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Abstract—In this paper, I brief ly review recent theoretical results derived within the Finkel’stein nonlinear
sigma model approach for description of two-dimensional interacting disordered electron systems. The
examples include an electron system with two valleys, electrons in a double quantum well, electrons on the
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1. INTRODUCTION
Constant interest to disordered electron systems is

largely related with the phenomenon of Anderson
localization [1]. The most convenient way to describe
this phenomenon is the scaling theory of conductance
[2] which predicts localization of all single-particle
electron states in dimensions d ≤ 2 and existence of
Anderson transition for d > 2. This scaling theory has
been verified by direct diagrammatic calculations of
conductance in weak disorder limit [3, 4]. The scaling
theory allows one to study the Anderson transition by
means of the field theory tools developed originally for
critical phenomena: low energy effective action and
renormalization group (RG) (see [5, 6] for a review).
For the problem of Anderson localization low energy
effective action is the so-called nonlinear sigma model
(NLSM) [7–12]. It describes diffusive motion of elec-
trons on scales larger than the mean free path as inter-
action of diffusive modes (so-called diffusons and
cooperons). The latter leads to logarithmic diver-
gences in d = 2. The reviews of recent progress in
Anderson localization can be found e.g. in [13, 14].

At low temperatures electron-electron interaction
plays a crucial role for phenomenon of Anderson
localization. The phase coherence is destructed on
long time scales due to inelastic electron-electron
scattering processes with small energy transfer (com-
pared to temperature T) [15–17]. In addition to the
phase breaking time τφ, electron–electron interaction
results in logarithmic temperature dependence of con-
ductance (in d = 2) due to virtual electron-electron
scattering processes [18, 19]. Interestingly, contribu-

tion to the conductance due to electron–electron
interaction can be of opposite sign with respect to
weak localization correction. This allows to speculate
on existence of metal–insulator transition in d = 2 in
the presence of interactions. Experimental indications
of the transition has been observed in two-dimen-
sional (2D) electron system in Si-MOSFET [20, 21].

The first attempt to include electron–electron
interaction into the scaling theory of Anderson transi-
tion has been performed in [22]. In spite of being
purely phenomenological (and incorrect due to con-
fusion between the thermodynamic density of states
and the local density of states) the scaling theory of
[22] had an important outcome: an idea of two-
parameter scaling for metal–insulator transition in the
presence of interaction. The breakthrough for the case
of interacting electrons was done by Finkel’stein in
[23] where NLSM has been derived from the underly-
ing microscopic theory. With the help of RG analysis
of this, so-called Finkelstein NLSM, the scaling the-
ory of the metal–insulator transition for d > 2 was
established in the presence of electron–electron inter-
action [24–29]. Typically, strong electron–electron
interaction (e.g. Coulomb interaction) is relevant
(in the RG sense) and changes the universality class of
the transition in comparison with the non-interacting
case (see [30, 31] for a review).

Finkel’stein nonlinear sigma model (FNLSM) is
designed to describe interaction of low-energy (|E|,
T  1/τtr where τtr denotes transport elastic scattering
time) diffusive modes (diffusons and cooperons) in
the presence of disorder and electron–electron inter-
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670 BURMISTROV
action. FNLSM is the field theory of the matrix field
Q which acts in the replica space and the space of Mat-
subara frequencies. We note that FNLSM can be also
formulated on the Keldysh contour (see [32] for a
review). The Hermitian matrix Q satisfies the nonlin-
ear constraint

(1)

Depending on the particular problem the elements
(r) can have a matrix structure and satisfies addi-

tional constraints. The Greek indices α, β = 1, 2, …, Nr
stand for the replica indices whereas the Latin indices
are integers m, n corresponding to Matsubara frequen-
cies εn = πT(2n + 1).

The paper is organized as follows. In Section 2, the
results for an interacting disordered 2D electron sys-
tem with spin-valley interplay are reviewed. In Sec-
tion 3 the results for interacting electrons on the disor-
dered surface of topological insulator thin film are
presented. In Section 4 there are the results for 2D
interacting disordered electron system with supercon-
ducting correlations. The results for a 2D interacting
disordered electron system in strong magnetic field are
reviewed in Section 5. The paper is concluded with
discussions and outlook (Section 6).

2. SPIN-VALLEY INTERPLAY
IN AN INTERACTING DISORDERED

2D ELECTRON SYSTEM
In this section the interacting disordered 2D elec-

tron system with two valleys is considered. Such situa-
tion occurs in Si(100)-MOSFET, SiO2/Si(100)/SiO2
quantum well, n-AlAs quantum well, and graphene
(see [33] for a recent review). For a sake of simplicity,
we assume the presence of a weak perpendicular mag-
netic field B⊥  max{1/τφ, T}/D where D denotes the
diffusion coefficient. The perpendicular magnetic field
suppresses cooperons and leaves diffusons to be the only
low energy diffusive modes. Also, we assume that the
temperatures are not too low such that one can neglect
the intra-valley elastic scattering (see [34, 35] for discus-
sion of the effect of the intra-valley scattering).

2.1. Finkel’stein Nonlinear Sigma Model

For low energy description of an interacting diffu-
sons in a disordered 2D electron system with spin and
valley degrees of freedom the elements of the matrix
field (r) are 4 × 4 matrices in the spin and valley
subspaces. The action of FNLSM is given by two terms:

(2)

Here the first term,

(3)

=2( ) 1.Q r
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*
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describes NLSM for the non-interacting electrons [7–
11]. The bare value (in the field theory sense) of σxx is

the dimensionless Drude conductivity  = 4π D
(in units e2/h) where  = /π denotes the thermo-
dynamic density of states. (The effective mass 
includes Fermi-liquid corrections.) Here and after-
wards it is assumed that σxx ≫ 1.

