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Effect of anomalous elasticity on bubbles in van der Waals heterostructures
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It is shown that the anomalous elasticity of membranes affects the profile and thermodynamics of a bubble in
van der Waals heterostructures. Our theory generalizes the nonlinear plate theory as well as the membrane theory
of the pressurised blister test to incorporate the power-law scale dependence of the bending rigidity and Young’s
modulus of a two-dimensional crystalline membrane. This scale dependence, caused by long-range interaction
of relevant thermal fluctuations (flexural phonons), is responsible for the nonlinear Hooke law observed recently
in graphene. It is shown that this anomalous elasticity affects the dependence of the maximal height of the
bubble as a function of its radius and temperature. We determine the characteristic temperature above which
the anomalous elasticity is important. It is suggested that, for graphene-based van der Waals heterostructures, the
predicted anomalous regime is experimentally accessible at room temperature.
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I. INTRODUCTION

Mechanical properties of two-dimensional (2D) materials,
especially of the van der Waals (vdW) heterostructures, have
recently attracted a great deal of interest in view of their
potential applications [1]. The simplest example of the vdW
heterostructure can be given by a bilayer formed from two
monolayers of one atom thick, e.g., graphene, hexagonal
boron nitride (hBN), and MoS2, assembled together. The
strong adhesion between monolayers [2] results in atomically
clean interfaces in which all the contaminants aggregate in
bubbles [3]. Recently, these bubbles inside the vdW het-
erostructures were studied experimentally [4]. Similar bubbles
originate in the region between the atomic single layer and
the substrate, e.g., SiO2 [4,5]. There are many suggestions
of practical usage of the bubbles inside the vdW heterostruc-
tures, for example, graphene liquid cell microscopy [6] and
controlled room-temperature photoluminescence emitters [7].

The mechanics of monolayers due to these bubbles is con-
sidered to be analogous to that of the pressurized blister test,
which has recently become the routine method to measure
simultaneously Young’s modulus and adhesion energy of a
monolayer on a substrate [8–11]. Usually, the pressurized
blister test is described either by the nonlinear plate model or
by the membrane theory (see, e.g., [12,13]). These standard
elastic theories of deformed plates ignore the fact that the
elastic properties of an atomic monolayer are those of 2D
crystalline membranes [14–20]. The striking feature of mem-
brane mechanics is anomalous elasticity which results in the
scale dependence of elastic moduli and in the nonlinear Hooke
law for small tensile stress (see Refs. [21,22] for a review).
These effects have been supported by atomistic calculations
[23] and measured in graphene [24] (see also [25]).

Recently, the standard Föppl–von Kármán theory has been
shown to be modified by anomalous elasticity for micron-size
graphene samples at room temperature [26]. However, until

recently (see, e.g., Refs. [27–30]), the anomalous elasticity
has been completely ignored in the description of the mechan-
ical and thermodynamic properties of bubbles inside vdW
heterostructures.

In our paper we study the effect of anomalous elasticity
on the mechanical and thermodynamic properties of bubbles
inside vdW heterostructures. Our approach explicitly takes
into account the power-law renormalization of elastic moduli.
It is shown that above a certain temperature the dependence
of the bending rigidity and Young’s modulus of a membrane
on the bubble radius results in the nonanalytic behavior of the
maximum height of the bubble as a function of the radius and
the temperature.

The outline of the paper is as follows. In Sec. II we
formulate the model for description of elastic properties of
the bubble between a membrane and a substrate. The standard
approach to the problem is reviewed in Sec. III. The modifica-
tions of the standard approach due to the thermal fluctuations
are studied in Sec. IV. In Sec. V we discuss how the power-
law scaling of elastic moduli affects the thermodynamics of
the bubbles. We conclude the paper with a discussion in
Sec. VI and summary in Sec. VII. Some details are delegated
to the Appendixes.

