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The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been
studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing
the system with both disorder and interactions. Instead, we start with a clean non-Fermi liquid near a 2D
ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered
Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system
has a marginally stable fixed point with perfect conduction.
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Despite enormous progress [1–11], the possible ground
states of two dimensional (2D) interacting, disordered
electron systems remain largely unexplored. In agreement
with experimental observations [12–22], the theory of
disordered Fermi liquids (FL) [23–28] suggests that, in
some cases, interactions can stabilize 2D metallic behavior
at low temperatures (T), while the noninteracting counter-
parts remain fully localized in 2D [29]. However, the
ultimate understanding of experiments requires well-
controlled theories of strong interactions and disorder,
representing a fundamental challenge.
In the theory of 2D disordered FLs, metallic behavior

occurs near a strong coupling fixed point, marking the
onset of a magnetic instability [24,25]. This instability has
been interpreted as indicating either the formation of local
moments [25,30–32] or ferromagnetism [33–36]. At
present, the strong coupling fixed point and the associated
metallicity remain poorly understood. Experimental studies
of 2D systems have revealed an enhancement of electron
spin susceptibility [15,37–43] and the existence of spin
droplets [44–47] in the metalliclike regime. Both theory
and experiment call for an alternative approach in which
magnetic fluctuations are treated beyond a mean-field
approximation.
Close to the ferromagnetic ordering, FL breaks down via

scattering of fermions off soft magnetic fluctuations,
leading to a “non-Fermi liquid” (NFL) [48–50]. Within a
phenomenological approach, the 2D NFL with vanishing
density of states (DOS) at the chemical potential is stable to
localization and remains a perfect conductor [51], in
agreement with general scaling arguments [52,53]. Much
less is known about the effect of disorder on 2D NFLs
having nonzero DOS [60,61].
In this Letter, we study disorder effects near a metallic

quantum critical point at which singular effects of

interactions lead to a magnetic instability. Since the strong
interactions require additional control parameters, we start
with a recently studied tractable large N limit of a 2D NFL,
which involves fermions coupled to quantum critical
“magnetic” fluctuations [62]. Assuming that the character-
istic energy scales of NFL behavior and diffusion are well
separated, we incorporate the absence of quasiparticles
already at the saddle-point level and study the combined
effects of residual interactions and disorder by means of the
renormalization group (RG) (see Fig. 1).
In contrast to the disordered FL, we find unconventional

dynamical scaling of the diffusion propagator (diffuson)
inherited from the NFL. Moreover, short-range interactions
are irrelevant in the RG sense in our theory, and runaway
flows to strong coupling disappear. The only remaining
source of IR divergences is the small momentum scattering
mediated by the diffusive Landau damped magnetic order
parameter, which ultimately sets the new dynamical scaling
zd ¼ 4 for diffusons below a certain energy scale. As a

FIG. 1. Schematic RG flow for a disordered 2D fermionic
system interacting with the magnetic order parameter fluctua-
tions. The intermediate clean NFL fixed point is unstable to
disorder and ultimately leads to a dirty fixed point with the
dynamical scaling z ¼ 4.
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result, the coupling between diffusons and the magnetic
fluctuations vanishes under the RG, giving way to a well-
controlled fixed point with perfect conduction.
Summary of results.—We consider a Euclidean

Lagrangian density L ¼ L0 þ Lint þ Ldis which involves
a 2D system of fermions ψ at a finite density interacting
with a critical magnetic collective mode ϕ

L0 ¼ tr½ð∂τϕÞ2 þ ð∇ϕÞ2� þ ψ̄ j½∂τ þ ξði∇Þ�ψ j;

Lint ¼
λ
ffiffiffiffi
N

p ϕj
kψ̄ jψ

k; Ldis ¼
1
ffiffiffiffi
N

p VðxÞψ̄ jψ
j; ð1Þ

where ξðpÞ ¼ p2=2m − μ. Here, m denotes the fermion
mass and μ is the chemical potential. This model has a global
SUðNÞ flavor symmetry, with ψ i and ϕi

j transforming in the
fundamental and adjoint representations, respectively. A
random potential VðxÞ coupled to the fermionic density
has aGaussian distributionwith the zeromean and a variance
hVðxÞVðx0Þi ¼ ð2πντÞ−1δðx − x0Þ. Here, ν is the DOS per
flavor and τ is the mean free time. We assume that 1=N and
1=g (where g is the dimensionless Drude conductivity per
flavor measured in units e2=h) are the only expansion
parameters of the model. In order to distinguish the inter-
action-induced effects from localization corrections, we
follow [63] and consider a situation in which the Cooper
channel is suppressed by a small time-reversal and parity
breaking field.
The low-temperature behavior of theory (1) is governed

by the RG equations derived at the leading order in 1=N
and 1=g, with no restrictions on the strength of the Yukawa
coupling λ, cf. Eq. (8). They exhibit an IR marginally stable
fixed point at 1=g ¼ λ ¼ 0 with the following features:
(1) The large-N low-energy quantum dynamics is set by
∼N2 multiplet diffusons with dynamical scaling zd ¼ 4.
(2) The average fermionic DOS νðEÞ diverges very weakly
at sufficiently small energies, jEj ≪ Λ4

