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a b s t r a c t

We report a complete analytical expression for the one-loop
correction to the ac conductivity σ (ω) of a disordered two-
dimensional electron system in the diffusive regime. The
obtained expression includes the weak localization and
Altshuler–Aronov corrections as well as the corrections due
to superconducting fluctuations above superconducting transi-
tion temperature. The derived expression has no 1/(iω) diver-
gency in the static limit, ω → 0, in agreement with general
expectations for the normal state conductivity of a disordered
electron system.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The corrections to the physical observables of an electron system due to the superconducting
fluctuations are the subject of research with more than 50 years old history (see Refs. [1,2] for a
review). Recently the study of superconducting fluctuations has gained a significance as a tool to
elucidate the fundamental aspects of a superconducting state. The conductivity in the normal state
is among physical observables which are affected significantly by superconducting fluctuations.
Near the superconducting transition temperature Tc , the most substantial contributions to the dc
conductivity are due to Aslamazov–Larkin [3,4] and Maki–Thompson [5,6] processes. While the
dc conductivity is sensitive to the position of Tc only, the ac conductivity contains information
about the energy and time scales involved. The experimental studies of the microwave conductivity
near the superconducting transition in thin films were pioneered in Refs. [7–9]. Recently, the ac
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conductivity measurements have been used to elucidate physics behind superconductor–insulator
transitions in thin films [10–15].

It is well understood theoretically [16] that the conductivity corrections due to superconducting
fluctuations in disordered electron systems in the diffusive regime stand in the same row as the
weak localization [17] and Altshuler–Aronov corrections [18]. The contributions to the conduc-
tivity due to pairing fluctuations are nothing but quantum corrections due to interaction in the
Cooper channel dressed by the scattering off a random potential. Although the final expressions
for the weak localization and Altshuler–Aronov corrections to the ac conductivity σ (ω) are well
established [19,20], the corresponding expression for the contribution due to superconducting
fluctuations is still absent in the literature. The point is that in the diagrammatic approach the
pairing conductivity is given by the sum of ten diagrams [1,2]. Some diagrams produce contributions
proportional to 1/(iω) in the static limit, ω → 0. However, the sum of all ten diagrams is expected
to give a finite contribution to the dc conductivity in the normal state. Only recently this problem
has been finally solved and the general expression for the superconducting pairing contribution to
the dc conductivity has been established. For the diffusive regime it was derived with the help of the
Keldysh path integral and Usadel equation [21]. In the ballistic regime the fluctuation corrections
to the dc conductivity were computed by means of a standard diagrammatic approach [22]. An
attempt to obtain a general expression for the fluctuation correction to the ac conductivity, σ (ω),
was performed in Ref. [23] with the help of the Keldysh nonlinear sigma model (see Ref. [24]
for a review). However, the expression derived in Ref. [23] diverges as 1/(iω) in the static limit,
ω → 0.

In this paper we report the general analytical expression for the quantum correction to the ac
conductivity of a disordered electron system in the diffusive regime which includes the weak local-
ization and Altshuler–Aronov contributions and contributions due to superconducting fluctuations
above the transition temperature. We derived our results with the help of the replica Finkel’stein
nonlinear sigma model (NLσM) (see Refs. [25,26] for a review). In order to find σ (ω) we performed
the analytic continuation from Matsubara to real frequencies. We emphasize that our result for the
contributions to σ (ω) due to superconducting fluctuations has no 1/(iω) divergence as ω → 0.
In the static limit, ω → 0, our expression reproduces the results reported for the dc conductivity
in Refs. [21,22].

The outline of the paper is as follows. In Section 2 we introduce the formalism of the Finkel’stein
NLσM. The results of the one-loop computation of the ac conductivity are given in Section 3. In
Section 4 the behaviour of different contributions to the ac conductivity due to superconducting
fluctuations is analysed. We finish the paper with conclusion (Section 5). Some technical details are
given in Appendices.

2. Formalism

2.1. Finkel’stein NLσM action

The action of the Finkel’stein NLσM is given as the sum of the non-interacting NLσM, Sσ , and
contributions due to electron–electron interactions, S(ρ)int (the particle–hole singlet channel), S(σ )int
(the particle–hole triplet channel), and S(c)int (the particle–particle channel) (see Refs. [25–27] for a
review):

S = Sσ + S(ρ)int + S(σ )int + S(c)int , (1)

where

Sσ = −
g
32

∫
dr Tr(∇Q )2 + 4πTZω

∫
dr Tr ηQ , (2a)

S(ρ)int = −
πT
4
Γs

∑
α,n

∑
r=0,3

∫
dr Tr Iαn tr0Q Tr Iα

−ntr0Q , (2b)
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S(σ )int = −
πT
4
Γt

∑
α,n

∑
r=0,3

∫
dr Tr Iαn trQ Tr Iα

−ntrQ , (2c)

S(c)int = −
πT
4
Γc

∑
α,n

∑
r=1,2

∫
dr Tr tr0LαnQ Tr tr0LαnQ . (2d)

Here the matrix field Q (r) (as well as the trace Tr) acts in the replica, Matsubara, spin, and
particle–hole spaces. The matrix field obeys the following constraints:

Q 2
= 1, TrQ = 0, Q †

= CTQ TC, (3)

where the charge-conjugation is realized by the matrix C = it12. The action of the NLσM involves
four constant matrices:

Λαβnm = sgn n δnmδαβ t00, (I
γ

k )
αβ
nm = δn−m,kδ

αβδαγ t00,

(Lγk )
αβ
nm = δn+m,kδ

αβδαγ t00, ηαβnm = n δnmδαβ t00, (4)

where α, β = 1, . . . ,Nr stand for replica indices and integers n,m correspond to the Matsubara
fermionic frequencies εn = πT (2n + 1). The sixteen matrices,

trj = τr ⊗ sj, r, j = 0, 1, 2, 3, (5)

operate in the particle–hole (subscript r) and spin (subscript j) spaces. The matrices τ0, τ1, τ2, τ3
and s0, s1, s2, s3 are the standard sets of the Pauli matrices. Also we introduced the vector tr =

{tr1, tr2, tr3} for convenience.
The bare value of the total conductivity (in units e2/h and including spin) is denoted as g .

The interaction amplitude Γs (Γt ) encodes interaction in the singlet (triplet) particle–hole channel.
The interaction in the Cooper channel is expressed by Γc . Its negative magnitude, Γc < 0,
corresponds to an attraction in the particle–particle channel. The parameter Zω describes the
frequency renormalization. If Coulomb interaction is present the following relation holds, Γs = −Zω .
This condition remains intact under action of the renormalization group flow [25,28].

2.2. Kubo formula for the ac conductivity

Within the Finkel’stein NLσM approach, the physical observables, associated with the mean-
field parameters of the action (1), can be written as correlation functions of the matrix field Q .
The ac conductivity σ (ω) can be obtained after the analytic continuation to the real frequencies,
iωn → ω + i0+, of the following Matsubara response function (ωn = 2πTn):

σ (iωn) = −
g

16n

⟨
Tr[Jαn ,Q (r)][Jα

−n,Q (r)]
⟩
+

g2

64dn

∫
dr ′

⟨
Tr Jαn Q (r)∇Q (r) Tr Jα

−nQ (r ′)∇Q (r ′)
⟩
.

(6)

Here the expectation values ⟨. . . ⟩ are taken with respect to the action (1), d stands for the spatial
dimensionality, and the matrix Jαn is defined as follows

Jαn =
t30 − t00

2
Iαn +

t30 + t00
2

Iα
−n. (7)

At the classical level, Q = Λ, the conductivity is independent of the frequency, σ (ω) = g .

3. One-loop corrections to the ac conductivity

3.1. Perturbative expansion

Our aim is to compute correction to σ (ω) in the lowest order in 1/g . For this purpose we shall
use the square-root parametrization of the matrix field Q :

Q = W +Λ
√
1 − W 2, W =

(
0 w

w 0

)
. (8)
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We adopt the following notations: Wn1n2 = wn1n2 and Wn2n1 = wn2n1 where n1 ⩾ 0 and n2 < 0.
The blocks w and w satisfy the charge-conjugation constraints:

w = −CwTC, w = −Cw∗C . (9)

These constraints imply that some elements (wαβn1n2 )rj in the expansion, wαβn1n2 =
∑

rj(w
αβ
n1n2 )rjtrj, are

purely real and the others are purely imaginary.
The part of the action (1), which is quadratic in W , determines the following propagators for

diffusive modes in the theory. The propagators of diffusons (modes with r = 0, 3 and j = 0, 1, 2, 3)
read ⟨

[wrj(p)]α1β1n1n2 [w̄rj(−p)]β2α2n4n3

⟩
=

2
g
δα1α2δβ1β2δn12,n34Dp(iΩε

12)
[
δn1n3 −

32πTΓj

g
δα1β1D(j)

p (iΩε
12)

]
,

(10)

where Ωε
12 = εn1 − εn2 = 2πTn12 = 2πT (n1 − n2), Γ0 ≡ Γs, and Γ1 = Γ2 = Γ3 ≡ Γt . The diffuson

in the absence of interaction is given as

D−1
p (iωn) = p2 + 16Zω|ωn|/g. (11)

The diffusons renormalized by a ladder resummation of interaction in the singlet and triplet
particle–hole channels have the following form, respectively,

D(0)
p (iωn) ≡ Ds

p(iωn) =

[
p2 + 16(Zω + Γs)|ωn|/g

]−1
,

D(1,2,3)
p (iωn) ≡ Dt

p(iωn) =

[
p2 + 16(Zω + Γt )|ωn|/g

]−1
. (12)