II. MODEL

The model for the description of the profile of a bubble
between the membrane and the substrate (see Fig. 1) is well
established [4,12]. It can be formulated in terms of the (free)
energy, which is a sum of the following four terms:

E = Ebend + Eel + Eb + EvdW. (1)

The first term describes the energy cost related to the bending
of the membrane

Ebend = κ0

2

∫
d2r[(�h)2 + (�u)2], (2)
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FIG. 1. Sketch of a spherical bubble enclosed within a membrane
and a substrate.

where κ0 denotes the bare bending rigidity of the membrane.
Here u = {ux, uy} and h are the in-plane and out-of-plane
displacements of the membrane (see Fig. 1). The second term
is the standard elastic energy [31]

Eel =
∫

d2r(μ0uαβuβα + λ0uααuββ/2), (3)

where μ0 and λ0 stand for the Lamé coefficients and uαβ =
(∂βuα + ∂αuβ + ∂αh∂βh + ∂αu∂βu)/2 is the strain tensor. The
third term Eb describes the contribution of the bubble sub-
stance. Under the assumption of a constant pressure P inside
the bubble, one has Eb = −PV , where the bubble volume can
be approximated as V = ∫

d2r h(r). The last term in Eq. (1)
describes the vdW interaction between the membrane and the
substrate in the presence of the bubble. It can be approximated
as EvdW = πγ R2. Here R denotes the radius of the bubble (see
Fig. 1) and γ is the effective adhesion energy [4]. The form (1)
of the total energy is well justified if the maximal height of the
bubble H = h(0) is small compared to the radius, H � R. We
assume that this condition is fulfilled.

III. STANDARD APPROACH

In order to compute the profile of the spherical bubble, at
first, one needs to solve the Euler-Lagrange equations for u(r)
and h(r) with the proper boundary conditions and compute
the energy E as a function of R and H . Usually, instead of
the solution of the Euler-Lagrange equations, the approximate
solutions either within the nonlinear plate theory or within
the membrane theory are used (see, e.g., Ref. [12]). Finally,
one has to minimize E with respect to the both R and H .
The minimization procedure allows one to find the maximal
height H and the pressure P as a function of the bubble radius
R. Comparison of the linear term in u and the term quadratic
in h for the strain tensor uαβ leads to the following relation
for the maximal horizontal deformation: umax ∼ H2/R. In the
considered regime H/R � 1, the horizontal displacement is
small as well, umax � H . This implies that one can neglect
the term ∂αu∂βu in uαβ . Also this allows one to omit the term
(�u)2 in the bending energy such that it reads

Ebend = κ0

2

∫
d2r(�h)2. (4)

In the absence of ∂αu∂βu in uαβ the elastic energy becomes
quadratic in u. This implies that the Euler-Lagrange equation
for u(r) becomes linear and can be solved for an arbitrary
configuration of h(r) (even not necessarily obeying the Euler-
Lagrange equation). In other words, a horizontal deformation
is matched to any vertical displacement. Therefore, Eel is

given as [14]

Eel = Y0

8

∫
d2r

(
Kαα − ∂α

∫
d2r′G(r, r′)∂βKαβ (r′)

)2

, (5)

where Kαβ = ∂αh∂βh and Y0 = 4μ0(μ0+λ0 )
2μ0+λ0

is Young’s modulus.
The function G(r, r′) is the Green’s function of the Laplace
operator at the disk r � R.