The electron–electron interaction yields additional
contribution to the NLSM action [23–26]:

(4)

Here 16 matrices tab = τa ⊗ σb (a, b = 0, 1, 2, 3) are the
generators of the SU(4) group. The Pauli matrices τa
(σa), a = 0, 1, 2, 3, act on the valley (spin) indices. The
quantities Γab stand for the electron-electron interac-
tion amplitudes. The structure of the matrix Γab is
established by the microscopic derivation of the
FNLSM. It is convenient to use the following param-
etrization: Γab = zγab. Here the parameter z is indepen-
dent charge of the field theory (2) which has been
introduced originally by Finkelstein in [23]. This addi-
tional charge (in the field theory sense) allows the RG
flow to be consistent with the particle-number conser-
vation. Parameter z describes non-trivial frequency
renormalization in the course of RG flow. The bare
value of z is determined by the thermodynamic density
of states: z(0) = π /4. The renormalized value of z
becomes temperature dependent and governs the T
dependence of the specific heat [36].

The bare values of parameters γab can be related with

the Fermi-liquid interaction parameters Fab :  =
‒Fab/(1 + Fab). More precisely, Fab are zero-angle har-
monics of the Fermi liquid parameters which general-
ize standard singlet (Fρ) and triplet (Fσ) Fermi-liquid
parameters to the case of SU(4) symmetry. The Fab can
be estimated via statically screened electron–electron
interaction (see for example [37]).

In the presence of Coulomb interaction the bare
value of Γ00 is related with the bare value of z:  =
‒z(0). Under the RG flow the quantity Γ00 + z is con-
served. Therefore, in the case of Coulomb interaction
the relation Γ00 = –z holds under the RG flow.

Matrices Λ, η, and  are defined as follows:

(5)

2.2. -Invariance

Matrix  has formally the infinite size in the
Matsubara space which is impossible to handle in
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FINKEL’STEIN NONLINEAR SIGMA MODEL 671
practice. Therefore, one needs to introduce large fre-
quency cut-off. We assume that the Matsubara fre-
quency indices are restricted to the interval –NM ≤ m,
n ≤ NM – 1 where NM ≫ 1. Of course, at the end of
computations one needs to take the limit NM → ∞.
However, this limit should be defined correctly.

The global rotations of Q by matrix exp(i ):

(6)

are important due to their relation with a spatially
independent electric potential [38, 39]. The latter can
be gauged away by suitable gauge transformation of
electron operators. To make the FNLSM action (2)
consistent with this U(1) gauge symmetry one needs to
define the limit NM → ∞ in a such way that the follow-
ing relations hold [38]:

(7)

Here χ0 = . The relations (7) guarantee the
-invariance of the FNLSM action (i.e. its invariance

under global rotations (6) with χab = χδa0δb0) for the
case of Coulomb interaction, Γ00 = –z.

2.3. One-Loop RG Equations

The renormalization of the FNLSM action (2) can be
studied perturbatively in 1/σxx. The lowest order treat-
ment results in the following one-loop RG equations [33]

(8)

Here f(x) = 1 – (1 + 1/x)ln(1 + x) and y = ln(L/l),
where L denotes the infrared length scale (system
size). The SU(4) structure constants  are defined

as [tcd, tef] = tab. We note that RG Eqs. (8)
were derived to the lowest order in 1/σxx. However,
within this approximation the dependence on interac-
tion parameters Γab in Eqs. (8) is computed exactly.
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2.4. One-Loop RG for SU(4) Symmetric Case

The microscopic model of the two-valley electron
system, e.g. in Si-MOSFET, does not discriminate
inter-and intra-valley electron-electron interactions.
This leads to the following symmetric structure of the
interaction matrix Γab [42]:

(9)

We remind that the Coulomb interaction corresponds
to the relation Γ00 = –z. In this case the one-loop RG
Eqs. (8) transforms into the following well-known
form [41]:

(10)

The RG Eqs. (10) predict the non-monotonic depen-
dence of σxx on L with the ultimate metallic behavior, i.e.
the increase of the conductivity, as L → ∞. We note that
the SU(4) symmetric manifold described by Eqs. (10) is
unstable with respect to general RG flow (8) [34].

2.5. One-Loop RG in the Presence
of Symmetry Breaking

The SU(4) symmetry in spin-valley space can easily
be broken by external sources, e.g. by the presence of a
finite Zeeman splitting Δs or a nonzero valley splitting

. The latter can be controlled by the applied stress
[42, 43]. These symmetry breaking energy scales cor-
respond to the length scales

(11)

2.5.1. SU(4) symmetry breaking by spin splitting.
We assume that Δs ≫  (Ls ≪ ). Then, for short
length scales l ≪ L ≪ Ls ≪  the symmetry breaking
terms are irrelevant and the one-loop RG equations
has the form of Eqs. (10). At intermediate length
scales, Ls ≪ L ≪ , one needs to take into account
the effect of the Zeeman splitting. The non-zero Δs
results in a mass for the triplet diffusive modes, i.e. the
modes with the projection of the total spin equal ±1.
This leads to the following form of matrix field rele-
vant at the intermediate length scales, Ls ≪ L ≪ :

(12)

The corresponding elements of the electron–electron
interaction matrix has the following form:
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(13)

We emphasize that  ≠ γt, generically. This can be
explained as follows. The presence of non-zero Δs
allows one to distinguish electron–electron interac-
tion between electrons with equal or opposite spin
projections.

The modified structure of the diffusive modes as
well as the interaction matrix Γab results in the follow-
ing one loop RG equations for the intermediate length
scales l ≪ Ls ≪ L ≪  [40]:

(14)

Here the RG running scale is defined as y = ln(L/Ls).
Since for L < Ls the interaction parameter Γ03 coin-
cides with Γa3 (a = 1, 2, 3), the RG equations (14)
should be supplemented by the initial condition

(15)

The RG Eqs. (14) has the unstable fixed point at  =
1 and γt = 0. However, this fixed point is inaccessible
for the initial conditions (15), (0) = γt(0) > 0.