The propagators of singlet cooperons (modes with r = 1, 2 and j = 0) can be written as⟨
[wr0(p)]α1β1n1n2 [w̄r0(−p)]β2α2n4n3

⟩
=

2
g
δα1α2δβ1β2δn14,n32Cp(iΩε

12)
[
δn1n3 −

4πT
D
δα1β1Cp(iΩε

34)Lp(iE12)
]
, (13)

where E12 = εn1 + εn2 , Cp(iωn) ≡ Dp(iωn). The diffusion coefficient is D = g/(16Zω). The fluctuation
propagator has the standard form,

L−1
p (iωn) = γ−1

c − ln(2πTτ ) − ψ
(
Xp,i|ωn|

)
+ ψ (1/2) , (14)

where γc = Γc/Zω and ψ(z) denotes the di-gamma function. Also we introduced the following
notation

Xq,ω =
Dq2 − iω

4πT
+

1
2
. (15)

The triplet cooperons (modes with r = 1, 2 and j = 1, 2, 3) are insensitive to the Cooper-channel
interaction and coincide with the non-interacting cooperons:⟨

[wrj(p)]α1β1n1n2 [w̄rj(−p)]β2α2n4n3

⟩
=

2
g
δα1α2δβ1β2δn1n3δn2n4Cp(iΩ

ε
12). (16)

3.2. One-loop renormalization

Expanding the matrix Q up to the second order in W we obtain the following expression from
Eq. (6),

σ (iωn) = g −
g

64n

⟨
Tr[Jαn ,ΛW 2(r)][Jα

−n,ΛW 2(r)]
⟩
+

g2

64dn

∫
dr ′

⟨
Tr Jαn W (r)∇W (r)

× Tr Jα
−nW (r ′)∇W (r ′)

⟩
. (17)
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In order to derive the correction to σ (iωn) in the lowest order in 1/g , it is enough to average the
correlation functions in Eq. (17) with the Gaussian part of the NLσM action. Using Wick theorem
and computing the averages with the help of Eqs. (10)–(16), we find lengthy expression

σ (iωn) =g − 4
∫
q
Cq(iωn) −

16π2T 2

ωnD

∑
ωn>εn1 ,−εn2>0

∫
q
Cq(iΩε

12)Cq(2iωn − iΩε
12)Lq(iE12) (18a)

+
256πT
ωngd

3∑
j=0

Γj

∑
ωm>0

∫
q
q2 min{ωm, ωn}Dq(iωm)D(j)

q (iωm)Dq(iωm + iωn) (18b)

−
16π2T 2

ωnD

∑
εn1 ,−εn2>0

∑
σ ,σ ′=±

∫
q
Cq

(
iΩε

12 + iωnζ
2
σσ ′

)
Cq

(
iΩε

12 + iωn(2 − ζ 2σσ ′ )
)

× Lq (iE12 + iωnζσσ ′) (18c)

+
32π2T 2

dωnD

∑
εn1 ,−εn2>0

∑
σ ,σ ′=±

∫
q
q2Cq

(
iΩε

12

)
Cq

(
iΩε

12 + iωn
)
Cq

(
iΩε

12 + iωn(2 − ζ 2σσ ′ )
)

× Lq (iE12 + iωnζσσ ′) (18d)

+
32π2T 2

dωnD

∑
εn1 ,−εn2>0

∑
σ ,σ ′=±

∫
q
q2Cq

(
iΩε

12

)
Cq

(
iΩε

12 + iωn
)
Cq

(
iΩε

12 + iωn(1 + σ )
)

× Lq (iE12) (18e)

−
128π3T 3z
dωnD2

∑
εn1,3 ,−εn2,4>0

∑
σ ,σ ′=±

∫
q
q2Cq

(
iΩε

12

)
Cq

(
iΩε

12 + iωn
)
Cq

(
iΩε

34

)
Cq

(
iΩε

34 + iωn
)

× δE12,E34+iωnµ
−

σσ ′
Lq (iE12)Lq

(
iE34 + iωnµ

+

σσ ′

)
. (18f)

Here we use the following short-hand notations, ζσσ ′ = (σ + σ ′)/2, µ±

σσ ′ = σ (1 ± σ ′)/2, and∫
q ≡

∫
ddq/(2π )d. We note that the contributions (18a) and (18c) come from the term in Eq. (17)

which has no gradients acting on W matrices. All the other contributions result from the last term
on the right hand side of Eq. (17).

Traditionally, the conductivity is split into several parts: weak localization or interference
contribution δgWL, Altshuler–Aronov or interaction contribution δgAA, and fluctuation conductivity
which stems from the interaction in the Cooper channel, δgCC , i.e.

σ (ω) = g + δgWL(ω) + δgAA(ω) + δgCC(ω). (19)

The contribution due to the Cooper channel interaction involves the fluctuation propagator Lq. This
contribution, δgCC, can be written as a sum of four terms [1]:

δgCC
= δgMT,an

+ δg̃MT,reg
+ δg̃DOS

+ δg̃AL. (20)

In what follows we shall consider each of these terms separately.

3.2.1. Weak localization and Althsuler–Aronov corrections
The weak localization and Althsuler–Aronov contributions are given by the second term on the

right hand side of Eq. (18a) and by Eq. (18b). At first, we perform analytic continuation to the
real frequencies iωn → ω + i0+. Then the interference correction is expressed in terms of the
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non-interacting cooperon [17]:

δgWL(ω) = −4
∫
q
CR
q (ω). (21)

Here CR
q (ω) stands for the retarded propagator corresponding to the Matsubara propagator Cq(iωn).

The interaction correction reads [18,29–32]

δgAA(ω) =
64
iωgd

3∑
j=0

Γj

∫
q,Ω

q2
[
ΩBΩ − (Ω − ω)BΩ−ω

]
DR

q (Ω)D(j),R
q (Ω)DR

q (Ω + ω). (22)

Here BΩ = coth[Ω/(2T )] denotes the bosonic distribution function for the particle–hole excita-
tions. The retarded diffuson propagators are denoted as DR

q (ω), D
(j),R
q (ω). Also we introduced the

short-hand notation
∫
Ω

≡
∫

∞

−∞
dΩ .

3.2.2. Anomalous Maki–Thompson correction
The anomalous Maki–Thompson correction [5,6] is given by the last term on the right hand side

of Eq. (18a). It is convenient to rewrite it as follows

δgMT,an(iωn) = 4
∫
q
Cq(iωn)βq(iωn), (23)

where [33,34]

βq(iωn) =
πT
ωn

∑
|ωm|<ωn

Lq(iωm)
[
ψ(Xq,i|ωm|) − ψ(Xq,2iωn−i|ωm|)

]
. (24)

Performing analytic continuation to the real frequencies we obtain the final form of the anoma-
lous Maki–Thompson correction

δgMT,an(ω) = 4
∫
q
CR
q (ω)β

R
q (ω), (25)

where

βR
q (ω) =

∫
Ω

LR
q(Ω)

BΩ − BΩ−ω

2ω

[
ψ(Xq,Ω ) − ψ(Xq,2ω−Ω )

]
. (26)

We mention that the anomalous Maki–Thompson correction (25) coincides with the sum σMT1 +

σMT2 computed in Ref. [23] (see Eqs. (A1) and (A2) there).
It is instructive to compare the above result with the other expressions existing in the literature.

For this purpose we use the following relations∫
ε

(
Fε+ω − Fε

)
CR
q (2ε +Ω) = iD

[
ψ(Xq,Ω ) − ψ(Xq,Ω−2ω)

]
(27)

and ∫
ε

Fε+Ω
(
Fε+ω − Fε

)
CR
q (2ε +Ω) = iD

{
BΩ

[
ψ(Xq,Ω ) − ψ(Xq,−Ω )

]
−BΩ−ω

[
ψ(Xq,Ω−2ω) − ψ(Xq,−Ω )

] }
. (28)

Here Fε = tanh[ε/(2T )] stands for the fermionic distribution function. Then it is possible to rewrite
Eq. (25) as follows

δgMT,an(ω) =
2i
Dω

∫
q,Ω,ε

CR
q (ω)L

R
q(Ω)

[
Fε+ω − Fε

][
BΩ − Fε+Ω

]
CR
q (2ε +Ω). (29)

In the dc limit, ω → 0, the expression (29) is similar to Eq. (384) of Ref. [24].
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3.2.3. Regular Maki–Thompson correction
The so-called regular part of the Maki–Thompson correction is determined by the contribution

(18c). Performing summation over one of the fermionic energies, we obtain

δg̃MT,reg(iωn) = −
D
ωn

∫
q

∑
ωm

{
2ψ ′

(
Xq,i|ωm+n|+iωn

)
+

4πT
ωn

[
ψ

(
Xq,i|ωm|+2iωn

)
− ψ

(
Xq,i|ωm|

)]}
Lq(iωm).

(30)

After the analytic continuation to the real frequency, iωn → ω + i0, we find

δg̃MT,reg(ω) = −
2D
πTω

∫
q,Ω

BΩLR
q(Ω)ψ ′(Xq,Ω ) +

D
2πTω

∫
q,Ω

LR
q(Ω)

{
2BΩΦ−2ω(Ω)

+BΩ
[
ψ ′(Xq,Ω ) − ψ ′(Xq,Ω+2ω)

]
+

[
BΩ − BΩ−ω

][
ψ ′(Xq,Ω ) − ψ ′(Xq,2ω−Ω )

] }
, (31)

where

Φω(Ω) = ψ ′(Xq,Ω ) +
4πT
iω

[
ψ(Xq,Ω ) − ψ(Xq,Ω−ω)

]
. (32)

We note that in the course of derivation of Eq. (31) we have also used the following symmetry
properties: LA

q(Ω) = LR
q(−Ω), and B−Ω = −BΩ .

