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A quantum magnetic impurity of spin S at the edge of a two-dimensional time reversal invariant
topological insulator may give rise to backscattering. We study here the shot noise associated with the
backscattering current for arbitrary S. Our full analytical solution reveals that for S > 1

2
the Fano factor may

be arbitrarily large, reflecting bunching of large batches of electrons. By contrast, we rigorously prove that
for S ¼ 1

2
the Fano factor is bounded between 1 and 2, generalizing earlier studies.
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Introduction.—Zero-frequency current noise in a con-
ductor can reveal information about correlations in elec-
tronic transport which cannot be extracted from the average
current [1,2]. Obtaining information about the correlations
requires going beyond linear response (where thermal noise
is fully determined by linear conductance through the
fluctuation-dissipation theorem), and studying shot noise
at voltage larger than the temperature. The ratio between
the shot noise and the average current times the electron
charge is referred to as the Fano factor. It is useful for
characterizing the unit of effective elementary charge in
correlated electron systems, e.g., quasiparticle charges in
fractional quantum Hall edges [3,4]. Entanglement with an
external degree of freedom may modify the effective Fano
factor [5,6].
The experimental discovery of 2D topological insulators

[7] triggered intensive experimental and theoretical research
[8,9]. Electron transport along the helical edge was theo-
retically predicted to be protected from elastic backscatter-
ing by time-reversal symmetry. However, this ideal picture
was impugned by transport experiments in HgTe=CdTe
[7,10–14] and InAs=GaSb [15–22] quantum wells, Bi
bilayers [23], and WTe2 monolayers [24–26]. In order to
explain this data, several physical mechanisms of back-
scattering were proposed and studied theoretically [27–48].
In contrast to the average current, shot noise at the helical

edge has attracted much less experimental and theoretical
attention so far [40,49–53]. The shot noise due to back-
scattering of helical edge electrons via anisotropic
exchange (which has to break the conservation of the total
z projection of the angular momentum to affect the dc
current [29]) with a local spin S ¼ 1

2
magnetic moment has

been calculated in Ref. [52]. The authors of Ref. [52]
studied the so-called backscattering Fano factor, Fbs, which
is the ratio between the zero-frequency noise of the

backscattering current, Sbs, and the absolute value of the
average backscattering current, jIbsj, in the limit of large
voltage bias V. It was found that Fbs is bounded between 1
and 2, with the extreme values corresponding to indepen-
dent backscattering of single electrons and bunched
backscattering of pairs of electrons, respectively. The
considerations of Ref. [52] were limited to the case of
an almost isotropic exchange interaction. This assumption
is natural for the model of charge puddles which act as
effective spin-1

2
magnetic moments [32,35]. However, the

spin of a magnetic impurity (MI) can be larger than 1
2
, e.g.,

S ¼ 5
2
for a Mn2þ ion in a HgTe=CdTe quantum well.

Moreover, in the case of a “genuine” MI the exchange
interaction is strongly anisotropic [41,46].
In this Letter we study the backscattering shot noise at

the edge of a 2D topological insulator mediated by the
presence of a single quantum MI. We assume that the
impurity is of an arbitrary spin S and the exchange
interaction matrix is of a general form. We find the
backscattering Fano factor analytically, cf., Eq. (9).
Strikingly, for any S > 1

2
it is not bounded from above,

cf., Eqs. (11) and (12); Fbs > 2 over a wide parameter
range, see Fig. 2. This implies that a dynamical magnetic
moment with S > 1

2
can bunch helical electrons together.

Here, in a significant parameter range, for each value of the
impurity spin projection Sz electrons are backscattered with
a rate ∝ S2z , while Sz itself changes slowly. This results in a
modulation of the backscattering events into long corre-
lated pulses [Fig. 1(a)]. For S ¼ 1

2
this effect is absent

[Fig. 1(b)], and we find a concise exact expression for Fbs
proving rigorously that 1 ≤ Fbs ≤ 2, cf., Eq. (10). Our
results elucidate an important facet of the dichotomy
between topological properties and electronic correlations
in one-dimensional edges [54], accounting for mechanisms
that break topological protection against backscattering.
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Model.—Helical edge electrons coupled to a MI are
described by the following Hamiltonian (we use units with
ℏ ¼ kB ¼ −e ¼ 1):