νðEÞ ≃ ν0 expfα ln2 ½ln ðΛ4=jEjÞ�g; ð2Þ

where α ≈ 0.104 is the universal exponent and ν0 is the
density of states per one flavor at the emergent energy scale
Λ4 below which the system flows to the fixed point. (3) The
conductivity diverges as T → 0, in a slow logarithmic
manner with the universal exponent s ≈ 0.704

gðTÞ ≃ g1−s0 ζs0ln
sðΛ4=TÞ; T ≪ Λ4: ð3Þ

Here, g0 and ζ0 are the conductance and dimensionless
interaction strength (see below) at the energy scale Λ4.
(4) N2 bosonic modes with dynamical scaling zb ¼ 4 are
responsible for the anomalous temperature dependence of
the specific heat at T ≪ Λ4, cv ∼ T2=z with z ¼ 4.
We now turn to the detailed description of these results.

An intermediate clean fixed point.—Webeginwith theUV
limit, where both Ldis and Lint are relevant perturbations, so
we are free to take into account, first, the cubic Yukawa
interaction before introducing any effects of disorder. The
large–N solution in the clean limit stems from the coupled set
of Schwinger-Dyson equations. The vertex corrections can
be neglected at large N. Under these conditions, the clean
large-N solution immediately leads to two crucial effects
[62]. At first, the boson self-energy is dominated by the
Landau damping, Πðωn; qÞ ¼ γjωnj=ðNqÞ. Here, q is the
momentum, ωn ¼ 2nπT is the bosonic Matsubara fre-
quency, and γ ¼ νλ2=2vwith v ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

. Second, fermions
become dressed into a NFL, with a self-energy correction
ΣfðεnÞ ¼ iβN1=3jεnj2=3sgnεn where β ∝ λ4=3μ−1=3 and εn ¼
ð2nþ 1ÞπT stands for the fermionic Matsubara frequency.
ΣfðεnÞ is parametrically larger than the bare iεn term at
low energies. As a result, the clean interacting fixed point is
described by the effective Lagrangian density Leff ¼
Lf þ Lb þ Lint where

Lf ¼ ψ̄ j;εn ½iβN1=3jεnj2=3sgnεn − ξði∇Þ�ψ j
εn ;

Lb ¼ tr

�
ϕωn

ðqÞ
�
q2 þ γ

N
jωnj
q

�
ϕ−ωn

ð−qÞ
�
: ð4Þ

The dynamical exponents are zb ¼ 3 for the boson, and zf ¼
3=2 for the fermion (where zf is defined with respect to the
momentum component perpendicular to the Fermi surface).
In addition, various symmetry-allowed interactions, such as
ϕ4 and four-Fermi forward scattering, become irrelevant, and
only the Yukawa coupling λ remains marginal. Further
analysis beyond the planar limit reveals that there are no
leading 1=N logarithmic corrections to (4) which can
potentially destabilize the fixed point at large but finite
N [64].
Disorder at large N.—Our next step is to reintroduce

disorder Ldis as a relevant perturbation at the one-loop
Lagrangian (4). Diagrammatically, first, we dress the
fermion propagator by noncrossing impurity lines within
the self-consistent Born approximation, Gðεn; pÞ ¼
fi½βN1=3jεnj2=3 þ ð2NτÞ−1�sgnεn − ξðpÞg−1. One might
expect the disorder-induced lifetime to dominate at low
energies, rendering the NFL frequency dependence insig-
nificant. However, the actual low-energy gapless degrees of
freedom of the disordered system are particle-hole excita-
tions dressedwith impurity ladders (diffusons), see Fig. 2(a).
In our case, they acquire anomalous dynamical scaling zd ¼
3 set by incoherent fermionic dynamics at low momenta,
q ≪ ðNvτÞ−1, and frequencies, jεn; ε0nj ≪ ðN4=3βτÞ−3=2:
Dεn;ε0nðqÞ ¼ ½NDq2 þ N1=3βðjεnj2=3 þ jε0nj2=3Þ�−1, where
D ¼ v2τ=2 is the diffusion constant. As a result, the
diffusion pole in a particle-hole propagator (if analytically
continued to real frequencies) is replaced by an effective
IR-divergent energy relaxation time, which is, in some
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sense, very similar to the spin-flip time for triplet diffusons in
the presence of dynamical magnetic impurities [65–72].
The fate of residual interactions can now be naturally