It is useful to relate the regular Maki–Thompson correction with the correction to the tunnelling
density of states due to interaction in the Cooper channel [35,36]. The correction to the density of
states can be written as [24]

δρCC(ε) = ρ0 ReΥ (ε), (33)

where

Υ (ε) =
32Zω
ig2

∫
q,Ω

CR2
q (2ε −Ω)

[
LK

q (Ω) + Fε−ΩLR
q(Ω)

]
. (34)

Here LK
q (Ω) = 2iBΩ ImLR

q(Ω) stands for the Keldysh component of the fluctuation propagator.
We define the correction to the conductivity that is related with the correction to the density of

states in the following way

δgDOS(ω) =
g
ω

∫
dε

[
fF (ε − ω) − fF (ε)

]
Υ (ε), (35)

where fF (ε) = (1 − Fε)/2 is the Fermi–Dirac distribution function. Then, using the identities (27)
and (28), we obtain the following result

δgDOS(ω) =
D

4πTω

∫
q,Ω

LR
q(Ω)

{ [
BΩ − BΩ−ω

][
ψ ′

(
Xq,Ω

)
− ψ ′

(
Xq,−Ω+2ω

)]

+BΩ
[
ψ ′

(
Xq,Ω

)
− ψ ′

(
Xq,Ω+2ω

)] }
. (36)

Next, using Eq. (36), we split the regular Maki–Thompson contribution into three parts

δg̃MT,reg(ω) = −
2D
πTω

∫
q,Ω

BΩLR
q(Ω)ψ ′(Xq,Ω ) + δgDOS(ω) + δgsc,1(ω), (37)
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where

δgsc,1(ω) =
D

4πTω

∫
q,Ω

LR
q(Ω)

{
4BΩΦ−2ω(Ω) + BΩ

[
ψ ′(Xq,Ω ) − ψ ′(Xq,Ω+2ω)

]

+

[
BΩ − BΩ−ω

][
ψ ′(Xq,Ω ) − ψ ′(Xq,2ω−Ω )

] }
. (38)

3.2.4. DOS-type correction
The so-called DOS-type correction [1] is given by contributions (18d)–(18e). It is convenient to

rewrite them as follows

δg̃DOS(iωn) =
4D2

ω2
nd

∫
q
q2

∑
ωm

Lq(iωm)

{
ψ ′

(
Xq,i|ωm|

)
− ψ ′

(
Xq,i|ωm+n|+iωn

)
+

4πT
ωn

[
ψ

(
Xq,i|ωm+n|+iωn

)
−ψ

(
Xq,i|ωm+n|

)
+ ψ

(
Xq,i|ωm|+iωn

)
− ψ

(
Xq,i|ωm|+2iωn

) ]}
. (39)

The analytic continuation of Eq. (39) to the real frequency, iωn → ω + i0, yields

δg̃DOS(ω) =
iD2

πTω2d

∫
q,Ω

q2LR
q(Ω)

{ (
BΩ − BΩ−ω

)[
Φω(Ω) −Φω(2ω −Ω)

]
+ 2BΩ

[
ψ ′(Xq,Ω )

−ψ ′(Xq,Ω+2ω)
]

+BΩ
[
Φω(2ω +Ω) −Φω(Ω)

] }
. (40)

It is useful to single out explicitly the part that diverges in the limit ω → 0. Then we obtain

δg̃DOS(ω) = −
D2

dπ2T 2ω

∫
q,Ω

q2BΩLR
q(Ω)ψ ′′(Xq,Ω ) + δgsc,2(ω), (41)

where

δgsc,2(ω) =
iD2

πTω2d

∫
q,Ω

q2LR
q(Ω)

{ (
BΩ − BΩ−ω

)[
Φω(Ω) −Φω(2ω −Ω)

]
+ 2BΩ

[
ψ ′(Xq,Ω )

−ψ ′(Xq,Ω+2ω) −
iω
2πT

ψ ′′(Xq,Ω )
]

+BΩ
[
Φω(2ω +Ω) −Φω(Ω)

] }
. (42)

3.2.5. Aslamazov–Larkin correction
The contribution (18f) is the correction due to Aslamazov–Larkin process [4]. It can be written

as follows

δg̃AL(iωn) = −
8πT
dωn

(
D

4πT

)2 ∫
q
q2

∑
ωm

Lq(iωm)Lq(iωm+n)∆2
q(iωm, iωm+n, iωn), (43)

where

∆q(iωm, iωk, iωn) = −
4πT
ωn

[
ψ

(
Xq,i|ωm|

)
+ψ

(
Xq,i|ωk|

)
−ψ

(
Xq,i|ωm|+iωn

)
−ψ

(
Xq,i|ωk|+iωn

)]
. (44)
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After the analytic continuation to the real frequency, iωn → ω + i0, we find

δg̃AL(ω) = −
D2

8dπ2T 2ω

∫
q,Ω

q2LR
q(Ω)

{ (
BΩ + BΩ−ω

)
LR

q(Ω − ω)
(
∆RRR

q (Ω − ω,Ω, ω)
)2

+

(
BΩ−ω − BΩ

)[
LR

q(Ω − ω)
(
∆RRR

q (Ω − ω,Ω, ω)
)2

− LA
q(Ω − ω)

(
∆ARR

q (Ω − ω,Ω, ω)
)2] }

.

(45)

Here we introduced the function

∆RRR
q (Ω,Ω ′, ω) =

4πT
iω

[
ψ

(
Xq,Ω

)
− ψ

(
Xq,Ω+ω

)
+ ψ

(
Xq,Ω ′

)
− ψ

(
Xq,Ω ′+ω

)]
. (46)

The function ∆ARR
q (Ω,Ω ′, ω) can be obtained from ∆RRR

q (Ω,Ω ′, ω) according to the following
prescription, ∆ARR

q (Ω,Ω ′, ω) = ∆RRR
q (−Ω,Ω ′, ω). We note that Eq. (45) coincides with the general

result for the Aslamazov–Larkin contribution computed by the diagrammatic technique (see Eq.
(7.105) in Ref. [1]). It is convenient to rewrite the correction (45) in the following way

δg̃AL(ω) = −
D2

dπ2T 2ω

∫
q,Ω

q2BΩ
[
LR

q(Ω)ψ ′
(
Xq,Ω

)]2
+ δgAL(ω) + δgsc,3(ω). (47)

Here we single out the term which diverges in the limit of zero frequency, ω → 0. Next, we
introduce

δgAL(ω) = −
4D2

dω3

∫
q,Ω

q2
(
BΩ−ω − BΩ

)
LR

q(Ω)
[
ψ

(
Xq,Ω−ω

)
− ψ

(
Xq,Ω+ω

)]
ImLR

q(Ω − ω)

× Im
[
ψ

(
Xq,Ω−ω

)
− ψ

(
Xq,Ω+ω

)]
(48)

and

δgsc,3(ω) = −
D2

8dπ2T 2ω

∫
q,Ω

q2LR
q(Ω)

{ (
BΩ + BΩ−ω

)
LR

q(Ω − ω)
(
∆RRR

q (Ω − ω,Ω, ω)
)2

− 8BΩ

×LR
q(Ω)ψ ′2 (

Xq,Ω
)
+

(
BΩ−ω − BΩ

) [
LA

q (Ω − ω)
[
∆RRR

q (Ω − ω,Ω, ω) Re∆RRR
q (Ω − ω,Ω, ω)

−
(
∆ARR

q (Ω − ω,Ω, ω)
)2 ]

+iLR
q(Ω − ω)∆RRR

q (Ω − ω,Ω, ω) Im∆RRR
q (Ω − ω,Ω, ω)

]}
. (49)

3.3. Final result

Naturally, one expects that the dc conductivity in the normal state of a disordered electron
system is finite. We note that separate contributions to δgCC (ω) do not satisfy this requirement. In
particular, there are terms in Eqs. (37), (41), and (48) which diverge as 1/(iω) in the limit ω → 0.
They can be summed up as follows:

−
2D
πTω

∫
q,Ω

BΩLR
q(Ω)

{
ψ ′(Xq,Ω ) +

Dq2

2dπT
ψ ′′(Xq,Ω ) +

Dq2

2dπT
LR

q(Ω)
[
ψ ′

(
Xq,Ω

)]2}
=

4
iωd

Im
∫
q,Ω

BΩ∂qµ∂qµ lnLR
q(Ω). (50)

Thus the sum of all terms in δgCC (ω) which are proportional to 1/(iω) has the form of the
total second derivative with respect to the momentum. This implies that the contribution (50)
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is determined by the ultraviolet and, consequently, cannot be accurately computed within NLσM
that is the low-energy effective theory only. However, as one can check [22], the contribution from
the ballistic scales has exactly the same form (of course with the ballistic fluctuation propagator)
such that the 1/(iω) term (50) vanishes identically. This fact is intimately related with the gauge
invariance (see Refs. [37,38] for detailed discussion). Indeed the expression (50) can be written as
the second derivative of the contribution to the thermodynamic potential from superconducting
fluctuations with respect to a constant vector potential. Since the thermodynamic potential is
independent of the constant vector potential in virtue of the gauge invariance, the expression
(50) should be zero. We note that the result for quantum correction to the ac conductivity due
to interaction in the Cooper channel reported in Ref. [23] diverges as 1/(iω) in the limit ω → 0.

