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Current noise geometrically generated by a driven magnet
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We consider a nonequilibrium cross-response phenomenon, where a driven magnetization gives rise to electric
shot noise (but no d.c. current). This effect is realized on a nanoscale, with a small metallic ferromagnet
which is tunnel coupled to two normal metal leads. The driving gives rise to a precessing magnetization.
The geometrically generated noise is related to a nonequilibrium electron distribution in the ferromagnet. Our
protocol provides a channel for detecting and characterizing ferromagnetic resonance.
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I. INTRODUCTION

Off-diagonal (cross-)response phenomena, e.g., the ther-
moelectric effect, are ubiquitous in physics. In spintronic
systems, by applying an electric charge current one can drive
magnetization dynamics and vice versa [1–7]. This usually
requires magnetic contacts or contacts with strong spin-orbit
interaction (spin Hall effect) which allow for a conversion
between spin and charge currents [8]. In this paper we report
a higher order strongly nonequilibrium cross-response effect.
Namely, we show that by driving magnetization dynamics
one can generate electric shot noise [9,10] without generating
charge current. Strikingly, neither magnetic leads nor spin
Hall effect are needed and the leads can be at equilibrium with
each other.

We consider a small metallic ferromagnet with a magneti-
zation driven to precess. The ferromagnet is tunnel-coupled to
two normal metal leads; see Fig. 1. The precessing magneti-
zation drives the electrons of the ferromagnet into a strongly
nonequilibrium state. This effect is most pronounced if the
ferromagnet is small enough such that internal relaxation
is negligible compared to the relaxation due to the cou-
pling to the leads. The precessing magnetization, in turn,
induces nonequilibrium shot noise of the electric current. The
nonequilibrium distribution responsible for the shot noise is
governed by the geometric Berry phase due to the precession
of the magnetization, branding the shot noise geometric. This
shot noise exists even when both leads are in equilibrium with
each other, although the average charge current vanishes then.
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Shot noise is particularly interesting in spintronics because
it gives insights into the magnetic configuration and its dy-
namics which may be hard to obtain otherwise [11–17].

II. RESULTS

To describe the magnetization dynamics we use the
macrospin approximation; that is, the magnetization is de-
scribed by a single vector M = M(sin θ cos φ, sin θ sin φ,

cos θ ). We assume that the magnetization precesses in a steady
state, where polar angle θ and precession frequency φ̇ are
constant. Under these assumptions, we find that the charge
current vanishes on average, I = 0, but the current noise

FIG. 1. A small metallic ferromagnet with precessing magneti-
zation is tunnel coupled to two normal metal leads, which are at
equilibrium with each other. The precessing magnetization pumps
a spin-current from the small ferromagnet into the leads [4–6]. The
average charge current vanishes by symmetry. Thus, the current of
spin-up electrons and spin-down electrons balance each other on
average and in each junction separately; in the ferromagnet, the
precessing magnetization mixes spin-up and spin-down electrons.
All four spin-resolved electron currents are fluctuating. These fluc-
tuations combine to give rise to the noise of left to right (transport)
charge current.
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remains finite:

S = 4gt T + gt sin2 θ

(
φ̇ coth

φ̇

2T
− 2T

)
. (1)

Here gt = 2(ρ↑ + ρ↓)�l�r/(�l + �r ) is the total conductance
of the double tunnel junction, where ρσ is the magnet’s spin-
dependent density of states. The rates �l and �r character-
ize the spin-conserved tunneling to the left and right lead,
respectively.

At high temperatures (T � φ̇), the noise is dominated
by the first term S ≈ 4gt T , which is the standard thermal
noise. At low temperatures (T � φ̇ sin2 θ ), however, the
noise is dominated by the second term S ≈ gt sin2 θ |φ̇|.
Interestingly, in both limits (high and low temperature) our
results agree with those for a single tunnel junction [16]. For
intermediate temperatures, however, we obtain a different
result for the charge current noise. This difference arises from
the nonequilibrium distribution which develops in the small
magnet; see Fig. 2.

The origin of charge current noise can be understood as fol-
lows. As a special case of spin pumping [4–6], the precessing
macrospin assists electrons in tunneling between magnet and
leads. This macrospin assisted tunneling drives the electron
system into a strong nonequilibrium state [18,19]. As the
macrospin dynamics is the source of driving for the electron
system, it governs the resulting nonequilibrium distribution,
Fig. 2. In turn, the macrospin dynamics governs the nonequi-
librium noise of charge current, Eq. (1), where the precession
frequency φ̇ acts similar to the voltage bias for standard shot
noise.