H ¼ He þHe−i; He ¼ iv
Z

dyΨ†ðyÞσz∂yΨðyÞ; ð1Þ

where Ψ† (Ψ) is the creation (annihilation) operator of the
edge electrons with velocity v. The Pauli matrices σx;y;z act
in the spin basis of the edge states. The exchange electron-
impurity interaction is assumed to be local:

He−i ¼
1

ν
J ijSisjðy0Þ; sjðyÞ ¼

1

2
Ψ†ðyÞσjΨðyÞ: ð2Þ

Here ν ¼ 1=ð2πvÞ is the density of states per one edge
mode, y0 is the position of the MI, operator Si denotes the
ith component of the impurity spin, and the couplings J ij

are dimensionless and real. We stress that in general the
exchange interaction (2) is strongly anisotropic and violates
the conservation of the total z projection of the angular
momentum of the system [41,46,55]. The latter violation is
required to generate persistent backscattering of helical
electrons. We assume that the coupling constants are small,
jJ ijj ≪ 1, and we neglect the local anisotropy Hanis ¼
DkpSkSp of the MI spin which is justified at jDkpj ≪
maxfJ 2

ijT; jJ ijjVg [47]. In the absence of the local
anisotropy we can rotate the spin basis for Si bringing
the exchange matrix J ij to a lower triangular form. We thus
assume hereinafter that J xy ¼ J xz ¼ J yz ¼ 0. In addition,
we ensure that J xxJ yy > 0 with a proper rotation.
Cumulant generating function.—The average backscat-

tering current and its zero frequency noise can be extracted
from the statistics of the number of electrons backscattered
off a MI during a large time interval t: ΔNðtÞ ¼ ΣzðtÞ − Σz,
where ΣzðtÞ ¼ eiHtΣze−iHt and Σz ¼

R
dyszðyÞ. The

cumulant generating function for ΔN can be written as
Gðλ; tÞ ¼ ln Tr½eiλΣzðtÞe−iλΣzρð0Þ�, where ρð0Þ stands for
the initial density matrix of the full system [56]. It is
convenient to write Gðλ; tÞ ¼ ln TrρðλÞðtÞ, where ρðλÞðtÞ ¼
e−iH

ðλÞtρð0ÞeiHð−λÞt is the generalized density matrix of the
system at time t and HðλÞ ¼ eiλΣz=2He−iλΣz=2. Tracing out
the degrees of freedom of the helical electrons, we obtain

Gðλ; tÞ ¼ ln TrSρ
ðλÞ
S ðtÞ, where ρðλÞS ðtÞ denotes the reduced

generalized density matrix of the impurity.
Generalized master equation.—In order to find Gðλ; tÞ

we derive a generalized Gorini-Kossakowski-Sudarshan-
Lindblad equation, which governs the time evolution of

ρðλÞS ðtÞ (see Supplemental Material [57]):

dρðλÞS

dt
¼−i½Hmf

e−i;ρ
ðλÞ
S �þηðλÞjk Sjρ

ðλÞ
S Sk−

ηð0Þjk

2
fρðλÞS ;SkSjg: ð3Þ

HereHmf
e−i¼J zzhsziSz=ν is the mean-field part ofHe−i with

the average non-equilibrium spin density hszi ¼ νV=2.

Additionally, we have introduced ηðλÞjk ¼ πTðJΠðλÞ
V J TÞjk,

where

ΠðλÞ
V ¼

0
B@

fþλ ðV=TÞ −if−λ ðV=TÞ 0

if−λ ðV=TÞ fþλ ðV=TÞ 0

0 0 1

1
CA ð4Þ

and f�λ ðxÞ ¼ ðx=2Þðe−iλex � eiλÞ=ðex − 1Þ.
Below we focus on the regime V ≫ T. The first term on

the right-hand side of Eq. (3) is then much larger than the
other two terms. Consequently, one may implement the
rotating wave approximation to simplify Eq. (3). Within its

framework ρðλÞS is diagonal in the eigenbasis of Hmf
e−i, i.e.,

of Sz. Denoting the impurity state with Sz ¼ m as jmi
(m ¼ S;…;−S) we obtain a classical master equation for
the occupation numbers

d
dt

hmjρðλÞS jmi ¼
XS
m0¼−S

LðλÞ
mm0 hm0jρðλÞS jm0i: ð5Þ

Here LðλÞ is a ð2Sþ 1Þ × ð2Sþ 1Þ tridiagonal matrix. The
tridiagonal form indicates that Sz changes by not more than
unity in each elementary scattering process. Nonzero