The typical f low of RG Eqs. (14) is towards  = ‒1
and γt = ∞. Then these RG equations become equiva-
lent to the ones for 2 independent valleys thus leading
to metallic behavior of the conductivity.

2.5.2. SU(4) symmetry breaking by both spin and
valley splittings. At the largest length scales L ≫  ≫
Ls ≫ l the valley splitting  becomes important as
well. Since  results in a finite mass for the diffusive
modes with non-zero projection of the total valley iso-
spin, the matrix fields Q10, Q13, Q20, and Q23 disappear
from the low-energy sector of the theory. Hence, the
matrix field Q acquires the following form

(16)

In this regime only four relevant interaction parame-
ters are left:

(17)

The appearance of a new interaction parameter  can
be argued as follows. In the presence of strong spin and
valley splittings one can distinguished interaction
between electrons with equal and opposite spin and
isospin projections. However, the RG flow conserves
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the difference Γ33 – Γ30 [40]. Since at L ~  this dif-
ference is zero, the RG flow enforces the relation
Γ33 = Γ03, i.e.  = γt, for L ≫  ≫ Ls.

The resulting one-loop RG equations at length
scales L ≫  ≫ Ls becomes [42]:

(18)

where y = ln(L/ ). There exists the line of fixed
points 2γt +  = 1. Within RG Eqs. (18) typical behav-
ior of conductivity is of insulating type, i.e. σxx
decreases with increase of L.

2.5.3. SU(4) symmetry breaking in a double quan-
tum Well. Another breaking of SU(4) symmetry occurs
in an interacting disordered 2D electron system in a
double quantum well. In this case the low energy
effective theory can be described by the same FNLSM
action (2). However, due to the presence of a differ-
ence between inter- and intra-well electron–electron
interactions, the elements Γab becomes as follows [37]

(19)

Here , γt, and  are three dimensionless parameters
which describes the electron-electron interaction in the
double quantum well. The first one, , corresponds to
the short-ranged interaction between dipoles made of
electrons in two different quantum wells. The parame-
ters γt and  encode the intra- and inter-well interac-
tions in the triplet particle-hole channel.

The one-loop RG Eqs. (8) acquires the following
form [37]:
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For the case of a double quantum well the initial
values of the interaction parameters satisfy the follow-
ing inequalities: γt(0) ≥ (0) ≥ 0 and γt(0) ≥ (0) (see
[37]). Then, as one can check, the RG Eqs. (20) con-
serve the corresponding inequalities: the relations γt ≥

 ≥ 0 and γt ≥  are satisfied under the RG flow. Also,
the interaction amplitude γt increases with increase of
L. The RG Eqs. (20) tend toward  = 0,  = –1, and
γt = ∞ which corresponds to separate double quantum
wells. The ultimate dependence of the conductivity on
L is of metallic type.

3. INTERACTING ELECTRONS
ON THE DISORDERED SURFACE

OF TOPOLOGICAL INSULATOR THIN FILM
In this section we consider the interacting electrons

on the disordered surface of topological insulator thin
film. 3D topological insulators have no conducting
states in the bulk whereas their surface hosts the elec-
tron states at the Fermi level (see [44, 45] for a review).
The later is the consequence of the presence of spin-
orbit coupling. The properties of the surface states are
affected by disorder which we assume to be non-mag-
netic (preserve time-reversal symmetry) and spin
independent. Since the system has time-reversal sym-
metry and no spin-rotational symmetry (due to spin-
orbit coupling), it belongs to the symplectic symmetry
class (in accordance with Wigner–Dyson classifica-
tion). This implies that the low energy diffusive modes
are singlet diffusons and cooperons. The latter are
responsible for the weak anti-localization effect in the
symplectic ensemble. Here we consider the general
case of top and bottom surfaces of the film with
unequal carrier concentration subjected to different
random potentials. We neglect the effect of film ends.

3.1. Finkel’stein Nonlinear Sigma Model
The low energy description of an interacting elec-

trons on the disordered surfaces of a 3D topological
insulator thin film is given in terms of the FNLSM
action which has the form of Eq. (2). Now the first
term in Eq. (2) describes NLSM for the two copies
(top and bottom surfaces of the film) of non-interact-
ing electrons

(21)

Here  denotes the bare conductivity at each sur-
face; generically,  ≠ . Due to the presence of
time-reversal symmetry, the elements of the matrix
field  are the 2 × 2 matrix in the particle-hole space
(spanned by the Pauli matrices τj). Due to presence of

strong spin-orbit coupling,  has no matrix struc-
ture in the spin space.
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The contribution to the FNLSM action due to the
electron-electron interaction has the following form
[46]:

(22)

Here the following symmetric matrix

(23)

describes the intra- (Γ11 and Γ22) and inter- (Γ12) sur-
face electron–electron interaction. The parameters
z1, 2 describe frequency renormalization at each sur-
face.

3.2. -Invariance

As we have already explained above, the global
rotations of the Q matrix are of crucial importance.
There are two Q-matrices: one for the top surface and
one for the bottom surface. Therefore, there are inde-
pendent rotations for each matrix:
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where
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The U(1) gauge symmetry is implemented by means of
the following transformation rules [46]:
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3.3. One-Loop RG Equations
Since there are three RG invariants, Eq. (28), the

RG flow is determined by four parameters only. We
choose them to be  and γss = Γss/zs. Then the one-
loop RG equations acquire the following form [46]

(29)

where

(30)

Equations (29) demonstrate rich behavior. There
exists a single attractive fixed point at which the intra-
surface electron–electron vanishes, γ11 = γ22 = 0. This
fixed point corresponds to the strongly coupled sur-
faces (due to finite inter-surface interaction Γ12) with
super-metallic conductivities at the top and bottom
surfaces,  =  = ∞. The fixed point with γ11 =
γ22 = –1 corresponds to the decoupled top and bottom
surfaces, Γ12 = 0, with conductivities exhibiting local-

ization behavior, i.e.  → 0 as L → ∞. However, this
fixed point is unstable towards inter-surface interac-
tion.