formulated in terms of anomalous diffusons. The appro-
priate field-theoretical description is given by the analog of
the Finkel’stein nonlinear sigma model (FNLSM) which
incorporates the nontrivial dynamical scaling already at the
saddle point level. The details of this FNLSM approach are
given in the Supplemental Material [73]. Below, we derive
the same results within the standard fermionic perturbation
theory.
There are three major possible interaction effects, con-

trolled by two small parameters, 1=N and 1=g. At first, the
diffusons (which, by definition, include only processes
with both particle and hole energies independently con-
served) can be dressed by the self-energy effects via the
Dyson equation [Fig. 2(b)]. Selection rules for both
small parameters single out only diagrams of Fig. 2(c).
Second, the bosonic propagator can also acquire correc-
tions via the fermionic polarization operator. The simplest
RPA-type resummation results in the form ½Dϕ

nðqÞ�−1 ¼
q2 þ ð2βÞ−1νg2jωnj1=3F 2=3ðDq2=βjωnj2=3Þ with the scal-
ing function F κðxÞ¼

R
1
0 dt½xþ tκþð1− tÞκ�−1. At large N,

the one-loop corrections to Dϕ
nðqÞ are limited to two

diagrams of Fig. 2(e) only. Finally, various vertex functions
[74] can also be renormalized by interactions. The only
surviving diagram for quadratic boson-diffuson coupling is
shown in Fig. 2(f), and the leading corrections to “self-
interactions” between diffusons are depicted in Fig. 2(d).
Self-consistent solution.—The problem at hand very

closely resembles the clean case, with diffusons playing
a role similar to that of the fermions in the clean limit. We
see this explicitly when we compute the one-loop diffuson
self-energy diagrams [Fig. 2(c)] in a self-consistent way at
the leading order in 1=ðNgÞ, while ignoring higher order
corrections (which turn out to be logarithmically divergent,
so we will come back to them later). It is also worth noting
that singular Hartree-type diagrams are absent because ϕ is
traceless, and other processes involving large momentum
transfer are either 1=N suppressed or irrelevant due to the
anomalous dynamical scaling.
As in the clean case [75], the possibility of obtaining a

controllable self-consistent solution dramatically depends on
how the large-N and low-energy limits are simultaneously
taken.We follow theprocedure introduced in [62] and rescale
the bosonic and fermionic fields, momenta, and temperature
as fϕ;ψ ; ψ̄ ; q; Tg → fN2ϕ; N3=4ψ ; N3=4ψ̄ ; q=N; T=N2g
with new q; T ∼OðN0Þ. Then, the rescaled diffuson and
bosonic propagator are free from any factors of N, and all
N–dependence appears only in the vertices. We show [73]
that, within this rescaling, none of the irrelevant operators are
enhanced by a positive power ofN. Physically, the rescaling
procedure implies such a hierarchy of energy scales, when
NFL effects (associated with γ=N) take place at energies
higher than the onset of the diffusive regime [controlled
by 1=ðNτÞ].
After the N–rescaling, the self-consistent solution for the

diffuson propagator, see Fig. 2(b), takes the form

½Dεn;ε0nðqÞ�−1 ¼ Dq2 þ β4ðjεnj1=2 þ jε0nj1=2Þ; ð5Þ

where β4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvγ=DÞp

=ð4πνÞ. Here, the frequency depend-
ence ∼jεnj1=2 comes from the self-energy correction to
diffusion due to Yukawa interaction. This frequency
dependence overshadows the bare frequency dependence
of the diffuson ∼jεnj2=3 for energies below the emergent
scale Λ4 ¼ ðvγ=β2DÞ3. In contrast, we did not find any
nonanalytic corrections to the bare momentum dependence
∼q2 at the same order Oð1= ffiffiffi

g
p Þ, and thus, the IR

dynamical scaling of the diffuson becomes zd ¼ 4.
The scaling (5) is “self-consistent” in the following

sense: if one feeds this new diffuson back to the boson via
quadratic vertices, then the dynamical scaling of the boson
remains the same zb ¼ 4,

½Dϕ
nðqÞ�−1 ¼ c2q2 þ vγjωnj1=2

β4
F 1=2

�
Dq2

β4jωnj1=2
�
; ð6Þ

(a)

