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We compute the absolute Poisson’s ratio v and the bending
rigidity exponent n of a free-standing two-dimensional crys-
talline membrane embedded into a space of large dimensionality
d = 2 +d., d. > 1. We demonstrate that, in the regime of
anomalous Hooke’s law, the absolute Poisson’s ratio approaches
material independent value determined solely by the spatial
dimensionality dc: v = —1+2/d. —a/d?>+... where a ~ 1.76 &
0.02. Also, we find the following expression for the exponent of
the bending rigidity: n = 2/d. + (73 — 68¢(3))/(27d?) + .. ..
These results cannot be captured by self-consistent screening
approximation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Mermin-Wagner theorem states that in two-dimensional (2D) crystals long-range order is
destroyed due to thermal fluctuations [1,2]. For D = 2-dimensional membrane embedded into
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d = 3-dimensional space, this means that transition from O(d)-symmetric crumpled phase to
0O(D) x O(d — D)-symmetric flat phase governed by order parameter mg, = 91, leads to existence
of d. = d — D “massless” boson modes. Here d-dimensional vector r parametrizes the position
of a point at the membrane, latin indices a and b indicate the spatial components of r. Physically,
this Goldstone boson corresponds to out-of-plane (or flexural) phonon mode h(x), where 2D vector
x = (x,y) parametrizes the surface of 2D membrane. The flexural phonon produces divergent
contribution into thermal fluctuations of order parameter in the thermodynamic limit:

2 2
<(Vh)2><xT/d""— Tt

27 ocxlnl. (1)
Here x denotes the bending rigidity, T is the temperature, L stands for the size of the membrane,
and [ is the ultra-violet cutoff of the order of the lattice spacing. In defiance to the statement
of Eq. (1), free-standing 2D membrane, e.g. graphene, do exist experimentally. Resolution of the
seeming paradox lies in the fact that Mermin-Wagner theorem applies only to the systems with
short-range interactions. Crystalline membranes possess long-range interaction between flexural
phonons mediated by in-plane phonons. Effectively such interaction leads to the stiffening of the
membrane at large scales. In particular, at small momenta, ¢ < ¢, the bending rigidity becomes
renormalized [3]:

Hq = x(Q*/Q)n~ (2)
Here q,. ~ +/TYy/x is the so-called inverse Ginzburg length, where Yy, = % denotes the Young

modulus of the 2D crystalline membrane with x and A being the Lamé coefficients of a material.
The stiffening of the membrane accounts for the existence of the flat phase:

2 2
<(Vh)2><x1/ e ¢ T 3)

x ) 2r) g n’

Thus, interaction between phonons is crucial for stability of the 2D membrane.

Since harmonic approximation (n = 0) does not suffice to be even a zeroth-order approximation
and exact analytical solution of fully interacting problem of phonons modes is not feasible, one has
to develop other methods. Up to date, the exponent 1 was determined within several approximate
analytical schemes [3-8]. However, none of these approaches being controllable in the physical
case D = 2 and d = 3. Numerical simulations for the latter case yielded n = 0.60 &+ 0.10 [9],
n=0.72+0.04 [10], n = 0.85 [11], and n = 0.795 + 0.01 [12].

Non-trivial scaling of the bending rigidity, Eq. (2), results in failure of the linear Hooke’s law and
in emergence of universal (i.e. material independent) Poisson’s ratio in the regime of small tensions
o < o, where o, ~ xq* ~ YoT/x [6,7,13-17]. Recently, in the regime ¢ < o, the anomalous
Hooke’s law, i.e. nonlinear dependence of the deformation on the stress, has been experimentally
measured in graphene [18].

Most utilized analytical method to study the anomalous elastic properties of 2D crystalline
membranes is the self-consistent screening approximation (SCSA) developed in seminal paper [7].
As any other self-consistent scheme, SCSA takes into account some subclass of diagrams in pertur-
bation theory which is typically not preferable with respect to the others. This scheme becomes
exact only in the limit d. — oo where it corresponds to the summation of the leading order
logarithmic corrections in perturbation theory. Within SCSA the following results for the bending
rigidity exponent and the Poisson’s ratio (at zero external stress) have been obtained (see Ref. [19]
for a review): nscsp = 4/[dc + /16 — 2d; + d?] and vscsps = —1/3. Surprisingly, for d. = 1
the value of nscspa &~ 0.82 is very close to the result for n reported from numerics. The value
of the Poisson’s ratio vscsp = —1/3 is close to some numerical results for the Poisson’s ratio in
the physical case d. = 1 [10,20]. The “super-universal” (i.e. independent of d.) SCSA result for
the Poisson’s ratio has been checked to be stable against inclusion of more diagrams in the self-
consistent scheme [21]. Also the “super-universal” SCSA result for the Poisson’s ratio has been
supported by the non-perturbative renormalization group treatment of the problem [22,23].
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The issue of the Poisson’s ratio of 2D crystalline membrane occurs to be more complicated than
it has been thought originally. In fact, due to the anomalous Hooke’s law, the Poisson’s ratio can be
defined in many ways. Recently, two Poisson’s ratios, differential and absolute, have been introduced
and their behaviour has been studied [24]. The differential Poisson’s ratio is determined as the ratio
of change in displacements after application of the infinitesimally small uniaxial stress in addition
to a finite isotropic tension. The absolute Poisson’s ratio corresponds to the conventional definition
of the Poisson’s ratio, i.e. it is the ratio of displacements after application of a finite uniaxial stress.
For 0 « o, both differential and absolute Poisson’s ratios have universal but different values. In
the limit o — 0 they coincide as follows from their definitions. However, their limiting value
depends on the boundary conditions since the limit o — 0 and the membrane size L — oo do not
commute. Also, the differential and absolute Poisson’s ratio coincide in the limit of linear Hooke’s
law, o > o, where they both are equal to the value A/(2u + A) given by the classical elasticity
theory [25]. The universal regime for the Poisson’s ratios is realized at o, >> o > o; where o] =
U*(q*L)n_z-

For some reasons, the corrections in 1/d. to the results obtained within SCSA have not been
analysed thoroughly. Recently, we have computed the differential Poisson’s ratio to the first order
in 1/d. within the universal range of tensions, 0; <« o < o,. We derived the following result:
vaitt = —1/3 + caifr/dc + - .. where the numerical constant cgir & 0.016 [26]. This result indicates
that the value of differential Poisson’s ratio in the regime of the anomalous Hooke’s law does depend
on the number of flexural phonon modes, d..

In this paper we extend analysis of 1/d. corrections and compute them for the absolute Poisson’s
ratio v and the bending rigidity exponent ». In particular, we find that

2 a
=—14+=——+..., 4
v +dc dg+ (4)

where a ~ 1.76 & 0.02 and

2 68¢(3)—73

=4 @ )
The paper is organized as follows. In Section 2 a reader will find the description of the model
we use to study 2D crystalline membrane and formal definitions of the absolute Poisson’s ratio.
In Section 3 the perturbation theory in flexural phonon interaction is used to obtain expression for
v up to the second order in 1/d.. In Section 4 we calculate the critical exponent 5 up to the second
order in 1/d§. We end the paper with a summary of results, Section 5. Technical details are given

in Appendices.

2. Formalism

As our starting point we choose the effective action of the Landau-Ginzburg type introduced in

the seminal papers [3,4] for a free-standing 2D membrane. Its imaginary-time Lagrangian is written
in terms of the d-dimensional vector r:
x
2
Here p stands for the mass density of the membrane. The Greek indices correspond to the 2D
coordinates (x,y) = x parameterizing the membrane. To take into account the effect of external
stress we introduce the stretching factors &, and &, such that: r = {&x + uy, &y +uy, hq, ..., he ).
Here u = {uy, u,} corresponds to the in-plane phonons whereas h = {hy, ..., hq.} describes the
out-of-plane (or flexural) phonons. Substituting the reparametrization into Eq. (6) allows one to
write the partition function for a 2D crystalline membrane in terms of the following (see Refs. [27]
for details):

2 2
£IF] = (3,1 + Z(Ary + %(aaraﬁr - aaﬁ> n g(aaraar - 2) . (6)

7= /D[u, h] exp(—S). (7)
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Here the action in the imaginary time is given by (8 = 1/T)

!
s :f dt/dzx{ %(zuaaﬂ )62 1K) (88— 1+ K) — Kuky |
0

+2[@w? + (orhp
A
+ﬁ|:(Ah)2 + (Au)z:l + /-'Luotﬂuﬁa + 7umxu/3/3 }7 (8)
2 2
where
1
lap = 5 (gﬁaauﬁ F Ea 05ty + doUIsl + aaha,f,h), 9)
and
K zlfﬁdr/d2x<8u8u+8h8h) (10)
(V4 ﬂLz 0 o o o o .