Gathering together the contributions (25), (37), (41), and (47) (disregarding the terms which
sum up to zero as discussed above), we find the following final form of the correction to the ac
conductivity due to the interaction in the Cooper channel:

δgCC (ω) = δgMT,an(ω) + δgDOS(ω) + δgAL(ω) + δgsc(ω). (51)

Here we introduce δgsc(ω) = δgsc,1(ω)+ δgsc,2(ω)+ δgsc,3(ω) that can be rewritten as the following
lengthy expression:

δgsc(ω) =
D

4πdTω

∫
q,Ω

∂qµ

{
qµLR

q(Ω)

[
4BΩΦ−2ω(Ω) + BΩ

[
ψ ′(Xq,Ω ) − ψ ′(Xq,Ω+2ω)

]
+

[
BΩ − BΩ−ω

]
×

[
ψ ′(Xq,Ω ) − ψ ′(Xq,2ω−Ω )

] ]}
+

D2

8d(πT )2ω

∫
q,Ω

q2LR
q(Ω)BΩ

[
3ψ ′′(Xq,Ω ) + ψ ′′(Xq,Ω+2ω)

+2
(
4πT
ω

)2 [
ψ(Xq,2ω+Ω ) − ψ(Xq,Ω+ω) − ψ(Xq,Ω ) + ψ(Xq,Ω−ω)

] ]
+

D2

8d(πT )2ω

∫
q,Ω

q2LR
q(Ω)

×

[
BΩ−ω − BΩ

][
ψ ′′(Xq,2ω−Ω ) − ψ ′′(Xq,Ω ) −

8πT
iω

[
Φω(Ω) −Φω(2ω −Ω)

]]

−
D2

8d(πT )2ω

∫
q,Ω

q2LR
q(Ω)BΩ

{
LR

q(Ω)ψ ′(Xq,Ω )
[
4Φ−2ω(Ω) − ψ ′(Xq,Ω+2ω) − 7ψ ′(Xq,Ω )

]

+2LR
q(Ω − ω)

[
∆RRR

q (Ω − ω,Ω, ω)
]2 }

−
D2

8d(πT )2ω

∫
q,Ω

q2LR
q(Ω)

[
BΩ − BΩ−ω

] {
LR

q(Ω)ψ ′(Xq,Ω )
[
ψ ′(Xq,Ω ) − ψ ′(Xq,2ω−Ω )

]
−LR

q(Ω − ω)
[(
∆RRR

q (Ω − ω,Ω, ω)
)2

+ i∆RRR
q (Ω − ω,Ω, ω) Im∆RRR

q (Ω − ω,Ω, ω)
]

−LA
q (Ω − ω)

[
∆RRR

q (Ω − ω,Ω, ω) Re∆RRR
q (Ω − ω,Ω, ω) −

(
∆ARR

q (Ω − ω,Ω, ω)
)2] }

. (52)

We note that the first term on the right hand side of Eq. (52) is the full derivative with respect to
momentum and, thus, as discussed above should vanish being supplemented by the corresponding
contribution from the ballistic scales. Therefore, we shall disregard the corresponding term below.
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3.4. Corrections to the conductivity in the dc limit due to superconducting fluctuations

Although corrections to the static conductivity due to superconducting fluctuations were dis-
cussed many times in literature, it is instructive to check that our result (51) for an arbitrary
frequency correctly reproduces the well-known corrections in the static limit. In particular, the
static anomalous Maki–Thompson correction becomes

δgMT,an(ω = 0) = 4
∫
q,Ω

CR
q (0)∂ΩBΩ ImLA

q(Ω) Imψ(Xq,Ω ). (53)

The DOS correction in the dc limit, ω → 0, acquires the following form

δgDOS(ω = 0) = −
D

8π2T 2 Im
∫
q,Ω

BΩLR
q(Ω)ψ ′′

(
Xq,Ω

)
−

D
2πT

∫
q,Ω

∂ΩBΩ ImLR
q(Ω) Imψ ′(Xq,Ω ). (54)

At ω → 0 the Aslamazov–Larkin correction can be written as follows

δgAL(ω = 0) = −
D2

dπ2T 2

∫
q,Ω

q2∂ΩBΩ ImLR
q(Ω) Im

[
LR

q(Ω)ψ ′(Xq,Ω )
]
Reψ ′(Xq,Ω ). (55)

Finally, the contribution δgsc in the dc limit becomes

δgsc(ω = 0) = −
D2

2d(2πT )3
Im

∫
q,Ω

q2BΩLR2
q (Ω)ψ ′

(
Xq,Ω

)
ψ ′′

(
Xq,Ω

)
−

D2

d(2πT )2

∫
q,Ω

q2∂ΩBΩ Im
[
LR2

q (Ω)ψ ′
(
Xq,Ω

)]
Imψ ′

(
Xq,Ω

)
. (56)

We note that Eqs. (53), (54), (55), and (56) coincide with the zero magnetic field limit of correspond-
ing fluctuation corrections found in Ref. [21] and with the fluctuation corrections in the diffusive
regime computed in Ref. [22].

4. Corrections to the ac conductivity due to superconducting fluctuations

Now we discuss the dependence of corrections to the ac conductivity due to superconducting
fluctuations. It is convenient to introduce the following dimensionless variables, ϵ = ln T/Tc and
α = ω/(4πT ).

4.1. Anomalous Maki–Thompson contribution

We start from the anomalous Maki–Thompson correction, Eq. (25). We note that the integral
over momentum in Eq. (25) diverges in the infra-red. Therefore, we need to introduce a finite
dephasing rate 1/τφ which cuts off the pole in the cooperon propagator. In what follows we shall
use dimensionless variable γ = 1/(4πTτφ).

The asymptotic behaviour of δgMT,an(ω) at large frequencies, α ≫ 1, and for an arbitrary distance
from superconducting transition temperature, ϵ, is given as follows (see Appendix A)

δgMT,an(ω) =
π2

− 8 ln 2
4π

1
ϵ + lnα

. (57)

The anomalous Maki–Thompson correction vanishes in the limit of large frequencies, ω ≫ T . Away
from the superconducting transition, ϵ ≫ 1, and for small frequencies, α ≪ 1, the anomalous
Maki–Thompson contribution becomes

δgMT,an(ω) =

(
π

6ϵ2
−

2π iα
3ϵ

)
ln

1
γ − iα

. (58)

We note that the first term on the r.h.s. of Eq. (58) dominates over the second one at α ≪ 1/ϵ.
At small frequencies, α ≪ 1, and in the vicinity of the superconducting transition, ϵ ≪ 1, the
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Fig. 1. The dependence of the real (left panel) and imaginary (right panel) parts of the anomalous Maki–Thompson
correction on the frequency at different temperatures. The ratio of the dephasing rate to the temperature is fixed to the
value γ = 0.01.

anomalous Maki–Thompson correction reads

δgMT,an(ω) =
1
2π

1
ϵ̄ − γ + iα

ln
ϵ̄

γ − iα
, (59)

where ϵ̄ = 2ϵ/π2
≡ 1/(4πTτGL). We note that we omit subleading terms proportional to ln ϵ in

Eq. (59) (see Refs. [22,23] for details).
The overall behaviour of δgMT,an(ω) as a function of the dimensionless frequency α at different

values of ϵ is shown in Fig. 1. The real part of δgMT,an(ω) has non-monotonous behaviour for
temperatures close to Tc , i.e. for ϵ ≪ 1 (see the left panel in Fig. 1). For temperatures away
from Tc , i.e. for ϵ ≫ 1, Re δgMT,an(ω) is also non-monotonous function of ω. In the case T ≫ Tc ,
provided 1/τφ ≪ T/ln(T/Tc), the real part of δgMT,an(ω) has the minimum at ω ∼ T/ln(T/Tc).
The dependence of the imaginary part of δgMT,an(ω) on the dimensionless frequency α at different
values of ϵ is figured on the right panel of Fig. 1. Exactly at zero frequency the imaginary part
vanishes, Im δgMT,an(ω = 0) = 0. The imaginary part of δgMT,an(ω) demonstrates non-monotonous
behaviour with ω. At ultra small frequencies, ω ≪ 1/τφ , the imaginary part of δgMT,an(ω) increases
linearly with ω. For T ≫ Tc , Im δgMT,an(ω) has the maximum at the frequency of the order of√
(T/τφ)/ln(T/Tc). For temperatures near Tc , i.e. for ϵ ≪ 1, the imaginary part of δgMT,an(ω) has

the maximum at ω ∼ 1/√τφτGL.

4.2. DOS correction

Next we turn our attention to the DOS correction to the conductivity. We note that the integrals
over momentum and frequency in Eq. (36) diverge at the ultraviolet. Therefore, we shall introduce
a cut-off corresponding to the inverse elastic mean free time, 1/τ . Then, we can single out the part
of δgDOS(ω) that depends on the cut-off,

δgDOS(ω) = −
1
π

ln ln
1

4πTcτ
+ δgDOS

f (ω), (60)

such that δgDOS
f (ω) is finite in the ultraviolet. We mention that the first term on the right hand side

of Eq. (60) corresponds to the one loop DOS correction in the renormalization group equations for
the conductivity [39].

