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Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge
conductance of 2D topological insulators from the anticipated quantized value. In this work we consider
such a helical edge coupled to dilute impurities with an arbitrary spin S and a general form of the exchange
matrix. We calculate the backscattering current noise at finite frequencies as a function of the temperature and
applied voltage bias. We find that, in addition to the Lorentzian resonance at zero frequency, the backscattering
current noise features Fano-type resonances at nonzero frequencies. The widths of the resonances are controlled
by the spectrum of corresponding Korringa rates. At a fixed frequency the backscattering current noise has
nonmonotonic behavior as a function of the bias voltage.
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I. INTRODUCTION

The hallmark of two-dimensional (2D) topological in-
sulators is helical edge states [1,2]. They exist due to
spin-momentum locking caused by the presence of strong
spin-orbit coupling [3,4]. The helical edge states have been
detected experimentally in HgTe/CdTe quantum wells [5–9].
The time-reversal symmetry protects the helical edge states
from elastic backscattering. As a consequence, one expects
ballistic transport along the helical edge with the quantized
conductance of G0 = e2/h. However, this idealized picture of
edge transport was questioned by experiments in a number of
2D topological insulators: HgTe/CdTe quantum wells [5,10–
14], InAs/GaSb quantum wells [15–22], WTe2 monolayers
[23–25], and Bi bilayers [26]. In order to account for the
experimental data, several physical mechanisms of backscat-
tering were proposed and studied theoretically, including
the effects of electron-electron interaction [27–36], charge
puddles acting as an effective spin-1/2 impurity [37–40], a
quantum magnetic impurity [41–46], the effect of nuclear
spins [47,48], etc.

The average current can provide only limited information
on a source of backscattering. More details on scattering can
be extracted from current—current correlations, i.e., from
current noise [49–51]. To obtain such information one needs
to consider current noise beyond the linear response regime,
i.e., at finite frequency and/or finite bias voltage. However, so
far the shot noise at the helical edge has attracted much less
theoretical and experimental attention in comparison with the
average current [39,51–58].

Recently, the zero-frequency shot noise of backscattering
current in the case of a magnetic impurity with anisotropic
exchange interaction for spin S = 1

2 [54] and spin S > 1/2

[58] has been computed. It was found that in the case of
spin S = 1

2 the zero-frequency backscattering shot noise Fano
factor is bounded from above, whereas for spins S > 1/2 the
noise can be of arbitrary large magnitude due to bunching of
backscattering pairs of electrons.

In this paper, we report the results for the finite frequency
current noise at the helical edge due to backscattering elec-
trons off dilute quantum magnetic impurities with an arbitrary
spin S (see Fig. 1). Similar to Ref. [58] we consider the
most general exchange interaction between magnetic impurity
and the helical edge states. Under the assumption of weak
exchange interaction we derive analytic expression for the
current noise as a function of frequency, ω, voltage, V , and
temperature, T . We find that the frequency dependence of
the current noise has a resonant structure (see Fig. 3). While
the resonance at zero frequency has a Lorentzian form, the
resonances at nonzero frequencies are of Fano type. The reso-
nance structure of the current noise is similar to the behavior

FIG. 1. Sketch of the setup: a helical edge of a 2D topological
insulator contaminated by dilute spin-S magnetic impurities (see
text).
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of the dynamical spin susceptibility under the conditions of
electronic paramagnetic resonance. In our case voltage plays
a role of magnetic field that lifts degeneracy of the impurity
spectrum, whereas finite frequency allows transitions between
the split energy levels. The broadening of the resonances
is determined by the corresponding inverse Korringa times.
For S > 1/2 we find that the peak at zero frequency can
become very narrow, reflecting the aforementioned bunching
of backscattered electrons [58].

The outline of this paper is as follows. We start from
describing the formalism in Sec. II. In Sec. III we present
results for the current noise for an arbitrary impurity spin.
The special case of spin S = 1/2 is considered in Sec. IV.
We end the paper with discussions and conclusions in
Sec. V.

II. FORMALISM

A. Model

The noninteracting 1D helical mode coupled to a magnetic
impurity is described by the following Hamiltonian:

H = He + He−i. (1)

Here the first term is the Hamiltonian of edge electrons,

He = iv
∫

dy �†(y)σz∂y�(y), (2)

where v denotes the velocity of the edge states, �† and �

stand for the creation and annihilation operators, and σx,y,z are
the standard Pauli matrices operating in the pseudospin space
of edge states. The interaction between helical electrons and
a magnetic impurity located at y = y0 is assumed to be in the
form of local exchange,

He−i = 1

ν
Ji jSis j (y0), s j (y) = 1

2
�†(y)σ j�(y). (3)

Here ν = 1/(2πv) is the density of states per one edge mode
and Si stands for the components of the impurity spin operator.