Using Eqs. (4) and (5), we can estimate the bending and
elastic energies as Ebend ∼ κ0H2/R2 and Eel ∼ Y0H4/R2. For
H � a, where a ∼ √

κ0/Y0 is the effective thickness of the
membrane, the elastic energy dominates over the bending
energy, Eel � Ebend. We note that the effective thickness is
typically smaller than the lattice spacing, e.g., for graphene
a ∼ 1 Å. Thus, by neglecting Ebend and minimizing Eel +
Eb + EvdW (with Eb ∼ −PHR2) over H and R, we find

H = c1R(γ /Y0)1/4, P = c2(γ 3Y0)1/4/R. (6)

Here the coefficients c1 ≈ 0.86 and c2 ≈ 1.84 have been
obtained from the approximate solution of the Euler-Lagrange
equations for h(r) and u(r) [12]. The results (6) are applicable
under the conditions γ � Y0 and R � a(Y0/γ )1/4, which
guarantee H � R and H � a, respectively. We note that the
minimization of the energy implies |Eb| ∼ EvdW entailing P ∼
γ /H . This relation between P and H will hold for all regimes
considered below. Therefore, in what follows we will present
the expressions for the maximal height H alone.

IV. EFFECT OF THERMAL FLUCTUATIONS

The finite temperature induces thermal fluctuations of the
membrane. These thermal fluctuations, in essence, originate
from the in-plane and flexural (out-of-plane) phonons. The
in-plane phonons induce the long-range interaction between
flexural phonons [Eq. (5)]. The most hazardous phonons
are the out-of-plane ones with the wave vectors q < 1/R∗
[14,15,18], where R∗ ∼ κ0/

√
Y0T is the so-called Ginzburg

length.1 Therefore, at finite temperature for the bubble of
radius R > R∗ one should integrate out the flexural phonons
with momenta 1/R < q < 1/R∗ before the derivation of the
Euler-Lagrange equation for h. In essence, integration over
the out-of-plane phonons leads to the same form of bending
and elastic energies as given by Eqs. (4) and (5) but with a
renormalized bending rigidity and Young’s modulus [15]:

κ(R) = κ0(R/R∗)η, Y (R) = Y0(R/R∗)−2+2η. (7)

Here η is a universal exponent which depends on the di-
mensionality of a membrane and of an embedded space. For
the clean 2D crystalline membrane in the three-dimensional
space, the numerics predicts η ≈ 0.795 ± 0.01 [32].

The presence of nonzero tension σ affects the thermal
fluctuations. There is a characteristic tension σ∗ = κ0/R2

∗ ∼
TY0/κ0 [25,33–35]. For σ � σ∗, the scaling (7) holds for
the interval R∗ � R � Rσ , where Rσ = R∗(σ/σ∗)1/(2−η) is
the solution of the equation σ = κ(Rσ )/R2

σ . For R � Rσ , the
bending rigidity and Young’s modulus saturate at the values

1The Ginzburg length corresponds to the size of a bubble of height
a at which Ebend ∼ T .
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κ(Rσ ) and Y (Rσ ), respectively.2 For σ > σ∗ (Rσ < R∗) the
thermal fluctuations are completely suppressed and at finite
temperature one can minimize the unrenormalized bending
[Eq. (4)] and elastic [Eq. (5)] energies.

The pressure P inside the bubble results in nonzero tension
σP ∼ PR0, where R0 ∼ R2/H is the radius of the curvature of
the membrane on the bubble [36]. Using Eq. (6), we find σP ∼√

γY0. Such tension is sufficient to suppress the thermal fluc-
tuations provided σP � σ∗, i.e., the standard approach is only
valid at sufficiently low temperatures: T � Tγ ∼ κ0

√
γ /Y0.

The energy scale Tγ has the clear physical meaning of the
temperature at which the vdW energy for the bubble of radius
R∗ becomes of the order of the temperature. In other words,
for T � Tγ the vdW energy does not suppress the thermal
fluctuations. Below we will study this regime.

A. Bending-dominated regime

We start from a bubble with the radius R � R∗. At such a
small length scale there is no renormalization of the bending
rigidity and Young’s modulus. However, as follows from the
above, the standard approach cannot be correct. The only
resolution is the assumption that the bending energy dom-
inates over elastic one, Ebend � Eel, i.e., H � a. After the
minimization of Ebend + Eb + EvdW over H and R, we find

H = c3a(Tγ /T )(R/R∗)2, R � R∗. (8)

Here c3 ≈ 0.65 is found from the solution of the Euler-
Lagrange equation for h(r) (see Appendix A). For T � Tγ

the value of H for all R � R∗ is much smaller than a. This
justifies the assumption of dominance of the bending energy
for R � R∗.