elements of LðλÞ are given by LðλÞ
mþ1;m ¼ e−iληþ½SðSþ 1Þ−

mðmþ 1Þ�=4, LðλÞ
m;mþ1 ¼ ðη−=ηþÞLðλÞ

mþ1;m, and LðλÞ
mm ¼

−eiλLðλÞ
mþ1;m − eiλLðλÞ

m−1;m þ ðe−iλ − 1Þηð0Þzz m2, where η� ¼
ηð0Þxx þ ηð0Þyy � iðηð0Þxy − ηð0Þyx Þ. It is worthwhile to note that

by Eq. (5), the characteristic function of hmjρðλÞS jmi obeys
the Heun equation [61].
Results.—At λ ¼ 0 Eq. (5) describes the time evolution

of populations of the impurity energy levels. Through this

(a) (b)

(c) (d)

FIG. 1. Sketches of the backscattering current as a function of
time in different regimes: (a) q ≪ 1 and S ¼ 1; (b) q ≪ 1 and
S ¼ 1=2; (c) p ¼ 1; (d) 1 − p ≪ 1. Red and blue peaks corre-
spond to backscattering processes with and without the impurity
flips, respectively. Transitions between impurity levels are
depicted above each spin-flip process.
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equation we establish that the steady state density matrix of
the impurity at V ≫ T is given by

ρð0ÞS;st ∼
�
1þ p
1 − p

�
Sz
; p ¼ 2J xxJ yy

J 2
xx þ J 2

yy þ J 2
yx
; ð6Þ

The dimensionless parameter p determines the polarization
of the impurity; i.e., for p ¼ 1 only the state Sz ¼ S is
occupied, whereas for p ¼ 0 all levels are equally popu-
lated. Physically, at p ¼ 1, J xx ¼ J yy, J yx ¼ 0, and the
impurity spin can be flipped down only by backscattering
an edge electron carrying spin-down. We note, though, that
at large voltage the current is carried mainly by spin-up
electrons. Thus, a steady state of the impurity is established
in which Sz ¼ S with essentially unit probability. At p < 1
the impurity spin can be flipped down by electrons with
spin-up, resulting in depolarization of the impurity. We
stress that J zx and J zy do not enter into the expression (6)
for p because the corresponding terms in the Hamiltonian
do not induce impurity spin flips.
To express Ibs and Sbs in a compact form we introduce

two parameters:

g¼J 2
xxþJ 2

yyþJ 2
yxþJ 2

zxþJ 2
zy; q¼1−

J 2
zxþJ 2

zy

g
:

ð7Þ

Then we find that η� ¼ πgVð1� pÞq=2 and ηð0Þzz ¼
πgVð1 − qÞ=2. Notice that 0 < p; q ≤ 1 and g ≪ 1.
The average backscattering current can be found as

Ibs ¼ hΔNi=t ¼ −ði=tÞ∂Gðλ; tÞ=∂λ, where the limits
t → ∞ and λ → 0 are assumed. Solving Eq. (5) within
the first order perturbation theory in λ, we find

Ibs ¼ −
πgV
4

hRðSzÞi; ð8Þ

where RðSzÞ¼qSðSþ1Þ−qpSzþð2−3qÞS2z and h…i ¼
Trð…ρð0ÞS;stÞ. We note that hRðSzÞi > 0; hence Ibs is
negative.
The backscattering current noise at zero frequency is

given by the second cumulant of ΔN as Sbs ¼
⟪ðΔNÞ2⟫=t ¼ −t−1∂2Gðλ; tÞ=∂λ2 at t → ∞ and λ → 0.
In order to compute Sbs from Eq. (5) we employ second
order perturbation theory in λ [57]. The noise can be written
as Sbs ¼ FbsjIbsj, where the backscattering Fano factor
reads