The 3 × 3 dimensionless exchange matrix, Ji j , i, j =
x, y, z, is not diagonal due to the presence of spin-orbit cou-
pling in the 2D topological insulators. For example, there
are four nonzero components, Jxx = Jyy, Jzz, and Jxz, for
a magnetic impurity in a HgTe/CdTe quantum well in the
case of negligible interface inversion asymmetry [44,45,59].
The inversion asymmetry present in HgTe/CdTe quantum
wells [60–67] renders all matrix elements Ji j nonzero. The
exchange interaction (3) is expected to be applicable for other
2D topological insulators, e.g., InAs/GaSb quantum wells,
WTe2 monolayers, and Bi bilayers. We assume that dimen-
sionless exchange interaction is weak, |Ji j | � 1. This is fully
justified in physical systems. For example, for Mn2+ ion in a
HgTe/CdTe quantum well |Ji j | ∼ 10−3 [68].

In the Hamiltonian (1) we neglect the local anisotropy of
the impurity spin, described by D jkS jSk . This can be justified
for |D jk| � max{J 2

jkT, |J jkV |} [46]. With neglect of the local
anisotropy the exchange matrix Ji j can be brought to a lower
triangular form by rotation of the spin basis for the impurity
spin Si. We thus assume hereinafter that Jxy = Jxz = Jyz = 0
and JxxJyy > 0.

In what follows, we shall ignore Kondo-type renormaliza-
tion of J jk that is responsible for a logarithmic dependence
of exchange interaction on max{T, |V |} [45]. In addition, we
neglect electron-electron interactions along the helical edge in
the Hamiltonian (1). We discuss the effect of the interactions
on the backscattering current noise in Sec. V.

B. Backscattering current noise and the
generalized master equation

The presence of a magnetic impurity causes the backscat-
tering of helical states. In the presence of a bias voltage V
along the edge, scattering helical states off magnetic impurity
produces a backscattering current. The spin-momentum lock-
ing allows one to relate the backscattering current with the
total pseudospin projection of the helical states, Ibs = d�z/dt ,
where �z = ∫ dy sz(y) [54]. Therefore, the statistics of the
backscattering current is determined by the difference in total
number of right and left moving electrons at the helical edge
during a large time interval t ,

	N (t ) = �z(t ) − �z(0), �z(t ) = eiHt�z(0)e−iHt . (4)

Thus a cumulant generated function for 	N (t ) can be
written as

G(λ, t ) = ln Tr
[
eiλ�z (t )e−iλ�z (0)ρ(0)

]
. (5)

Here ρ(0) denotes the initial density matrix of the total sys-
tem, which is assumed to be in the form of the tensor product
of the density matrix of the helical edge electrons and the im-
purity spin. It is convenient to express the cumulant generating
function as (see Ref. [69] for a review)

G(λ, t ) = ln Tr ρ (λ)(t ). (6)

Here the generalized density matrix of the system in the pres-
ence of counting field λ is given as

ρ (λ)(t ) = e−iH (λ)tρ(0)eiH (−λ)t ,

H (λ) = eiλ�z/2H e−iλ�z/2. (7)

Tracing out the degrees of freedom of helical edge states we
can reduce the problem of computation of the cumulant gen-
erating function to the evaluation of the reduced generalized
density matrix of the magnetic impurity,

G(λ, t ) = ln TrS ρ
(λ)
S (t ). (8)

Using the smallness of the exchange interaction, one can
derive the generalized Gorini-Kossakowski-Sudarshan- Lind-
blad (GKSL) equation, which governs the time evolution of
ρ

(λ)
S (t ) [58],

dρ
(λ)
S

dt
= i
[
ρ

(λ)
S , Hmf

e−i

]+ η
(λ)
jk S jρ

(λ)
S Sk − η

(0)
jk

2

{
ρ

(λ)
S , SkS j

}
.

(9)

Here Hmf
e−i = Jzz〈sz〉Sz/ν stands for the mean-field part of

He−i, where 〈sz〉 = νV/2 is the average nonequilibrium spin
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density. The 3 × 3 matrix

η
(λ)
jk = πT

(
J

(λ)
V J T

)
jk

(10)

controls the nonunitary evolution of the reduced generalized
density matrix. Here we introduced


(λ)
V =

( f +
λ

(V/T ) −i f −
λ

(V/T ) 0
i f −

λ
(V/T ) f +

λ
(V/T ) 0

0 0 1

)
(11)

and f ±
λ (x) = x

2 (e−iλex ± eiλ)/(ex − 1).
The average backscattering current can be extracted from

the cumulant generating function as

Ibs = lim
t→∞

d

dt

dG(λ, t )

d (iλ)

∣∣∣∣∣
λ=0

. (12)

The backscattering current noise at a frequency ω can be also
determined with the help of the cumulant generating function
[70,71],

Sbs(ω) = ω

∫ ∞

0
dt sin(ωt )

d

dt

d2G(λ, t )

d (iλ)2

∣∣∣∣∣
λ=0

. (13)

We note that the master equation approach for computation
of the current noise is limited to not too high frequencies,
|ω| � max{|V |, T }, due to the breakdown of the Markovian
approximation at short time scales (see, e.g., Ref. [72]).