In this paper we limit the analysis of the absolute Poisson’s ratio to the case of low enough
temperature, T < » [27]. This condition allows us to neglect the term d,udgu in comparison with
d.hdgh (see the expressions for u,g and K, in Egs. (9) and (10), respectively) [28]. Then we can
simplify the effective action (8) by integrating the in-plane phonons [29] such that the partition
function becomes an integral over static flexural phonons only (see Ref. [27] for details):

Z= /D[h] exp(—E/T). 11
Here the energy E of a given configuration of the flexural phonon field h(x) is as follows

L, > 2 > M 2 2 2 2
E:§<ga_1+1<Q)Maﬁ(gﬁ—1+1<ﬁ)+ﬁ /dxaxhayh +5/dx(Ah)

+& /’ d’*kd’k'd’*q [k x q]* [k’ x q]?
8 (27)® q? q

(hrrqh—ic) (h_w_ghy). (12)

Here we introduced the 2 x 2 matrix Myg = 2udyp + A. The quantity K, is obtained from K, by
omitting the term d,ud,u:

~ 1 2
K, = L—Z/d xd,hd,h. (13)

The ‘prime’ sign in the last integral on the right hand side of Eq. (12) indicates that the interaction
of the flexural phonons with g = 0 is excluded.

The partition function Z depends on the stretching factors &, and &,. The diagonal components
of the tension tensor are determined as
_tyo 1 o

%_x agx gy as)/
where f = —TL™2InZ denotes the free energy per unit area. We note that Eq. (14) is the equation
of state which determines the relation between the tension tensor {oy,o,} and the stretching
tensor {&, &}.

In what follows, it will be more convenient to choose the diagonal components of the tension
tensor as independent variables rather than & and &,. As usual, the corresponding free energy
g(ox, oy) can be constructed from f(&, &) via the Legendre transform:

20w, 0y) = f(& &) — ox(&] — 1)/2 — oy(&] — 1)/2, (15)

Ox
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where &, is expressed in terms of o, with the help of the equation of state (14). In the thermody-
namic limit, L — oo, one can explicitly write that

g=-Tl 2z, 2= /D[h] exp(—¢/T), (16)

where
R ([ i aman) 4% [ dx oy + % [ dx vony
—_EUa aﬁo—ﬂ-l_ﬁ X Ox 'y +§ X( )+7 X(Ot)
Yo // d*kd’k'd*q [k x q* [k’ x q]?
8 (2m ) q q
In terms of g(oy, oy) the equation of states can be written as
g-1_ 0 __&-1_ g
2 oy T2 T 9oy

or more explicitly,

Oy ey + (Ky)/2
Here the average (...) is with respect to the energy (17).

Now the absolute Poisson’s ratio can be defined as follows. Let us apply the uniaxial stress,
ox = o and o, = 0, and consider the change of the stretching factors:

(icsqh_ic) (h_y_ghy). (17)

X

Seg(o) = eg(o, 0) — €4(0, 0). (20)
Then the absolute Poisson’s ratio is given as

) — Yo8K, /(2
v:_ﬂzvo 0~y/( U)’ (2])
Sex 14 YodKy/(20)

where 8Kg(c) = (Kg(0,0)) — (Kg(a, 0)) and vy = A /(21 + A) stands for the classical value of the
Poisson’s ratio.

The overall behaviour of the absolute Poisson ratio on o has been discussed recently in Ref. [24].
Since YpéKg(o)/o ~ (0,/0 )1~ with the exponent & = 1/(2 — 1) [14], the general expression (21)
for the absolute Poisson’s ratio can be simplified in the universal regime o < o,:

8K,
v (22)
S§Ky
3. Perturbation theory in 1/d. for the absolute Poisson’s ratio

In order to proceed with the computation of the absolute Poisson’s ratio, Eq. (22), we need to

compute the §K,(o). We can write the following formal expression in terms of the exact Green’s
function of flexural phonons:

- d’q T

Ks(0,0) =dc | —=0q5G;  Gg= :

oo =d. [ G hda 9=
As usual, the self-energy X,(q) is due to the interaction between out-of-plane phonons. Although
at 0 K o, this interaction is effectively controlled by 1/d. we cannot develop the expansion in 1/d.
by expanding of the Green’s function in powers of X, (q). The point is the infra-red divergence of
the expression for Kg(o, 0) in the absence of X;(q). In order to resolve this problem we construct
an expansion in difference § X, (q) = X,(q) — Xo(q). Then, we find

d’q a;log; — 82, (q))
(27 ) #qq*[2q* + 0q2 — 3 X5 (q)]

(23)

(24)

8Kg(o) = dCT/
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where )qu4 = xq*— Xy(q). Now we can expand the self-energy difference § X, (q) in powers of 1/d,:
82,(q)=82(q)+8ZP(q) + ... (25)
Such an expansion results in regular perturbation series for (Sf(ﬁ(a):
8Ks(0) = 8K () + 6K (o) + ... (26)
Then, we find

_ 8K(0) sK"(0)  8KV(o)
sK(o) Ko) KOy )

(27)

Here the functions 812;,0‘1)(0) are given explicitly as

N d*q oq5q}
(SK(O)a:dT/ P 28
A (@) ‘ (2m)? ”qq4[’qu4 + Uq,%] (28)

and
d’q 938N (q)
27 P [gq* + 0 q21%°

8Ky (o) = —dCT/( (29)

Both expressions are manifestly convergent in the ultra-violet. For the convergence of (Sf(éo)(a) in the

infrared, the power-law renormalization of the bending rigidity (due to the interaction-induced self-
energy Xo(q)) is crucial. The expression (SK[(;)(O') is convergent in the infrared even in the absence
of the bending rigidity renormalization.

Performing evaluation of the integral over momentum we find

. dc.T “ -
sk0) = ———(Z) (sin-—) (n2nd). (30)
2(2 = n)x \ 0 2—n
We note that since n = 2/d. + 0(1/d?) we obtain the following result at d, — oo (n — 0)
- T
K V(o) = ——. 31
A (o) 8 (31)
Now using the relation
n2an2 1
) = ; (32)
(nZ*nZ) 1+ 2«
we find
vt (1o c= 8”—”[312“’(0) - 512<”(a)] (33)
14 2a az - ) T X Y '

Since the integrals in (Sf(é”(a) are convergent even in the absence of the renormalization of the
bending rigidity, we can set n = 0 in x, for the computation of the constant c. Taking into account
the deviation of » from 0 results in the 1/d. correction to ¢ which is beyond our accuracy.

3.1. Evaluation of 81(;”(0)

In order to find the value of the coefficient ¢, we need to compute Sng”(o). The self-energy
XM(k) is shown in Fig. 1. It involves the screened interaction [7] between flexural phonons (for
details see Appendix A of Ref. [26]):

Yo/2

N = ——
143011y /2

q (34)
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-
- S

Fig. 1. The self-energy correction of the first order in the screened interaction.

