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Mesoscopic Stoner Instability in Open Quantum Dots: Suppression
of Coleman-Weinberg Mechanism by Electron Tunneling

1. S. Burmistrov ,1’2 Y. Gefen,3’4 D.S. Shapiro,5’6’7 and A. Shnirman®*

L. D. Landau Institute for Theoretical Physics, Akademika Semenova Avenue 1-a, 142432 Chernogolovka, Russia
2Labomtory for Condensed Matter Physics, National Research University Higher School of Economics, 101000 Moscow, Russia
*Department of Condensed Matter Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
*Institut fiir Quantenmaterialien und Technologien, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
5Department of Physics, National Research University Higher School of Economics, 101000 Moscow, Russia
®Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia
V. A. Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
¥ Institut fiir Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

® (Received 25 October 2019; accepted 29 April 2020; published 13 May 2020)

The mesoscopic Stoner instability is an intriguing manifestation of symmetry breaking in isolated
metallic quantum dots, underlined by the competition between single-particle energy and Heisenberg
exchange interaction. Here we study this phenomenon in the presence of tunnel coupling to a reservoir.
We analyze the spin susceptibility of electrons on the quantum dot for different values of couplings and
temperature. Our results indicate the existence of a “quantum phase transition” at a critical value of the
tunneling coupling, which is determined by the Stoner-enhanced exchange interaction. This quantum phase
transition is a manifestation of the suppression of the Coleman-Weinberg mechanism of symmetry

breaking, induced by coupling to the reservoir.
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The physics of quantum dots (QDs) has been the focus of
theoretical and experimental study for three decades [1-5].
A major breakthrough in this field was the introduction of
the so-called universal Hamiltonian [6], rendering QDs as
zero-dimensional objects. This is valid for metallic QDs,
characterized by the Thouless energy being larger than the
mean single-particle level spacing, Et, > §. The universal
Hamiltonian comprises a charging energy term that leads to
Coulomb blockade [7-11]. An additional term in the
universal Hamiltonian is a ferromagnetic Heisenberg
exchange term. Even relatively weak exchange interaction,
J < 68/2, seems to be important for a quantitative descrip-
tion of transport experiments in QDs at low temperatures,
T <6 [12-15]. Moderate exchange, 6/2 <J <& [16],
gives rise to “mesoscopic Stoner instability”: the emer-
gence of a finite (but nonextensive) value of the total
electron spin S in the ground state of an isolated QD [6]. In
the vicinity of the transition, 6 — J < 9, the ground-state
spin is estimated as S=J,/(28)> 1, where J,=J5/(6—J)
denotes the Stoner-enhanced exchange interaction. At J =6
an extensive part of electron spins becomes polarized; i.e., a
Stoner phase transition to a macroscopic ferromagnetic
phase takes place. A nonzero value of S gives rise to a finite
Curie spin susceptibility at low 7 [6,17-19]. Spin-charge
coupling leads to signatures of the mesoscopic Stoner
instability in electron transport through QDs [17,18,20,21].

The physics of the mesoscopic Stoner instability in an
isolated QD is marked by total spin conservation. It is an
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example [19] of the Coleman-Weinberg mechanism for the
emergence of spontaneous symmetry breaking [22]. Does
the Coleman-Weinberg mechanism survive electron tunnel-
ing dynamics between the QD and the reservoir? Addressing
this question is not straightforward, given the fact that spin
conservation is then broken, resulting in a nontrivial dis-
sipative dynamics of S [23,24]. Similar to the problems of a
localized spin in an electronic environment [25-27] or that of
an itinerant magnetization [28,29], the equation of motion for
the total spin on the QD assumes the form of the Landau-
Lifshitz-Gilbert-Langevin (LLGL) equation. We note in
passing that in Refs. [23,24] the LLGL equation has been
derived under the assumption that the tunneling between the
QD and reservoir does not change the value of S.