The reduced generalized density matrix ρ
(λ)
S (t ) and, con-

sequently, the cumulant generating function, depend on the
choice of the initial reduced density matrix ρ

(λ)
S (0). Since we

are interested in the statistics of the backscattering current in
the steady state of the system, we choose the ρ

(λ)
S (0) to be

equal to the steady state density matrix ρst
S , for which the right

hand side (RHS) of the GKSL Eq. (9) equals zero at λ = 0.

III. BACKSCATTERING CURRENT NOISE FOR AN
ARBITRARY IMPURITY SPIN

A. General expression

We start analysis of the average backscattering current and
noise, cf. Eqs. (12) and (13), from a derivation of general
expressions valid for an arbitrary value S of the impurity spin.
As usual, it is convenient to think of the (2S + 1) × (2S + 1)
reduced density matrix ρ

(λ)
S as a (super)vector |ρ (λ)

S 〉 of length
(2S + 1)2. Then the GKSL equation can be rewritten as fol-
lows:

d

dt

∣∣ρ (λ)
S

〉 = L(λ)
∣∣ρ (λ)

S

〉
, (14)

where the (2S + 1)2 × (2S + 1)2 matrix L(λ) denotes the (su-
per)operator corresponding to the RHS of Eq. (9). For further
analysis, it is convenient to introduce the left (super)vector
〈0̃| whose inner product with an arbitrary (super)vector |ρ (λ)

S 〉
gives the trace, Tr ρ

(λ)
S ≡ 〈0̃|ρ (λ)

S 〉.
In order to find the backscattering current noise we need to

find |ρ (λ)
S (t )〉 to second order in λ. This can be done by means

of perturbation theory in λ. Let us expand the matrix L(λ) in

powers of λ,

L(λ) = L0 + λL1 + λ2L2 + · · · . (15)

The (super)vector |0〉 corresponding to the steady state density
matrix ρst

S is the right eigenvector for the matrix L0 with zero
eigenvalue,

L0|0〉 = 0. (16)

We note that 〈0̃| is the left eigenvector of L0 with zero eigen-
value,

〈0̃|L0 = 0. (17)

Left and right zero eigenvectors of L0 satisfy the normaliza-
tion condition 〈0̃|0〉 = 1.

Solving Eq. (14) perturbatively, we find to the second order
in λ

|ρ (λ)
S (t )〉 	 |0〉 +

∫ t

0
dt1e−L0t1

(
λL1 + λ2L2

+ λ2
∫ t1

0
dt2 L1eL0(t1−t2 )L1

)
|0〉. (18)

Hence, using the relation G(λ, t ) = ln〈0̃|ρ (λ)
S (t )〉, we obtain

the series in λ expansion of the cumulant generating function,

G(λ, t ) = λ〈0̃|
[

t
(
L1 + λL2

)+ λ

∫ t

0
dτ (t − τ )L1

×
(

eL0τ − |0〉〈0̃|
)
L1

]
|0〉 + O(λ3). (19)

Next, with the help of Eqs. (12) and (13), we find the average
backscattering current

Ibs = −i〈0̃|L1|0〉 (20)

and the backscattering current noise

Sbs(ω) = 2〈0̃|L1GL1 − L2|0〉
− 2ω2〈0̃|L1G

(
L2

0 + ω21
)−1L1|0〉. (21)

We note that the first line in Eq. (21) describes the zero
frequency noise, while the second line is the frequency depen-
dent contribution. The matrix G is the pseudoinverse of L0.
One needs to work with the pseudoinverse matrix since L0 has
zero eigenvalue. The pseudoinverse G satisfies the following
relation:

GL0 = 1 − |0〉〈0̃|. (22)

With the help of this relation, Eq. (21) can be rewritten as

Sbs(ω) = 2〈0̃|[L1L0
(
L2

0 + ω21
)−1L1 − L2

]|0〉. (23)

It is worthwhile to mention that the zero frequency noise is
obtained from Eq. (23) as S (ω → 0).

In order to characterize the dependence of the backscatter-
ing current noise (23) on the frequency, it is useful to introduce
the set of left and right eigenvectors of L0 with nonzero
eigenvalues lα , α = 1, . . . , 4S(S + 1),

L0|α〉 = lα|α〉, 〈α̃|L0 = 〈α̃|lα. (24)
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These eigenvectors are assumed to be mutually orthogonal:
〈0̃|α〉 = 〈α̃|0〉 = 0 and 〈α̃|β〉 = δαβ . An eigenvalue lα can be
either pure real or belong to a complex conjugate pair. The real
parts of all eigenvalues are negative: l ′

α = Re lα < 0. Using
the system of the eigenvectors, Eq. (23) can be written as
follows:

Sbs(ω) = 2
4S(S+1)∑

α=1

lα〈0̃|L1|α〉〈α̃|L1|0〉
l2
α + ω2

− 2〈0̃|L2|0〉. (25)

In the sum over α in the above equation the eigenvalues
with zero imaginary part, l ′′

α = Im lα = 0, contribute to the
Lorentzian resonance at ω = 0. If an eigenvalue has nonzero
imaginary part, it contributes to the resonances at ω = ±l ′′

α .
The form of these resonances are of the Fano type and can
be described as [c′

αl ′2
α + c′′

α (l ′′
α ± ω)]/[l ′2

α + (l ′′
α ± ω)2]. Here

we define c′
α + ic′′

α = 〈0̃|L1|α〉〈α̃|L1|0〉. The width of the
resonance is proportional to |l ′

α|.
As follows from the GKSL equation (9), the real part of

lα is of the order of J2 max{|V |, T }, whereas the imaginary
part is of the order of JV . Here J is an absolute value of a
typical value of the exchange matrix elements J jk . Therefore,
at a small bias voltage, |V | � JT , the backscattering noise
has a single Lorentzian resonance at zero frequency with a
width of the order of J2T . At larger voltage, JT � |V | � T ,
additional side resonances in Sbs become resolved since their
widths are still of the order of J2T . In the case of large voltage,
|V | � T , there are a number of resonances at frequencies of
the order of J|V |. The widths of these resonances are propor-
tional to J2|V |. Below we shall discuss this evolution of the
backscattering noise with increasing voltage in more detail.

B. Backscattering current noise for |V | � JT

As is well known, the fluctuation dissipation theorem
relates the current noise at zero voltage with the linear con-
ductance. Below we shall demonstrate that this relation holds
for the backscattering current and noise.

We start from expansion of the matrix 
(λ)
V , Eq. (11), at

V = 0 in series to the second order in λ. Then from Eq. (23)
we find for the current noise at V = 0

Sbs(ω) = πT (J π2J T ) jk Tr
[
S jρ

st
S Sk
]

+ πT
∑
σ=±

(J π1J T ) jk Tr[S jδρσ Sk]. (26)

Here we introduce two matrices

π1 =
(0 −1 0

1 0 0
0 0 0

)
, π2 =

(1 0 0
0 1 0
0 0 0

)
. (27)

Then δρσ satisfies the following equation:

πT (JJ T ) jk[S jδρσ Sk − {δρσ , SkS j}/2] + iωσδρσ

= πT (J π1J T ) jkS jρ
st
S Sk . (28)

Using the explicit form of matrices π1,2, we obtain

Sbs = πT

2

[
S(S + 1)

3
(J π2J T ) j j + iX j

∑
σ=±

Tr(S jδρσ )

]
,

(29)

where X j = 2ε jklJkxJly. Solving Eq. (28), we find

Tr(S jδρσ ) = S(S + 1)

3i
[�σ (ω)]−1

jk Xk, (30)

where we introduce the matrix

(�σ ) jk (ω) = (JJ T ) jk + 2iσω

πT
δ jk − δ jk (JJ T )ll . (31)

Now we perform the singular value decomposition of the
exchange matrix J = R<�R>. Here R<,> are the SO(3) ma-
trices and � = diag{λ1, λ2, λ3}. Combining the results above,
we finally obtain the following expression for the backscatter-
ing current at V = 0:

Sbs(ω) = πT S(S + 1)

3
[R−1

> �(ω)R>]zz, (32)

where the matrix �(ω) is given as

�(ω) = diag

{(
λ2

2 + λ2
3

) (λ2
2 − λ2

3)2 + 4ω2/(πT )2(
λ2

2 + λ2
3

)2 + 4ω2/(πT )2
,

(
λ2

1 + λ2
3

)(λ2
1 − λ2

3

)2 + 4ω2/(πT )2(
λ2

1 + λ2
3

)2 + 4ω2/(πT )2
,

(
λ2

1 + λ2
2

)(λ2
1 − λ2

2

)2 + 4ω2/(πT )2(
λ2

1 + λ2
2

)2 + 4ω2/(πT )2

}
. (33)

It is instructive to compare the result (32) with the result
for the average backscattering current at V → 0 [45],

Ibs = 	GV, 	G = −πS(S + 1)

6
[R−1

> �(0)R>]zz. (34)

Then we find the Nyquist-type relation for the backscattering
current noise at zero frequency and voltage,

Sbs(ω = 0) = 2T |	G|. (35)

We mention that the Nyquist-type relation (35) implies the
absence of correlations between the total current I and the
backscattering current Ibs in the equilibrium. Indeed, the in-
coming current Iin = I − Ibs from reservoirs splits into the
transmitted I and backscattered Ibs currents. Under equilib-
rium conditions, the incoming current carries thermal noise,
Sin = 2T G0, corresponding to the ideal transport channel.
The noise of the total current should obey the fluctuation-
dissipation theorem, i.e., is given by SI = 2T (G0 + 	G).
Hence, using Eq. (35), we find that the cross correlation of
the total current I and the backscattering current Ibs vanishes,
Scross ∝ 〈〈IbsI〉〉 = 0.