(c)

(d)

(e) (f)

(g) (h)

(b)

FIG. 2. The shaded rectangular stands for a bare diffuson (a).
The impurity line is denoted by dashed line, and the retarded
(advanced) single-particle fermionic propagator is denoted by
solid (dash-dotted) line. Dark grey rectangular area represents the
diffuson (b) with self-consistent self-energy due to interaction
shown in (c). Wavy solid line represents the dynamically screened
bosonic propagator. White rectangular area with symbolH stands
for the Hikami box which acquires self-consistent corrections (d).
Leading in 1=N loop corrections to the bosonic self-energy are
shown in (e) and the corrected boson-diffuson vertex is presented
in (f). Representative diagrams for the tunneling density of states
and the free energy are depicted in (g) and (h), respectively.
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where F 1=2ðxÞ ¼ 2 − ðπx=2Þ þ ð2ðx2 − 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2

p
Þ×

arccotð2þ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2

p
Þ and c ¼ 1. Although the exact form

of the frequency-dependent term is modified, we find
that, asymptotically, for q ≫

ffiffiffiffiffiffiffiffiffiffiffi
β4=D

p jωnj1=4, the standard
Landau damping, jωnj=Dq2, restores. Then, if we use the
renormalized boson propogator, Eq. (6), to reevaluate the
same self-energy diagram, Fig. 2(b), for the diffuson, (that
gave us zd ¼ 4 in the first place), we obtain essentially the
same result (up to small in 1=g corrections). Physically, the
Landau damping controls the dynamical scaling of appro-
priate low energy modes associated with fermions even in
the dirty case (in the clean scaling, zf ¼ 3=2 is also dictated
by the ballistic form of the Landau damping).
The crucial observation here is that the coupling between

the critical boson ϕ and the diffuson at the fixed point
zb;d ¼ 4 is marginal. Thus, the dirty and clean limits share
the common strategy of finding a self-consistent solution
that results from resumming the effects of interactions.
Contrary to the clean case, logarithmic divergences appear
at Oð1=gÞ and, thus, require extra caution.
Logarithmic corrections and RG.—The scale-dependent

corrections to the self-consistent solution should be derived
by reevaluating the diagrams in Fig. 2 with the modified
propagators (5) and (6) near the fixed point zb;d ¼ 4.
There are no double-counting issues because the self-
consistent propagators include only the leading correction
∼Oð1= ffiffiffi

g
p Þ, while logarithmic divergences ∼Oð1=gÞ are

subleading. The renormalization of the diffusion coeffi-
cient, the density of states, and β4 can be extracted from
diagrams in Figs. 2(b)–2(d). The divergent part of the
bosonic self-energy diagrams depicted in Fig. 2(e) renorm-
alizes the coefficient c2 in Eq. (6). The vertex correction of
Fig. 2(f) results in the renormalization of λ.
To extend the perturbative results into the RG form, we

implement the following scaling procedure. We assign
engineering dimensions as ½q� ¼ 1, ½ψ̄ψ � ¼ −2þ ηw,
½ϕ� ¼ −2þ ηϕ, ½T� ¼ 4þ ηT , where ηw and ηϕ are anoma-
lous field dimensions, and we also choose to scale temper-
ature with some exponent ηT . This exponent is determined
from the condition that the coefficient β4 in the diffusion
propagator (5) does not run under the RG.
As a result, similar to the case of the disordered

FL [24,63,76], the scaling of our theory is given by
two-parameter RG flow for the dimensionless resistance
t ¼ 2=ðπgÞ and the effective interaction ζ ¼ ð2πβ4Þ−2λ2=t

dt
d ln y

¼ −t2ζftðζÞ;
dζ

d ln y
¼ −tζ2fζðζÞ: ð7Þ

Here, y is the running RG energy scale. The functions
ft;ζðζÞ are both positive, see Fig. 3(a), with the following
asymptotic behavior: ft ≈ ðln ζÞ=ð2ζÞ, fζ ≈ 0.048 at ζ ≫ 1

and ft ≈ 1=2þ ζ ln ζ, fζ ≈ Δ − 1=2 at ζ ≪ 1 where Δ ≈
0.71 [73]. We emphasize that we did not make any

assumptions regarding the magnitude of Yukawa coupling
λ, so that our RG equations are formally valid to all orders
in λ. The RG flow governed by Eqs. (7) is depicted in
Fig. 3(b). Both the resistance t and the normalized
interaction ζ scale to zero values, improving the validity
of our RG equations. There is only a single stable IR fixed
point at t ¼ ζ ¼ 0. The asymptotic form of the RG
equations near this fixed point is given by