We mention that the nonlinear sigma model in two
dimensions for the symplectic symmetry class allows
one to add the topological term to the effective action.
This topological term is of Wess–Zumino–Novikov–
Witten type. Due to the presence of this Wess–
Zumino–Novikov–Witten term in the FNLSM there
exist nonperturbative contributions to the RG equa-
tions [46]. In particular, in the case of decoupled sur-
faces this topological contribution prevents the system
from localization and results in appearance of critical
state on the disordered surface of 3D topological insu-
lator [47].

4. 2D INTERACTING DISORDERED 
ELECTRON SYSTEM WITH 

SUPERCONDUCTING CORRELATIONS
In this section we consider the 2D interacting dis-

ordered electron system in the presence of supercon-
ducting correlations. Such situation is realized in a
variety of materials, e.g. in such superconducting films
as amorphous Bi and Pb [48, 49], MoC [50], MoGe
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[51], Ta [52], InO [53–56], NbN [57–59], TiN
[60‒63], and FeSe [64–66]. Also, 2D supercon-
ductivity was observed in such novel materials as
LaAlO3/SrTiO3 [67, 68], SrTiO3 surface [69, 70],
MoS2 [71–73], LaSrCuO surface [74], and LixZrNCl
[75–78]. The FNLSM allows to describe the proper-
ties of the system above the superconducting transition
and to estimate the transition temperature Tc in the
presence of disorder. We mention that the FLNSM
description of 2D disordered superconductor can be
extended to the region below Tc (see [79] for details).

4.1. Finkel’stein Nonlinear Sigma Model
In the presence of superconducting correlations the

elements are 4 × 4 matrices in the particle hole and
spin spaces spanned by the Pauli matrices τa and τb,
respectively. The action (2) should be supplemented
by the additional term :

(31)

Here the first term  has exactly the same form as
given by Eq. (3). The second term  describes now
interaction in the particle-hole channel only. It is
given by Eq. (4) with the following interaction matrix
(a = 1, 2, 3):

(32)

The interaction in the particle-particle (Cooper)
channel is described by the third term in the right hand
side of Eq. (31):

(33)

Here we introduced the following matrix

(34)

The matrix field Q satisfies the additional (the so-
called charge-conjugation) constraint:

(35)

4.2. -Invariance

The  invariance of the FNLSM action (31) is
realized by the same rotations as given by Eq. (6) with

 ~ t00. The transformation rules are given by Eqs. (7)
and by the relation

(36)

Using Eqs. (7) and (36), one can check that the
FNLSM action (31) is invariant under global rotations
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of the matrix Q with  ~ t00 in the case of Coulomb
interaction, Γs = –z.

4.3. One-Loop RG Equations
The presence of interaction in Cooper channel

complicates the derivation of the RG equations [31].
Using the background field method one can derive the
following one-loop RG equations [80]

(37a)

(37b)

(37c)

(37d)

(37e)

Here n = 3 accounts for the number of triplet par-
ticle-hole diffusive modes. In the case of strong spin-
orbit coupling, the triplet diffusive modes become
massive and one can use RG Eqs. (37a)–(37e) with
n = 0 (in this case equation for dγt/dy should be omit-
ted).

The RG Eqs. (37a)–(37e) have a very rich RG flow
diagram. For n = 3 they demonstrate tendencies
towards formation of ferromagnetic phase (γt = ∞),
insulating phase (σxx = 0), and superconducting phase
(γc = –∞). However, Eqs. (37a)–(37e) become uncon-
trollable at the onset of these phases. For example, by
comparing the first and second terms in the right hand
side of Eq. (37d) one can obtain the criterium of appli-
cability of the one-loop RG equations for description of
superconducting instability: |γc|/πσxx ≪ 1.

In the case, of short-ranged weak interactions, i.e.
for the bare values, |γs0|, |γt0|, |γc0| ≪ 1, Eqs. (37a)–(37e)
predict the enhancement of Tc in spite of the presence
of disorder [81]. In this case, the analysis of supercon-
ducting instability based on RG Eqs. (37a)–(37e) is
equivalent to the approach based on analysis of the
self-consistent equation for the superconducting order
parameter [82].

For n = 0 and in the case of Coulomb interaction,
γs = –1, the RG Eqs. (37a)–(37e) has the attractive
fixed point at γc = 1/2 and σxx = 3/π. Although, this
fixed point is at the boarder of applicability of the one-
loop RG equations the existence of a symplectic criti-
cal metal can be a general property of the model.

It is worthwhile to mention that to the lowest order
in γc Eqs. (37a)–(37e) coincide with the original
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results obtained by Finkelstein long ago [29]. The one-
loop RG Eqs. (37a)–(37e) are different from equa-
tions reported in [83] for the case of preserved spin-
rotational and time-reversal symmetries (n = 3). The
RG equations reported in [83] are inconsistent with
the conservation of particles.1

5. 2D INTERACTING DISORDERED 
ELECTRON SYSTEM

IN STRONG MAGNETIC FIELD
In this section the case of 2D interacting disordered

electron system in the presence of a strong magnetic
field is considered. The strong magnetic field results in
two effects. At first, the magnetic field breaks time
reversal symmetry and polarises the electron spin such
that the matrix field Q has no matrix structure in spin
and particle-hole spaces (no cooperons). Secondly,
the presence of magnetic field and, as the conse-
quence, non-zero Hall conductivity σxy allows one to
add the Pruisken’s theta-term into the NLSM action.

