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a b s t r a c t

The multifractal superconducting state originates from the in-
terplay of Anderson localization and interaction effects. In this
article we overview the recent theory of the superconductivity
enhancement by multifractality and extend it to describe the
spectral properties of superconductors on the scales of the order
of the superconducting gap. Specifically, using the approach
based on renormalization group within the nonlinear sigma
model, we develop the theory of a multifractal superconducting
state in thin films. We derive a modified Usadel equation that
incorporates the interplay of disorder and interactions at energy
scales larger than the spectral gap and study the effect of such an
interplay on the low-energy physics. We determine the spectral
gap at zero temperature which occurs to be proportional to the
multifractally enhanced superconducting transition temperature.
The modified Usadel equation results in the disorder-averaged
density of states that, near the spectral gap, resembles the one
obtained in the model of a spatially random superconducting
order parameter. We reveal strong mesoscopic fluctuations of the
local density of states in the superconducting state. Such strong
mesoscopic fluctuations imply that the interval of energies in
which the superconducting gap establishes is parametrically
large in systems with multifractally-enhanced superconductivity.
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1. Introduction

Anderson localization [1] and superconductivity are two fundamental quantum phenomena.
emiclassically, i.e., without taking into account the quantum interference effects (and also dis-
arding the influence of disorder on interaction), superconductivity is not affected by the electron
cattering on non-magnetic disorder that is compatible with the symmetry of the superconducting
rder parameter (so-called ‘‘Anderson theorem’’ [2–4]). However, at the next level of sophisti-
ation — with quantum effects included, the Anderson theorem meets Anderson localization. At
his level, superconductivity and Anderson localization were considered as antagonists: strong
ocalization [5–8] or interplay of weak disorder and Coulomb interaction [9–18] was predicted to
estroy superconductivity.1 This view was supported by a discovery [19] and the further study of
he superconductor–insulator transition (SIT) in thin films (see Refs. [20–22] for a review).

The paradigm of suppression of superconductivity by Anderson localization has been challenged
n Refs. [23,24], where the enhancement of the superconducting transition temperature, Tc , due to
he multifractal behavior of wave functions near the Anderson transition (e.g., in three-dimensional
isordered systems) has been demonstrated for the situation when the long-ranged Coulomb
epulsion between electrons is not effective. Later, the multifractal enhancement of Tc in thin
superconducting films has been predicted by the present authors [25,26]. Recently, these theoretical
predictions have been supported by numerical solution of the disordered attractive Hubbard model
on a two-dimensional [27] and three-dimensional [28] lattices. Recently, an enhancement of the su-
perconducting transition temperature by disorder observed in monolayer niobium dichalcogenides
has been explained by the multifractality [29,30].

The hallmark of the multifractally-enhanced superconductivity in disordered systems is strong
mesoscopic fluctuations of the local order parameter and the local density of states [24]. The
point-to-point fluctuations of the local density of states have been observed in many experiments
on tunneling spectroscopy on thin superconducting films [31–36]. Recently, these fluctuations
have been retrieved from numerical solution of disordered attractive two-dimensional Hubbard
model [37,38].

For temperatures above the critical temperature, T > Tc , the point-to-point fluctuations of the
local density of states observed in the tunneling experiments are in qualitative agreement with
the theory [39] developed by the present authors for the mesoscopic fluctuations of the local
density of states in the normal phase of disordered superconducting films. Our theory employs the
renormalization-group (RG) framework within the non-linear sigma-model (NLSM) formalism. The
advantage of such approach is the possibility to take into account mutual influence of disorder and
interactions in all channels (particle–hole as well as particle–particle) and to describe systems with
short-range and Coulomb interaction on equal footing.

The experimental data on the fluctuations of the local density of states below Tc , as well as
recent numerical data on the disordered Hubbard model represent a new challenge for an analytical
theory. In the present paper, we develop a theory of the mesoscopic fluctuations of the local density
of states in the multifractal superconducting state. For the sake of concreteness, we shall focus on
the case of thin superconducting films. We assume the absence of long-range (Coulomb) interaction,
which can be achieved in structures put on a substrate with a high dielectric constant, and consider
the regime of an intermediate disorder strength [25,26], in which the superconducting transition
temperature is parametrically enhanced by multifractality compared to the conventional Bardeen–
Cooper–Schrieffer (BCS) result. We calculate the average density of states and its mesoscopic
fluctuations in the low-temperature limit in the presence of the interplay between disorder and
interactions.