At large frequencies, α ≫ 1, and for an arbitrary magnitude of ϵ the asymptotic behaviour of
δgDOS

f (ω) is given as (see Appendix B)

δgDOS
f (ω) =

1
π

ln
(
ϵ + lnα

)
−

i
2

1
ϵ + lnα

. (61)
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Fig. 2. The dependence of the real (left panel) and imaginary (right panel) parts of the DOS correction on the frequency
at different temperatures.

In the case of high temperatures, ϵ ≫ 1, but small frequencies, α ≪ 1, the DOS correction
becomes

δgDOS
f (ω) =

1
π

ln ϵ +
ln 2
πϵ

−
2π iα
3ϵ

. (62)

Near the superconducting transition, ϵ ≪ 1, and at small frequencies, α ≪ 1, one can derive the
following expression

δgDOS
f (ω) = −

(
14ζ (3)
π3 + iπα

)
ln

1
ϵ
. (63)

The overall dependence of the real and imaginary parts of δgDOS
f (ω) on frequency is shown in

Fig. 2. The real part of δgDOS
f (ω) grows monotonically with increase of the frequency. The imaginary

part has the minimum.

4.3. Aslamazov–Larkin contribution

Next we consider the Aslamazov–Larkin contribution to the conductivity. We note that this
correction is finite both in the infrared and the ultraviolet. We start from the case of large
frequencies, α ≫ 1, and arbitrary temperature above Tc . Then we find (see Appendix C)

δgAL(ω) =
cAL3

(ϵ + lnα)3
, (64)

where numerical constant cAL3 ≈ 0.17 − 0.89i. In the case of small frequencies, α ≪ 1, and
temperatures away from the superconducting transition, ϵ ≫ 1, we obtain

δgAL(ω) =
cAL4 − icAL5 α

ϵ3
, (65)

where magnitudes of the numerical constants are cAL4 ≈ 1.44 and cAL5 ≈ 9.23. For temperatures close
to superconducting transitions, ϵ ≪ 1, and for small frequencies, α ≪ 1, the Aslamazov–Larkin
contribution becomes

δgAL(ω) =
π

8ϵ
W1

(
π2α

2ϵ

)
−

iπ3α

32ϵ2
W2

(
π2α

2ϵ

)
. (66)

Here the functions W1,2(z) are defined as follows

W1(z) =
4
z

[
arctan(z/2) −

1
z
ln(1 + z2/4)

]
,

W2(z) =
8
z3

[
arctan(z) − 2 arctan(z/2) + z arctan

3z2

8 + 5z2

]
. (67)
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Fig. 3. The dependence of the real (left panel) and imaginary (right panel) parts of the Aslamazov–Larkin correction on
the frequency at different temperatures.

We note that the part of Eq. (66) proportional to the function W1 coincides with the result derived
in Ref. [3] and with the contribution Re σ (1,1)

AL of Ref. [23]. We note that there is also subleading term
proportional to ln ϵ (see Eq. (41) of Ref. [23]).

The overall dependence of the real and imaginary parts of δgAL(ω) on frequency is shown in Fig. 3.
The real part of δgAL(ω) decreases monotonously with increase of α. The imaginary part of δgAL(ω)
has the minimum at some frequency for all temperatures above the superconducting transition. For
T close to Tc the maximum is at α ∼ ϵ.

4.4. The correction δgsc(ω)

Finally, we turn our attention to the contribution δgsc(ω), cf. Eq. (52). Similar to the Aslamasov–
Larkin contribution, the correction δgsc(ω) has divergencies neither in the infrared nor in the
ultraviolet. At first, we consider the case of large frequencies, α ≫ 1, and arbitrary temperatures
above the superconducting transition. Then we find (see Appendix D)

δgsc(ω) =
2
3π

1 + 3 ln 2
ϵ + lnα

. (68)

In the case of small frequencies, α ≪ 1, but high temperatures, ϵ ≫ 1, we obtain

δgsc(ω) =
1

2πϵ

(
1 −

14π2iα
3

)
. (69)

In the vicinity of the superconducting transition, ϵ ≪ 1, and small frequencies, α ≪ 1, we find

δgsc(ω) =
iπ3α

24ϵ2
W3

(
π2α

2ϵ

)
−

28ζ (3)
π3 ln ϵ, (70)

where

W3(z) =
3
z2

[
2
arctan z

z
+ ln(1 + z2) − 2

]
. (71)

The overall dependence of the real and imaginary parts of δgsc(ω) on frequency is shown in Fig. 4.
Both the real and imaginary parts of δgsc(ω) have non-monotonous behaviour. For temperatures
away from the superconducting transition, ϵ ≫ 1, Re δgsc(ω) is positive and has the maximum at
some frequency α ∼ 1. The imaginary part of δgsc(ω) has the minimum at some frequency α of the
order of unity. Near the superconducting transition, ϵ ≪ 1, the real (imaginary) part of δgsc(ω) is
positive and has the minimum (maximum) at α ∼ ϵ.
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Fig. 4. The dependence of the real (left panel) and imaginary (right panel) parts of δgsc(ω) on the frequency at different
temperatures.

4.5. The asymptotic expressions for δgCC (ω)

Now we are ready to present the asymptotic expressions for the correction to the ac conductivity
due to superconducting fluctuations, i.e. due to interaction in the Cooper channel. It is convenient
to single out the term which depends on the ultraviolet cutoff 1/τ ,

δgCC (ω) = −
1
π

ln ln[1/(4πTcτ )] + δgCC
f (ω). (72)

The contribution δgCC
f (ω) is finite in the ultraviolet. For large frequencies in comparison with the

temperature, ω ≫ T , we find from Eqs. (57), (61), (64), and (68),

δgCC
f (ω) =

1
π

ln ln[ω/(4πTc)] +
3π2

+ 8 − 6π i
12π ln[ω/(4πTc)]

. (73)

As expected the real and imaginary parts of the conductivity correction is dominated by the
DOS contribution, Eq. (61). At small frequencies, ω ≪ T , but for temperatures away from the
superconducting transition, T ≫ Tc , using Eqs. (58), (62), (65), and (69), we obtain

δgCC
f (ω) =

1
π

ln ln(T/Tc) +
2 ln 2 + 1
2π ln(T/Tc)

+
1
6

(
iω
T

−
π

ln(T/Tc)

) ln[(τ−1
φ − iω)/(4πT )]

ln(T/Tc)
. (74)

The real part of the conductivity correction is dominated by the DOS contribution as in the static
case. The imaginary part of the conductivity correction is dominated by the anomalous Maki–
Thompson term. In the region close to the superconducting transition, T − Tc ≪ Tc , and for small
frequencies, ω ≪ Tc , with the help of Eqs. (59), (63), (66), and (70), we find

δgCC
f (ω) = −

2TτGL
1 − τGL/τφ + iωτGL

ln
[
τGL/τφ − iωτGL

]
+ TτGL

[
W1(ωτGL) −

iωτGL
2

W2(ωτGL)

+
iωτGL
3

W3(ωτGL)
]
. (75)

The dependence of real and imaginary parts of δgCC
f (ω) on frequency for different temperatures

is shown in Fig. 5. For all temperatures above Tc the real (imaginary) part of δgCC
f (ω) has the

minimum (maximum). At temperatures T ≫ Tc , the minimum of Re δgCC
f (ω) occurs at frequency

ω ∼ 1/ln(T/Tc) whereas the maximum of Im δgCC
f (ω) is at ω ∼

√
T/[τφ ln(T/Tc)]. In the vicinity

of the superconducting transition, T − Tc ≪ Tc , the real part of δgCC
f (ω) has a shallow minimum

at frequency of the order of Tc . The maximum of the imaginary part of δgCC
f (ω) is at frequency

ω ∼ 1/√τφτGL. The frequency dependence of the real and imaginary part of δgCC
f (ω) shown in
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Fig. 5. The dependence of the real (left panel) and imaginary (right panel) parts of δgCC
f (ω) on the frequency at different

temperatures. The ratio of the dephasing rate to the temperature is fixed to the value γ = 0.01.

Fig. 5 is in qualitative agreement with the measured conductivity near superconducting transition
in thin films (see, e.g. Refs. [11,13,40]).

5. Conclusion

To summarize, we reported the general analytical expression for the quantum correction to the
ac conductivity of a disordered electron system in the diffusive regime. In addition to the well
established weak localization and Altshuler–Aronov corrections, we computed the contributions to
the ac conductivity due to superconducting fluctuations above the transition temperature.

In the static case, ω = 0, the weak localization, Altshuler–Aronov, and DOS corrections can
be resumed in the form of the one-loop terms in the renormalization group equation for the
conductivity [39]. The fluctuation propagator (14) is also subjected to renormalization. In particular,
the diffusion coefficient D and dimensionless Cooper interaction γc become scale dependent.
Therefore, the contribution δgCC

f should be computed with the properly renormalized fluctuation
propagator. For δgCC

f (ω = 0) such calculation results in the substitution of ln T/Tc by 1/γc(LT ). Here
LT =

√
D/T stands for the length scale associated with the temperature (see Refs. [41,42] for details).