Here 175") denotes the irreducible polarization operator in the presence of uniaxial stress. To the
leading order in 1/d, it can be written as

d.T d’k [k x q]* 1
) (q) = - eR— Y . o (35)
3 ) @2 gt [xk* 4 ok2][x|k — q|* + o (ke — qx)?]
The polarization operator has the following scaling form:
a.T
mq) = -——P(a/4o)- (36)

" 3xo

In the universal regime o < o, one can neglect unity in denominator of Eq. (34) and approximate
N(; as 1/ [317,5")]. Then the corresponding self-energy difference becomes

2T [ d’q [k x q]* 1 1 1 1
83 N(k) = 7[ -— P : s ] 37
3 ) @272 g x|k —q|* 11 x|k —q|* +olk —q|” 11

Surprisingly, the explicit expression for the function P(Q) can be found analytically (see
Appendix A for details). Introducing the function A(Q) = arcsinh(Q)/[Q+/1+ Q2] and the vector
P = (Qy +1i, Qy,), we result can be written as

P(Q) ={ (1- 40207 | (4@) - 1) — Re[@?P~2(A(P) - 1) |}
1+ Q2AQ) + Re[(1 - PP
+40,02(02 - 62) [m[QP’Z (AP) - 1)] n 4@3@5[,4(@ - ReA(p)] +2(02 - 02) lm[PxA(P)]

+40,0, Im[PyA(P)] } /(87), (38)

where Q = Q/Q = {cos¢, sing} and P = | /(Qx + i)* + Q7. The function 7(Q) has the following

asymptotic behaviour:

cos’? ¢ 2cos(2¢) + cos(4¢9)

, k1

_ 8v/Q 8w
PQ)= 3 9[1+ 41In(2Q)] — 8 cos(2¢)[4 — 3In(2Q )] + cos(4¢) (39)
2 4 s Q >1
167 Q 1927Q

We note the strong anisotropy in angle dependence of P(Q) at small Q. The asymptotics of P(Q)
at large Q implies that
d. T

T%g) = ) 40
@)= {6270 (40)
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Now using Egs. (37), (38), and (40), we can rewrite Eq. (33) in the following form

2 2 4
c= 1671/ TQIK K X QI a2y !
() Q4 YO PQIKA + K21P[IK — Q1% + (K — Q)]

1
- 7 | (41)
Po(Q)IK* + KZ1°IK — Q|
where Py(Q) = 3/(16wQ?). Numerical evaluation of this integral (see Appendix B) yields
¢ =0.56 4 0.02. (42)

Now using Eq. (33), we can write the expansion of the absolute Poisson ratio to the second order

in 1/d%:
142 _2zhoc (43)

v=— ——— 4 ....
d. d?

Here the coefficient b determines expansion of the bending rigidity exponent to the second order

in 1/d%:

2 b

“a et o

Therefore, in order to determine the absolute Poisson ratio to the second order in 1/d. one needs
to compute 7 to the same order.

4. Evaluation of 5 to the second order in 1/d,

Perturbative calculation of critical exponent n describing softening of the flexural mode due to
interaction between phonons is quite straightforward. General statement (2) for », implies that
exact self-energy Xo(k) has the following expansion at small values of momenta, k <« q,, and for
n<L

2
So(k) = —xk4<n In qT n % In? ‘j ¥. ) (45)
K

4.1. SCSA type contributions to n

4.1.1. First order in 1/d. correction to the self-energy
In order to set notations, we start from the self-energy correction in the first order in the
screened interaction (see Fig. 1):

[k X q] 0) o) _ T
/ Q'k g G, = e (46)
Here we introduced for a brevity the following shorthand notation: fq = f d*>q/(2m ). Let us define
G« = +/3d:YoT /(327 %2). Then, we obtain
2 16 k S 1
E(()])(k) = [ qu] =2 - 2 4’
d- 3 ¢ 4 qa; +q° |k —q|
Using the following integral

/2” do sin’ 6 _ 31, g<1, (48)
o 2m(14+q*—2qcos8)? ~ 8 |g* q>1,

(47)

we obtain

2
=(k) = —F%1<4L(1</a*), (49)
C
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-

Fig. 2. SCSA-type self-energy correction in the second order in 1/d..

where
1 [ ¢ o 1 1 K2 —1In(1+K?)
L(K dg—— d———— = —InK + = In(14+K?)+ ————~. (50
(K) = 1<4/ ql+q2+f,< qq(1+qz) nk+- n(1+K*)+ KA (50)
For k/q, < 1 we find
2
i) = —Z ek In &, (51)

dc k'’
where g, = e'/4G,.. Comparison of this result with the expansion (45) yields n = 2/d,.
4.1.2. Second order self-energy correction

We start from the diagram (a) in Fig. 2. The corresponding contribution to the self-energy can
be written as

I
T2() = /[qu] °) g,‘ q] =M1k - q))

_ 4 167mx [k x q1'G> L(|k — q|/q.)
2 3 J@@+d) |k—q*

This diagram diverges in the infrared as In?(k/G,). However, we are interested also in the next,
subleading, term which behaves as In(k/q,). Therefore we cannot approximate the function
L(|k — q|/q.) by the logarithm. Instead, we rewrite 2 (2.0) (k) as follows

4 16mx [[kxql* @ (q/q* 4 16mx [ [k xql* @ 1
? P+q k- ¢ @+ k—q
x| L1k - (q/q*)]. (53)

The last integral on the right hand side of the above expression is convergent in both ultraviolet
and infrared. Thus we are not interested in it. Then, we find

oy 4 a1 [ aLg) /“ L(q)
% = d2 e [K“/ Wit dqq(1+q2)] 54

Evaluating the integrals for K <« 1, we obtain

(52)

2,
S5 k)

2 2 1
5900 = Sk [m2 K —In K] = Sk |:ln2(q* /10 + 5 In(a. /k)i| (55)

c (o

Next, we compute the diagram (b) in Fig. 2. The diagram can be considered as the first order
correction to the self-energy in which the interaction line is changed due to correction to the
polarization operator:

I 2d, [ [k x qI* 2
bRl / Lk > g [N(O] Gy, sl =55 / e < ai :4‘” [ a”] =50,
k

(56)
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(O ———— @) —
(e): : ‘|(f)l ]

Fig. 3. Non-SCSA-type self-energy correction in the second order in 1/d..

The correction to the polarization operator becomes

2 4 G 2 1 o
s = AT [lexal!_Uk/g.) T [/ dkkL(qk/d) +/ %L(qk/@*)]
0 1

B2 ) @ Kk —q* T anxlq k3
T> . .
= —mL(Q/Q*L (57)
where
i) = _3+K 1111<+(1+K2)[(1+K2)2 1n(1+1<2)—1] (58)
3 6K? K2

We note that the function i(!( ) has the same asymptotic behaviour at K < 1 as the function L(K).
At K > 1 the asymptotic of L(K) is given as 1/(2K?). Then, we obtain

8 16 k 4 #*Lq/q 8 1 (K 31
520y =8 wx [ [k xq] . qu (q/(i*i =B 7[ do2 (qz)2
> L(q)
+ | dg———"— |. (59)
/K q(1+¢)?
At K < 1 we find
@by 4 a2 _ 4l 1
Xy (k) = —d—zxk In“K — InK | = —ﬁxk In“(q./k) + 3 In(g./k) |- (60)
(o C

Summing up the SCSA-type corrections to the self-energy, (51), (55), and (60), we find that
2 q 2 q. 1 g+ s\ 1sCsA
k= Oy — 29k — 5Dk = k4[1 ZhmE+ S E+—In —] ~ xk* (*) ,
x 0() 0 (k) 0 (k) =x +dc k+d§ k+dg K x K
(61)
where nscsa = 2/d. + 1/df + ... which is nothing but expansion of the general SCSA result in 1/d..

4.2. Non-SCSA-type corrections to n

In addition to the SCSA type diagrams there exist four more diagrams for the self-energy in
the second order in 1/d. shown in Fig. 3. Contrary to the SCSA type diagrams the diagrams in
Fig. 3(c)-(f) have only logarithmic divergence at the infrared. This allows us, on the one hand, to
send g, to oo in the expressions for N and, on the other, send the external momentum k — 0
whenever it is possible. After such the procedure, we shall compute the integral by restoring the
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ultraviolet (g, ) and infrared cutoffs (k) in the most convenient way. However, contrary to the SCSA
type diagrams, the evaluation of each of the diagrams in Fig. 3 is still involved. Details of the
analytical evaluation of the integrals determining the non-SCSA corrections to n can be found in
Appendices C and D.