The focus of this Letter is the mesoscopic Stoner physics
in open quantum dots. We study how tunneling to the
reservoir (assigning a broadening y to the single-particle
levels) affects the mesoscopic Stoner instability. Addressing
the vicinity of the transition to the macroscopic Stoner
phase, 0 — J < 9, our analysis indicates the existence of the
quantum phase transition (QPT) at a critical broadening
strength, y. ~J, (see Fig. 1). The quantum critical point
(QCP) separates the ordered (y < y.) and the disordered
(y > 7.) phases. The QPT occurs since tunneling to the
reservoir modifies the Coleman-Weinberg (CW) potential
and suppresses the spontaneous symmetry breaking at
y > 7.. Our analysis relies on the study of the spin
susceptibility y of the electrons on the QD.
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FIG. 1. A sketch of the phase diagram for the case § — J < 4.
The red color indicates the region with a Curie-type spin
susceptibility above the zero-temperature ordered phase. The blue
color indicates the regions with the Pauli-type spin susceptibility.
The black dot indicates the position of the QCP. The thick, solid red
(blue) line corresponds to the zero-temperature ordered (disor-
dered) phase. The thin, solid curves correspond to the crossovers
discussed in the text. The dashed lines are guides for the eye.
A latin number indicates the equation for the corresponding region
of the phase diagram. Black shaded region at the bottom marks the
region above which our theory is applicable.

Model—A metallic QD tunnel coupled to a reservoir is
described by the following Hamiltonian: H=H ;+H ,+H,.
The effective Hamiltonian for a disordered metallic QD
with large Thouless conductance is H; = Hy + H, [6],
where Hy =), eadl,gdm is the free electron part and
H, = —JS? takes into account the exchange interaction on
the QD [30]. The free electrons in the reservoir are
governed by the H, =", , eka;gakﬁ. The Hamiltonian
H =3 oo tkaa,:(,da,a + H.c. describes a multichannel
tunneling junction between the QD and the reservoir with
a small dimensionless (in units e?/h) tunneling conduct-
ance of each channel. The total dimensionless tunneling
conductance of the junction ¢ is assumed large. This
assumption allows us to neglect the Coulomb blockade
effects associated with the charging energy term in the
“universal” Hamiltonian [6]. Here e€,, €, denote the
energies of single-particle levels on the QD and in
the reservoir, respectively, counted from the chemical
potential. The operators df,,,;, a,Tm (dys» ay,) create (anni-
hilate) an electron on the QD and the reservoir, respectively.
S=> uo dl,go;m/dwg /2 stands for the operator of the
total electron spin in a QD. The vector ¢ = {6,,0,,0,}
comprises the three Pauli matrices.

In order to address H; we employ the Hubbard-
Stratonovich transformation, introducing the bosonic vec-
tor field ®. Integrating out fermions, we obtain an effective
action in the imaginary time,

1 [» 1 -
=— ®> —Trin( -0, —é+-c®-%). (1
S 4JA dr rn( 0, €+26 ) (1)

Here ﬂ: 1 /Ta éaa’ = €(15aa’ ,and Zaa’ = Zk t;k ( —(9,, —€k ) - Lo
is the self-energy induced by the tunneling to the reservoir.

In what follows, we neglect the mesoscopic fluctuations
in the tunneling amplitudes #;, and approximate the
self-energy as 2,4 (ic,) = —i(y/n)sgne,6,,. Here €, =
aT(2n+ 1), and 7% >, |f14|°6(ex) — v characterizes the
uniform broadening of a single-particle level on the QD [31].
It is related to the tunneling conductance of the junction
through g = 4y /6. The spin susceptibility of electrons on the
QD can be computed as [19]
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where the averaging is carried out with respect to the
action (1).

Wei-Norman-Kolokolov trick.—In order to proceed fur-
ther, one needs to be able to compute the Tr In in the action
(1). A solution of this complicated problem requires the
knowledge of the matrix U(z) = 7, exp| [ d7'o®(7)/2],
where 7, denotes the time ordering along the imaginary
time contour. For an arbitrary trajectory @(z), direct
evaluation of U(z) is impossible. It is possible, though,
to perform a transformation in the functional integral from
the variables @ to new variables p, x, and kK [33-38]:
@, =p—2kk, ®_ =&, and ®, = 0.k + kp — kK’K, where
&, = (P, £+ id,)/2. While p is the degree of freedom
related to the length of @, k and K describe small rotations
of ®. The Jacobian of this transformation is equal to

exp(ph), where h =T f(/)j drp(7)/2 is a half of the zeroth
Matsubara harmonics of p(z) [38]. This transformation is
supplemented by the initial condition x(0) = 0, which
guarantees U(0) = 1. The 2 x 2 matrix U(r) can be written
explicitly in terms of new variables p, x, and & [39].