Present work can be extended in several ways. Our analysis can be extended to the pairing ac
conductivity in the presence of a static magnetic field [21,43]. Also it would be tempting to study
the effect of superconducting fluctuations on the physical observables in non-standard symmetry
classes [44]. The ac Nernst effect measured recently in thin superconducting films [45] suggests an
interesting problem for computation of ac thermoelectric and thermal responses.
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Appendix A. Anomalous Maki–Thompson contribution

In this Appendix we present derivation for the asymptotic expression of the anomalous
Maki–Thompson correction. Let us introduce the function

G(z) = ϵ + ψ(z + 1/2) − ψ(1/2), (A.1)

where z = x + iy. Then, we can rewrite Eq. (25) as follows

δgMT,an(ω) =
sinh(2πα)

2πα

∫
∞

0

dx
x − iα + γ

∫
∞

−∞

dy
sinh(2πy)

1
sinh(2π (y + α))

G(z) − G(z∗
− 2iα)

G(z)
.

(A.2)

Here we introduced the following notations, x = Dq2/(4πT ) and y = Ω/(4πT ).
In the case α ≫ 1 it is convenient to rescale the integration variables as x → αx and y → αy.

Then, we find

δgMT,an(ω) ≈
sinh(2πα)

2π

∫
∞

0

dx
x − i

∫
∞

−∞

dy
sinh(2παy)

1
sinh(2πα(y + 1))

ln[z/(z∗
− 2i)]

ϵ + lnα + ln z − ψ(1/2)

≈ −

∫ 0

−1

dy
π

∫
∞

0

dx
x − i

ln[z/(z∗
− 2i)]

ϵ + lnα + ln z − ψ(1/2)
≈
π2

− 8 ln 2
4π

1
ϵ + lnα

−
cMT,an

(ϵ + lnα)2
, (A.3)

where cMT,an
≈ 0.81 − 0.54i. We note that the main contribution to the integral comes from the

region x ∼ y ∼ α ≫ 1.
In the case of small frequencies, α ≪ 1, but away from the transition temperature, ϵ ≫ 1, we

can expand Eq. (A.2) in 1/ϵ:

δgMT,an(ω) =
α

iπϵ
K1 +

1
ϵ2

K2. (A.4)

Here the first integral on the r.h.s. can be computed as follows

K1 =

∫
∞

0

dx
x − iα + γ

∫
∞

0
dy coth(2πy) Imψ ′′(1/2 + x + iy)

=

∫ 1

0

dx
x − iα + γ

∫
∞

0
dy coth(2πy)

π3 sinh(πy)
cosh4(πy)

+

∫ 1

0

dx
x

∫
∞

0
dy coth(2πy) Im

[
ψ ′′(1/2 + x + iy) − ψ ′′(1/2 + iy)

]
+

∫
∞

1

dx
x

∫
∞

0
dy coth(2πy)

× Imψ ′′(1/2 + x + iy) =
2π2

3

(
ln

1
γ − iα

− cMT,an
1

)
, (A.5)

where the numerical constant is to equal c1 ≈ 1.62. The second integral on the r.h.s. of Eq. (A.4)
can be evaluated as

K2 = 4
∫

∞

0

dx
x − iα + γ

∫
∞

0

dy
[
Imψ(1/2 + x + iy)

]2
sinh2(2πy)

= 4

{
π2

4

∫ 1

0

dx
x − iα + γ

∫
∞

0

dy tanh2(πy)
sinh2(2πy)

+

∫
∞

1

dx
x

∫
∞

0

dy
[
Imψ(1/2 + x + iy)

]2
sinh2(2πy)

+

∫ 1

0

dx
x

∫
∞

0

dy
sinh2(2πy)

[ [
Imψ(1/2 + x + iy)

]2
−

[
Imψ(1/2 + iy)

]2 ]}
=
π

6

(
ln

1
γ − iα

− cMT,an
2

)
. (A.6)
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Here the numerical constant is equal to cMT,an
2 ≈ 2.19. Finally,

δgMT,an(ω) =
2πα
3iϵ

(
ln

1
γ − iα

− cMT,an
1

)
+

π

6ϵ2

(
ln

1
γ − iα

− cMT,an
2

)
. (A.7)

Finally, we consider the region ϵ ≪ 1 and α ≪ 1. Then we can split the anomalous
Maki–Thompson correction into four parts

δgMT,an(ω) ≈ I1 + I2 ln(γ − iα) + I3 + I4. (A.8)

The first contribution can be estimated as follows

I1 =

∫ 1

0

dx
x − iα + γ

∫ 1

−1

dy
sinh(2πy) sinh(2π (y + α))

ψ(1/2 + x + iy) − ψ(1/2 + x − iy − 2iα)
ϵ + ψ(1/2 + x + iy) − ψ(1/2)

≈
i

2π2

∫ 1

0

dx
(x − iα + γ )

∫
∞

−∞

dy
y

1
ϵ̄ + x + iy

= −
1
2π

1
ϵ̄ − γ + iα

ln
ϵ̄

γ − iα
, (A.9)

where ϵ̄ = 2ϵ/π2. We note that there are also subleading terms proportional to ln ϵ. The other
three contributions can be approximated by their values at ϵ = α = 0,

I2 = −4
∫

∞

1

dy
sinh2(2πy)

⏐⏐⏐⏐ Imψ(1/2 + iy)
ψ(1/2 + iy) − ψ(1/2)

⏐⏐⏐⏐2 ≈ −1.7 · 10−6, (A.10)

I3 = 4
∫ 1

0

dx
x

∫
∞

1

dy
sinh2(2πy)

[⏐⏐⏐⏐ Imψ(1/2 + x + iy)
ψ(1/2 + x + iy) − ψ(1/2)

⏐⏐⏐⏐2 −

⏐⏐⏐⏐ Imψ(1/2 + iy)
ψ(1/2 + iy) − ψ(1/2)

⏐⏐⏐⏐2
]

≈ −1.4 · 10−6, (A.11)

and

I4 = 4
∫

∞

1

dx
x

∫
∞

0

dy
sinh2(2πy)

⏐⏐⏐⏐ Imψ(1/2 + x + iy)
ψ(1/2 + x + iy) − ψ(1/2)

⏐⏐⏐⏐2 ≈ 0.0021. (A.12)

Appendix B. DOS correction

In this Appendix we present derivation for the asymptotic expression of the DOS correction. We
start from splitting the expression (36) into two parts

δgDOS(ω) = δgDOS
1 (ω) + δgDOS

2 (ω), (B.1)

where

δgDOS
1 (ω) =

∫
∞

0

dx
4πα

∫
∞

−∞

dy
[
coth 2π (y − α) − coth(2πy)

]G′(z∗) − G′(z − 2iα)
G(z∗)

,

δgDOS
2 (ω) = −

∫ Λ

0

dx
4πα

∫ Λ

−Λ

dy coth(2πy)
G′(z∗) − G′(z∗

− 2iα)
G(z∗)

. (B.2)

Here we introduced the dimensionless ultra-violet cut off Λ = 1/(4πTτ ) ≫ 1. Next we split
δgDOS

2 (ω) into three terms

δgDOS
2 (ω) = δgDOS

2,1 (ω) + δgDOS
2,2 (ω) + δgDOS

2,3 (ω). (B.3)

The first two terms are organized in such a way that one can integrate over x exactly,

δgDOS
2,1 (ω) = −

∫ Λ

0

dy
4πα

ln
G(−iy − 2iα)G(iy)
G(−iy)G(iy − 2iα)

−

∫ 2α

0

dy
2πα

lnG(−iy). (B.4)
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The other two contributions are given as

δgDOS
2,2 (ω) =

∫ 2α

0

dy
2πα

lnG(−iy) +

∫
∞

0

dx
4πα

∫
∞

0
dy

[
1 − coth(2πy)

] [ G′(z∗) − G′(z∗
− 2iα)

G(z∗)

−
G′(z) − G′(z − 2iα)

G(z)

]
, (B.5)

and

δgDOS
2,3 (ω) = −

∫
∞

0

dx
4πα

∫
∞

0
dy

[
G′(z∗

− 2iα)
G(z∗ − 2iα)

−
G′(z∗

− 2iα)
G(z∗)

−
G′(z − 2iα)
G(z − 2iα)

+
G′(z − 2iα)

G(z)

]
.

(B.6)

The integral over y in the expression for δgDOS
2,1 (ω) can be performed exactly,

δgDOS
2,1 (ω) = −

∫ Λ+2α

Λ

dy
4πα

lnG(−iy) −

∫ Λ

Λ−2α

dy
4πα

lnG(−iy) = −
1
π

lnG(−iΛ) = −
1
π

ln(ϵ + lnΛ).

(B.7)

Then we obtain Eq. (60) in which δgDOS
f (ω) = δgDOS

1 (ω) + δgDOS
2,2 (ω) + δgDOS

2,3 (ω).
In the case of large frequencies, α ≫ 1, it is convenient to perform rescaling x → αx and y → αy.

Then we obtain

δgDOS
1 (ω) =

1
ϵ + lnα

∫
∞

0

dx
4π

∫ 1

0
dy

[
ln y − ln(2 − y)

]
= −

ln 2
π

1
ϵ + lnα

. (B.8)

Neglecting the second integral on the right hand side of Eq. (B.5), we find in a similar way

δgDOS
2,2 (ω) =

1
π

ln(ϵ + lnα) −
i
2

1
ϵ + lnα

. (B.9)

Next, we find

δgDOS
2,3 (ω) = −

∫
∞

0

dx
4π

∫
∞

0
dy

[
1

z∗ − 2i
ln[z∗/(z∗

− 2i)]
(ϵ + lnα + ln z∗)(ϵ + lnα + ln(z∗ − 2i))

−
1

z − 2i
ln[z/(z − 2i)]

(ϵ + lnα + ln z)(ϵ + lnα + ln(z − 2i))

]

≈ −
1
π

∫
∞

∼1
dx

∫
∞

∼1
dy Im

[
1

z(ϵ + lnα + ln z)

]2

≈
1
π

∫
∞

∼1

dr
r

1
(ϵ + lnα + ln r)2

=
1
π

1
ϵ + lnα

(B.10)

In the case α ≪ 1 and ϵ ≫ 1, we expand the integrand in δgDOS
1 (ω) in series in 1/ϵ and obtain

δgDOS
1 (ω) = −

i
2ϵ2

∫
∞

−∞

dy
sinh2(2πy)

∫
∞

0
dx ∂x

[
ψ(1/2 + x − iy) Imψ(1/2 + x − iy)

]
= −

π

24ϵ2
.