4.2.1. Evaluation of £7(k)
The correction to the self-energy shown in Fig. 3(c) can be written as

4 [ [kxql[kxQF[(k—q)xQl[(k—Q)xql
(2,0)1,y 0 0 0 (0)py(0)
Xy (k) = ?/QQ 2 7 02 P 9k—q9k—9k-q-oNg Ng -
(62)
Taking the limit ¢, to co and neglecting the external momentum k in comparison with g and Q, we
find
327\? k x q[k x Q]2 4
Eéz,c)(k)=< n) X/ [k x aPlk x QP'IQ < gl ©3)
3d. 0.0 9°Q°lq — Q|

Now since Eéz’c)(k) depends only on the absolute value of k, we can perform averaging of Eéz‘c)(k)
over directions of k. Then we find

2 14 202 4 (q- Q) 4
Zéz'c)(k):(mﬂ) xk / (°Q*+(q-Q))[Q x q

3. ) 2 75Q°lq — Q/*
_ 32xk? / / dQ fz” dé qQ(1+ 2cos®6)sin@ (64)
9d? 27 (> + Q2 —2qQ cos9)?’
Now using the following integral
fZ” d0 (1+2cos?6)sin®0 1 [(8¢>+5Q2%)/¢° Q <q, (65)
o 27 (¢*+Q?—2qQcos6)* 16 |(8Q* +5¢°)/Q° Q >gq,
we find
Q(8 5Q2 7 *d 7 B
sk —}:k / dq/ 4o 928 +5Q%) + Q) —xk“/ Y, L oatmd (66
3d? o 4q 3d? k

4.2.2. Evaluation of Eéz’d)(k)
The correction to the self-energy shown in Fig. 3(d) has the following form

4d. kxP-pPNpxpPPlP-Qx® -QPF[pxQP[ xQ]?
T Jopy =PI Ip-PP p—p'? Q? Q?

2
(0) (0) 5(0)5(0) (0) (0)
G p+p’g g % 9v-q [N\p—p’\] No (67)

=3k = -

Again taking the limit g, to co and neglecting the external momentum k in the argument of the
Green’s function, we find after averaging over directions of k:

@Dy — (16”>3 3k / [P xpPPlp x QPP x QPP —Q) x (¢ — Q)P (68)
° 3 ) 2d2 Jop, Qppilp—Ql'lp - Ql'lp—p'I*
Let us introduce the angles ¢ = /(Q, p) and ¢’ = /(Q, p’). Then, we obtain
162 00 27 dodo’ pp'03 sin? s 2 r 2l
SOy = - %k4/ depdp// pdy’ pp'Q”sin” g sin” ¢’ sin"(¢ — ¢')
3d. 0 o @m)»  (p*+Q%—2pQsing)?
[p'Q sing’ — pQ sing — pp’sin(¢’ — ¢)]? (69)

(P2 + Q2% — 2p'Qsin ' )2 (p? + p? — 2pp’ cos(p — ¢'))?
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Let us make a change of variables p — pQ and p’ — p’Q, then we find
p2.d) dQ p2.d) qs

zd) i ok A & 70
(k) = dc k \ Q @ xk nk, (70)
where
B2 - _ (“5>2 / ~ dpdy’ / 7" dodg’ pp'sin® psin’ ¢/ sin’(p — ¢')
3 0 o (@) (p>+1—2psing)?
[p’sing’ — psing — pp’sin(¢’ — @)]? 71)

X .

(p? + 1 =2p'sing'*(p* + p" — 2pp’ cos(p — ¢')
We note that the expression under the integral signs is symmetric under the interchange of p and
p’. The explicit calculation of the integral in Eq. (71) presented in Appendix C.1 yields

G
Thus, we find
2
=000 = — Sk In % (72)

c

4.2.3. Evaluation of (k)
The correction to the self-energy shown in Fig. 3(e) has the following form

8d. [k x q1” [k x QI* [(k —q) x (Q —q))* [p x g [P x QJ?

k) = -
° T2 Jopo @ Q? lg — QJ? q? Q2
[(P Q) x(p—qPF o 0 (0) (0)
q_0F 9509y %5 0 91k -0 G-l Ny 'Ng Nig - (73)

Again we take the limit g, — oo. Next neglecting the external momentum k in the argument of
the Green’s functions, we find after averaging over directions of k:

3 4
" / (¢?Q% +2(q-Q)*)lq x Q1[p x Q1[p x q1*[(p — Q) x (p — q]
Q.pq Q%¢%lq — QI°p*ip — Q|*lp — q/*
Next we introduce angles ¢ = Z(p, q) and ¢’ = /(p, Q). Then, we find
229k = — ( 8 )2 K / ~ dpdodg /2” dgdy’ pgQ sin’ g sin® ¢/(1 + 2 cos’(p — ¢'))
3d.) 3 Jo o (@) (p* + q* — 2pq cos p)?
sin*(p — ¢')[pQ sing’ — pgsing — qQ sin(¢’ — ¢)]?

(74)

X . 75
(p* + Q2 —2pQ cos ¢’ *(q* + Q% — 2qQ cos(¢ — ¢')) (75)
Let us change variables Q — pQ and q — pq then we find
b(Z,e) o] dp b(2 e) q
(2,e) 4 *
X207(k) = xk / — — xk*In = (76)
0 d? 0 d? k’
where
p2e) _ / d0dg /2” dgdy’ qQ sin’ g sin’ ¢/(1+ 2 cosi(y — ¢'))
27 )2 (g2 +1—2qcosp)?
sin(p — ¢")[Q sing’ — gsing — qQ sin(p’ — @)
X (77)

(1+ Q% —2Q cos¢'2(q* + Q% — 2qQ cos(p — ¢'))’
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We note that the expression under the integral sign is symmetric under the interchange g and Q.
The calculation presented in Appendix C.2 yields

58
b2 = . (78)
27

Hence, we obtain

22k =

0 xk? lrl =, (79)

27d2 k

4.2.4. Evaluation of E(()Z’f )(k)
The correction to the self-energy shown in Fig. 3(f) can be written as

sH k) = s / [k x q1*[pxq [px QP [(p—Q) x(q— Q)
p.p'.q.Q

(0) (0)
g\k q\g g\p nglp q|

T3 q4 q2 QZ |q _ Q|2
[P xqPpxQPI(P-Q)x@—Q)F 0.0 .0 ) (0)
¢ Q@ a—qpf 7 v (v g (80)

Again we take the limit g, — oo. Next neglecting the external momentum k in the argument of
the Green’s functions, we find after averaging over directions of k:

529k = (16”>4 o [ QP xaFip-@)x(a-0)F
0 - 3 d2 40210 — O 121n41n — 0 141n — ald
¢ Jaagrr 0*Q°q—Q[ptp—Q['|lp — 4l
P X QPP x qPI(p — Q) x (g — Q)]2
p4p — Q' —ql*

Now we introduce three angles: ¢ = /(k,Q), ¢’ = Z(k’,Q), and 8 = /(q, Q). Then, we find

8\ 3xkt [ 27 dpde'do pp’
>y = (2 —/dd’dd/
o =13 @ J, PP oda o (27 ¢3Q(q* + Q2 — 2qQ cos )

q*Q? sin? ¢ sin®(¢ — 6)[pQ sing — qQ sinf — pqsin(p — 6)]
(p? +Q? — 2pQ cos p)*(p? + q* — 2pq cos(p — 6))?
y q?Q2sin? ¢’ sin(¢’ — 6)[p'Q sin¢’ — qQ sin8 — p'qsin(¢’ — H)]?
(p? +Q? —2p'Q cos 9 *(p? + q* — 2p'q cos(¢’ — 0))?
Next we make a change of variables: p = Qe*, p’ = Q¢¥ and q = Qe?. Then we find
p2.f) * dQ p@f) q
ak? — - *
d? o Q d? k

(81)

(82)

=) = (83)

where

I dp e D(z,0)
b3 = / / 84
27 coshz — cos6’ (84)

Here the function ®(z, 6) is defined as follows

(2.9) - / /2” sin? ¢ sin?(¢ — 0)
27 (coshx — cos ¢)? (cosh(x — z) — cos(¢ — 0))?