We demonstrate that the gap in the disorder-averaged density of states at zero temperature is
proportional to the superconducting transition temperature, i.e., it is also enhanced by multifractal-
ity. In spite of the enhancement of the spectral gap, we find that the combined effect of disorder and
interaction results in the suppression of the coherence peaks. Their height is finite and controlled

1 It is worth mentioning that in Refs. [5–8] there was an interval of disorder in which superconductivity and localization
coexist. However, superconductivity was monotonically suppressed with increasing disorder.
2
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by the ratio of a bare disorder and interaction. We also show that the mesoscopic fluctuations of
the local density of states in the superconducting state are enhanced in the same way as in the
normal phase for temperatures above Tc .

On the technical side, in order to describe the superconducting state, we derive the Usadel
quation modified by renormalization effects due to interplay of disorder and interactions (in both
article–hole and particle–particle channels) at short scales. This modified Usadel equation can
e reformulated as a standard Usadel equation, but with an energy dependent gap function, and
ields the same estimate for the superconducting transition temperature as the one derived by
eans of the renormalization group in the normal phase. We discuss the relation between the
pproaches based on the renormalization of the sigma model and the self-consistent solution of
he gap equation in the presence of multifractal correlations of matrix elements.

The structure of the paper is as follows. In Section 2 we overview the formalism of the
inkel’stein NLSM as applied to superconducting systems [15,18,25,26]. The mean-field description
f the superconducting state is briefly outlined in Section 3. The description of the superconducting
tate beyond the mean-field approximation is developed in Section 4. The developed theory is used
o estimate the superconducting transition temperature (Section 5) and the energy dependence of
he gap function (Section 6). The results for the local density of states and its mesoscopic fluctuations
n the superconducting state are presented in Sections 7 and 8, respectively. Finally, our results and
onclusions are summarized in Section 9.

. Formalism of Finkel’stein NLSM

.1. Finkel’stein NLSM action in the normal state

The action of the Finkel’stein NLSM is given as the sum of the non-interacting NLSM, Sσ , and
ontributions resulting from electron–electron interactions, S(ρ)int (the particle–hole singlet channel),
(σ )
int (the particle–hole triplet channel), and S(c)int (the particle–particle channel) (see Refs. [40–42] for
a review):

S = Sσ + S(ρ)int + S(σ )
int + S(c)int , (1)

where

Sσ = −
g
32

∫
dr Tr(∇Q )2 + 2Zω

∫
dr Tr ε̂Q , (2a)

S(ρ)int = −
πT
4

Γs

∑
α,n

∑
r=0,3

∫
dr Tr Iαn tr0Q Tr Iα

−ntr0Q , (2b)

S(σ )
int = −

πT
4

Γt

∑
α,n

∑
r=0,3

∑
j=1,2,3

∫
dr Tr Iαn trjQ Tr Iα

−ntrjQ , (2c)

S(c)int = −
πT
4

Γc

∑
α,n

∑
r=1,2

∫
dr Tr tr0Lα

nQ Tr tr0Lα
nQ . (2d)

Here, Q (r) is the matrix field in the replica, Matsubara, spin, and particle–hole spaces. The
trace Tr acts in the same spaces. The matrix field obeys the nonlinear constraint, as well as
charge-conjugation symmetry relation:

Q 2(r) = 1, TrQ = 0, Q = Q †
= −CQ TC, C = it12 . (3)

The nonlinear constraint on the matrix field Q suggests the following parametrization:

Q = T−1ΛT , T †
= T−1, CT T

= T−1C, Λαβ
nm = sgn εn δεn,εmδαβ t00, (4)

where α, β = 1, . . . ,Nr stand for replica indices and integers n,m correspond to the Matsubara
fermionic frequencies εn = πT (2n+1). The representation (4) implies that the diffusive fluctuations
in the normal state are associated with smooth variations around the metallic saddle point Q = Λ.
3
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The action (1) contains three constant matrices:

ε̂αβ
nm = εn δεn,εmδαβ t00, (Iγk )

αβ
nm = δεn−εm,ωkδ

αβδαγ t00, (Lγ

k )
αβ
nm = δεn+εm,ωkδ

αβδαγ t00 . (5)

The sixteen matrices,

trj = τr ⊗ sj, r, j = 0, 1, 2, 3, (6)

operate in the particle–hole (subscript r) and spin (subscript j) spaces. The matrices τ0, τ1, τ2, τ3
and s0, s1, s2, s3 are the standard sets of the Pauli matrices.