5.1. Finkel’stein Nonlinear Sigma Model
The low energy effective action for 2D disordered

electron system in the presence of a strong perpendic-
ular magnetic field has the following form [85, 86]:

(38)

Here  denotes the antisymmetric tensor with  =
–  = 1. We remind that the last term in the right
hand side of Eq. (38) is proportional to the integer val-
ued topological invariant. It can be written as a purely
boundary term. In the presence of electron-electron
interaction the effective action involves the Fin-
kel’stein term:

(39)

1 It is instructive for the experts to highlight the difference
between Eqs. (37a)–(37e) and that of [83]. First of all, the right
hand side of the RG equation for γs in [83] (see Eq. (A12) there)
is not proportional to the factor 1 + γs contrary to our Eq. (37b).
This means that the Coulomb interaction, γs = –1, is not the
fixed point of RG equations of [83] in contradiction with the -
invariance of the FNLSM action. Secondly, the RG equation

for γt of [83] does not contain the term proportional to t , in
contrast to our Eq. (37b). Finally, the RG equation for γc in [83]
contains an additional term proportional to tγcln(1 + γs) which is
absent in our Eq. (37d). A similar term was reported by Belitz
and Kirkpatrick [32] (see Eq. (6.8g) there). This term was criti-
cized by Finkel’stein in [84]: the origin of this term has been
attributed to an improper treatment of the gauge invariance in
the RG scheme. We note that such terms, divergent for the case
of Coulomb interaction, γs = –1, cannot appear in the course of
renormalization of -invariant operators, a particular example
of which is the Cooper-channel interaction term SC.
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As above, the case of Coulomb interaction corre-
sponds to the relation Γs = –z.

5.2. -Invariance

The  invariance of the FNLSM action (31) is
realized by the same rotations as given by Eq. (6) with

 =  (Here  has no internal matrix struc-
ture.) The transformation rules are similar to Eqs. (7):

(40)

These relations guarantee the -invariance of
FNLSM for the case of Coulomb interaction, Γs = –z.

5.3. Two-Loop RG Equations
Due to the simple matrix structure of the Q matrix

in the case of strong magnetic field the perturbative
analysis of the FNLSM action can be extended to the
next (two-loop) order in 1/σxx. At present, the follow-
ing two-loop results are available [87–89]:

(41)

Here the function c(γ) is defined as follows

(42)

The function A(γs) is known only for two points γs = 0
(non-interacting electrons) and γs = –1 (Coulomb
interaction). At γs = 0 it is known [90, 91] that A(0) =
1/8. In the case of Coulomb interaction the value of
A(γs) is as follows [88]:

(43)

where  ≈ 0.915 denotes the Catalan constant, ζ(x)
stands for the Riemann zeta-function, and lin(x) =

/kn denotes the polylogarithm.

The RG Eqs. (41) predict that the fixed point, γs =
0, corresponding to non-interacting electrons, is sta-
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ble, The fixed point, γs = –1, which describes the case
of Coulomb interaction, is unstable. For both cases
the dependence of conductivity on L is of insulating
type.

5.4. Non-Pertubative RG Equations
The existence of the theta-term in the NLSM

action (38) allows for existence of topological exci-
tations—instantons. They result in the following non-
perturbative contributions to the RG Eqs. [92]:

(44)

Here D(γ) = 4π (γ)exp[1 – 4γEf(γ)], where γE ≈ 0.577
denotes the Euler constant and

(45)

The function ψ(z) stands for the Euler di-gamma
function and g(z) is defined as follows

(46)

The function Dz(γ) = D(γ)m(γ), where

(47)

We emphasize that although different components of
the function (γ) has poles on the interval –1 < γ < 0,
the function (γ) has no singularities.

The non-perturbative contribution to the RG
equation for dσxx/dy has opposite sign for a half-inte-
ger value of σxy. The competition of perturbative and
non-perturbative contributions at a half-integer value
of σxy can produce a non-trivial fixed point at some
value σxx, both for non-interacting electrons, γs = 0,
and for electrons with Coulomb interaction, γs = –1.

6. DISCUSSIONS AND OUTLOOK
In this paper, recent advances in the Finkel’stein

nonlinear sigma model approach to interacting disor-
dered electron systems were reviewed. This field theo-
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retical method allows to obtain a number of interesting
physical results:

(i) In the case of 2D electron system with two val-
leys (see Section 2) FNLSM allows us to explain pecu-
liarities of the temperature dependence of resistivity in
the presence of nonzero spin and valley splittings
observed in experiments on Si-MOSFET [93–95] and
n-AlAs quantum well [42, 43] as well as in
AlxGa1 ‒ xAs/GaAs/AlxGa1 – xAs double quantum well
heterostructure [96].

(ii) In the case of 2D electron system at the surface
of 3D topological insulator the FNLSM approach
allows us to develop the microscopic theory of elec-
tron transport and to predict instability of the critical
metallic surface state towards the inter-surface inter-
action.

(iii) In the case of 2D electron system with super-
conducting correlations the FNLSM allows us to
demonstrate possibility for existence of the supercon-
ductor-insulator transition within the so-called fermi-
onic mechanism, as well as to predict the enhance-
ment of superconducting transition temperature in the
absence of Coulomb repulsion.

(iv) In the case of 2D electron system in the pres-
ence of strong magnetic field the FNLSM allows us to
substantiate the idea of absence of Anderson transition
on the perturbative level even in the presence of elec-
tron–electron interaction. Also it allows us to extend
systematically the instanton physics responsible for
the integer quantum Hall effect to the case with a non-
zero electron–electron interaction.