x[e—z sing — e *sinf — sin(g — 9)] . (85)

We note that &(z,0) = &(—z,0) = &(z, —0).
The integral in Eq. (84) is evaluated in Appendix C.3, yielding
68¢(3)

@) = 86
9+ 27 (86)
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Hence, we find
_ 3+68¢(3)
o 27d2

In total, using Egs. (66), (72), (79), and (72), we obtain the contribution of the non-SCSA-type
diagrams of Fig. 3 to the self-energy

=) xk* In q—k* (87)

_ 68¢(3) -

=500+ 2070 + 2500 + 2800 = = a
c

46 )
xk* In o (88)
K

4.3. Final result for n

Now we can add up the contributions of the SCSA and non-SCSA types to the self energy up to
the second order in l/dg. Using Egs. (61) and (88), we obtain
2 qx 2 2 G« 73 — 68((3) qx
—In— 4+ —1In° — 71n—]. 89
d. k= d? k 27d? k (89)
As one can see, the non-SCSA-type diagrams have no smallness in comparison with the diagrams
which are taken into account within SCSA. The result (89) translates into the result (5) for the

bending rigidity exponent. The obtained result for n implies that the value of the coefficient b in
Eq. (43) is equal to

b = (73 — 68¢(3))/27 ~ —0.32. (90)

Using this value we obtain the result (4) for the absolute Poisson’s ratio.

sk — 50(k) — 5P(k) = xk“[l n

5. Conclusions

To summarize, in this paper we studied a suspended 2D crystalline membrane embedded into
a space of large dimensionality d = 2 + d. > 1. We computed the absolute Poisson’s ratio v and
the bending rigidity exponent » to the second order in 1/d..

Our result (4) demonstrates that, for oy < 0 < o, the absolute Poisson’s ratio of a 2D crystalline
membrane is a universal but non-trivial function of d.. Interestingly, the simple relation between
the absolute Poisson’s ratio and the exponent «, see Eq. (33), proposed in Ref. [24] breaks down at
the order 1/d? only.

Our result (5) for the bending rigidity exponent 7 indicates that, in agreement with general ex-
pectations, at each order of expansion in 1/d. the non-SCSA-type diagrams provide the contribution
of the same order as diagrams which are included into SCSA scheme. Therefore, the coincidence of
n°%A at d. = 1 with numerical result for the bending rigidity exponents is a surprising occasion.

Finally, we note that our results have been restricted to clean 2D membranes. It would be
interesting to extend our analytical results for the 1/d.-expansion to the case of a 2D disordered
membrane.
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Appendix A. The polarization operator in the presence of uniaxial stress

In this Appendix we present details of analytical calculation of the polarization operator in
the presence of the uniaxial stress, see Eq. (35). First step is to rewrite integral in real space
representation

[ Pk kxQP [(Q-K)xQP [ 5 oy R
P(Q)_/@n)z K112 (@ — K £ (Q — kP _fd xe @ [ Q) (A

where Q =Q/Q and

Ny &’k ikx [k XQ]Z
I, Q)_/(zn)ze KBk (A-2)

Let us introduce the following notations
k., kKb
(@) ) — pilx X7y A3
oD (x) /(271)2 e (A3)
where a and b are non-negative integers. Then we can write
Fx,Q) = QfO2(x) — 20.Q,f V() + Q2F >0 (x). (A4)

In order to find the three functions f(®2), f(11 and 9, we first compute analytically the functions
f(l.,O) and f(2.0) _|_f(0,2);

F10x Z oi / d’k  elkx Z i o2 /"0 kdk Jo(ky/x? + y?) (AS)
2 K+ ioky =2 o 2w k*+1/4
i /2
= smh( )KO ("”) . (A6)
21 2
2 ik o
RO (%) 4 FOD(x) = Z / d’k e™ _ Z ax/Z/ kdkfo ky/x2 +y?) (A7)
2nP k2 +ioke = 2 kK +1/4
1 /2
- cosh( )1<0 ("“’) . (A8)
21 2

Here Jo(z) and Ky(z) stand for the Bessel and modified Bessel functions of the zeroth order. Next we
use the relation f@+1:0+m(x) = (—idy)"(—id,)"f@P)(x) in order to find the three required functions:

2.0 1 /x2 + y2 X /x2 + y2
o (x) = cosh ( )K - sinh ( )Kl — |,
47T 2 2 /x2 + y 2 2
(1.1) 1 y /XZ +y2
fe (x):——ismh( >K1 —,
4 /x2 +y 2 2
0.2) 1 x2 + y2 X X2 + y2
FOD%) = — | cosh ( )1<O v n sinh ( )Kl YEIVN (A9)
47T 2 2 /x2 + y 2 2
Next step is to perform inverse Fourier transform. We introduce the following notations
Flabied)xy = flab)x)f(©d)(x) and express the polarization operator as

P(Q) = QIFO202(Q) +4Q7Q7F V(@) + QIF*H0%(Q) + 2Q7Q7F Q)
—4QJQF**1 Q) - 4Q.QIF* 1 (@), (A10)
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where F*b¢d(Q) = [ d’xexp(—iQx)F(“P9(x). In order to evaluate the functions F>¢9(Q), we
shall use the following identities:

o 5 (X 2arcsinhQ
| g ()i = oo =M@ (1)
o X 2 arcsinh Q
dxxko (2) K 2O — 204(Q). 12
[,k (5) k0 (5o = “TEEE = 20n) 2)
/ de1( )|:1(Qx)—%x]=2[Q—\/1+Q2arcsinhQ]. (13)
0

Below we demonstrate as an example the details of calculation of integrals for the function

F(l,];l.l)(Q):

. d’x . y . X VX2 +y2? o
(1,1;1,1) _ iQx i iQx
F (Q)_/(4n)29 [ [ 5‘““(2)'(1 ( )} Z/ @rR’
e (Y e [0 ol (!
oy (e — 1)K ( . ) - Re/o TR [Pyh(Pr)— Qy]1(Qr)] K: (5)
1 9
=5 Re 30, [Q/(1+Q)AQ) — P,(1+ PAP)], (A.11)

where we introduced the vector P = (Q; + i, Qz). The other required functions are computed in a
similar way. The results are as follows

8rF0202(Q) = (G2 + Q* + 1)A(Q) + G — Re [(ﬁj + P — 14 2iP)AP) + 133] ,
8rF2020(Q) = (02 + Q2 + 1]A(Q) + Q2 — Re [(132 + P2 —1— 2P )A(P) + 133] :
sTF Q) = (Q2 + Q1)AQ) + Q2 — Re | (B2 + P2)A(P) + B2
—87F0229(Q) = (G2 + Q% — 1)A(Q) + Q2 — Re [(Py2 + P2+ 1)A(P) + 133] ,
—8rFO211(Q) = ,Q,[1 - A(Q)] — Re [(—ﬁxﬁy +iP,)A(P) + ﬁxﬁy] :
—8rF211(Q) = 3,0, (AQ) — 1) — Re [(ﬁxﬁy +iP,)A(P) — ﬁxﬁy] . (A12)
That together with (A.10) sums up to the answer for the polarization operator, Eq. (38).