Fbs ¼ 1þ 4

qð1 − pÞ
X2S
n¼1

hPn½RðSzÞ − hRðSzÞi�i2
nð2Sþ 1 − nÞhRðSzÞiμn

: ð9Þ

Here Pn ¼
P

S
m¼S−nþ1 jmihmj is a projector on the sub-

space of n impurity states with the largest Sz projection and

μn ¼ hSþ 1 − njρð0ÞS;stjSþ 1 − ni. Notice that Eq. (9)
implies Fbs ≥ 1. So far, we considered the model of non-
interacting edge states. Accounting for electron-electron
interaction results only in the common factor for Ibs and Sbs
that leaves Fbs intact [57].
The most striking feature of Eq. (9) is the divergence at

q → 0 for 0 ≤ p < 1 [cf., Eq. (12)]. It indicates that in
general the Fano factor is unrestricted from above. The
only exception is the case of S ¼ 1=2, for which Eq. (9)
gives

FbsðS ¼ 1=2Þ ¼ ð1 − qp4Þ=ð1 − qp2Þ: ð10Þ

This expression indicates that Fbs is restricted to the range
between 1 and 2 for S ¼ 1=2. Equation (10) extends the
p; q → 1 result of Ref. [52] to arbitrary values of p and q.
The divergence of Fbs at q → 0 for impurities with S >

1=2 can be explained on physical grounds. For the sake of
simplicity we first consider S ¼ 1. The inequality q ≪ 1
implies jJ zxj; jJ zyj ≫ jJ xxj; jJ yyj; jJ yxj and, therefore,
the backscattering predominantly happens without spin
flips of the impurity. By Fermi’s golden rule, the rate of
such reflection processes is proportional to S2z , rendering
the backscattering current dΔN=dt very sensitive to the
spin state of the impurity. The processes associated with
J xx, J yy, and J yx in He−i are incapable of producing a
significant contribution to dΔN=dt on their own, but they
can transfer the impurity from one spin state to another,
switching efficient backscattering on (Sz ¼ �1) and off
(Sz ¼ 0). Consequently, the backscattering current as a
function of time looks like a sequence of long pulses, each
consisting of a large number (proportional to 1=q) of
backscattered electrons [see Fig. 1(a)]. This peculiar
bunching of helical electrons results in 1=q divergence
of Fbs. For S > 1 the backscattering current looks differ-
ently because the reflection intensity remains finite
between the pulses. Still, many-electron correlations are
present in dΔN=dt: impurity rarely jumps between states of
different Sz changing the intensity of backscattering ∝ S2z .
As q → 0, impurity backscatters increasingly large number
of electrons during its stay in a state with a given Sz, which
results in the divergent backscattering Fano factor. We note
that for S ¼ 1=2 for both spin states S2z ¼ 1=4. Because of
that dΔN=dt has no pulses [see Fig. 1(b)] and Fbs is not
singular at q → 0.
The exact analytical result (9) for Fbs can be expressed as

a rational function of p and q for any given value of S.
However, even for S ¼ 1 such an expression is lengthy. We
thus focus on the relevant limiting cases below. For an
unpolarized impurity p ¼ 0 we find

Fbsðp¼0Þ¼1þð2S−1Þð2Sþ3Þð2−3qÞ2=ð45qÞ: ð11Þ

In this regime the Fano factor scales as S2 at large S. This
fact has a simple physical interpretation. Since for p ¼ 0
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each of the 2Sþ 1 spin states of the impurity is occupied
with the same probability, the dynamics of impurity flips
between states with different Sz is diffusive. If the MI starts
its motion in a state Sz, on average ∼S2 transitions occur
before Sz returns to its initial value. Therefore, approx-
imately S2 subsequent spin flips of the impurity are
correlated. These correlations in the dynamics of the
impurity spin are mirrored by the correlations in the
electron backscattering and result in the S2 scaling of
Fbs at small p.
For an almost fully polarized MI, 1 − p ≪ 1 − q, Eq. (9)

yields

Fbsðp→1Þ¼1þð1−pÞ½ð2−3qÞSþq−1�2
qð1−qÞS3 : ð12Þ

As follows from Eq. (12) the Fano factor at p ¼ 1 is equal
to unity for q < 1. This result is expected since for p ¼ 1
the spin of a MI is locked to the state Sz ¼ S. Therefore, the
only allowed backscattering processes occur due to the J zx
and J zy terms in He−i, which do not require spin flips of
the impurity to scatter helical electrons. Consequently, the
impurity does not keep memory about backscattered
electrons, which results in a Poissonian single-electron
reflection process with Fbs ¼ 1 [see Fig. 1(c)]. For
1 − p ≪ 1, rare two-particle reflections are involved in
addition to the single-particle backscattering. They are