Now we assume that the bubble radius is R � R∗. At such
length scales one has to take into account the renormaliza-
tion of the bending rigidity and Young’s modulus (provided
the scale Rσ is large enough). The renormalization changes
the estimates for the bending and elastic energies: Ebend ∼
κ(R)H2/R2 and Eel ∼ Y (R)H4/R2. Again we assume that the
bending energy is larger than the elastic one, Ebend � Eel.
This implies that H � a(R/R∗)1−η/2. The minimization of
Ebend + Eb + EvdW yields

H = c4a(Tγ /T )(R/R∗)2−η/2, R∗ � R � R∗T/Tγ , (9)

where c4 ≈ 0.90 (see Appendix A). The dependence (9) is
shown in Fig. 2.

The upper bound on R in Eq. (9) comes from the condition
Ebend � Eel. In the above analysis we neglect the tension of
the membrane due to the pressure. Using Eq. (9), we find
the following estimate: σP ∼ γ (R/H )2 ∼ σ∗(R∗/R)2−η, i.e.,
Rσ ∼ R. Since the power-law renormalization (7) is governed
by the flexural phonons with momentum q > 1/R, the tension
σP is indeed irrelevant for the thermal fluctuations in the
regime R∗ � R � R∗T/Tγ .

2Here we neglect the weak logarithmic dependence of the bending
rigidity on R for R � Rσ (cf. Ref. [34]). Such logarithmic corrections
are beyond the accuracy of our estimates.

FIG. 2. Dependence of the aspect ratio on the radius of the
bubble at high temperatures T � Tγ .

B. Tension-dominated regime

For the bubbles of radius R � R∗T/Tγ , the elastic energy
dominates over the bending one, Eel � Ebend. Then the mini-
mization of Eel + Eb + EvdW over H and R implies that Eel ∼
|Eb| ∼ EvdW. Therefore, the pressure-induced tension is σP ∼
|Eb|/H2 ∼ Eel/H2 � Ebend/H2. This estimate means that the
pressure-induced tension is important and the corresponding
length scale is short, Rσ � R. In such a regime the bending
rigidity and Young’s modulus are independent of R, though
strongly renormalized. Therefore, we can use the results of the
standard approach but with Young’s modulus Y (Rσ ) instead
of Y0. In particular, the tension induced by the pressure is
given as σP ∼ √

γY (Rσ ). Hence the length scale Rσ satisfies
the following equation: κ(Rσ )/R2

σ = √
γY (Rσ ). Its solution

yields Rσ ∼ R∗T/Tγ . This justifies that the profile of the bub-
bles with R � R∗T/Tγ is governed by the pressure-induced
tension. The characteristic radius Rσ has a simple physical
meaning. The bubble of such a radius has the adhesion energy
πγ R2

σ equal to T . Using Eq. (6) with the renormalized Young
modulus, we find

H = c1a(R/R∗)(T/Tγ )−η/2, R∗T/Tγ � R. (10)

We mention that although the aspect ratio H/R of the bubbles
with R � R∗T/Tγ is independent of R, it is not constant and
depends on the temperature. The magnitude of the aspect
ratio is much larger than one would predict on the basis of
the standard approach. The behavior of the aspect ratio as a
function of R at T � Tγ is shown in Fig. 2.

V. ANOMALOUS THERMODYNAMICS

The temperature dependence of the maximal height H
depends on the equation of state of the substance inside the
bubble. We start from the case of a liquid bubble. Then
we can approximate the equation of state for the liquid by
the constant volume condition V = const. We start from the
case of a bubble of sufficiently large volume V � Vγ ∼
a3

κ0/Tγ .
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FIG. 3. Dependence of the maximal height of the liquid bubble
versus temperature for the case of large volume V � Vγ .