The bare value of the coupling constant g coincides with the Drude value of the conductance (in
units e2/h and including spin). The parameter Zω describes the frequency renormalization upon the
renormalization group flow [40]. The bare value of Zω is equal to πν/4, where ν denotes the bare
density of states at the Fermi level including a spin-degeneracy factor. The interaction amplitude
Γs (Γt ) encodes interaction in the singlet (triplet) particle–hole channel. The interaction in the
Cooper channel is denoted as Γc . Its negative magnitude, Γc < 0, corresponds to an attraction
in the particle–particle channel. In what follows, it is convenient to introduce the dimensionless
interaction parameters, γs,t,c = Γs,t,c/Zω . If Coulomb interaction is present, the following relation
holds: γs = −1. This condition remains intact under the action of the renormalization group
flow [26,40]. In the case of the BCS model and, under an assumption of strong disorder, ωDτ ≪ 1 (ωD
is the Debye frequency), the bare values of interaction amplitudes are related as −γs0 = γt0 = γc0.
In what follows, we shall refer to such a relation between interaction amplitudes as the BCS line.

2.2. Finkel’stein NLSM action in the superconducting state

The symmetry breaking that leads to the appearance of the superconducting state changes the
saddle point of the NLSM [43–46]. We shall follow the approach of Ref. [46] which allows us to take
into account the effects of disorder and residual quasiparticle interactions beyond the mean-field
level.

Let us single out the term with n = 0 from the expression for S(c)int , Eq. (2d). Then, upon the
Hubbard–Stratonovich decoupling by spatially dependent fields ∆α

r (r), r = 1, 2, we find

S(c)int =
4Zω

πTγc

∫
dr
∑

α

∑
r=1,2

[
∆α

r (r)
]2

+ 2Zω

∫
dr
∑

α

∑
r=1,2

∆α
r (r) Tr tr0L

α
0Q + S̃(c)int , (7)

here

S̃(c)int = −
πT
4

Γc

∑
α,n̸=0

∑
r=1,2

∫
dr
(
Tr tr0Lα

nQ
)2

. (8)

ince, by construction, the action depends quadratically on ∆α
r (r), we can solve the equation of

otion instead of performing the functional integral. The equation of motion reads

∆α
r (r) =

πT
4

|γc | Tr tr0Lα
0Q (r), r = 1, 2. (9)

We note that the charge-conjugation symmetry, Eq. (3), guarantees that ∆α
1,2(r) are real functions.

The presence of nonzero ∆α
r (r) changes the saddle-point equation for Q . Performing variation

f the NLSM action (1) with S(c)int replaced by S̃(c)int , we derive the following saddle-point equation:

−D∇(Q∇Q ) + [ε̂,Q ] +

∑
α

∑
r=1,2

∆α
r (r)[tr0L

α
0 ,Q ] −

πT
4

∑
α,n

∑
r=0,3

3∑
j=0

γj[Iα−ntrj,Q ] Tr Iαn trjQ

−
πTγc

4

∑
α,n̸=0

∑
r=1,2

[tr0Lα
n ,Q ] Tr tr0Lα

nQ = 0, (10)

Here, γ0 ≡ γs and γ1 = γ2 = γ3 ≡ γt , and we have introduced the diffusion coefficient
D = g/(16Zω). We mention that in the absence of interaction Eq. (10) is nothing but the Usadel
equation, well known in the theory of dirty superconductors.
4
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Substitution of ∆α
r (r) from the self-consistency equation (9) into the Usadel equation (10) results

n the nonlinear matrix equation for Q (r). In general, such equation has many spatially dependent
olutions for Q (r) which mimic fluctuations of a disorder potential in the original microscopic
ormulation of the problem. To enumerate all these solutions and to perform summation over them
eem like a daunting task. In order to circumvent this difficulty we shall use the smallness of the
are resistance, 1/g ≪ 1. Then, we can sum over spatially dependent solutions for Q (r) by treating
he fluctuations around the spatially independent solution of the Usadel equation by means of the
enormalization group. We start from splitting ∆α