Appendix B. Some details of numerical computation of the coefficient ¢

In this Appendix we present some details of numerical computation of the coefficient ¢ given by
Eq. (41). It is convenient to write it as follows

_ B e (L@ @)
c=ao a=ter [ o5 ( Q) Pl ) (B0
where
; K [K x QJ* K2
() _ B
H@= f @7y Q*  [K*+K2PIK — Q|* +j(Ky — Q)21 (8:2)
We note that
1 oP(Q) 1 _90P(Q)
(1) — _ _
Q)= 5 [P(Q) R ] (B.3)
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Also, we mention that similar to P(Q) the functions LE(])(Q) and L}U(Q) has very anisotropic
behaviour close to Q = 0. This complicates numerical evaluation of the integrals. In order to
circumvent this problem we make the following splitting ¢ = ¢y — ¢,1 + Cx2 Where

/ 2Q L(Q)P(Q) — P(Q)]
Cg1 = 167
(2n)? P(Q)Po(Q)

(B.4)

and

20 10— 190 _ [V 0
Gy = 16n/ (d Q L (Q)-L(Q)-Ly(Q)+L(Q) (B5)

27 )2 Po(Q)
Numerical evaluation yields

¢x1 = 2.819 £ 0.001, cy1 =7.19£0.02. (B.6)

In order to evaluate c,y, it is convenient to use the following transformations

#Q L(Q)-L@)  16x [ £Q &K
/ @72 P(@ 3 ) @rr@ay
(K x QI*(Ky — QK3
Q2[K* + K2PP[IK — Q[* + (K« — Q1K — Q|*
16w / d’P &K [K x P]* PIK;
3 ) (72 (27)? PAK — PP [K4 + K212[P4 + P2]
Now introducing K = Pt and P = ,/y, we find that

2 2
. I

" / yt3sin? 6 cos? ¢ cos[2(6 + ¢)]
[yt2 + cos2(8 + @)2[y + cos? ¢][t2 + 1 — 2t cos O]’
Now using the following result

t2 cos? ¢
cos2(0+¢)

)

o0 y cos?(0 + ¢) — t2 cos® ¢ + t? cos® ¢ In
d =
/0 Y [yt2 + cos2(0 + ¢)12[y + cos? ¢] t2[cos2(0 + @) — t2 cos? ¢]>

(B.9)

we obtain

8 [ e ©  tsin?6 cos? ¢ cos[2(8 + ¢)]
Cxyp = ——— do d dt
w2 = T Zf / ‘p/ (2 + 1 — 2t cos 0]

2
y [cos?(6 + ¢) — t? cos? ¢ + t* cos? ¢ In ngfé’;‘;] (5.10)
[cos?(8 + ¢) — t2 cos? ¢]? ' '
We note that the integrand is symmetric under simultaneous transformation 6 — 27 — 6 and

¢ — 2w — ¢. Therefore, we can rewrite the above integral as follows

2 t sin* 0 cos? ¢ cos[2(8 + ¢)]
G2 / / <p/ [£2 41— 2t cosh]

[cos?(0 + @) — t? cos? ¢ + t% cos® g In c"sz‘”]

cos2(0+¢)
. B.11
[cos2(8 + @) — t2 cos? )2 ( )

Numerical evaluation of this integral results in ¢, = 4.933 £ 0.001. In total, we find ¢ =
0.56 £+ 0.02.

X
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Appendix C. Evaluation of non-SCSA contributions to the self-energy

In this Appendix, we present the detailed analytical calculation of the integrals involved in the

non-SCSA contributions Eéz‘d), Eéz‘e), and E(()z’f ) to the self-energy.

C.1. Evaluation of b>9

In this subsection, we calculate analytically the integral determining the coefficient bgz’d)(k) in
Eq. (71). Let us introduce the variables x and y such that p = exp(x) and p’ = exp(y). Also we
introduce variables u = exp(ip) and v = exp(1<p ). Then, we find

du (u? — 1) (v? — 1)
(2,d) _
b / dx/ dy£v| 1 2miv f,ﬂ 1 2miu (u — e¥)2(u —e*)2 (v —e¥)2(v —e V)

(v? — X —1/v)—eY(u— 1/u) — (v/u — u/v))?
X .
(u— e Yv)2(u — e *typ)?
The positions of the poles in the expression under the integral signs in u and v complex planes

depend on values of x and y. Therefore it is convenient to consider the three domains of integration
over x and y:

(C.1)

MH:0<y<x, (IMH:x>0y<0, (Im:y <x<0. (C.2)
For each domain we can determine the poles of the expression inside the unit circle, |u| < 1:
M:u=e*u=rve™, (MHu=e* u=ve", () :u =", u = ved ™. (C.3)

Also for all three domains there is a pole at u = 0. Performing integration over u, we find that
except the pole at v = 0 the obtained expression has the following poles inside the unit circle,
v < 1:

Mv=eV,v=¢"%  (:v=e,v=e"%  (l):v=2¢. (C4)
After integration over v, we find
/ J / e2+y) | 5p4(+y) _ Godx+2y | 8ebx+2y _ 1Ge2x 4y 4 et _ 4% 4 gty
X
e23x+y) (ezx _ 1)2

4 0 2e4(x+y 166‘ (x+y) _Ge4x+2y 4er+2y +2€2x+4y+5e4x +8€6x+9€4y
—— dx / dy

9 _/(; oo ebx—2y (32x _ eZy)2

4 0 X 964(x+y) _ 662(x+y) _ ]Ge4x+2y + 262x+4y + 8€2X + 5€4X _ 4eZy + 2€4y
—— dx f dy

9 —o0 —o0 eXx—2y (ezy - 1)2

2 72 11 13 x?
=‘§[<3‘€>+Z+<Z+€>]:‘2 (€

This value yields Eq. (72) of the main text.
C.2. Evaluation of b(>€)

Here, we calculate the integral in Eq. (77) for coefficient b®>¢. We introduce the following
variables x =Inq, y = InQ, u = exp(ip), and v = exp(i¢’). Then, we find

p2e) — i/oo dX/X dyf dv % du (W -1y (v? — 1)
27 J_ o =1 2iv? Jy o1 2wiu? (u — eX)2(u — e (v — eV )2 (v — eV )?

(v —u?Ple (v — 1/v) —eY(u— 1/u) — (v/u — u/v)])? |: 1,u v 2}
x f(f ) .

1+ + -
(u— e Yv)2(u — e *tVy) 2\v u

(C.6)
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Again the pole structure of the expression under the integral signs in u and v complex planes depend
on values of x and y. Therefore it is convenient to consider the three domains of integration over x
and y defined in Eq. (C.2). The poles inside the unit circle, |u| < 1 are the same as for the diagram
in Fig. 3(d), see Eq. (C.3). Performing integration over u, one finds that the obtained expression has
poles in v inside the unit circle, |v| < 1. Their positions are exactly the same as for the coefficient
b>9 see Eq. (C.4). After integration over v, we find

o—42x+y)
b(z,e) / dX/ dy o 264(x+y) _ 366(x+y) + 7e4x+2y _ 1966x+2y
+]4e8x+2y + 566x+4y

_2368x+4y + 62(x+5y) + 1964x+6y _ 762x+8y + 5e4x+8y _ 1464)( + ZleGX _ 568X _ 3610y )
4 00 0

L2 dx / dy &2 ( 7e2000Y) | 4gA0HY) _ g2 4 145XH2 | 0p2x Y _ 0pix
27 0 —00

— 2865 4 3¢Y )

dxf dy

_4e4y 2X + 1062x+4y

—73e*) — 36e°HY) 62T — 215V

+59e6x+4y _ 266y74x + 2863/72)( + 2e2x+6y + 2364x+6y _ 28€2X _ 1Oe4x + ]4e2y + Zesy )
4 2(8 37 ) 889+ 2m? 485 58 7)
2719 144 3 48 )| 27’ '
This results in Eq. (79) of the main text.
C.3. Evaluation of b?/)
The evaluation of the integral in Eq. (84) for the coefficient b®f) turns out to be most in-

volved among the integrals determining the non-SCBA contributions to the self-energy (Fig. 3). By
introducing new variables w = exp(if) and u = exp(ip), we can write

B2 _ (16) / 7§ coshz _oshz e,
Jw=1]| 27'[1 w_ez)(w—e )

q§(z,w)_/ dxF(x,z, w),

1 du (u? — 12 (u? —w?)?
F(X, z, UJ) = _&ez ﬁ:]‘ riu (u — ex)z(u . e_x)z (Ll _ wex—z)Z(u _ weZ—X)Z
x[e’z(u —u N —eM(w—w") - (uw ' - wu’])]z. (C8)

Let us first, integrate over u in the function F(x, z, w) under assumption that z > 0. The result of
integration depends on the intervals in which x is situated. We split it into three domains:

H:x <0, (H:0<x <2z, () :z < x. (C9)
Then pole structure inside the unit circle, |u| < 1, can be summarized as follows
z

M:u=eu=we?, [:u=e X u=we? UD):u=e* u=we™" (C.10)

Also there is always the pole at u = 0. Then, we can write that @(z, w) = ®1(z, w) + D,(z, w),
where

z o0
Dy(z, w):/ dx Fy(x, z, w), Dy(z, w) = / dx [FHI(X-FZ,Z,w)+F1(—X,Z,w)]- (C.11)
0 0
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The function @4(z, w) can be found explicitly

e—4z

128w? (e2 — w) (w — e~?)