Extending the arguments above to the case of the finite
frequency but still zero bias voltage, we obtain that the right
hand side of Eq. (32) determines the absolute value of the
backscattering admittance at the helical edge. The depen-
dence of the backscattering admittance on the frequency is
depicted in Fig. 2. Irs absolute value grows with increasing
the frequency. At |ω| ∼ J2T the admittance crosses over into
a constant in agreement with Eq. (32).
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FIG. 2. Dependence of the normalized absolute value of
backscattering admittance, VSbs/(2T |Ibs|) at V � JT , on the di-
mensionless frequency 2ω/(πT ). The red solid curve is plotted for
Jxx = Jzx = Jyy/2 = Jzz. The green dashed curve corresponds to
Jxx = Jzx = Jyy/2 = 2Jyx = 5Jzy = Jzz. The blue dotted curve is
plotted for Jxx/2 = Jzx = Jyy = Jzz. For all curves Jzz is equal to
0.01.

C. Backscattering current noise for |V | � T

Now we consider the limit of large voltage |V | � T . In
this regime the backscattering current noise determines the
full current noise SI [54,56].

At large voltage |V | � T the matrix (11) simplifies to


(λ)
V −→ V

2T
e−iλ sgn V

(1 −i 0
i 1 0
0 0 0

)
. (36)

Therefore, both the backscattering current noise and the
backscattering current are proportional to the voltage and
are independent of temperature. The ratio Sbs(ω)/|Ibs| is a
function of the dimensionless parameter ω/V . At zero fre-
quency the ratio coincides with the backscattering Fano factor
Fbs = Sbs(0)/|Ibs|. This Fano factor is bounded from below
by unity, Fbs � 1 [58]. For S = 1/2 the backscattering Fano
factor is also bounded from above, Fbs � 2 [54]. For S > 1/2,
Fbs is unbounded from above due to bunching of electrons
backscattered off a magnetic impurity [58].

The behavior of the backscattering current noise as a func-
tion of frequency at voltage bias |V | � T is shown in Fig. 3
for several magnitudes of the spin of the magnetic impurity.
For S = 1/2, Sbs(ω) has a maximum at ω = 0 and minima at
ω = ±JzzV/2. At larger frequencies the backscattering cur-
rent noise tends to a constant. In the case S = 1 the resonances
at the frequencies ±JzzV/2 acquire a Fano-like shape and ad-
ditional maxima appear at ±JzzV . The frequency dependence
of the backscattering current noise for S = 3/2 and S = 2
resembles the one for S = 1. Additional resonances which are
possible in the cases S = 3/2 and S = 2 are not visible since

FIG. 3. Dependence of the backscattering current noise, 4Sbs/(πT ), on the dimensionless frequency 2ω/(πT ) at different values of V/T �
1 and S. The black lines are guides for an eye, marking the positions of the resonances.

125309-5



PASHINSKY, GOLDSTEIN, AND BURMISTROV PHYSICAL REVIEW B 102, 125309 (2020)

their amplitude is of higher order in the small anisotropic part
of the exchange interaction matrix J .

At larger frequencies, J|V | � |ω| � |V |, Sbs is fully deter-
mined by the backscattering current. Indeed, the form of the
matrix 

(λ)
V at |V | � T , cf. Eq. (36), implies the following

relation: L2 = −i sgn VL1/2. Hence, in the limit of large
frequencies, J|V | � |ω| � |V |, we find that the backscatter-
ing current noise coincides with the backscattering current,
Sbs(ω)/|Ibs| → 1. This implies that backscattering is com-
pletely uncorrelated. We note that a similar result has been
derived in Ref. [56] for the case of S = 1/2. It is worthwhile
to mention that, depending on the parameters of the exchange
matrix J jk , the ratio Sbs(ω)/|Ibs| can be even smaller than
unity at intermediate frequencies, as illustrated in Fig. 3.

D. Korringa relaxation rates

The imaginary parts of eigenvalues lα determine the posi-
tion of the Fano-type resonances. These resonances are due to
the transitions between levels of the mean field Hamiltonian,
Hmf

e−i = JzzV Sz/2. At voltage |V | � T the resonances are well
separated since their width is of the order J2V . The width of
the resonance can be estimated more accurately as follows.
Let us introduce the eigenbasis of Sz, Sz|m〉 = m|m〉 with
m = −S, . . . , S. Neglecting the terms of the second order in J
in the GKSL equation, we find that the set of eigenvalues {lα}
can be approximated as −iJzzV (m − m′)/2, where m, m′ =
−S, . . . , S. The omitted terms can then be taken into account
by the first order perturbation theory. Denoting − Re lα as
1/τm,m′ , we obtain

