicular
magnetic field B. In this Letter we use the Landau gauge:
Ay ¼ −Bx and Ax ¼ Az ¼ 0. We assume that the random
potential has Gaussian distribution with a pair correlation
function VðrÞVðr0Þ ¼ Wðjr − r0jÞ that decays with a typical
length scale d. In what follows we use units
with c ¼ ℏ ¼ 1.
Kubo formula for the viscosity.—The viscosity tensor

can be computed by means of the Kubo formula [56–58]:

ηjk;psðωÞ ¼ −
iκ−1

ω
δjkδps þ

1

iωS

Z
dΩdε
π2

fε − fεþΩ

Ω − ω − i0

× TrTjkImGR
εþΩTpsImGR

ε : ð2Þ

Here fε ¼ 1=f1þ exp½ðε − μÞ=T�g denotes the Fermi dis-
tribution function, GR

ε ¼ 1=ðε −H − i0Þ the retarded
Green’s function, S the system area, and κ the internal
compressibility [59]. The form of the stress tensor Tjk ¼
meðvjvk þ vkvjÞ=2 is not affected by a random potential
(see Ref. [60] and the Supplemental Material for details
[61]). Here v ¼ ð−i∇ − eAÞ=me stands for the velocity
operator. Disorder averaging is denoted by an overbar.
Self-consistent Born approximation.—In order to com-

pute the viscosity tensor from Eq. (2) we treat the disorder
scattering using the SCBA [55]. This approximation holds
under the following conditions [62,63]:

1=kF; d ≪ lB; d ≪ vFτ0: ð3Þ

Here, kF ¼ mevF and vF denote the Fermi momentum and
velocity, respectively, and τ0 is the total elastic relaxation
time at zero magnetic field. It can be expressed in terms of
the Fourier transform W̃ðqÞ of the pair correlation function
WðrÞ. Furthermore, it is convenient to generalize it to
(m ¼ 0; 1; 2;…):

1

τm
¼ ν0

Z
2π

0

dϕW̃ð2kF sinϕ=2Þ cosmϕ: ð4Þ

The average density of states νðεÞ at nonzero B is
determined by the average retarded Green’s function GR

ε .
In the LL representation the average density of states is
given as νðεÞ ¼ −

P
n ImGR

n ðεÞ=ð2π2l2BÞ. Within SCBA the
retarded Green’s function satisfies [55,62,63]

GR
n ¼ ðε − ϵn − ΣR

ε Þ−1; ΣR
ε ¼ ωc

2πτ0

X
n

GR
n ; ð5Þ

where ϵn ¼ ωcðnþ 1=2Þ. There are two limiting cases in
which the self-consistent Eq. (5) can be easily solved [55].
In the regime of overlapping LLs, ωcτ0 ≪ 1, one can
use the Poisson formula for summation over the LL
index. The averaged density of states becomes νðεÞ ¼
ν0½1 − 2δ cosð2πε=ωcÞ�. Here δ ¼ expð−π=ωcτ0Þ ≪ 1 is
the Dingle parameter. In the opposite case, when the
LLs are well separated, one can restrict the summation
in Eq. (5) to the single LL which is closest to the
energy of interest, jε − ϵN j < ωc=2. Then the average
density of states acquires the semicircle profile, νðεÞ ¼
ν0τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − ðε − ϵNÞ2

p
, where Γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωc=ðπτ0Þ
p

determines
the broadened LL width.
In the presence of long-range disorder correlations d ≫

k−1F it is important to take into account the vertex correc-
tions to the “bubble” contribution in the Kubo formula (2)
(see Fig. 1). This implies that in addition to the average
Green’s function, one also needs to know the renormalized
vertex, which is the stress tensor in the case of the viscosity.
Within the SCBA Tjk can be approximated as a linear
combination of operators which change the LL index by 2.
Under conditions (3) one can show that an operator Vm,
which transfers an electron from the (nþm)th LL to the
nth LL, is renormalized by the ladder resummation of the
disorder lines as follows [62–64] (see Ref. [61] for details):

Vm→
Vm

1−τ−1m ΠRA
m

; ΠRA
m ¼ωc

2π

X
n

GR
nþmðεÞGA

nðεÞ: ð6Þ

Here ΠRA
m is the contribution of the bubble without ladder

insertions. Using Eq. (5), it can be rewritten as ΠRA
m ¼

−iνðεÞ=½mωcν0 − iνðεÞ=τ0�. Therefore, within the SCBA
the vertex corrections are expressed in terms of the average
density of states only.
Dissipative viscosity.—Disorder averaging restores 2D

rotational symmetry [65]. Hence, the viscosity tensor ηjk;ps
is characterized by only three parameters:

ηjk;ps ¼ ηsðδjpδks þ δjsδkpÞ þ ðζ − ηsÞδjkδps
þ ðηH=2Þðϵjpδks þ ϵjsδkp þ ϵkpδjs þ ϵksδjpÞ; ð7Þ

(a) (b)

(c)

FIG. 1. (a) The self-energy diagram. (b) The diagram corre-
sponding to the Kubo formula (2). (c) The equation for the vertex
Vm in the ladder approximation. The solid line denotes the SCBA
Green’s function GðεÞ. The dashed line denotes the disorder
correlation function WðrÞ.
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where ζ and ηs denote the bulk and shear viscosities,
respectively. Within the SCBA the bulk viscosity vanishes,
ζ ¼ 0. Using Eqs. (5) and (6), we find the following result
for the shear viscosity at ω ¼ 0 [61]:

ηs ¼
1

2

Z
dεð−f0εÞ

νðεÞε2τtr;2ðεÞ
1þ 4ω2

cτ
2
tr;2ðεÞ

; ð8Þ

where τtr;2ðεÞ ¼ τtr;2ν0=νðεÞ is the renormalized second
transport time and 1=τtr;2 ¼ 1=τ0 − 1=τ2 is the second
transport rate at B ¼ 0. We note that for kFd ≫ 1 the
second transport time becomes τtr;2 ¼ τ0ðkFd=2Þ2 ≫ τ0.
We mention that Eq. (8) is analogous to the result for the
dissipative conductivity [64].
In the regime of overlapping LLs, ωcτ0 ≪ 1, the shear

viscosity exhibits Shubnikov–de Haas-type oscillations:

ηs ¼
1

2

ν0μ
2τtr;2

1þ 4α2

�
1 −

16α2δ

1þ 4α2
F T cos

2πμ

ωc

�
; ð9Þ

where α ¼ ωcτtr;2 and F T ¼ ð2π2T=ωcÞ= sinhð2π2T=ωcÞ.
The nonoscillatory term in ηs reproduces the classical result
for the shear viscosity of an electron gas [24].
In the regime of well-separated LLs,ωcτ0 ≫ 1, one finds

from Eq. (8) that the shear viscosity is nonzero when the
chemical potential is inside the Nth broadened Landau
level (jμ − ϵN j ≤ Γ):

ηs ¼ ðN2τ0Þ=ð8π2l2Bτtr;2Þ½1 − ðμ − ϵNÞ2=Γ2�: ð10Þ

For chemical potential at the center of the LL, the shear
viscosity is 2ωcτ0=π times larger then the one naively
expected on the basis of purely classical expression. The
dependence of the shear viscosity on the chemical potential
in comparison with νðεÞ is shown in Fig. 2.

Hall viscosity.—The Hall viscosity can be extracted from
the viscosity tensor as ηH ¼ ðηxy;xx − ηxy;yyÞ=2. Similarly to
the Hall conductance, the evaluation of ηH from the Kubo
formula (2) is complicated due to contributions that come
from all the states below the chemical potential. Therefore,
it is convenient to proceed in a way pioneered by Smrčka
and Středa [67]: As for the Hall conductivity we split the
expression for the Hall viscosity at ω ¼ 0 into two parts,
ηH ¼ ηIH þ ηIIH , where [61]

ηIH ¼ Re
Z

dε
4πS

ð−f0εÞTrTxyGR
ε ðTxx − TyyÞGA

ε ; ð11Þ

ηIIH ¼ Im
Z

dε
2πS

ð−f0εÞTrJxyðTyy − TxxÞGA
ε

þ Im
Z

dε
2πS

fεTr½Jxy; Jyy − Jxx�ImGR
ε : ð12Þ

Here Jjk denotes the strain generators which are related
with the stress tensor as Tjk ¼ −i½H; Jjk� [56]. One can
evaluate ηIH in a similar way to ηs [61]:

ηIH ¼
Z

dεð−f0εÞ
νðεÞε2ωcτ

2
tr;2ðεÞ

1þ 4ω2
cτ

2
tr;2ðεÞ

: ð13Þ

The evaluation of ηIIH is more involved. Although one can
write down the viscoelastic analog of the Smrčka and
Středa formula for the Hall viscosity [68], it does not
provide a suitable way for the calculation of ηIIH in the
presence of disorder. In order to compute ηIIH one needs to
know the expressions for the strain generators. In the
absence of disorder they can be easily written down expli-

citly [56], e.g., Jð0Þxy ¼ ðTxx − TyyÞ=ð4ωcÞ and Jð0Þyy − Jð0Þxx ¼
Txy=ωc. In the presence of a random potential the strain
generators can be constructed as a series in spatial
derivatives of a random potential V. This allows us to
evaluate ηIIH within the SCBA [61]:

ηIIH ¼ E=ð2ωcÞ −
Z

dεð−f0εÞνðεÞε2=ð4ωcÞ; ð14Þ

where E ¼ R
dενðεÞεfε stands for the energy density.

Combining Eqs. (13) and (14), we obtain

ηH ¼ E
2ωc

−
1

4ωc

Z
dεð−f0εÞ

νðεÞε2
1þ 4ω2

cτ
2
tr;2ðεÞ

: ð15Þ

In the absence of disorder and for the chemical potential
above the Nth Landau level the energy density at T ¼ 0 can
be computed as E ¼ P

N
n¼0 ϵn=ð2πl2BÞ, which yields the

known result ηH ¼ P
N
n¼0ðnþ 1=2Þ=ð4πl2BÞ [25]. Also, we

mention that in the Boltzmann limit, T ≫ EF, the energy
density is given by E ¼ neT, where ne denotes the particle
density, such that the Hall viscosity in the absence of

10 11 12 13 14 15
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2
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4

1

2

3

4

c

8
l B2

s 0

FIG. 2. The density of states (blue dotted and blue dash-dotted
curves) and shear viscosity (red solid and red dashed curves) as
functions of μ=ωc for smooth disorder, τtr;2=τ0 ¼ 40. Blue dotted
and red solid curves correspond to well-separated LLs with
ωcτ0 ¼ 15. Blue dash-dotted and red dashed curves correspond
to overlapping LLs with ωcτ0 ¼ 0.8.
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disorder and at T ≫ EF becomes ηH ¼ neT=ð2ωcÞ, in
agreement with Eq. (59.38) of Ref. [69] in which the
Hall viscosity is denoted by η3. We note that the structure of
Eq. (15) resembles the structure of the SCBA result for the
Hall conductivity σH [70].
The appearance of the nonzero ηH can be explained on

a pure classical level [21]. Hall viscosity describes the
response of Txx − Tyy to a shear velocity profile, Ux ¼ uy.
In the presence of a magnetic field this velocity can be
considered as the result of a nonuniform electric field,
Ey ¼ −UxB. This electric field results not only in a drift of
the cyclotron orbit but in its deformation into an ellipse. To
linear order in u the eccentricity of the ellipse is equal to
u=ð2ωcÞ. This asymmetry between motion in the x and y
direction yields the nonzero ratio ðTxx − TyyÞ=u in the
limit u → 0. Hence, nonzero ηH arises, which is given by
the first term in Eq. (15). An electron moving along an
ellipse conserves its energy to the first order in u, in
agreement with the nondissipative nature of ηH. In the
presence of impurity scattering an electron experiences
a friction force corresponding to an electric field
Ex ¼ −Ux=ðeτtr;2Þ. This electric field leads to a velocity
component Uy ¼ Ux=ðωcτtr;2Þ. The nonuniformity of this
velocity produces additional correction to the difference,
Txx − Tyy ∼ −uηs=ðωcτtr;2Þ. Thus, there is an additional
correction to the Hall viscosity, ΔηH ¼ −ηs=ðωcτtr;2Þ,
which corresponds to the second term in Eq. (15) in the
classical regime.
In the case of overlapping LLs, ωcτ0 ≪ 1, from Eq. (15)

we obtain the Shubnikov–de Haas oscillations of the Hall
viscosity:

ηH ¼ ν0μ
2ωcτ

2
tr;2

1þ 4α2

�
1þ δ

2α2
1þ 12α2

1þ 4α2
F T cos

2πμ

ωc

�
: ð16Þ

The nonoscillatory term in ηH coincides with the classical
result for the Hall viscosity of electron gas [24].
In the case of well-separated LLs, ωcτ0 ≫ 1, one finds

from Eq. (15) that the Hall viscosity is reduced from the
quantized value if the chemical potential lies within the
broadened LL, jμ − ϵN j ≤ Γ:

ηH ¼ N2

8πl2B

�
1 −

τ20Γ
2πωcτ

2
tr;2

�
1 −

ðμ − ϵNÞ2
Γ2

�
3=2

�
: ð17Þ

We note that for the long-range-correlated random potential
the Hall viscosity dominates the shear viscosity, ηH ≫ ηs
[cf., Eqs. (10) and (17)].
The deviation of the Hall viscosity from the clean

value is controlled by the small parameter ðτ0=τtr;2Þ2=ffiffiffiffiffiffiffiffiffiffi
ωcτ0

p ≪ 1. In the case of short range random potential
correlations τ0 ¼ τtr;2 the deviation of ηH from its clean
value is very small. For long-range-correlated random
potential τ0 ≪ τtr;2 the difference ηH − N2=ð8πl2BÞ is addi-
tionally suppressed (see Fig. 3).

Numerical results.—We would now like to explore the
quantum Hall regime, where the number of filled LLs is of
order unity. Here the SCBA cannot be used anymore, and
we resort to a numerical calculation. For this we discretize
the system and employ the Hofstadter model with uncorre-
lated random potential, uniformly distributed between
½−w=2; w=2� at each lattice site. We calculate the Hall
viscosity at zero temperature using the retarded correlation
function of discretized stress operators [71], and take both
the continuum and thermodynamic limits to extrapolate to
the behavior of our model (1) [61]. In the presence of
disorder we can take these limits while keeping constant
ωcτ. The results for the Hall viscosity are plotted in Fig. 4,
together with the behavior of the Hall conductivity (σH) at
zero wave vector. One sees that, somewhat surprisingly, the

c

l B
H

N
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0.92

0.94

0.96

0.98

1.

8
2

2

FIG. 3. The normalized Hall viscosity 8πl2BηH=N
2 as the

function of Γ=ωc for different ranges of disorder in the case
of well-separated LLs. The parameter τtr;2=τ0 is equal to 1, 2, 3,
and 10 from the bottom to the top.
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FIG. 4. The Hall conductivity (circles) and viscosity (squares)
as a function of ωcτ forN ¼ 0, 1, and 2 filled Landau levels (blue,
yellow, and green, respectively). The clean viscosity values are
also indicated by dashed lines. ηH is seen to be robust to disorder
to the same extent the σH is, within the numerical errors (error
bars are smaller than the symbol sizes).
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Hall viscosity maintains its quantization to the same extent
as the Hall conductivity, that is, until the quantum Hall to
insulator transition is approached.
Conclusions.—To summarize, we studied the dissipative

and Hall viscosity of 2D electron system in the presence of
a random potential. Within the self-consistent Born
approximation we derived an expression for both the
dissipative and Hall viscosities, which takes into account
the modification of the single-particle density of states and
the elastic transport time due to the Landau quantization.
Our results smoothly interpolate between the case of weak
magnetic field and strong disorder on the one hand and the
case of strong magnetic field and vanishing disorder on the
other hand. In the former regime, we derived the expres-
sions for the quantum (Shubnikov–de Haas type) oscil-
lations of the dissipative and Hall viscosities. In the case of
strong magnetic field, we found that the disorder broad-
ening of the Landau level does not lead to a significant
change of the Hall viscosity in comparison with the clean
result. Our numerical results for a few filled LLs support
this striking conclusion.
There are various ways to extend our work. In Galilean

invariant systems it was proven [36,56] that the viscosity
tensor can be extracted from the nonlocal conductivity, that
is, the conductivity tensor at finite wave vector q. In the
absence of Galilean invariance there is no reason to expect
that ηH is related to σHðqÞ [72,73]. Also, the relation
between ηH and σHðqÞ can be affected by the presence of a
lattice [71,74] or disorder. However, if one treats disorder
on the level of the Drude model with a classical magnetic
field, the relation of Ref. [56] between ηH and σHðqÞ still
holds [75]. This fact is not surprising since the Drude model
does not properly take into account the LLs, which result in
the energy dependence of the density of states and elastic
scattering transport time. However, such a simplification
can be dangerous since ηH and σH have contributions
coming from the states well below the Fermi energy. It
would therefore be worthwhile to extend the presented
analytical and numerical approaches to the conductivity at
finite wave vector [76]. We also note that our techniques
can be applied to calculation of the dissipative and Hall
viscosity in graphene, where only the result in the absence
of disorder is known [77].
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