The results reviewed in this paper can be extended
in several directions:

(i) Extension of the known perturbative RG equa-
tions to the two-loop approximation. The available
two-loop results demonstrates complicated mathe-
matical structure of the FNLSM which prevents
obtaining higher loop RG results. We note that at pres-
ent FNLSM lacks large-N-type parameter which
would allow one to solve the problem exactly. Unfor-
tunately, the number of valleys cannot play a role of
such a parameter as two-loop RG results of [97]
demonstrate.

(ii) Here FNLSM was used for description of dis-
ordered electron systems with presence or absence of
standard Wigner–Dyson (time-reversal and spin-
rotational) symmetries. In other words, the considered
here FNLSM is extension of NLSM for the symmetry
classes A, AI, and AII to the case of interacting sys-
tems. In general, non-interacting NLSM for the other
7 symmetry classes [98, 99] can be extended to include
the terms describing electron–electron interactions
[100–102].

(iii) As known, NLSM has a rich non-trivial
behavior of scaling dimensions of operators (without
and with spatial derivatives) [103–105] which trans-
lates into multifractal behavior of wave functions [106]
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
and the local density of states [107], as well as into
broad conductance f luctuations [108, 109]. Recently,
the multifractal behavior of the local density of states
(see [110] for a review) and a non-trivial behavior of
scaling dimensions of operators without spatial deriv-
atives [111] have been extended to FNLSM. Recently,
the exact symmetry relations between scaling dimen-
sions of these operators have been proven within
NLSM approach for non-interacting electrons [112].
In general, such type of exact relations could exist for
the scaling dimensions of corresponding operators in
the presence of electron–electron interaction, i.e.
within FNLSM.

To summarize, more than 35 years of development
of Finkel’stein nonlinear sigma model demonstrates
that this theory is internally consistent, convenient
analytical tool for study of interplay of localization and
interactions in disordered electron systems.

ACKNOWLEDGMENTS

I am grateful to my coauthors M. Baranov, N. Chtchelk-
atchev, I. Gornyi, E. König, A. Levchenko, A. Mirlin,
P. Ostrovsky, I. Protopopov, A. Pruisken, K. Tikhonov for
fruitful collaboration on the problems discussed in this
review. I am indebted to A. Germanenko, D. Knyazev,
A. Kuntsevich, D. de Lang, G. Minkov, L. Ponomarenko,
V. Pudalov, and A. Sherstobitov for detailed discussions of
their experimental results. I thank M. Feigel’man, A. Fin-
kelstein, Y. Fominov, A. Ioselevich, Y. Makhlin,
M. Skvortsov and the other members of Landau Institute
for useful discussions and comments.

REFERENCES
1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2. E. Abrahams, P. W. Anderson, D. C. Licciardello, and

T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
3. L. P. Gorkov, A. I. Larkin, and D. E. Khmel’nitskii,

JETP Lett. 30, 228 (1979).
4. E. Abrahams and T. V. Ramakrishnan, J. Non-Cryst.

Solids 35, 15 (1980).
5. D. J. Amit, Field Theory, Renormalization Group, and

Critical Phenomena (World Scientific, Singapore,
1984).

6. J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Cambridge Univ. Press, Cambridge,
1989).

7. F. Wegner, Z. Phys. B 35, 207 (1979).
8. L. Schäafer and F. Wegner, Z. Phys. B 38, 113 (1980).
9. K. B. Efetov, A. I. Larkin, and D. E. Kheml’nitskii,

Sov. Phys. JETP 52, 568 (1980).
10. K. Jüngling and R. Oppermann, Z. Phys. B 38, 93

(1980).
11. A. J. McKane and M. Stone, Ann. Phys. (N.Y.) 131,

36 (1981).
12. K. B. Efetov, Sov. Phys. JETP 55, 514 (1982).
13. A. D. Mirlin and F. Evers, Rev. Mod. Phys. 80, 1355

(2008).
YSICS  Vol. 129  No. 4  2019



678 BURMISTROV
14. Special Issue: 50 Years of Anderson Localization, Int.
J. Mod. Phys. B 24 (12–13) (2010).

15. D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
16. E. Abrahams, P. W. Anderson, and T. V. Ramakrish-

nan, Phys. Rev. Lett. 43, 718 (1979).
17. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky,

J. Phys. C 15, 7367 (1982).
18. B. L. Altshuler and A. G. Aronov, Sov. Phys. JETP 50,

968 (1979).
19. G. Zala, B. N. Narozhny, I. L. Aleiner, Phys. Rev. B

64, 214204 (2001).
20. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux,

V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039
(1994).

21. S. V. Kravchenko, W. E. Mason, G. E. Bowker,
J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys.
Rev. B 51, 7038 (1995).

22. W. L. McMillan, Phys. Rev. B 24, 2739 (1981).
23. A. M. Finkelstein, Sov. Phys. JETP 57, 97 (1983).
24. A. M. Finkelstein, JETP Lett. 37, 517 (1983).
25. A. M. Finkelstein, JETP Lett. 40, 796 (1984).
26. A. M. Finkelstein, Sov. Phys. JETP 59, 212 (1984).
27. C. Castellani, C. di Castro, P. A. Lee, and M. Ma,

Phys. Rev. B 30, 527 (1984).
28. C. Castellani, C. di Castro, P. A. Lee, M. Ma,

S. Sorella, and E. Tabet, Phys. Rev. B 30, 1596 (1984).
29. A. M. Finkelstein, Z. Phys. B 56, 189 (1984).
30. C. Castellani and C. di Castro, Phys. Rev. B 34, 5935

(1986).
31. A. M. Finkelstein, Electron Liquid in Disordered Con-

ductors, Vol. 14 of Soviet Scientific Reviews, Ed. by
I. M. Khalatnikov (Harwood Academic, London,
1990).

32. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66,
261 (1994).