r into constant and spatially dependent part,

∆α
r (r) = ∆α

r + δ∆α
r (r),

∫
dr δ∆α

r (r) = 0. (11)

he spatially varying part, δ∆α
r (r), contains information about the mesoscopic fluctuations of

he superconducting order parameter. These mesoscopic fluctuations turn out to be large (see
ppendix A) [24,37,38,47]. In order to take them into account, we perform a formally exact
ntegration over δ∆α

r (r). As a result, the spatial fluctuations of the Hubbard–Stratonovich field
orresponding to the order parameter get fully encoded in additional correlations of the Q field.
his procedure results in a modification of S(c)int ,

S(c)int =
4ZωV
πTγc

∑
α

∑
r=1,2

[
∆α

r

]2
+ 2ZωV

∑
α

∑
r=1,2

∆α
r Tr tr0Lα

0Q + Ŝ(c)int , (12)

here V denotes the volume of a superconductor,

Q =
1
V

∫
drQ (r), (13)

nd

Ŝ(c)int = −
πT
4

Γc

∑
α,n

∑
r=1,2

∫
dr
[
Tr tr0Lα

n

(
Q − Q δn,0

)]2
. (14)

After integrating over δ∆α
r (r), the saddle-point equation (10) gets modified,

−D∇(Q∇Q ) + [ε̂,Q ] + [∆̂,Q ] −
πT
4

∑
α,n

∑
r=0,3

3∑
j=0

γj[Iα−ntrj,Q ] Tr Iαn trjQ

−
πTγc

4

∑
α,n

∑
r=1,2

[tr0Lα
n ,Q ] Tr tr0Lα

n (Q − Q δn,0) = 0, (15)

where

∆̂ =

∑
α

∑
r=1,2

∆α
r tr0L

α
0 , ∆α

r =
πT
4

|γc | Tr tr0Lα
0Q . (16)

It is worth noting that the information about the disorder-induced spatial fluctuations of the
Hubbard–Stratonovich field ∆α

r , and, hence, about the spatial fluctuations of the order parameter,
is not lost after the integration over δ∆α

r (r) and remains encoded in Eq. (15) through the coupling
of ∆̂ and Q and the fluctuations of field Q . Before considering the effect of such fluctuations, in the
ollowing section we analyze the mean-field solution of the modified Usadel equation.

. Mean-field description of the superconducting state

Let us seek the solution of the Usadel equation (15) and the self-consistency equation (16) in
he following form

Q αβ

nm =

(
cos θεn sgn εnδεn,εm + tφ sin θεnδεn,−εm

)
δαβ , tφ = cosφ t10 + sinφ t20,

∆α
= ∆ cosφ, ∆α

= ∆ sinφ. (17)
1 2

5



I.S. Burmistrov, I.V. Gornyi and A.D. Mirlin Annals of Physics 435 (2021) 168499

Q

w

W
s
c
w

4

t
Q
w
f

4

w
p

p

Here, we assume that the spectral angle θεn is an even function of εn. We note that the above ansatz,
, satisfies the charge-conjugation condition. Substituting Eq. (17) into the Usadel equation (15),

we obtain
D
2

∇
2θεn − |εn| sin θεn + ∆ cos θεn = 0. (18)

The self-consistency equation (16) transforms into the following relation:

∆ = πT |γc |
∑
εn

sin θεn . (19)

Since the superconductor order parameter ∆ is spatially independent by construction, we consider
a spatially independent solution for θεn . Then, we find:

cos θεn =
|εn|√

ε2
n + ∆2

, sin θεn =
∆√

ε2
n + ∆2

, (20)

here ∆ satisfies the self-consistency relation

∆ = πT |γc |
∑
εn

∆√
ε2
n + ∆2

. (21)

This is nothing but the standard self-consistency condition for the gap ∆ in the BCS theory [48].
The saddle-point solution (17) can be conveniently written as rotation around the matrix Λ,

Q = R−1ΛR, Rαβ
nm =

[
δεn,εm cos(θεn/2) − tφδεn,−εm sgn εm sin(θεn/2)

]
δαβ . (22)

(R−1)αβ
nm =

[
δεn,εm cos(θεn/2) − tφδεn,−εm sgn εn sin(θεn/2)

]
δαβ .

e note that the matrix R satisfies the relation, CRT
= R−1C . We emphasize that although the

patially independent saddle point ansatz (17) solves Usadel equation (15), the solution (17) is
ompletely insensitive to disorder and residual interaction between quasiparticles in accordance
ith the ‘‘Anderson theorem’’ [2–4].