accompanied by short-time excursions of the impurity spin
from the state Sz ¼ S to the state Sz ¼ S − 1 and lead to the
enhancement of the Fano factor above unity [cf., Eq. (12)].
In total, for 1 − p ≪ 1 the backscattering of electrons
represents superposition of the independent single- and
two-particle Poisson processes [see Fig. 1(d)]. For large S
the deviation of Fbs from unity is additionally suppressed
by a factor 1=S in the considered limit [cf., Eq. (14)].
The behavior of Fbs at the point q ¼ p ¼ 1 is non-

analytical owing to Ibs ¼ 0. The value of the Fano factor
depends on the direction in the ðq; pÞ plane at which this
point is approached. For a fixed ratio ð1 − pÞ=ð1 − qÞ,
Eq. (9) yields

Fbsðq; p → 1Þ ¼ 2ð1 − pÞ þ ð1 − qÞS
1 − pþ ð1 − qÞS : ð13Þ

The overall behavior of Fbsðq; pÞ for different values of
S is shown in Fig. 2. For S ¼ 1=2 [Fig. 2(a)] the back-
scattering Fano factor is bounded by 1 ≤ Fbs ≤ 2. For
S > 1=2 [Figs. 2(b)–2(f)] there is a divergence in Fbs in the
vicinity of q ¼ 0. The divergence appears to be more
pronounced as S increases. However, this trend breaks
down for large S. Equation (9) implies that for S ≫
1=½pð1 − qÞð2 − 3qÞ� the Fano factor behaves as
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FIG. 2. The backscattering Fano factor as a function of q and p for different values of the spin: (a) S ¼ 1=2, (b) S ¼ 1, (c) S ¼ 3=2,
(d) S ¼ 2, (e) S ¼ 5=2, (f) S ¼ 5. Uniform black color corresponds to Fbs > 24. For S ¼ 1=2, Fbs is bounded between 1 and 2. For
S > 1=2, Fbs diverges in the limit q → 0, except for the line p ¼ 1, at which Fbs ¼ 1.
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Fbs ¼ 1þ 1

2S
ð1 − p2Þð2 − 3qÞ2

qp3ð1 − qÞ þOð1=S2Þ; ð14Þ

i.e., it gradually decreases and approaches unity as S gets
higher. Thus, the limit of the large spin corresponds to the
backscattering of helical electrons by a classical MI.
Along with the line p ¼ 1 the Fano factor equals unity at

the isolated point ðq; pÞ ¼ ð2=3; 0Þ. This is universal for all
S [see Eq. (11)]. At this point the backscattering rate is
independent of the impurity state and, therefore, the
backscattering current statistics has a Poissonian single-
particle character. The interplay between an S2 scaling of
Fbs at p → 0 and the presence of a degenerate point
ðq; pÞ ¼ ð2=3; 0Þ results in a bottleneck feature in the
vicinity of the latter in Figs. 2(b)–2(f). The 1=S term in
Eq. (14) cancels at the line q ¼ 2=3 and Fbsðq ¼ 2=3Þ −
1 ∼ 1=S3 for p ≠ 0.
Conclusions.—To summarize, we have investigated the

zero-frequency statistics of the backscattering current
induced by a magnetic impurity of an arbitrary spin S
located near the edge of a two-dimensional topological
insulator. We addressed the limit of large voltage
jVj ≫ maxfT; jDkp=J ijjg, where it is possible to neglect
the thermal contribution to the noise, as well as the effect of
the local anisotropy of the magnetic impurity. Our ana-
lytical solution for the average backscattering current and
its zero-frequency noise underscores several striking fea-
tures. (i) The dependence of the average backscattering
current and noise on the elements of the exchange matrix is
determined by three parameters (g, p, q) only instead of
a priori six different parameters (the number of nonzero
elements of the exchange matrix J ij). (ii) For S > 1=2 the
backscattering Fano factor can be arbitrary large, diverging
in the limit q → 0. This implies that the backscattered
electrons can be bunched together in long pulses.
Observation of electron bunching is a novel challenge
for experimentalists which might shed light on the nature of
backscattering at the helical edge, and on how emerging
strong correlations can undermine topological protection
against backscattering. (iii) For S ¼ 1=2 the backscattering
Fano factor is limited to the range between 1 and 2. (iv) The
backscattering Fano factor is independent of the electron-
electron interaction.
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