33. A. Kamenev and A. Levchenko, Adv. Phys. 58, 197
(2009).

34. I. S. Burmistrov, in Strongly Correlated Electrons in
Two Dimensions, Ed. by S. V. Kravchenko (Pan Stan-
ford, Singapore, 2017), p. 65; arxiv:1609.07874.

35. A. Punnoose, Phys. Rev. B 81, 035306 (2010).
36. A. Punnoose, Phys. Rev. B 82, 115310 (2010).
37. A. M. M. Pruisken, M. A. Baranov, and B. Škorić,

Phys. Rev. B 60, 16807 (1999).
38. A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218

(1999).
39. A. Punnoose and A. M. Finkelstein, Phys. Rev. Lett.

88, 016802 (2001).
40. O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen,

E. P. de Poortere, and M. Shayegan, Phys. Rev. Lett.
97, 186404 (2006).

41. O. Gunawan, T. Gokmen, K. Vakili, M. Pad-
manabhan, E. P. de Poortere, and M. Shayegan, Nat.
Phys. 3, 388 (2007).

42. I. S. Burmistrov and N. M. Chtchelkatchev, Phys.
Rev. B 77, 195319 (2008).

43. I. S. Burmistrov, I. V. Gornyi, and K. S. Tikhonov,
Phys. Rev. B 84, 075338 (2011).
JOURNAL OF EXPERIMENTAL AN
44. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,
3045 (2010).

45. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

46. E. J. Koenig, P. M. Ostrovsky, I. V. Protopopov,
I. V. Gornyi, I. S. Burmistrov, and A. D. Mirlin, Phys.
Rev. B 88, 035106 (2013).

47. P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys.
Rev. Lett. 105, 036803 (2010).

48. D. B. Haviland, Y. Liu, and A. M. Goldman, Phys.
Rev. Lett. 62, 2180 (1989).

49. K. A. Parendo, K. H. Sarwa, B. Tan, A. Bhattacharya,
M. Eblen-Zayas, N. E. Staley, and A. M. Goldman,
Phys. Rev. Lett. 94, 197004 (2005).

50. S. J. Lee and J. B. Ketterson, Phys. Rev. Lett. 64, 3078
(1990).

51. A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74,
3037 (1995).

52. Y. Qin, C. L. Vicente, and J. Yoon, Phys. Rev. B 73,
100505(R) (2006).

53. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65,
927 (1990).

54. G. Sambandamurthy, L. W. Engel, A. Johansson, and
D. Shahar, Phys. Rev. Lett. 92, 107005 (2004); Phys.
Rev. Lett. 94, 017003 (2005).

55. D. Sherman, G. Kopnov, D. Shahar, and A. Fryd-
man, Phys. Rev. Lett. 108, 177006 (2012).

56. B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer,
M. Ovadia, D. Shahar, M. Feigel’man, and L. Ioffe,
Nat. Phys. 7, 239 (2011).

57. M. Mondal, A. Kamlapure, M. Chand, G. Saraswat,
S. Kumar, J. Jesudasan, L. Benfatto, V. Tripathi, and
P. Raychaudhuri, Phys. Rev. Lett. 106, 047001 (2011).

58. M. Chand, G. Saraswat, A. Kamlapure, M. Mondal,
S. Kumar, J. Jesudasan, V. Bagwe, L. Benfatto,
V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 85,
014508 (2012).

59. G. Lemarié, A. Kamlapure, D. Bucheli, L. Benfatto,
J. Lorenzana, G. Seibold, S. C. Ganguli, P. Ray-
chaudhuri, and C. Castellani, Phys. Rev. B 87, 184509
(2013).

60. T. I. Baturina, A. Y. Mironov, V. M. Vinokur,
M. R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99,
257003 (2007).

61. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vi-
nokur, M. R. Baklanov, and M. Sanquer, Phys. Rev.
Lett. 101, 157006 (2008).

62. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vi-
nokur, M. R. Baklanov, and M. Sanquer, Nat. Com-
mun. 1, 140 (2010).

63. T. I. Baturina, S. V. Postolova, A. Yu. Mironov,
A. Glatz, M. R. Baklanov, and V. M. Vinokur, Eur.
Phys. Lett. 97, 17012 (2012).

64. R. Schneider, A. G. Zaitsev, D. Fuchs, and
H. von Löhneysen, Phys. Rev. Lett. 108, 257003
(2012).

65. R. Schneider, A. G. Zaitsev, D. Fuchs, and
H. von Löhneysen, J. Low Temp. Phys. 178, 118
(2014).
D THEORETICAL PHYSICS  Vol. 129  No. 4  2019



FINKEL’STEIN NONLINEAR SIGMA MODEL 679
66. R. Schneider, A. G. Zaitsev, D. Fuchs, and H. von
Löhneysen, J. Phys.: Condens. Matter 26, 455701
(2014); Eur. Phys. J. B 88, 14 (2015).

67. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard,
T. Schneider, M. Gabay, S. Thiel, G. Hammerl,
J. Mannhart, and J.-M. Triscone, Nature (London,
U.K.) 456, 624 (2008).

68. J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Ann. Rev.
Mater. Res. 44, 117 (2014).

69. M. Kim, Y. Kozuka, C. Bell, Y. Hikita, and H. Y. Hwang,
Phys. Rev. B 86, 085121 (2012).

70. K. Ueno, T. Nojima, S. Yonezawa, M. Kawasaki,
Y. Iwasa, and Y. Maeno, Phys. Rev. B 89, 020508(R)
(2014).

71. J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy,
R. Arita, and Y. Iwasa, Science (Washington, DC,
U. S.) 338, 1193 (2012).

72. J. T. Ye, Y. J. Zhang, M. Yoshida, Y. Saito, and Y. Iwa-
sa, J. Supercond. Nov. Magn. 27, 981 (2014).

73. K. Taniguchi, A. Matsumoto, H. Shimotani, and
H. Takagi, Appl. Phys. Lett. 101, 042603 (2012).

74. A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna,
J. Misewich, and I. Bozovic, Nature (London, U.K.)
472, 458 (2011).