(151(2, IU) =

x [ 3w (w? 4+ 1)° — (w? + 1) & (3w + 2w’(4z + 5) + 3)

— (w® + 1) e (w*(4z — 3) + 2w*(16z — 5) + 4z — 3)
+4we* (w* + (3w? + 8w’ +3)z+1)

+we* (w*(8z — 7) + 6w’(4z — 1)+ 8z — 7) :| (C12)

whereas integration over x in ®@,(z, w) is not easy to perform analytically. Therefore, we rewrite
the expression for b*/) in the following way

p2) 16 / % coshz
Jw=1] 27'[1 u) — ez)(w — e_z)

x [D1(z, w) +201(z, w)Pa(z, w) + P3(z, w)]
— KN (2.f) (2.f)
=by7" +2b5 + b5, (C.13)
In order to compute b’ we integrate over w. There are poles at w = 0 and w = e~? inside the
unit circle, |w| < 1, in the w complex plane. Then, we obtain the following result:
2N _ 1= S coshz
1 27 Jo (22 — 1)

—8e% (162% + 34z — 13)

-9z
{ 9 —24e*(z + 1) + e* (162 4 128z — 23)

+6% (3682% + 192z — 21) — 8e'% (522> — 29z + 14) + e'** (3522° — 2562 + 67) } . (C14)

Finally, integrating over z, we find

20 13253
b3 = 3y 222 C.15
27°3)+ 58330 (C15)

Next we consider the contribution b(2 1) In order to proceed, we first integrate over w. Using the
explicit expression (C.12) for the functlon @1(z, w), we analyse the pole structure in the complex
plane of w. Inside the unit circle |w| < 1, there are poles at w = 0, w = e %, and w = e~ %%, After
integration over w, we obtain the following result:

—8x=9 cosh z
b2 = 2 / dz / — [ (134 — 436z)e5 %
e z+2z __ 1)2
X+Z

216 _ e4x+22 _ 12€8X+22

+(98 — 802)e*?) 4 (20 — 402)e¥T5 + (6 — 122)e5+%2 — 4(z — 2)e'¥+%7 4 8(z + 13)e***?)
+(82 _ 169)66(X+Z) + 2(82 _ 7)68X+4Z + (SZ _ 7)610X+82 _ 5(82 _ 7)eGX+1OZ + 3(82 _ 5)66X+4Z
—4(25z + 33)e?HH 4 4(44z — 37)e¥T 4 4(527 — 23)e¥ 107 4 (567 — 4)e10FE) | 3p10+4z

—3(64z — 51)e*+% (3362 + 50)e™52 4 9e% 4 48e% + 16e%(4z — 3) } . (C.16)
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Next, integrating over x, we obtain

-l o0
b(zf =51 dz e™% cosh z |: 27 + 487° (e“z — €%) 4 240e% 7>
+336e!%722 — 72eZZz + 44¢%7
+404e%z — 96632z — 228e'%z + 12e'%%z + 24e% — 60e¥ — 96€%” + 111e% — 6%

—6e% (e*(14 — 4z) + €' + e¥(4z + 1) + %(20z + 6) + €*(28z — 19) — 3) In (¢* — 1)

—6e% (e*(14 — 4z) + €' + e¥(4z + 1) + %(20z + 6) + €*(28z — 19) — 3) In (¢* + 1) } .

(C.17)
Finally, integrating over z we find
4 5789 23
P = Zpc3 _ 252 C.18
9*®) " J9aa0 ~ 972" (C-18)

Now we turn our attention to the coefficient b(222,f ). Again, at first, we integrate over w. Inside the
unit circle, jw| < 1, there are four poles: at w =0, w = e™?, w = e~ %%, and w = e~ ¥~ (we took
into account that x, y, z > 0). Integrating over w, we obtain the following result:

bE) = —2(16>/ dzf dx/ dy X»(x, v, 2) (C.19)

The resulting expression for Xs;(x,y, z) is rather cumbersome and we present it separately in
Appendix D. Next, after integration over x and y, we find

1 [® e %coshz
b<222,f> =—r dz 328 { e* (—36e22 (e + 1)2 (e* — 1)3 ( —Lip (1—e7%)
0
1 72
+5 (7* —In*(1-e%)) - €> +216€%2° — 216e% 2% — 4327 2% + 432¢%2% + 216¢'%2°

—216e'%%2% + 13e% + 179e* + 427¢% + 351e% + 90e'% + 36e'%? — 120e%z + 804e*
+672e%z — 1140e%z — 264e'%z + 156e'%?z — 108z

+144e* (e + 1)22 (e — 1)3 In (e — 1))

+36€% (—9e* — 126% — 126% — 9™ + €'% 4 1) Li (e7%) + 117e* — 74e* — 406e™
+1225e% + 195e1% — 246e'% — 3614 — 108¢%z — 120z + 804e%z + 672¢% 2
—1140e'%z — 264e'%z + 156e'%z — 67%e* + 672e% + 1272e% — 1272e1% — 67%e1%

6% — 90e% (6% + 1) (¢ — 1) In (€% — 1) + 12¢% (26%(52 — 122) + 48e™

+9¢% + e(12z — 19) + €'%(12z — 13) — 9) (¢** — 1) In (¢** — 1) + 81 } . (C.20)
Here Liy(z Zk 1z" /k? stands for the polylogarithm. Finally, integrating over z, we find
8 41507 23
p2H — Cregy_ 22 a2 Cc21
2 =9t 5320 T 46" (€21
Combining all contributions, b(]z]f ), b(fzf , bzzzf ) together, we obtain
b — @0 4 @ | pen 31 6803) (€22)
27 '

leading to Eq. (87) of the main text.
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Appendix D. Expression for the function X (x,y, z)

In this Appendix we present the expression for the function X5,(x, y, z) which is determined by
the right hand side of Eq. (C.19). This function can be written as