At low temperatures T � Tγ , the maximal height is given
by Eq. (6), i.e., the height H is independent of T :

H ∼ a(V/Vγ )1/3, T � Tγ . (11)

At Tγ � T � Tγ (V/Vγ )2/(4−η) the thermal fluctuations are
important but the physical behavior is governed with the
pressure-induced tension. Using Eq. (10), we find

H ∼ a

(
V T 1−η

Vγ T 1−η
γ

)1/3

, Tγ � T � Tγ

(
V

Vγ

)2/(4−η)

. (12)

At high temperatures T � Tγ (V/Vγ )2/(4−η), the maximal
height of the bubble is described by the theory of the bending-
dominated regime [Eq. (9)]. Then we find that the height H
decreases as the temperature increases:

H ∼ a

(
V 4−ηT η

γ

V 4−η
γ T η

)1/(8−η)

, Tγ

(
V

Vγ

)2/(4−η)

� T . (13)

Therefore, in the regime of large volumes V � Vγ , the max-
imal height of the bubble has a nonmonotonic dependence
on the temperature with the maximum at temperature Tmax ∼
Tγ (V/Vγ )2/(4−η) (see Fig. 3). The nonmonotonic dependence
of H implies the change of the sign of the linear thermal
expansion coefficient αH at temperature Tmax:

αH = 1

T
×

⎧⎨
⎩

0, T � Tγ
1−η

3 , Tγ � T � Tmax

− η

8−η
, Tmax � T .

(14)

Therefore, by measuring the slope of αH against 1/T , one
can extract the bending rigidity exponent of the membrane.
The result (14) is derived with the neglect of the temperature
dependence of the adhesion energy.

In the case of a bubble with a small volume of liquid
V � Vγ , the temperature dependence of the maximal height
is determined by the bending-dominated regime. At low tem-
peratures, from Eq. (6) we obtain that the maximal height of
the bubble is independent of temperature:

H ∼ a(V/Vγ )1/2, T � Tγ (V/Vγ )−1/2. (15)

FIG. 4. Dependence of the maximal height of the bubble, with
the ideal gas inside, on the temperature.

At high temperatures, as it follows from Eq. (10), the maximal
height of the bubble starts to decrease with temperature:

H∼ a(V/Vγ )(4−η)/(8−η)(T/Tγ )−η/(8−η), Tγ (V/Vγ )−1/2�T .

(16)

We note that the power-law decay is controlled by the bending
rigidity exponent η. The decay of H with an increase of
T implies the negative linear thermal expansion coefficient
αH = (1/H )dH/dT . Although interesting on its own, the
bubble with a liquid of small volume V � Vγ can hardly
be detected since, as it follows from Eqs. (15) and (16), the
maximal height of the bubble is smaller than the effective
thickness of the membrane a.

Now we discuss the case of a bubble with a gas inside.
For the sake of simplicity, we use the equation of state of
the ideal gas PV = NT , where N is the number of atoms of
the gas. Using the relations V ∼ HR2 ∼ γ R2/P, we find that
the radius of the bubble with the ideal gas is always given
as R ∼ √

NT/γ . At low temperature T � Tγ , using Eq. (6),
we find that the maximal height of the bubble grows with
temperature as

H ∼ a
√

N (T/Tγ )1/2, T � Tγ . (17)

We note that, strictly speaking, this estimate is valid for
T � Tγ /N . Under the assumption of a macroscopic number
of atoms N � 1, inside the bubble this limitation on T is
completely irrelevant.