In the following, we provide the details of this argument
to derive our main result, Eq. (1). Finally, we show that this
result can be useful to detect and characterize magnetization
dynamics, Fig. 3.

III. DERIVATION OF CURRENT NOISE

A. Macrospin assisted tunneling

The precessing macrospin (magnetization) makes the mag-
net’s Hamiltonian time dependent and, thereby, it affects
the tunneling of electrons between magnet and leads. To
understand this effect, it is sufficient to start from the case of
coupling to only one, e.g., left, lead.

For the electrons in the magnet the magnetization M(t )
acts as a magnetic field. We assume the electrons to be
noninteracting. In turn, the magnet can be described by a
single-particle Hamiltonian, while the many-particle informa-
tion is contained in the electron distribution. So, the mag-
net’s full Hamiltonian is given by Hm = ∑

aσσ ′ |aσ 〉hσσ ′
m,a〈aσ ′|

with hm,a = εa − M(t ) σ/2, where σ = (σx, σy, σz ) is the
vector of Pauli-matrices, a denotes orbital states in the
magnet with energy εa, and σ denotes eigenvalues of σz.
We assume spin-conserved tunneling to the (left) lead with
tunnel amplitude tl . This process is described by Ht =∑

aνσ |aσ 〉tl〈νσ | + h.c., where ν denotes the states in the
(left) lead. We neglect possible dependence of the tun-
neling amplitudes tl , t∗

l on the states a, ν [20]. The elec-
trons in the (left) lead are assumed to be noninteracting
Hl = ∑

νσ |νσ 〉εν〈νσ |.

To determine the tunneling rates between states in the
magnet and states in the lead, we want to use Fermi’s
Golden Rule, where the tunneling Hamiltonian is treated as
perturbation. However, there is a problem: to apply Fermi’s
Golden Rule, the unperturbed Hamiltonian must be time
independent; which is not the case, due to the precessing
macrospin. In order to circumvent this obstacle, we trans-
fer to the magnetization’s rotating frame of reference. For-
mally, this is achieved by applying the transformation U (t ) =∑

aσ |aσ ; m(t )〉〈aσ | + ∑
νσ |νσ 〉〈νσ |, where m = M/M and

|aσ ; m(t )〉 is an instantaneous eigenstate of m(t )σ̂; that
is, m(t )σ̂|aσ ; m(t )〉 = σ |aσ ; m(t )〉, where σ̂/2 is the spin-
1/2 operator. This transformation leaves the lead’s Hamilto-
nian unaffected, H̃l := UHlU † = Hl , but it diagonalizes the
magnet’s Hamiltonian H̃m := UHmU † = ∑

aσ |aσ 〉h̃σσ
m,a〈aσ |,

where h̃m,a = εa − Mσz/2 is diagonal in spin space and inde-
pendent of time. The transformation also affects the tunneling
Hamiltonian H̃t = UHtU † = ∑

aνσσ ′ |aσ 〉[R†(t )]σσ ′tl〈νσ ′| +
h.c.. Effectively, the tunneling amplitude becomes spin and
time dependent,

tl −→ R†(t ) tl , (2)

where R(t ) is a spin-space rotation defined via [R(t )]σσ ′ =
〈aσ ; m(t )|aσ ′〉. Besides rotating the Hamiltonian, a time-
dependent transformation generates a new term −i UU̇ † =
−i

∑
aσσ ′ |aσ 〉[R†Ṙ]σσ ′ 〈aσ ′| in the Hamiltonian of the system

in the rotating reference frame.
To proceed, we choose an Euler-angle representation for

the rotation, R(t ) = e−iφσz/2e−iθσy/2ei(φ−χ )σz/2, where we in-
troduce an angle χ that is a gauge variable, see Ref. [21].
In turn, the new term becomes −iR†Ṙ = [φ̇(1 − cos θ ) −
χ̇ ]σz/2 + eiχσz [φ̇ sin θσx/2]eiφσz . Its spin-off-diagonal part
(the second contribution) induces (Landau-Zener) transitions
between spin-up and spin-down states. However, assuming
M to be large, these transitions can be disregarded [21].
For χ = 0, the remaining spin-diagonal part (the first term)
gives rise to an additional time-evolution phase, the so-called
geometrical Berry -phase, which is acquired because of the
magnetization dynamics. However, following Ref. [21], we
choose χ̇ = φ̇(1 − cos θ ) to eliminate the remaining spin-
diagonal part of −iR†Ṙ. This trick with the proper choice of
χ allows us to exclude the term −i UU̇ † in the Hamiltonian in
the rotating frame of reference from the analysis. This might
come as a surprise, because the Berry phase is a physical
phase and, thus, it cannot be eliminated. And indeed, for a
proper derivation of the magnetization dynamics we would
have to be more careful with the choice of gauge [21]. But
even here—where the magnetization dynamics is assumed to
be given—the Berry phase remains relevant. By the choice of
gauge, it is shifted to the tunneling amplitude, Eq. (2).