τ−1
m,m′ = πV g

4

{
q

[
S(S + 1) − m2 + m′2

2

]

+ (1 − q)(m − m′)2 − 1

2
qp(m + m′)

}
, (37)

where g = (J TJ )xx + (J TJ )yy = J 2
xx + J 2

yy + J 2
yx + J 2

zx +
J 2

zy and

q = J 2
xx + J 2

yy + J 2
yx

J 2
xx + J 2

yy + J 2
yx + J 2

zx + J 2
zy

,

p = 2|JxxJyy|
J 2

xx + J 2
yy + J 2

yx

. (38)

The width of the resonance at ω = 0 is determined by the
set of Korringa rates 1/τm,m. It is worthwhile to mention
the relation, τm,m ∝ 1/q, that gives rise to bunching of the
backscattering electrons and to the unlimited backscattering
Fano factor in the limit q → 0 [58]. In this regime the other
resonances are much wider. Generically, for not too small q,
all resonances have widths which are of the same order.

IV. BACKSCATTERING CURRENT NOISE FOR S = 1/2

In the case of spin S = 1/2 it is convenient to perform
transformation from the density matrix to the (super)vector
with the help of the following parametrization:

|ρ (λ)
S 〉 = 1

2

{
Tr ρ

(λ)
S , Tr

[
ρ

(λ)
S S
]}

. (39)

In this representation the matrices L0,1,2 can be written ex-
plicitly. In particular, we find

L0 = πT

2

( 0 0
VX /T −�

)
, (40)

where 3 × 3 matrix � is defined as

� jk = 1

πT

(
δ jkηll − η jk + ηk j

2
+ VJizεi jk

)
. (41)

We note that at V = 0 the matrix � coincides with the matrix
�σ (ω = 0); cf. Eq. (31). The right and left zero eigenvectors
of L0 can be written explicitly,

|0〉 =
(

1
V �−1X /T

)
, 〈0̃| = {1, 0, 0, 0}. (42)

Next, the matrix L1 is given by

L1 = − iπV

8

(
g − 1

2 coth
(

V
2T

)
X T

2 coth
(

V
2T

)
X 2Q

)
. (43)

Here we introduce the symmetric matrix

Qjk = J jxJkx + J jyJky − gδ jk/2. (44)

The matrix L2 can be cast in the following form:

L2 = −πV

16

(
g coth

(
V
2T

) − 1
2X T

2X 2 coth
(

V
2T

)
Q

)
. (45)

Finally, using Eq. (23), we obtain the expression for the
backscattering current noise for spin S = 1/2,

Sbs(ω) = πV 2

16T
coth

( V

2T

)
X T

[
1 +

( 2ω

πT

)2

�−2

]−1

×
{

V

2T

[
g − V

2T
coth

( V

2T

)
X T �−1X

]
�−2

− �−1
[
coth

( V

2T

)
1 + V

T
Q�−1

]}
X

+ πV

8

[
g coth

( V

2T

)
− V

2T
X T �−1X

]
. (46)

We mention that this result for the backscattering current noise
generalizes the result found in Ref. [56] to the case of arbitrary
ratio between Jzz and the other components of the exchange
matrix (see the discussion in Refs. [73,74]).

For a sake of completeness, we present here also the result
for the average backscattering current for spin S = 1/2 [58],

Ibs = πV

8

[ V

2T
coth

( V

2T

)
X T �−1X − g

]
. (47)

As one can easily check from Eqs. (46) and (47), the backscat-
tering current noise Sbs(ω) = |Ibs| for J|V | � ω � |V | and
Sbs(ω = 0) = 2T |Ibs/V | for V � JT .

As follows from Eq. (46), the positions and widths of
the resonances in Sbs(ω) are determined by the eigenvalues
�−1,0,1 of the matrix πT �/2. In the case |V | � T , they can
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FIG. 4. Dependence of the backscattering current noise normal-
ized by its value at zero bias voltage, Sbs(ω,V )/Sbs(ω, 0), on the
dimensionless voltage V/(2T ), for S = 1/2, 1, 3/2, and 2. The
exchange interaction is the same as in Fig. 3, i.e., Jxx = Jzx = Jzz =
0.01, Jzy = Jyx = 0.005, and Jyy = 0.02. The frequency is equal to
2ω/(πT ) = 0.015.

be found as

�0 = i

τ1/2,1/2
+ i

τ−1/2,−1/2
≡ i

τK
,

�±1 = ±1

2
JzzV + i

τ1/2,−1/2
. (48)

To illustrate the origin of the resonances we consider the
lower triangular exchange matrix with |Jxx − Jyy|, |Jzx| �
|Jxx|, |Jyy|, |Jzz| and Jyx = Jzy = 0. Simplifying the general
expression (46), we find

Sbs(ω) = 2πV

{
1

4
(δJ )2 + (δJ )2

1 + (ωτK )2

+ J 2
zxδJ

|Jxx| + |Jyy|
∑
s=±

1

1 + 4(ω − sJzzV/2)2τ 2
K

}
,

(49)

where δJ = |Jxx| − |Jyy|. As one can see from Eq. (49), the
appearance of side resonances at ω = ±JzzV/2 requires the
presence of two types of asymmetry in the exchange matrix:
the diagonal elements Jxx and Jyy should be different and, in
addition, Jzx should be nonzero. Depending on the sign of δJ
the current noise at ω = ±JzzV/2 can have a maximum or a
minimum.