For high temperatures T � Tγ , the bubbles of radius R �
R∗T/Tγ (this condition is equivalent to the condition N �
1) can only arise. Therefore, the bubble is in the tension-
dominated regime when its maximal height is described by
Eq. (10). Then we obtain

H ∼ a
√

N (T/Tγ )1−η/2, T � Tγ . (18)

The above results show that the maximal height of the bubble
with the ideal gas inside is a monotonically growing function
of temperature (see Fig. 4). Therefore, the linear thermal
expansion coefficient is always positive:

αH = 1

T
×

{
1/2, T � Tγ

1 − η/2, Tγ � T .
(19)
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As in the case of a liquid bubble, the αH versus T −1 slope
allows one to extract the magnitude of η.

VI. DISCUSSION

Using a more realistic equation of state, one can compute
the temperature dependence of the maximal height along the
liquid-to-gas isotherm. In particular, one can analyze how
the anomalous elasticity affects the liquid-to-gas transition
in the bubble. This phenomenon was recently studied in
Ref. [37] but within the standard approach, which ignores the
thermal fluctuations of the membrane.

It is known [36,38] that the anomalous elasticity of a mem-
brane affects the stability of the spherical membrane shells.
The renormalization of the bending rigidity and Young’s
modulus decreases the pressure-induced tension towards the
negative magnitudes sufficient for developing the buckling
instability. In principle, a similar mechanism of instability is
also applicable for the curved membrane above the bubble.
However, our estimates indicate that such buckling instability
is unattainable (see Appendix B).

Also, it is worthwhile to mention that in the bending-
dominated regime there are large thermodynamical fluctu-
ations of the bubble height which may complicate the ex-
perimental observation of the dependence predicted for the
average height of the bubble on R and T (see Appendix C).

Let us estimate the relevant parameters for our theory in the
case of the vdW heterostructure fabricated with the graphene
monolayer on the hBN monolayer. Using the known magni-
tudes of Young’s modulus, the bending rigidity, and the ef-
fective thickness of graphene, Y0 ≈ 22 eV Å−2, κ0 ≈ 1.1 eV,
and a ≈ 0.6 Å, respectively, we can estimate the Ginzburg
length as R∗ ≈ 4 Å at T = 300 K [33]. Assuming that the
total adhesive energy is dominated by the adhesive energy
between graphene and hBN, γ ≈ 0.008 eV Å−2 [2], we find
Tγ ≈ 250 K. This estimate indicates that the aspect ratio of
the bubbles between graphene and hBN measured recently
[4] can be described by our theory in the tension-dominated
regime [Eq. (10)]. Using the aspect ratio of 0.11 observed
experimentally, we obtain Tγ ≈ 220 K and the adhesion en-
ergy γ ≈ 0.007 eV Å−2. The latter is 20% larger than the
magnitude extracted in Ref. [4] within the standard approach
[Eq. (6)]. This implies that a proper account of the thermal
fluctuations can be crucial for the precision measurements
of the adhesion energy via the pressurized blister test. The
characteristic volume for the bubble between graphene and
hBN can be estimated as Vγ ≈ 10 Å3. Such smallness of the
magnitude of Vγ suggests that the nonmonotonic behavior
of the maximal height of temperature in a graphene-on-hBN
structure could only be observed experimentally for liquid
bubbles with a radius of a few nanometers. We note that the
temperature Tγ for the monolayer MoS2 can be estimated to
be larger than 1000 K due to large value of bending rigidity.

VII. SUMMARY

We have demonstrated that the anomalous elasticity of
membranes affects the profile of a bubble in vdW heterostruc-
tures at high temperatures. We have extended the nonlinear
plate theory as well as the membrane theory usually used for
the description of the pressurized blister test to incorporate
the power-law scale dependence of the bending rigidity and

Young’s modulus of a membrane. It was shown that the
renormalization of the bending rigidity and Young’s modulus
results in the anomalous dependence of the maximal height of
the bubble on its radius and temperature. We have predicted
the nonmonotonic dependence of the maximal height of the
liquid bubble inside the vdW heterostructure on the tempera-
ture. Our estimates suggest that for the graphene-based vdW
heterostructures the anomalous regime predicted in the paper
is experimentally accessible at ambient conditions.
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APPENDIX A: MAXIMAL HEIGHT OF THE BUBBLE IN
THE BENDING-DOMINATED REGIME

In this Appendix we present the accurate analytical calcu-
lation of the maximal height of the bubble in the bending-
dominated regime.