Now, it has become straightforward to determine the rate
for macrospin assisted tunneling. We consider H̃m + H̃l as
unperturbed Hamiltonian, whereas the tunneling Hamiltonian
H̃t is treated perturbatively. Using Fermi’s golden rule, we
obtain the rate for macrospin assisted tunneling between a
state in the left lead |νσ ′〉 and a state in the magnet |aσ 〉,

�l
νσ ′↔aσ = π |tl |2(1 + σσ ′ cos θ ) δ(ξaσ − εν + σ ′ωσσ ′ ) , (3)
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FIG. 2. The magnet’s electron distribution (filling factor) is
shown for spin-up (red solid) and spin-down (blue dashed). The four
shaded areas are all equal in size: sin2 θ |φ̇|/4. It means that electrons
are redistributed in energy space such that the magnetization length
M remains constant. Plot parameters: θ = π/3 and φ̇ < 0.

where ξaσ = εa − Mσ/2 is the energy of an electron in the
state |aσ 〉. The energy shift ωσσ ′ = φ̇(1 − σσ ′ cos θ )/2 arises
from the time-dependence of the rotating-frame tunneling
amplitudes, Eq. (2), which include the rotations [R(t )]σσ ′ =
1+σ ′−σ+σσ ′

2

√
(1 + σσ ′ cos θ )/2 e−iσωσσ ′ t . Physically, the pre-

cessing macrospin acts as a time-dependent magnetic field
for the electrons. Thus it can give energy to—or take energy
from—electrons that tunnel between lead and magnet. So, as a
special case of spin pumping [4–6], the precessing macrospin
assists electrons in tunneling.

B. Strongly nonequilibrium distribution

The tunneling rate (3) alone is not enough in order to com-
pute the transport via the tunnel junction. Via the macrospin
assisted tunneling, the precessing magnetization drives elec-
trons in the magnet away from equilibrium. The resulting
nonequilibrium distribution (calculated in the rotating frame
of reference) is characterized by the filling factor faσ , which
gives the probability to find an electron in a state |aσ 〉. The
filling factor is governed by the master equation

ḟaσ = �(in)
aσ − �(out)

aσ , (4)

where �(in)/(out)
aσ is the total tunneling rate into/out of the

state |aσ 〉.
Knowing the macrospin assisted tunneling rate, Eq. (3), we

can straightforwardly determine the total in- and out-rates. But
before doing so, we bring the second (right) lead back into the
problem. The right lead is assumed to be similar to the left
lead. The only differences are the right lead’s states ν̃, their
energies εν̃ , and the tunneling amplitude tr . Consequently,
the tunneling rate between the right lead and the magnet,
�r

ν̃σ ′↔aσ ,can be obtained from Eq. (3) after the replacements
tl → tr and ν → ν̃.

It is now straightforward to write down the total in- and
out-rates as a sum over the left and right leads. The total in-
rate is given by �(in)

aσ = γ (in)(1 − faσ ), where γ (in) = γ
(in)

l +
γ (in)

r with γ
(in)

l = ∑
νσ ′ �l

νσ ′↔aσ fl (εν ) and similarly for the
right lead. As usual, the factor (1 − faσ ) is responsible for
the Pauli principle; an electron can tunnel into the state
|aσ 〉, only if this state is empty. For an electron to tunnel
from the state |νσ 〉 or |ν̃σ 〉 that state must be filled; this
explains the appearance of the leads’ distribution functions
fl,r in the expression for �(in)

aσ . The total out-rate is determined

analogously, only the roles of faσ and fl,r are reversed:
�(out)

aσ = γ (out) faσ , where γ (out) = γ
(out)

l + γ (out)
r with γ

(out)
l =∑

νσ ′ �l
νσ ′↔aσ [1 − fl (εν )] and similarly for the right lead.