(B.11)
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In a similar way, we find

δgDOS
2,2 (ω) =

1
π

ln ϵ −
1
πϵ

∫
∞

0
dy[1 − coth(2πy)] Imψ ′(1/2 + iy) −

π iα
2ϵ

+
αi
πϵ

∫
∞

0
dy[1 − coth(2πy)]

× Imψ ′′(1/2 + iy) =
1
π

ln ϵ +
ln 2 − 1
πϵ

−
2π iα
3ϵ

, (B.12)

Next, we can write

δgDOS
2,3 (ω) ≈ −

1
π

∫
∞

0
dx

∫
∞

0
dy Im

[
G′(z)
G(z)

]2

≈
1
π

∫
∞

∼1

dr
r

1
(ϵ + ln r)2

=
1
πϵ
, (B.13)

Finally, we consider small frequencies, α ≪ 1, and temperatures close to the superconducting
transition, ϵ ≪ 1. At first, we split δgDOS

1 (ω) into three parts

δgDOS
1 (ω) =

sinh(2πα)
4πα

∫ 1

0
dx

∫ 1

−1

dy [G′(z∗) − G′(z − 2iα)]
sinh(2π (y − α)) sinh(2πy)G(z∗)

+ 2
∫

∞

1
dx

∫ 1

0

dy
sinh2(2πy)

×
Imψ ′(1/2 + z) Imψ(1/2 + z)⏐⏐ψ(1/2 + z) − ψ(1/2)

⏐⏐2 + 2
∫

∞

0
dx

∫
∞

1

dy
sinh2(2πy)

Imψ ′(1/2 + z) Imψ(1/2 + z)⏐⏐ψ(1/2 + z) − ψ(1/2)
⏐⏐2 . (B.14)

Here we neglected α and ϵ whenever it is possible. Next, we omit the terms independent of α and
ϵ and expand the integrand in the first line of Eq. (B.14) to the lowest order in x, y, and α. Then we
find with the logarithmic accuracy,

δgDOS
1 (ω) =

1
4π2

∫ 1

0
dx

∫ 1

−1

dy
y

iψ ′′(1/2) + αψ ′′′(1/2)
ϵ + ψ ′(1/2)(x − iy)

= −

(
7ζ (3)
π3 +

iπα
2

)
ln

1
ϵ
. (B.15)

Next we find

δgDOS
2,2 (ω) =

∫ 2α

0

dy
2πα

ln[ϵ − iψ ′(1/2)y] +

∫ 1

0

dx
4πα

∫
∞

0
dy

[
1 − coth(2πy)

] [ G′(z∗) − G′(z∗
− 2iα)

G(z∗)

−
G′(z) − G′(z − 2iα)

G(z)

]
+

∫
∞

1

dx
π

∫
∞

0
dy

[
1 − coth(2πy)

]
Im

G′′(z)
G(z)

≈
1
π

ln ϵ +
1
π

(
1 +

iϵ
π2α

)
ln

(
1 −

iπ2α

ϵ

)
+
ψ ′′(1/2) − iπ4α

2πψ ′(1/2)

∫ 1

0
dx

∫
∞

0

dy
(ϵ̄ + x)2 + y2

(B.16)

Hence, we find with the logarithmic accuracy

δgDOS
2,2 (ω) = −

(
7ζ (3)
π3 +

1
π

+
iπα
2

)
ln

1
ϵ

+
1
π

(
1 +

iϵ
π2α

)
ln

(
1 −

iπ2α

ϵ

)
. (B.17)

Also, we obtain with logarithmic accuracy

δgDOS
2,3 (ω) = −

1
π

∫
∞

0
dx

∫
∞

0
dy Im

[
G′(z)
G(z)

]2

= −
1
π

∫ 1

0
dy

∫
∞

0
dx Im

[
1

ϵ̄ + x + iy

]2

−
1
π

∫
∞

0
dx

∫
∞

1
dy Im

[
G′(z)
G(z)

]2

=
1
π

∫ 1

0
dy

y
ϵ̄2 + y2

−
1
π

∫
∞

0
dx

∫
∞

1
dy Im

[
G′(z)
G(z)

]2

=
1
π

ln
1
ϵ
.

(B.18)

Appendix C. Aslamazov–Larkin contribution

In this Appendix we present derivation for the asymptotic expression of the Aslamazov–Larkin
contribution. This correction can be written as

δgAL(ω) = −
sinh(2πα)

2πα3

∫
∞

0
dx x

∫
∞

−∞

dy
sinh(2πy) sinh

(
2π (y − α)

) ImG(z − iα)
|G(z − iα)|2

G(z∗
+ iα) − G(z∗

− iα)
G(z∗)

× Im
[
G(z∗

+ iα) − G(z∗
− iα)

]
. (C.1)
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In the case of large frequencies, α ≫ 1, it is convenient to perform rescaling x → αx and y → αy.
Then we obtain

δgAL(ω) =
1
π

1
(ϵ + lnα)3

∫
∞

0
dx x

∫ 1

0
dy arctan

(
y − 1
x

)
ln

x − iy + i
x − iy − i

[
arctan

(
1 − y
x

)

+ arctan
(
1 + y
x

) ]
≈

cAL3

(ϵ + lnα)3
, (C.2)

where the constant cAL3 ≈ 0.17 − 0.89i.
In the case of small frequencies, α ≪ 1, and high temperatures, ϵ ≫ 1, we can approximate the

function G(z) in denominators of the integrand in Eq. (C.1) by ϵ,

δgAL(ω) ≈
4i
ϵ3

∫
∞

0
dx x

∫
∞

−∞

dy ∂xf (x, y) Im f (x, y − α) Reψ ′(1/2 + x − iy), (C.3)

where f (x, y) = ψ(1/2 + x − iy)/sinh(2πy). Expanding in α on the right hand side of Eq. (C.3), we
obtain

δgAL(ω) ≈
cAL4 − cAL5 iα

ϵ3
, (C.4)

where cAL4 ≈ 1.44 and cAL5 ≈ 9.23.
In the vicinity of the superconducting transition, ϵ ≪ 1, and for small frequencies, α ≪ 1, we

can expand the integrand in Eq. (C.1) in y and x,

δgAL(ω) ≈ −
i
π2

∫
∞

0
dx

∫
∞

−∞

dy
y

x
[(ϵ̄ + x)2 + (y − α)2][ϵ̄ + x − iy]

=
π

8ϵ
W1

(
π2α

2ϵ

)
−

iπ3α

32ϵ2
W2

(
π2α

2ϵ

)
,

(C.5)

where the functions W1(X) and W2(X) are defined in Eq. (67). We note that there are also subleading
terms proportional to ln ϵ.

Appendix D. The correction δg sc(ω)

In this Appendix we present derivation for the asymptotic expression of the correction δgsc(ω).
It is convenient to split the expression (52) into four parts, δgsc(ω) = δgsc

I (ω)+ δgsc
II (ω)+ δg

sc
III (ω)+

δgsc
IV (ω), and discuss each of them separately.

D.1. δgsc
I (ω)

The first contribution δgsc
I (ω) can be expressed in terms of the dimensionless parameters in the

following way

δgsc
I (ω) =

1
4πα

∫
∞

0
dx x

∫
∞

−∞

dy
G(z)

coth(2πy)

{
3G′′(z) + G′′(z − 2iα) +

2
α2

[
G(z − 2iα) − G(z − iα)

−G(z) + G(z + iα)
]}

. (D.1)

In the case of large frequencies, α ≫ 1, we perform rescaling x → αx and y → αy. Then we find

δgsc
I (ω) ≈

1
4π

1
ϵ + lnα

∫
∞

0
dx x

∫
∞

−∞

dy sgn y

[
−

3
z2

−
1

(z − 2i)2
+ 2 ln

(z − 2i)(z + i)
(z − i)z

]

=
1
6π

5 − 2 ln 2 + iπ
ϵ + lnα

. (D.2)
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At low frequencies, α ≪ 1, and at high temperatures, ϵ ≫ 1, we expand Eq. (D.1) in α and obtain

δgsc
I (ω) ≈ −

α

6πϵ

∫
∞

0
dx x

∫
∞

−∞

dy coth(2πy) G′′′′(z) +
5iα2

24πϵ

∫
∞

0
dx x

∫
∞

−∞

dy coth(2πy) G′′′′′(z)

= −
2π iα
9ϵ

+
c6α2

ϵ
, (D.3)

where c6 ≈ 3.83.
Near the superconducting transition, ϵ ≪ 1, and for small frequencies, α ≪ 1, the correction

δgsc
I (ω) does not diverge in the limit ϵ → 0.