Let us introduce the normalized eigenfunctions of the
Laplace operator on the disk r � R satisfying zero boundary
conditions at r = R:

�φn(r) = − ζ 2
n

R2
φn(r),

φn(r) = 1√
πR|J1(ζn)|J0

(
ζnr

R

)
. (A1)

Here ζn, with n = 1, 2, . . . , are the zeros of the zeroth-order
Bessel function J0(x). Then we can write the renormalized
bending energy as

Ebend = 1

2

∫
d2r d2r′�h(r)κ̂(r − r′)�h(r′), (A2)

where the integral operator κ̂ is defined via its action on the
eigenfunctions of the Laplace operator:∫

d2r′
κ̂(r − r′)φn(r′) = ζ−η

n κ(R)φn(r). (A3)

Here we recall that κ(R) = κ0(R/R∗)η.
Now let us expand the height of the bubble into the series:

h(r) = ∑
n αnφn(r). This expansion automatically satisfies the

boundary condition h(r = R) = 0. The knowledge of the co-
efficients αn allows one to find the maximal height of the
bubble: H = ∑

n αn/
√

πR|J1(ζn)|. In terms of the coefficients
αn, the total energy acquires the following form:

Ebend + Eb + EvdW = κ(R)

2R4

∑
n

ζ 4−η
n α2

n

−2
√

πPR
∑

n

sgn[J1(ζn)]

ζn
αn + πγ R2.

(A4)
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Its minimization over αn yields

αn = 2
√

π
PR5

κ(R)

sgn[J1(ζn)]

ζ
5−η
n

. (A5)

Hence, for the total energy we obtain

Ebend + Eb + EvdW = −2π
P2R6

κ(R)

∑
n

ζ−6+η
n + πγ R2. (A6)

Minimization with respect to R determines the pressure inside
the bubble:

P = c′
4

√
γ κ(R)

R2
, c′

4 =
[

(6 − η)
∑

n

ζ η−6
n

]−1/2

≈ 9.72.

(A7)

Using this result for the pressure, we find the final expression
for the maximal height:

H = 2
PR4

κ(R)

∑
n

ζ−5+η
n

J1(ζn)
= c4R2

(
γ

κ(R)

)1/2

,

c4 = 2c′
4

∑
n

ζ−5+η
n

J1(ζn)
≈ 0.90. (A8)

The constants c3 and c′
3 relevant for the low-temperature

regime R � R∗ are obtained from the results above by setting
η = 0. Then we find c3 ≈ 0.65 and c′

3 ≈ 13.86.

APPENDIX B: ABSENCE OF THE BUCKLING
INSTABILITY OF A SPHERICAL BUBBLE

In this Appendix we demonstrate that there is no buckling
transition of the bubble. In the presence of a nonzero curvature
radius R0 of the membrane, flexural phonons acquire a true
mass equal to Y0/R2

0 [36]. This modification of the spectrum
of flexural phonons results in negative renormalization of the
tension. Perturbatively, a change of the tension δσ can be
estimated as [36]

δσ

σ
∼ −TY 2

0

σR2
0

∫
d2k

(2π )2

k2(
κ0k4 + σk2 + Y0/R2

0

)2 . (B1)

We emphasize that here the integral over momentum k has
infrared cutoff due to the radius of the bubble R: k � 1/R.

Equation (B1) can be directly applied to the regime of low
temperatures T � Tγ . Then, using Eq. (6), we find

δσ

σ
∼ − T

γ R2
ln

R2√γY0

κ0
. (B2)

Since the low-temperature theory is applicable for R �
a(Y0/γ )1/4, we find that |δσ |/σ � (T/Tγ )2 � 1.