75. Y. Taguchi, A. Kitora, and Y. Iwasa, Phys. Rev. Lett.
97, 107001 (2006).

76. Y. Taguchi, T. Kawabata, T. Takano, A. Kitora, K. Ka-
to, M. Takata, and Y. Iwasa, Phys. Rev. B 76, 064508
(2007).

77. Y. Kasahara, T. Kishiume, T. Takano, K. Kobayashi,
E. Matsuoka, H. Onodera, K. Kuroki, Y. Taguchi, and
Y. Iwasa, Phys. Rev. Lett. 103, 077004 (2009).

78. H. Kotegawa, S. Oshiro, Y. Shimizu, H. Tou, Y. Kasa-
hara, T. Kishiume, Y. Taguchi, and Y. Iwasa, Phys.
Rev. B 90, 020503(R) (2014).

79. E. J. Koenig, A. Levchenko, I. V. Protopopov,
I. V. Gornyi, I. S. Burmistrov, and A. D. Mirlin, Phys.
Rev. B 92, 214503 (2015).

80. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys.
Rev. B 92, 014506 (2015).

81. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys.
Rev. Lett. 117, 017002 (2012).

82. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and
E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).

83. L. dell’Anna, Phys. Rev. B 88, 195139 (2013).
84. A. M. Finkelstein, Phys. B (Amsterdam, Neth.) 197,

636 (1994).
85. H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys.

Rev. Lett. 51, 1915 (1983).

86. A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).
87. M. A. Baranov, A. M. M. Pruisken, B. Škorić, Phys.

Rev. B 60, 16821 (1999).
88. M. A. Baranov, I. S. Burmistrov, and A. M. M. Pruisken,

Phys. Rev. B 66, 075317 (2002).
89. I. S. Burmistrov, Ann. Phys. (N.Y.) 364, 120 (2016).
90. S. Hikami, Phys. Lett. B 98, 208 (1981).
91. P. Ostrovsky, T. Nakayama, K. A. Muttalib, P. Wölfle,

New J. Phys. 15, 055010 (2013).
92. A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys.

(N.Y.) 322, 1265 (2007).
93. D. Simonian, S. V. Kravchenko, M. P. Sarachik, and

V. M. Pudalov, Phys. Rev. Lett. 79, 2304 (1997).
94. S. A. Vitkalov, K. James, B. N. Narozhny, M. P. Sar-

achik, and T. M. Klapwijk, Phys. Rev. B 67, 113310
(2003).

95. V. M. Pudalov, M. E. Gershenson, H. Kojima,
G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev.
Lett. 91, 126403 (2003).

96. G. M. Minkov, A. V. Germanenko, O. E. Rut,
A. A. Sherstobitov, A. K. Bakarov, and D. V. Dmi-
triev, Phys. Rev. B 84, 075337 (2011).

97. A. Punnoose and A. M. Finkelstein, Science (Wash-
ington, DC, U. S.) 310, 289(2005).

98. M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
99. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
100. L. dell’Anna, Nucl. Phys. B 758, 255 (2006).
101. L. dell’Anna, Ann. Phys. 529, 1600317 (2017).
102. Y. Liao, A. Levchenko, and M. S. Foster, Ann. Phys.

(N.Y.) 386, 97 (2017).
103. F. Wegner, Z. Phys. B 36, 209 (1980).
104. D. Höf, F. Wegner, Nucl. Phys. B 275, 561 (1986).
105. F. Wegner, Nucl. Phys. B 280, 193 (1987); Nucl. Phys.

B 280, 210 (1987).
106. C. Castellani and L. Peliti, J. Phys. A 19, L429 (1986).
107. I. V. Lerner, Phys. Lett. A 133, 253 (1988).
108. B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, Sov.

Phys. JETP 64, 1352 (1986).
109. V. E. Kravtsov, I. V. Lerner, and V. I. Yudson, Sov.

Phys. JETP 67, 1441 (1988).
110. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, JETP

Lett. 106, 272 (2017).
111. E. V. Repin and I. S. Burmistrov, Phys. Rev. B 94,

245442 (2016).
112. I. A. Gruzberg, A. D. Mirlin, and M. R. Zirnbauer,

Phys. Rev. B 87, 125144 (2013).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 129  No. 4  2019


	1. INTRODUCTION
	2. SPIN-VALLEY INTERPLAY IN AN INTERACTING DISORDERED 2D ELECTRON SYSTEM
	2.1. Finkel’stein Nonlinear Sigma Model
	2.2. -Invariance
	2.3. One-Loop RG Equations
	2.4. One-Loop RG for SU(4) Symmetric Case
	2.5. One-Loop RG in the Presence of Symmetry Breaking

	3. INTERACTING ELECTRONS ON THE DISORDERED SURFACE OF TOPOLOGICAL INSULATOR THIN FILM
	3.1. Finkel’stein Nonlinear Sigma Model
	3.2. -Invariance
	3.3. One-Loop RG Equations

	4. 2D INTERACTING DISORDERED ELECTRON SYSTEM WITH SUPERCONDUCTING CORRELATIONS
	4.1. Finkel’stein Nonlinear Sigma Model
	4.2. -Invariance
	4.3. One-Loop RG Equations

	5. 2D INTERACTING DISORDERED ELECTRON SYSTEM IN STRONG MAGNETIC FIELD
	5.1. Finkel’stein Nonlinear Sigma Model
	5.2. -Invariance
	5.3. Two-Loop RG Equations
	5.4. Non-Pertubative RG Equations

	6. DISCUSSIONS AND OUTLOOK
	REFERENCES

		2019-11-28T12:22:38+0300
	Preflight Ticket Signature