D.2. δgsc
II (ω)

The contribution δgsc
II (ω) reads

δgsc
II (ω) =

1
4πα

∫
∞

0
dx x

∫
∞

−∞

dy
G(z)

[
coth

(
2π (y − α)

)
− coth(2πy)

] {
G′′(z − iα) − G′′(z∗)

+
2i
α

[
G′(z∗) +

G(z∗) − G(z∗
+ iα)

iα
− G′(z − 2iα) −

G(z − 2iα) − G(z − iα)
iα

] }
. (D.4)

In the case of large frequencies, α ≫ 1, it is convenient to rescale integration variables x → αx and
y → αy. Hence, we obtain

δgsc
II (ω) ≈ −

1
2π

1
ϵ + lnα

∫
∞

0
dx x

∫ 1

0
dy

{
−

1
(z − i)2

+
1
z∗2 +

2i
z∗

−
2i

z − 2i
+ 2 ln

z∗(z − i)
(z∗ + i)(z − 2i)

}

=
1
6π

14 ln 2 − 4 − iπ
ϵ + lnα

. (D.5)

In the case of small frequencies, α ≪ 1, but well above the superconductivity transition tempera-
ture, ϵ ≫ 1, we expand δgsc

II (ω) in α. Then we find

δgsc
II (ω) ≈

sinh(2πα)
4παϵ

∫
∞

−∞

dy
sinh

(
2π (y − α)

)
sinh(2πy)

{
iα
3

[
ψ ′ (1/2 − iy)+ 2ψ ′ (1/2 + iy)

]
−
α2

12

[
ψ ′′ (1/2 − iy)− 11ψ ′′ (1/2 + iy)

] }
= −

iπα
3ϵ

+
c6α2

ϵ
. (D.6)

The correction δgsc
II (ω) becomes a constant in the limit α ≪ 1 and ϵ ≪ 1.

D.3. δgsc
III (ω) And δg

sc
IV (ω)

The contributions δgsc
III (ω) and δg

sc
IV (ω) are given as

δgsc
III (ω) = −

1
4πα

∫
∞

0
dx x

∫
∞

−∞

dy
G(z)

coth(2πy)

{
G′(z)
G(z)

[
3G′(z) + G′(z − 2iα) + 2

G(z) − G(z − 2iα)
iα

]

+2

[
G(z + iα) − G(z − iα)

]2
α2G(z + iα)

}
(D.7)

and

δgsc
IV (ω) =

1
4πα

∫
∞

0
dx x

∫
∞

−∞

dy
G(z∗)

[
coth

(
2π (y − α)

)
− coth(2πy)

] {
G′(z∗)
G(z∗)

[
G′(z∗) − G′(z − 2iα)

]
+

G(z∗
+ iα) − G(z∗

− iα)
α2G(z∗ + iα)

[
G(z∗

+ iα) − G(z∗
− iα) + ReG(z∗

+ iα) − ReG(z∗
− iα)

]
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−
G(z∗

+ iα) − G(z∗
− iα)

iα2G(z − iα)
Im

[
G(z∗

+ iα) − G(z∗
− iα)

]
−

[
G(z − iα) − G(z − 2iα) + G(z∗) − G(z∗

− iα)
]2

α2G(z − iα)

}
. (D.8)

It is convenient to split the contribution δgsc
IV (ω) into two parts. The first part is given as

δgsc
IV ,1(ω) =

sinh(2πα)
4πα

∫
∞

0
dx x

∫
∞

−∞

dy
G′(z∗)
G2(z∗)

G′(z∗) − G′(z − 2iα)
sinh

(
2π (y − α)

)
sinh(2πy)

. (D.9)

The second part of δgsc
IV (ω) can be combined with the term δgsc

III (ω). Then we find

δgsc
III (ω) + δgsc

IV ,2(ω) = −
1

4πα

∫
∞

0
dx x

∫
∞

−∞

dy coth(2πy)

{
G′(z)
G2(z)

[
3G′(z) + G′(z − 2iα)

+2
G(z) − G(z − 2iα)

iα

]
+2

[
G(z + iα) − G(z − iα)

]2
α2G(z)G(z + iα)

+
G(z∗

+ iα) − G(z∗
− iα)

α2G(z∗)G(z∗ + iα)

×

[
G(z∗

+ iα) − G(z∗
− iα) + ReG(z∗

+ iα) − ReG(z∗
− iα)

]
−

G(z∗
+ iα) − G(z∗

− iα)
iα2G(z∗)G(z − iα)

Im
[
G(z∗

+ iα) − G(z∗
− iα)

]
−

[
G(z − iα) − G(z − 2iα) + G(z∗) − G(z∗

− iα)
]2

α2G(z∗)G(z − iα)
−

G(z∗) − G(z∗
− 2iα)

α2G(z∗ − iα)G(z∗)

×

[
G(z∗) − G(z∗

− 2iα) + ReG(z∗) − ReG(z∗
− 2iα)

]
+

G(z∗) − G(z∗
− 2iα)

iα2G(z∗ − iα)G(z)
Im

[
G(z∗) − G(z∗

− 2iα)
]

+

[
G(z) − G(z − iα) + G(z∗

− iα) − G(z∗
− 2iα)

]2
α2G(z∗ − iα)G(z)

}
. (D.10)

At first, we consider the regime of large frequencies, α ≫ 1. It is convenient to make the rescaling
x → αx and y → αy. Then we obtain

δgsc
IV ,1(ω) ≈

i
π (ϵ + lnα)2

∫
∞

0
dx x

∫ 1

0
dy

1
z∗2(z∗ − 2i)

= −
1
8π

9 ln 3 − 4 ln 2 − 2
(ϵ + lnα)2

. (D.11)

Also, we find

δgsc
III (ω) + δgsc

IV ,2(ω) ≈ −
1
4π

∫
∞

0
dx x

∫
∞

−∞

dy
sgn y

(ϵ + lnα + ln |z|)2

{
1
z

[3
z

+
1

z − 2i
− 2i ln

z
z − 2i

]
+2 ln2 z + i

z − i
+ 2 ln2 z∗

+ i
z∗ − i

− ln2 (z − i)z∗

(z∗ − i)(z − 2i)
− 2 ln2 z∗

z∗ − 2i

[
+ ln2 z(z∗

− i)
(z∗ − 2i)(z − i)

]

≈
1
2π

∫
∞

∼1

dr
r

1
(ϵ + lnα + ln r)2

=
1
2π

1
ϵ + lnα

. (D.12)

Next, we consider the case of small frequencies, α ≪ 1, and high temperatures, ϵ ≫ 1. Then,
expanding in α, we find

δgsc
IV ,1(ω) ≈ −

2
ϵ2

∫
∞

0
dx x

∫
∞

−∞

dy
[ImG′(z)]2

sinh2(2πy)
≈ −

c7
ϵ2
, (D.13)
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where c7 ≈ 0.047. For the contribution δgsc
III (ω)+ δg

sc
IV ,2(ω) the integrals over x and y are dominated

by their large values of the order of exp ϵ. Therefore, after expansion in α, we obtain

δgsc
III (ω) + δgsc

IV ,2(ω) ≈
1
π

∫
∞

0
dx x

∫
∞

0
dy

coth(2πy)
(ϵ + ln |z|)2

ImG′(z)
[
3G′′(z) + 2G′′(z∗)

]
≈

1
2π

∫
∞

∼1

dr
r

1
(ϵ + ln r)2

=
1

2πϵ
. (D.14)

We note that the terms of the next order in α has additional smallness in 1/ϵ.
Finally, we consider the vicinity of the superconducting transition, ϵ ≪ 1, and small frequencies,

α ≪ 1. Then expanding in x and y we find

δgsc
IV ,1(ω) ≈

ψ ′′(1/2)
π2ψ ′(1/2)

∫
∼1

0
dx

∫
∞

0
dy

x(ϵ̄ + x)
[(ϵ̄ + x)2 + y2]2

=
7ζ (3)
π3 ln ϵ. (D.15)

Here we neglected the dependence on α since it does not lead to terms divergent for ϵ → 0. In
order to analyse the term δgsc

III (ω) + δgsc
IV ,2(ω), at first, we perform expansion of enumerators in α

on the right hand side of Eq. (D.10),

δgsc
III (ω) + δgsc

IV ,2(ω) ≈ −
1

8π2α

∫
∞

0
dx x

∫
∞

−∞

dy
y

{
8G′2(z)
G2(z)

−
4G′(z) ReG′(z)
G(z)G(z + iα)

−
8G′2(z)

G(z)G(z − iα)

+
4G′(z) ReG′(z)
G(z)G(z − iα)

+
2iαG′(z)G′′(z)

G2(z)
+ iα

2G′(z)G′′(z) + iG′′(z) ImG′(z) + G′(z) ReG′′(z)
G(z)G(z − iα)

−iα
4[3G′′(z) + G′′(z∗)] ReG′(z) − G′′(z) ReG′(z) − iG′(z) ImG′′(z)

G(z∗)G(z − iα)

}
. (D.16)

Expanding the function G in powers of its argument, we obtain

δgsc
III (ω) + δgsc

IV ,2(ω) ≈ −
α

π2

∫
∞

0
dx x

∫
∞

−∞

dy
y

1
(ϵ̄ + z)2(ϵ̄ + z + iα)(ϵ̄ + z − iα)

−
5iψ ′′(1/2)
8π2ψ ′(1/2)

∫
∞

0
dx x

∫
∞

−∞

dy
y

1
(ϵ̄ + z)2

=
iα

6πϵ̄2
W3

(α
ϵ̄

)
−

35ζ (3)
π3 ln ϵ, (D.17)

where the function W3(z) is given by Eq. (71). Here we neglected terms of the order of α/ϵ̄.
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