Now let us consider the regime of high temperatures T �
Tγ . For R � R∗ we can use Eq. (B1). Then, using Eq. (9), we
obtain (x = kR)

δσ

σ
∼ −

(
Tγ

T

)2( R

R∗

)6∫
∼1

dx
x3(

x4 + x2 + γY0R4/κ
2
0

)2 . (B3)

Since the parameter γY0R4/κ
2
0 )2 ∼ (Tγ /T )2(R/R∗)4 � 1, in-

tegrating over x, we find

δσ

σ
∼ −

(
Tγ

T

)2( R

R∗

)6

. (B4)

Therefore, we find that |δσ |/σ � (Tγ /T )2 � 1 for R �
R∗. In the case of an intermediate radius R∗ � R � Rσ =
R∗T/Tγ , we need to modify Eq. (B1) in order to include
renormalization of the bending rigidity and Young’s modulus:

δσ

σ
∼ −TY (R)2

σR2
0

∫
d2k

(2π )2

k2

[κ(R)k4 + σk2 + Y (R)/R2
0]2

.

(B5)

Using Eq. (10), we obtain

δσ

σ
∼ −

(
R

Rσ

)2 ∫
∼1

dx
x3

[x4 + x2 + γY (R)R4/κ
2(R)]2

.

(B6)

Since γY (R)R4/κ
2(R) ∼ (R/Rσ )2 � 1, we obtain

|δσ |
σ

∼
(

R

Rσ

)2

� 1, R∗ � R � Rσ . (B7)

Finally, we consider the case R � Rσ . Here we can use
Eq. (B2) with κ0 and Y0 replaced by κ(Rσ ) and Y (Rσ ),
respectively. Then we find

|δσ |
σ

∼
(

Rσ

R

)2

ln
R

Rσ

� 1, R � Rσ . (B8)

The above results demonstrates that for both low- and
high-temperature regimes, the renormalization of the tension
due to the finite curvature is weak and cannot lead to the
buckling instability. The only exception is the bubbles with the
radius R ∼ Rσ for which our estimates give |δσ |/σ ∼ 1. This
implies that for R ∼ Rσ the buckling instability could occur in
principle. In order to resolve this issue one needs to perform
a more accurate renormalization-group scheme similar to the
one of Ref. [38]. However, since for R � Rσ and R � Rσ the
buckling instability is absent, the scenario with instability for
R ∼ Rσ seems to be unlikely.

APPENDIX C: THERMODYNAMIC FLUCTUATIONS OF
THE HEIGHT OF THE BUBBLE

In this Appendix we estimate the thermodynamic fluctu-
ations of the height of the bubble in the bending-dominated
regime R � R∗T/Tγ . Using Eq. (4), we find

〈(δH )2〉 ∼ T
∫

d2k
(2π )2

1

κ(R)k4
. (C1)

As above, the integral over momentum k has infrared cutoff
due to the radius of the bubble R: k � 1/R. Hence we find
that the dispersion of height fluctuations is given as

〈(δH )2〉 ∼ T R2/κ(R). (C2)

Then for R � R∗T/Tγ we obtain the following estimate:√
〈(δH )2〉

H
∼ T

Tγ

R∗
R

� 1. (C3)
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This inequality implies that there are large thermodynamic
fluctuations of the height of the bubble in the bending-
dominated regime.

For the tension-dominated regime R � Rσ = R∗T/Tγ we
need to take into account the tension induced by the pressure:

〈(δH )2〉 ∼ T
∫

d2k
(2π )2

1

κ(Rσ )k4 + σPk2
∼ T R2

σ

κ(Rσ )
ln

R

Rσ

.

(C4)

Then we obtain the following estimate:

√
〈(δH )2〉

H
∼ T

Tγ

R∗
R

ln
R

Rσ

� 1. (C5)

Therefore, the thermodynamic fluctuations of the height of
the bubble in the tension-dominated regime are strongly sup-
pressed.
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