Coleman-Weinberg potential.—As is known from stud-
ies of the mesoscopic Stoner phase in an isolated QD
[18,19], the zeroth Matsubara harmonics of p(z) plays the
role of an order parameter. Therefore, our strategy is to
derive the effective free energy for & by integrating out the
fluctuations with nonzero Matsubara frequency compo-
nents in the action (1). We thus split the field p as p(z) =
2h + 8p(z) and integrate over &p, k, and K within the
Gaussian approximation. We then obtain the following free
energy (CW potential) (see Supplemental Material for
details [40])

n2 r(+44& 4 %
F(h) =——h+2TReIn ( A i
J, T(1+ 201 +-4)

- 3)

Here I'(z) is the Gamma function. The origin of different
terms in the expression for F(h) is the following. The first
term on the rhs of Eq. (3) is the sum of two contributions,
h?/J and —h? /5. The former comes from the first term on
the rhs of Eq. (1), whereas the latter is a paramagnetic part
of the thermodynamic potential of free electrons in the
presence of a constant magnetic field 2/4. The second term
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on the rhs of Eq. (3) is an equivalent of the CW potential, as
can be concluded from [19]. In the calculation based on the
Wei-Norman-Kolokolov transformation, it appears from
the Jacobian of that transformation. The third term of
Eq. (3) is the result of integration over dynamical fluctua-
tions of k and K, which are coupled to /4 in the presence of
nonzero tunneling. We thus observe that tunneling to the
reservoir indeed modifies the form of the CW potential.
The Gaussian approximation for integration over
dynamical fluctuations is justified under the conditions [40]

A, T > max{J, min{J,, \/Jy}}. 4)

Instead of working with the full action (1), we can now use
F(h) for the purpose of analyzing the spin susceptibility.
Under conditions (4), expression (2) can be simplified to

1 © 0
- / dhh2e ) | / dhe-FFD_ (5)

An isolated QD.—Before turning to the analysis of an
open system, it is instructive to recover the CW potential
(3) for the case of an isolated QD. For y =0, F(h)
possesses a minimum at & = J,/2. At low temperatures,
T < J,, this minimum is narrow and Egs. (3) and (5) yield
the Curie law for the spin susceptibility: y = J2/(12TJ?)
[6,17,18]. At high temperatures, 7 > J,, the minimum
at h =J,/2 becomes shallower. The thermal fluctua-
tions then determine the typical value of h~+/TJ,.
Equations (3) and (5) reproduce correctly the Pauli-type
spin susceptibility, known from the exact solution
[6,17,18]. We find from the CW potential (3) that y =
cJ,/J?* with ¢ = 1/6. The exact solution, however, yields
the value of ¢ = 1/2. Such a discrepancy in the prefactor
arises since the free energy (3) reproduces the Gibbs weight
exp[—pF(h)] up to a multiplicative prefactor proportional
to h, which is irrelevant for the subsequent analysis.

Weak tunneling regime, y < J,—We next analyze
the spin susceptibility in the regime of weak tunneling,
y < J,. Then the situation is similar to the case of an
isolated QD. The free energy F (%) has its minimum at 2 =
J.[1 —4y/(#%J,)]/2 (see Fig. 2). At T < J, this minimum
is narrow and Eq. (5) yields the Curie law

X~ (/)M =8y/ (2] ,)]/T. (6)

At T > J, the CW potential F(h) has the shallow mini-
mum at h=J,[l +y"(1)yJ,/(7*T?)]/2. Here w(z)
denotes the digamma function. Then the typical value of
h is dominated by the thermal fluctuations, which are of the
order of \/TJ,[l +vy"(1)yJ,/(z*T?)]. Hence, at T > J,
we find the Pauli-type spin susceptibility

2.0
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FIG. 2. The approximate free energy as given by Eq. (3) for
y < J, (blue solid curve) and y > J, (red dotted curve). We note
that Eq. (3) may not reflect correctly the behavior of the free energy
for small % indicated by the black shaded region [see Eq. (4)].

x~ Ly (Dyd /(24 T?)] /I3 (7)

Therefore, in the weak tunneling regime, y < J,, the
dependence of the spin susceptibility on temperature is
qualitatively the same as in the case of an isolated QD.