We are particularly interested in the long-time limit; that
is, when a stationary distribution has developed in the small
magnet. Thus, we set ḟaσ = 0 in Eq. (4) and obtain

faσ = cos2 θ

2
f (ξaσ + σω−) + sin2 θ

2
f (ξaσ − σω+), (5)

where ω± = φ̇ (1 ± cos θ )/2 arises from ωσσ ′ for σ ′ = ∓σ .
Furthermore, we assumed that both leads are in equilibrium
with each other fl,r (ω) = f (ω) = 1/[eβ(ω−μ) + 1]. Also we
neglected the energy dependence of the leads’ densities of
states ρl,r . The established magnet’s electron distribution
(filling factor), Eq. (5), is clearly different for the two spin
species and, at low temperatures, it is not even close to a
Fermi distribution; see Fig. 2. In other words, macrospin
assisted tunneling induces a strongly nonequilibrium electron
distribution in the magnet.

The emerging nonequilibrium distribution, Eq. (5), is gov-
erned by the geometrical Berry phase [22]. Namely, ω− is the
rate at which the Berry phase is acquired and ω+ is related
to it by ω+ = φ̇ − ω−. In other words, the distribution’s
nonequilibrium features have their origin in the geometric
Berry phase. Because the noise of charge current is intimately
linked to these nonequilibrium features, we refer to it as
geometrically generated noise.

C. Noise of charge current

The noise of charge current is determined by the statistics
of charge transport. In our noninteracting model, the charge
transport can be considered separately for each single particle
state |aσ 〉. Then, the total average current is given by the
sum I = ∑

aσ Iaσ , where Iaσ is the average current which
is transported through the state |aσ 〉. Analogously, the total
noise of charge current is given by the sum S = ∑

aσ Saσ .
To find Iaσ and Saσ , we study the statistics of the number

of electrons naσ which entered the state |aσ 〉 through the
left junction. Electrons leaving through the left junction are
counted negatively. At low frequency, it is sufficient to focus
on the transport through one junction: as the magnet cannot
store additional charges for a long time, charge conservation
demands the charge current to be equal in both junctions. The
same holds for the noise of the charge current. So, the average
〈naσ 〉 determines the current Iaσ = ∂t 〈naσ 〉 and the cumulant
〈〈n2

aσ 〉〉 determines the noise Saσ = 2 ∂t 〈〈n2
aσ 〉〉.

The probability that naσ electrons entered the state |aσ 〉
through the left junction is convenient to present in the follow-
ing form: Paσ (naσ ) = Faσ (naσ ) + F̄aσ (naσ ). Here, Faσ (naσ ) is
the probability that the state |aσ 〉 is occupied and naσ elec-
trons have tunneled through the left junction. Analogously,
F̄aσ (naσ ) is the probability that the state |aσ 〉 is empty and
naσ electrons have tunneled through the left junction. The
probabilities Faσ (naσ ) and F̄aσ (naσ ) are governed by master
equations similar to the one given by Eq. (4). We only have to
keep track for changing naσ by 1 in the course of an electron
tunneling through the left junction. So, the corresponding
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master equations are given by

Ḟ (n) = γ
(in)

l F̄ (n − 1) + γ (in)
r F̄ (n) − γ (out)F (n),

˙̄F (n) = γ
(out)

l F (n + 1) + γ (out)
r F (n) − γ (in)F̄ (n). (6)

Here and in the following, we suppress indices aσ in all
quantities to simplify the notation.

In order to solve the master equation (6) and compute the
average current and noise it is convenient to make a Fourier
transform. In other words, instead of directly focusing on the
probabilities F (n) and F̄ (n), it is more convenient to consider
the moment generating functions χF (λ) = ∑

n F (n)e−iλn and
χF̄ (λ) = ∑

n F̄ (n)e−iλn, where we also suppress indices aσ

for the generating functions χF,F̄ and the, so called, counting
field λ. Then the Fourier transform of Eq. (6) becomes(

χ̇F

χ̇F̄

)
=

( −γ (out) e−iλγ
(in)

l + γ (in)
r

eiλγ
(out)

l + γ (out)
r −γ (in)

)(
χF

χF̄

)
. (7)

We note that Eq. (7) has the form familiar from the counting
statistics of a metallic island coupled to two reservoirs [23].
However, we emphasize that the generalized master equation
(7) are governed by the macrospin-assisted tunneling-rate,
Eq. (3), which was calculated in the magnetization’s rotating
frame of reference.