As one can see from Eq. (49), the backscattering current
noise has resonances as a function of voltage bias at a fixed
frequency. For spin S > 1/2 the nonmonotonic behavior of
Sbs with V becomes even more involved as shown in Fig. 4.

V. DISCUSSION AND CONCLUSION

A. Effect of the electron-electron repulsion

In order to take into account the electron-electron repulsion
we must use the Luttinger liquid formalism [75]. The sole
effect of the electron-electron interaction at the helical edge is
the modification of the expression for the spin-spin correlation

function [34,76]. Therefore, the kernel 
(λ)
V , cf. Eq. (11), will

be transformed to


(λ)
V = FV,T

⎛
⎝ f +

λ
(V/T ) −i f −

λ
(V/T ) 0

i f −
λ

(V/T ) f +
λ

(V/T ) 0
0 0 K−1F−1

V,T

⎞
⎠. (50)

Here the Luttinger liquid parameter K is assumed to be within
the range 1/2 < K � 1, corresponding to moderate repulsion
(K = 1 corresponds to the noninteracting case). The function
FV,T is defined as follows:

FV,T =
(2πTa

u

)2K−2 2T

V
sinh

( V

2T

)

× B
(

K − i
V

2πT
, K + i

V

2πT

)
. (51)

Here B(x, y) stands for the Euler beta function, u is the renor-
malized velocity of helical edge states, and a denotes the
length scale which corresponds to the ultraviolet cutoff.

In the case of large bias voltage, |V | � T , the matrix 
(λ)
V

simplifies to [cf. Eq. (36)]


(λ)
V = V

2�(2K )T

(aV

u

)2K−2

e−iλ sgn V

(1 −i 0
i 1 0
0 0 0

)
. (52)

In the case of lower triangular exchange matrix J jk , this form
of 

(λ)
V implies the following replacements in the final result

(23) for the backscattering current noise at |V | � T :

J jk → J jk√
�(2K )

(aV

u

)K−1

, j = x, y, z, k = x, y,

Jzz → Jzz. (53)

With this simple prescription for the inclusion of electron-
electron repulsion in hand, we are able to make the following
predictions. At |V | � T the positions of the resonances in
Sbs(ω) are essentially insensitive to the presence of inter-
action. However, the repulsive electron-electron interaction
broadens the resonances. In the regime of large frequencies,
J|V | � |ω| � |V |, the relation Sbs(ω)/|Ibs| → 1 survives in
the presence of interaction.

At low bias voltage, |V | � JT , one can use the results
for the backscattering current noise, cf. Eq. (32), and for
the average backscattering current, cf. Eq. (34), provided the
following substitutions are performed:

J jk → J jk�(K )√
�(2K )

(2πTa

u

)K−1

, j = x, y, z, k = x, y,

Jzz → Jzz/
√

K . (54)

In particular, this implies that the Nyquist-type relation (35)
still holds in the presence of repulsive electron-electron
interaction.

B. Dilute magnetic impurities

Experimentally, the helical edge can be contaminated by
many magnetic impurities. Let us assume that they are situated
in a δ layer in a HgTe/CdTe quantum well heterostructure.
Then in the limit of dilute magnetic impurities the average
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backscattering current and noise are given as a sum of in-
dependent contributions from each magnetic impurity. Since
the exchange interaction J jk depends exponentially on the
distance from the edge [45], significant backscattering is
caused by magnetic impurities situated close to the helical
edge only. As the consequence, the approximation that all
magnetic impurities relevant for backscattering have the same
matrix J jk is well justified. Thus the average backscattering
current and noise are proportional to the number of magnetic
impurities situated at the helical edge. We note that a quantum
interference of backscattering processes on different magnetic
impurities can change this statement at very low tempera-
tures. Dispersion in parameters of the exchange interaction
for magnetic impurities at the edge is small and thus will only
give rise to weak broadening of the resonances. In the case
of magnetic impurities scattered randomly in the direction of
quantum well growth, the exchange interaction J jk for each
magnetic impurity situated at the helical edge is also random.
Therefore, the average backscattering current and noise for
this case can be obtained from averaging of the results for a
single impurity over J jk with a proper distribution. Inevitably,
this would lead to a significant broadening of the resonances
in the current noise.