Strong tunneling regime, y > J,.—For a strong tunnel-
ing, y > J., the CW potential (3) has the minimum whose
position depends on temperature. At low temperatures,
T < J,, the minimum of F(h) is at h = 0 (see Fig. 2).
The spin susceptibility then is determined by the thermal
fluctuations of A, which are of the orderof /TJ, (1 + J. /7).
Thus, for T <« J,, we find

X~ T+ 0. /n)] I (8)

For intermediate temperatures, J, < T < +/J.y, the free
energy (3) has a shallow minimum at & = J,[1 — J,/(6T)].

histypically of the order of \/T'[1 — J,/(6T)]. Then the spin
susceptibility is given by
x~ 1= J,/(6T)]/ 2. ©)

Finally, at T > /J,y the behavior of the CW potential is
similar to the one for weak tunneling and high temperatures,
T > J.. It follows that the spin susceptibility at T > /J .y
is given by Eq. (7).

Quantum phase transition.—The above analysis dem-
onstrates that at low temperatures, 7 < J,,, the minimum of
F(h) at nonzero value of h survives at weak tunneling,
y < J,, but disappears at strong tunneling, y > J,. This
suggests the existence of the QPTaty = y. ~J,. Aty <vy,,
there is a broken symmetry phase with a nonzero order
parameter A = limy_,Ty. For y > y., the symmetry is
restored such that A = 0.

In order to further substantiate the existence of a QPT we
now consider the low-temperature regime, 7 Ky ~ J,.
One can show that, pushing toward the vicinity of the
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QCP, the relevant values of / lie within the range
T < h < y. Taking the limit 4,y > T in Eq. (3) and then
expanding in //y to the fourth order, we obtain

F(h)~(1/J, = 1/y)h* + z2h*/ (6y°). (10)

Taking this expression for F(h) literally at 7 = 0 may
suggest that there is indeed a QCP at y. = J,. We recall,
though, that setting the temperature to zero is not allowed in
view of the inequality (4). Our strategy to detect the presence
of the QCP will be to sweep y near y,. ~ J, at the lowest
possible temperature, T ~/JJ,. We note that Eq. (10)
resembles the standard form of the Landau free energy with
h playing the role of the order parameter. We stress, though,
that unlike the Landau free energy, which is valid only for
small values of the order parameter, here Eq. (10) is valid for
the entire interval T~ /JJ, < h < J,.

The form (10) of the CW potential implies a scaling form
of the spin susceptibility y = \/J3/Tf(Tx/T)/J? with a
characteristic temperature scale Ty =J,a?, and a=7y,/y—1.
Notwithstanding the fact that we cannot determine the
precise form of the scaling function f(X), as we know
exp[—pF(h)] only with exponential accuracy, Eq. (10)
suffices for the evaluation of the asymptotic behavior
of f(X).

For y <y, the free energy (10) has its minimum at
h = J.\/3a/x. Then, at sufficiently low temperatures and
away from the QCP, T < Ty, we can treat the thermal
fluctuations around the minimum as being weak. We then
find

x~J2a/(TJ?), T < Ty. (11)

At high temperatures, J, > T > Ty, the typical value of &

due to the thermal fluctuations is dictated by the quartic

term in Eq. (10): h~ (TJ3)'/4. Since this value of 4 is

within the range 7 < h <« J,, the use of Eq. (10) is
justified. Using Eq. (5), we obtain

a~ PPNV, Ty<T<J,. (12)

For y > y., the free energy (10) has a minimum at 7 = 0.
Then, at low enough temperatures, 7 < Ty, and away from
the quantum critical point, the quadratic term dominates
over the fourth-order term in Eq. (10). Thus, the typical
value of & due to the thermal fluctuations is given by

h~+/TJ,/a. Hence, the spin susceptibility reads

x~J./(3a

) T« Ty. (13)

At higher temperatures, J, > T > Ty, the spin suscep-
tibility is given by Eq. (12).

For y <., cf. Eq. (11), the spin susceptibility exhibits
the Curie-type behavior at T <« Ty, with the effective spin
«J,v/a/J. The latter decreases as the QCP is approached.