The matrix appearing on the right-hand side of Eq. (7) has
the eigenvalues

E±
aσ (λ) = − (γ (in) + γ (out) )/2 ± [

(γ (in) + γ (out) )2/4

+ (e−iλ − 1)γ (in)
l γ (out)

r + (eiλ − 1)γ (in)
r γ

(out)
l

]1/2
.

(8)

These eigenvalues determine the time evolution of χF (λ)
and χF̄ (λ). At low frequencies (long times), the generating
functions are dominated by the smaller eigenvalue; more
precisely, lim

t→∞ ln[χF (λ) + χF̄ (λ)]/t = E+
aσ (λ). So, the state-

resolved average charge current and its noise are given by

Iaσ = i∂λE+
aσ (λ)|λ=0, Saσ = 2(i∂λ)2E+

aσ (λ)|λ=0. (9)

For the constant leads’ densities of states ρl,r , the
state-resolved average current vanishes, Iaσ = (γ (in)

l γ (out)
r −

γ (in)
r γ

(out)
l )/(γ (in) + γ (out) ) = 0. Consequently, the total av-

erage current vanishes I = ∑
aσ Iaσ = 0 as one might ex-

pect from symmetry. However, the noise remains. Using
Eq. (9), we obtain Saσ = 2(γ (in)

l γ (out)
r + γ (in)

r γ
(out)

l )/(γ (in) +
γ (out) ). Now, we define �l = π |tl |2ρl and �r = π |tr |2ρr , and
we assume the spin-resolved magnet’s density of states ρ↑,↓
to be constant on all scales smaller than M. Then, summing
over all states, S = ∑

aσ Saσ , yields our main result, Eq. (1).

IV. APPLICATION TO FMR-DRIVEN MAGNET

Now let us consider our setup under conditions of a
ferromagnetic resonance (FMR). The dynamics of the mag-
netization is phenomenologically described by the Landau-
Lifshitz-Gilbert equation ṁ = m × B − α m × ṁ, with the
magnetization direction m = M/M and the Gilbert-damping
coefficient α. For negligible internal relaxation, the damping
is dominated by the coupling to the leads. For the FMR setup,
we choose the magnetic field B = (� cos ωdt,� sin ωdt, B0)

FIG. 3. When the steady state precession of the magnetization is
maintained by driving with a FMR setup, the polar angle θ depends
on driving frequency φ̇ = ωd . The peak of sin2 θ at ωd = −B0 (� =
0) is a typical FMR peak. We show the zero-frequency noise of
charge current that is generated by the precessing magnetization; we
subtract the thermal contribution and normalize onto the value of the
total conductance, that is, we show (S − 4gt T )/gt . The geometrically
generated noise of charge current clearly reflects the peak structure of
sin2 θ in the FMR setup. Parameters in figure: α = 0.04, �/(αB0) =
0.63.

with a fixed component B0 in the z direction and, perpendic-
ular to it, a small driving field with strength � and frequency
ωd . Without driving (� = 0), the Gilbert-damping would
relax the magnetization towards θ = 0. With driving (� �= 0),
however, the magnetization can be brought into a steady state
precession. That is, after the decay of transient effects, the
magnetization precesses at the frequency of the driving field
φ̇ = ωd and the polar angle θ is determined by the competition
between Gilbert-damping and FMR driving. Explicitly, θ is
determined by

sin2 θ = (�+ + �−)2

�2+ + �2− + 2�2 + 2
√

(�2 + �2+)(�2 + �2−)
,

(10)

with �± = � ± αωd and the detuning parameter � = ωd +
B0. The dependence of sin2 θ on precession frequency ωd

has a resonant character with a maximum at ωd = −B0. This
ferromagnetic resonance of the magnetization’s steady state
precession directly translates into a resonance in the current
noise; see Fig. 3. At low temperatures, T � ωd sin2 θ , the
form of the resonance in the current noise resembles the
FMR structure of the stationary precession angle. At higher
temperatures, the resonance in the current noise can be visible
on top of the constant thermal noise.

V. CONCLUSION

We have found a higher order nonequilibrium off-diagonal
response effect. Namely, we have shown that zero-frequency
shot noise of charge current is generated by a precessing
magnetization of a small magnet which it is tunnel coupled
to two normal metal leads. This noise, Eq. (1), crucially
depends on the electronic distribution function which is, in
turn, geometrically governed by the magnetization dynamics;
see Fig. 2. Thus, the noise of the charge current, Eq. (1),
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is generated by the precessing magnetization. For the FMR
setup, Fig. 3, this effect can be used to detect the magne-
tization dynamics in spite of the vanishing average charge
current.
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