678x78y792
X2

coshz 1 2
= - [Xéz’(x,y, 2)+ X5 (x. y, Z)], (D.1)
2048 (1 _ ez(x+z)) (] — eZ(y+z)) (] — eZ(x+y+z))
where
Xg)(x,y, 7) = 9e8+Y) 4 48e8(x+2) _ 488(x+2) | 4860+2) _ 4ge80+2)
_3264(X+y+2) + 5366(x+y+z)
+29068(X+y+l) _ 1081610(X+}’+2) + 1510612(x+y+z) + 3]3614(x+y+z) + 3618(x+y+z)
+1O7e4(2x+y+z) _ 2162(3x+y+z) + ]0764(x+2y+z) _ 9066(2x+2y+z) _ 18562(7x+7y+62)
_2162(x+3y+z) 4 4866x+22 + 46066(2X+y+22) + 37768(2x+y+2z) _ 567e4(3x+y+21) _ 56764(x+3y+22)
_ G pbx+4y+2z 6y+2z 4x+6y+2z 6x+6y+2z 8x+6y+2z 6x+8y+2z 8x+8y+2z
6e + 48e 6e + 9e 3e 3e 45¢
_1564(2x+y+3z) _ 7764(3x+y+3z) + 1664(4x+y+3z) + 357e2(5x+y+3z) _ 1584(x+2y+3z) + 3886(2x+2y+3z)
_8366(3x+2y+31) + 1664(X+4y+32) + -1664(3x+4y+32) _ 464(4x+4y+3z) + 357ez(x+5y+3z) 4 1696x+4z
_8068x+4z + 16762(5x+y+4z) _ 12362(6x+y+4z) + 36e4x+2y+4z _ -1-12e6x+2y+4z _ -169e8x+2y+4z
+97864(3x+3y+4z) + ]26064(4x+3y+4z) + ]67e2(x+5y+4z) + 1666y+4z
_12362(x+6y+4z) _ 11262x+6y+4z
+63e4x+6y+4z _ 966x+6y+4z + 2168x+6y+4z _ 8068y+4z _ 16962x+8y+4z
+2 166x+8y+4z _ 4468x+8y+4z
+15610x+8y+4z + 1568x+10y+4z + 90610x+10y+4z + 6962(4x+y+52) + 15862(5x+y+52) _ ]8362(6X+y+52)
_4462(7x+y+52) + 6962(x+4y+52) + ]72e4(4x+4y+52) _ ]8362(x+6y+52)
_48162(5x+6y+52) + 37062(6x+6y+52)
+60€2(7x+6y+52) _ 4462(x+7y+52) _ 5062(5x+7y+52) + 60e2(6x+7}/+52)
+3562(7x+7y+51) _ -1562(8x+7y+52)
_1562(7x+8y+52) _ 962(8x+8y+52) _ 48€8X+62 + ]6610X+62 _ ]]666X+2y+62 + ]28€8X+2y+62
_104e4x+4y+62 _ 10066x+4y+62 + 387e8x+4y+62 + 143610x+4y+62 + 104362(5x+5y+62)
_,’_75362(6x+5y+62) + 117062(7x+5y+62) + 1662(8x+5y+62) + ]]7062(5x+7y+62) _ 24062(GX+7JH—GZ)
_3962(8x+7y+62) _ 4868y+6‘z + 128e2x+8y+6‘z + 387e4x+8y+62 + 16e2(5x+8y+62)
_32866x+8y+61 _ 3962(7x+8y+62) + 8268x+8y+62 + 362(9x+8y+62) _ -15610x+8y+62 + 3(?2(8x+9y+62)
+16€10y+62 + ]43e4x+10y+62 _ 2-1-166x+10y+62 _ -1568x+10y+62 + 85610x+10y+62 _ 30612x+10y+62
_30610x+12y+62 _ 116262(5x+5y+7z) _ -102-162(Gx+5y+7z) + 882e2(7x+5y+7z) _ 71262(8x+5y+7z)
_262(9x+5y+7z) _ 102162(5x+6y+7z) _ 31862(6x+6y+7z) _ 227562(7x+6y+7z) + 8962(8x+6y+7z)
_262(9x+6y+7z) _ 71262(5x+8y+7z) + 8962(6x+8y+7z) + 69e2(7x+8}/+72)
+5262(8x+8y+7z) + 962(9x+8y+7z)
_262(5x+9y+7z) _ 262(6x+9y+7z) _ 2e2(7x+9y+7z) + 962(8x+9y+7z) _ e2(9x+9y+7z)
+32€10x+8z + 16612x+82
_6966x+2y+82 _ 7868x+2y+82 + 17466x+4y+82 + 40868x+4y+82 _ 789610x+4y+82 _ 5862(5x+5y+82]
+317ez(6x+5y+82) + 53562(7x+5y+82) _ 106262(8x+5y+82) + 87e2(9X+5}/+82) _ 69€2X+6y+82

_,’_174e4x+6y+8z + 31762(5x+6y+8z) + 56066x+6y+82 _ 73-162(7x+6y+82)
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+5368x+6y+82 _ 1762(9x+6y+8z)
_272610x+6y+82 + 149612x+6y+82 + 53562(5x+7y+82) _ 73162(6x+7y+82) + 239062(7x+7}/+82)
_16662(8x+7y+82) _ 262(9x+7y+82) + 8782(5x+9y+8z) _ 1782(6x+9y+82)
_262(7x+9y+82) _ -1562(8x+9y+82)
_562(9x+9y+82) + 32e10y+8z _ 78964x+10y+8z _ 27266x+10y+8z + 64468x+10y+8z _ 257610x+10y+8z
_30612x+10y+8z + 16612y+8z + ]4966x+12y+8z + ]85€8x+12y+8z _ 3OE1OX+12)’+8Z _ 80612x+12y+8z

+3Oel4x+12y+82 + 30612X+14y+82 _,’_45614x+14y+82 + 10562(7x+5y+92)

_12662(8x+5y+92) + 2«162(9)(4-5)/4-92)7 (DZ)

Xg)(x,y, 7) = _ 4782 Tx+6y+92) + 571¢2(8x+6y+92) + 10502(5%+7y+92)

—478e26x+Ty+92) | 1Ge2Tx+Ty+92)

—953e2Bx+7y+92) 4 19p2N+Ty+92) _ 19Ge2(5x+8y+92) | 571026x+8y+92) _ g532(7x+8y+92)
+37p2BxH8y+92) _ 1Qp20+8y+92) | 5o6x+4y+10z | g5 8x+4y+10z

_199p10x+4y+10z _ 5g,12x+4y+10z

43074 H4H+10z | 5p4x+6y+10z _ 109 o6x+6y+102 _ gage8x+6y+10z _ 351 ,10x+6y+10z
+1440e!26+H6v+102  573014x+6y+102 | 1854x+8y+102 _ g4G6x+8y+102 _ 1 135,8x+8y+10z
—106e!0x+8Y+102 _ 5ggol2et8y+10z _ 5gqo14x+8y+102 _ 9@odx+12y+102 | 1 440g6x+12y+102
—588e8xH12y+102 | 3704 +14y+102 | 973,6x+14y+10z _ 9@ o8x+14y+10z _ 91, 10x+ay+122
4367 X HYH122 _ 51p8x+6y+122 | 47,10x4+6y+122 _ 5gg14x+6y+12z _ 573,16x+6y+12z
5158122 | 55408x+8y+122 | 1530p10x+8y+122 _ g76012x+8y+122 _ g3gpldn+8y+12z
+163e16x8Y+122 _ 9g1p10y+122 | g7,66+10y+122 | 153gp8x+10y+122 | 3G704x+14y+122
_508e8XH14y+122 _ g3 8r14y+127 _ 97306x+16y+122 | 163o8x+16y+127 | 75,10x+6y+14z
+420¢12XH6y+142 _ 9@7,14x+6y+142 _ 553,16x+6y+14z | 36,180+6y+14z | 1g,8x+8y+14z
211008y +147 _ G101 2xH8y+142 | 146p140H8y+142 | @50 o16x+8y+14z _ 53,18x+8y+14z
475010y +14z _ 5 8x+10y+14z 4 g5qpbxt12y+14z _ G10p8x+12y+14z _ 55 3,6x+16y+14z
48523 T167+142 | 3Go6x+18y+14z _ 93o8x+18y+142 __ 1411 2x+8y+162 _ 177,14x+8y+162
—5QpI8xF8Y+167 _ 1418x+12+167 _ 177o8x+14y+162 _ 5gpSr+18y+167 | 5p14x+14y+202
—70e!6x 1474207 | 15,18x+14y+202 _ 79 14x+16y+207 4 14p18x+16y+202 | 15, 14x+18y+207
+14e16xH18y+202 | 93,18x+18y+202 | 36,2(x4+20+2)) | 408l +20+2)) 4 460e8x+20+2)
437780F20+2)) _ 1162 430+2)) _ 7704x+3012)) _ 476421 +30+2)) _ g308(2x+3(y+2))
+16€4(4x+3(y+z)) _ 7862(x+4(y+z)) 4 126064(3x+4(y+z)) 4 63e6x+4(y+z) 4 158ez(x+5(y+z))
_19962(2x+5(y+z)) _ 321e2(3x+5(y+z)) _ 10682(4x+5(y+z)) _ 48162(6x+5(y+z)) _ 5062(7x+5(y+z))
—100e%+60+7) | 75302(5x+60+2)) _ 940p27x+6(+2)) _ 39ge8x+6(+2) _ 911,106+6(+2)
—287eX3xH7042)) 4 146024 +70+2)) | ggpe2(5x+7r+2)) _ 997502(6x+7(y+2)) | gge2(8x+7(y+2)
_262(9x+7(y+z)) _ 106262(5x+8(y+z)) 4 53esx+8(y+z) _ 16662(7x+8(y+z)) _ 1562(9x+8(y+z))

+644e]0X+8(y+Z) + 185612x+8(y+z) + 2162(5x+9(y+z)) + 1982(7x+9(y+z)) _ 1962(8x+9(y+z)). (D3)
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