For y > y,, cf. Eq. (13), the spin susceptibility at 7 <« Ty
has the Pauli form with the effective exchange «J./|a|
diverging at the QCP. At high temperatures 7 > Ty,
cf. Eq. (12), the spin susceptibility has a critical behavior,

yox1/ /T, which is neither Curie- nor Pauli-like. Thus, the
overall behavior of the spin susceptibility at low temper-
ature is typical for the vicinity of a QCP (see Fig. 1).

Since the range of validity of our analysis is limited from
below by the temperature T ~./JJ,, we can determine
the position of the QCP only with a limited accuracy:
ve = J. {1+ O[(J/J,)"*]}. This indicates that our theory
becomes asymptotically exact as the system is approaching
the bulk Stoner transition at J = 6.

Discussion.—In Ref. [23], it has been demonstrated that
electron tunneling between the QD and the reservoir in the
mesoscopic Stoner regime induces a Gilbert damping term
g/ (4xS) in the LLGL equation. Our present results imply
that the LLGL equation of Ref. [23] applies to not-too-large
values of the conductance, g < g. = 8S. We note that the
QCP corresponds to a value of the Gilbert damping of the
order unity.

Recalling the mesoscopic Stoner phase for an isolated
QD, it is marked by a nonzero value of the total spin in the
ground state. This is the case for a finite interval of J < 4.
A state with a given value of the total spin S is separated by
QPTs [at J =6(2S+1)/(2S+ 1 £ 1)] from states with
spin S £ 1. One important implication of our analysis is
that the presence of a very weak tunneling, y < o, does
not destroy these transitions. We expect that the lines of
these QPTs in the J/§, y/6 parameter space terminate at
y ~ 6 [40].

The universal Hamiltonian involves also a term with a
Cooper channel interaction. This term represents super-
conducting correlations in the QDs [41-47]. Throughout
our analysis we have assumed the absence of bare attrac-
tion, hence we have disregarded this Cooper channel
interaction. Moreover, we have also neglected the effect
of fluctuations in the matrix elements of the interaction
[48,49]. These corrections are typically small in the regime
6/Et, < 1, but may still be responsible for interesting
physics beyond the universal Hamiltonian paradigm [5].

Another effect we have not considered here is the
fluctuations of single-particle levels on the QD. Such
fluctuations are particularly important in the case of
Ising exchange interaction. For the latter, assuming equi-
distant quasiparticle spectrum, the phenomenon of the
mesoscopic Stoner instability is completely absent [6].
The universal Hamiltonian with an Ising exchange is
realizable in the limit of a strong spin-orbit coupling
[50-54]. Considering an Ising exchange and an equidistant
single-particle spectrum, the electron spin susceptibility is
Pauli-like for all temperatures [20,55]. Accounting for
single-particle level fluctuations (e.g., due to the presence
of static disorder in the QD), a mesoscopic Stoner phase
does exist for an isolated dot, with an averaged spin
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susceptibility yielding a Curie-type behavior at low temper-
atures [6,56,57]. In this case, one might expect the
emergence of a QPT at a certain value of level broadening
(tunnel coupling to external reservoirs), similar to the case
of Heisenberg exchange studied here.

Finally, our results are amenable to experimental verifi-
cation, employing a single electron box based on nano-
particles made up of materials with parameters close to the
Stoner instability. There is a host of such nearly ferromagnetic
materials [58—65]. Promising candidates are the compounds
YFe,Zny, (J = 0.886) and LuFe,Zn,, (J = 0.895) [66,67].

Summary.—We have studied here the mesoscopic Stoner
instability in open QDs, coupled to external fermionic
reservoirs. We have developed a detailed theory for the
regime close to the macroscopic Stoner instability,
0 < 6 —J < 6. The resulting temperature dependence of
y suggests the existence of a QPT at a critical value of the
tunneling broadening, y. = J,. This transition as function
of the tunnel coupling strength is between the symmetry
broken phase with nonzero value of the total spin in the
ground state and spin-symmetric phase. The smoking gun
evidence for the QPT is the electron spin susceptibility,
switching between Curie and Pauli behaviors. This QPT
(and the onset of the symmetry-conserved phase) marks the
suppression of the Coleman-Weinberg mechanism of
symmetry breaking by tunnel coupling to the reservoir.
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