1

Δ
dt

d ln y
¼ −st2ζ;

1

Δ
dζ

d ln y
¼ −ð1 − sÞtζ2; ð8Þ

where s ¼ 1=ð2ΔÞ ≈ 0.704. Equations (8) indicate that
both t and ζ (and thus, also λ) are marginally irrelevant.
One can immediately notice that all RG trajectories have
the form ζtðs−1Þ=s ¼ const. By solving Eqs. (8), we find the
scale dependence of the conductivity g ∼ 1=t depicted in
Fig. 3(c) and with the asymptotic form given by Eq. (3).
From λ2 ∼ tζ, one can easily obtain the RG equation for the
Yukawa coupling, dλ2=d ln y ∼ −λ4. It yields λ2ðEÞ ∼
1= lnðΛ4=EÞ in the infrared. We also note that all nonuni-
versal corrections to the anomalous dimensions vanish at
this fixed point, ηw; ηϕ; ηT → 0, implying that zd ¼ 4 is a
true dynamical scaling of the problem at low energies.
The correction to the tunneling DOS is shown in

Fig. 2(g). As explained above, this perturbative correction
can be cast in the form of RG flow. Near the fixed point, the
corresponding RG equation becomes [73], d ln ν=d ln y ¼
tζ lnð1=ζÞ=2. In the low-energy limit, jEj ≪ Λ4, this RG
equation yields the asymptotic form given in Eq. (2).

(a)

(c)

(b)

FIG. 3. (a) The RG flow governed by Eqs. (7). The arrows mark
direction of RG flow towards the infrared. (b) The functions ftðζÞ
andfζðζÞ used in (7). (c) Temperature dependence of the logarithm
of conductivity ln½gðTÞ=g� as a function of ln lnðΛ4=TÞ (blue
curves). The red dashed lines represent an asymptotic behavior (3).
The used bare parameters are t0 ¼ 0.3 and ζ0 ¼ 0.16, 0.35, 0.60,
1.04, 2.25 from bottom to top.
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The behavior of the specific heat with T can be deduced
from interaction corrections to the free energy [77]. Since
the diagram of Fig. 2(h) is IR finite, we find cv ∼ T2=z with
z ¼ 4 [73]. This implies that, contrary to the case of
disordered FL, the anomalous dimension ηT does not
influence the T dependence of the specific heat.
Conclusions.—We have developed the RG theory

describing the interplay between diffusive modes and soft
magnetic fluctuations in a disordered 2D fermionic system.
To keep the analysis parametrically under control, we
employed expansion in two small parameters: 1=N (where
N corresponds to a global SUðNÞ symmetry group) and
dimensionless resistance t. By starting with an intermediate
clean NFL fixed point, we found a self-consistent anoma-
lous dynamical scaling zd ¼ 4 of the multiplet diffusive
particle-hole excitations (see Fig. 1). The residual infrared
logarithmic corrections to this self-consistent solution were
summed up by the RG equations, see Eq. (7). The RG flow
exhibits an IR stable fixed point with both the resistivity
and the residual interaction approaching zero in spite of
weak divergence of the local density of states. By contrast,
in the large N extension of RG theory for the disordered FL
[28], the magnetic instability still persists in the metallic
regime.
While our theory predicts a phase with perfect con-

duction when t ≪ 1, we cannot exclude the existence
of a metal–insulator transition expected on general grounds
for sufficiently large disorder t ∼ 1. Even in the noninter-
acting unitary case (without Cooperons), certain higher
order corrections due to diffusons favor suppression of
conductivity [78] and can, in principle, compete with the
interaction-induced effects [28].
Although it remains unknown whether our predictions

hold in realistic systems with N ¼ 2, we may speculate on
experimental implications of our results. We have provided
a model example where the resistance looks essentially
finite for any realistically low accessible temperatures, but
ultimately is zero at T ¼ 0. One can speculate that this
behavior is similar to a seemingly saturating resistance that
has been observed in several experiments [12] at low
temperatures. In addition, recent experiments [44–47]
indicate the formation of spin droplets near apparent
metal-insulator transition, which makes the model studied
in this Letter extremely relevant for describing disordered
2D electron systems.
In the future, we wish to extend our results to the case

when time-reversal symmetry is restored, leading to a
competition [79] between weak-localization corrections
and superconducting fluctuations. We expect both effects
to be significantly modified because an anomalous dynami-
cal scaling sets an unconventional temperature dependence
of the phase-breaking time, and generally enhances the
BCS instability [80].
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