Due to the indirect exchange interaction, the spins of mag-
netic impurities can become correlated, which, in turn, can
affect the backscattering events. In the presence of electron-
electron interaction the indirect exchange interaction depends
on a distance R between impurities as a power law, (a/R)2K−1

[77]. Since we assumed that K > 1/2, the indirect exchange
interaction decays with increase of R. On the other hand, for
K < 1/2 the Kondo physics dominates and magnetic impu-
rities cannot be considered as independent even at distances
R � a [36]. Therefore, in the considered case, K > 1/2, the
condition nimpa � 1 determines the dilute limit for magnetic
impurities. Here nimp stands for the one-dimensional concen-
tration of magnetic impurities at the helical edge.

C. Relation to experiments

As shown in Fig. 4, we predict a nonmonotonic depen-
dence of the backscattering current noise on voltage at fixed
frequency. We note that similar nonmonotonic dependences of
the current noise (but at ω = 0) have been observed for a 2D
hole system in the regime of hopping conductivity [78], and
for tunneling via interacting pairs of localized states in a 2D
electron system [79,80]. In the latter case the nonmonotonicity
in the current noise has been attributed to correlations between
tunneling events via different localized states. We stress that
in our case the nonmonotonicity of Sbs is due to a mecha-
nism similar to electronic paramagnetic resonance. The bias
voltage plays the role of an effective magnetic field that lifts
the spin degeneracy for the magnetic impurity. Transport at
finite frequency allows one to induce transitions between split
energy levels of the magnetic impurity. Then backscattering
off the magnetic impurity leads to the Fano-type resonances
in the current noise at nonzero frequencies which are similar
to an asymmetric electronic paramagnetic resonance [81,82].
Also Sbs(ω) can be contrasted with the resonances of the
Lorentzian form measured in the frequency dependent shot
noise in transport via single electron transition [83]. It is

worthwhile to mention that recently the Fano-type resonances
in the frequency current noise have been predicted in a double
dot Aharonov-Bohm interferometer [84]. Their origin was an
interplay between Coulomb blockade and Rabi interference in
the presence of nonzero Aharonov-Bohm flux.

Recently, the zero-frequency current noise measured by
scanning tunneling microscope situated at the top of a mag-
netic adatom has been demonstrated to be a tool to resolve
its energy structure [85–87]. Our results suggest that the fre-
quency resolved backscattering current noise can serve as a
sensitive probe to measure various physical characteristics
of a dynamical impurity spin. Measurement of the resonant
frequencies in the dependence of Sbs on ω allows one to
estimate a value of the dimensional exchange interaction Jzz.
Measurement of widths of the resonances enables one to es-
timate a magnitude of the other components of the exchange
matrix J jk . Observation of more than one nonzero resonant
frequency signals that the impurity spin is larger than 1/2.
However, we mention that we are not aware of measurements
of the frequency dependence of the current noise at the helical
edge in 2D topological insulators to date.

Let us estimate the resonant frequency in the case of a
2D topological insulator in a HgTe/CdTe quantum well with
Mn2+ ions. For a typical bias current, I ≈ 1 nA, we can esti-
mate the bias voltage across the helical edge as V ∼ hI/e2 ≈
2.6 × 10−5 V. We note that this voltage corresponds to the
temperature of the order of 0.3 K. Then for the resonant
frequency we find f ∼ eJV/h ≈ 6 MHz. Here we used that
J ≈ 10−3. The widths of the resonances can be estimated,
roughly, as 	 f ∼ J f ≈ 6 kHz.

In our theory we neglect the retardation effects. This limits
application of our results to not too large frequencies, ω �
v/L. Here L denotes the length of the helical edge. Estimating
velocity of the helical edge as v ≈ 105 m/s [2], we find v/L ≈
100 GHz for L = 1 μm.

In the consideration above, we neglected the local
anisotropy of the impurity spin Hamiltonian, D jkS jSk , that can
be present in a real system. We recall that this can be justified
for |D jk| � max{J2T, |JV |}. The local anisotropy results in
splitting of energy levels for the impurity spin. In turn, this
affects the average backscattering current [46]. We expect that
the modulation of the average backscattering current due to
local anisotropy can lead to nonmonotonic dependence of the
shot noise on a bias voltage already at zero frequency.

D. Conclusion

To summarize, we have studied the helical edge coupled to
the dilute dynamical magnetic impurities. We considered the
case of an arbitrary spin S and a general form of the exchange
interaction allowed by the symmetries. Under the assumption
of weak exchange interaction, we derived analytic expressions
for the backscattering current noise at finite frequency and
studied its dependence on the temperature and applied bias
voltage. Our main finding is that in addition to the Lorentzian
resonance at zero frequency the backscattering current noise
has additional Fano-type resonances. Such resonant structure
of the current noise as a function of frequency transforms
into a nonmonotonic behavior of Sbs as a function of the
bias voltage. We proposed the backscattering current noise
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measured at finite frequency as a sensitive tool to access a
fine structure of the impurity spin Hamiltonian.
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