. Beyond the mean-field approximation

In order to see the effect of disorder and residual interactions between quasiparticles, one needs
o go beyond the mean-field approximation of the previous section. The fluctuations of the matrix
around the saddle-point ansatz (17) modify the effective potential for the spectral angle θε . In
hat follows, we establish a perturbative renormalization group approach for accounting these

luctuations.

.1. Perturbative expansion

Taking into account the fluctuations of Q , we renormalize the NLSM action. For this purpose,
e shall develop a perturbation expansion around the saddle point Q , using the square-root
arametrization of the matrix field Q :

Q = R−1
(
W + Λ

√
1 − W 2

)
R, W =

(
0 w

w 0

)
. (23)

We adopt the following notations: Wn1n2 = wn1n2 and Wn2n1 = wn2n1 , where n1 ⩾ 0 and n2 < 0.
The blocks w and w satisfy the charge-conjugation constraints:

w = −CwTC, w = −Cw∗C . (24)

These constraints imply that some elements (wαβ
n1n2 )rj in the expansion w

αβ
n1n2 =

∑
rj(w

αβ
n1n2 )rjtrj are

urely real and the others are purely imaginary.
6
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In this paper, we restrict our considerations to the expansion of the renormalization group
quations to the lowest order in residual electron–electron interactions. This is justified in the case
f weak short-ranged interaction, which corresponds to small magnitudes of the bare interaction
arameters, |γs0|, |γt0|, |γc0| ≪ 1. Then, in order to study the effect of fluctuations, we shall need

the propagators for diffusive modes in the noninteracting theory. In other words, the propagators
are determined by the NLSM action in which terms S(ρ)int , S

(σ )
int , and Ŝ(c)int are omitted. Within this

erturbative-in-interaction scheme, one finds⟨
[wrj(p)]α1β1

n1n2 [wrj(−p)]β2α2
n4n3

⟩
=

2
g
δα1α2δβ1β2δεn1 ,εn3

δεn2 ,εn4
Dp(iεn1 , iεn2 ), r, j = 0, . . . , 3,

Dp(iεn1 , iεn2 ) =
1

Dp2 + Eεn1
+ Eεn2

, (25)

Eεn = |εn| cos θεn + ∆ sin θεn . (26)

We note that we have not yet fixed θεn at this stage.

4.2. Renormalization of the NLSM action

The interaction of the diffusive modes encoded in W renormalizes the NLSM action. Since we
consider the spatially independent saddle point, Q , and S(ρ)int , S

(σ )
int , and Ŝ(c)int are zero at this saddle

oint, we are interested in modifications of these terms in the NLSM action by the quantum
orrections that can be expressed through the diffusive propagators (25). To the lowest order in
isorder it is enough to approximate Q as

Q → Q + R−1WR.

This results in

S(ρ)int + S(σ )
int → −

πT
4

∫
dr

⟨∑
α,n

∑
r=0,3

3∑
j=0

Γj Tr
[
RIαn trjR

−1W
]
Tr
[
RIα

−ntrjR
−1W

]⟩
. (27)

Then, using Eq. (25), we retrieve

S(ρ)int + S(σ )
int = −

32πTNrV
g

∑
n1n2

∫
ddq
(2π )d

Dq(iεn1 , iεn2 )

×

∑
n

{
(Γs + 3Γt )δεn1+εn2 ,ωn + (Γs + 3Γt )

(
δεn1−εn2 ,ωn − δεn1+εn2 ,ωn

) [
cos2

(
θεn1

/2
)

× cos2
(
θεn2

/2
)

+ sin2
(
θεn1

/2
)
sin2

(
θεn2

/2
) ]

−(Γs − 3Γt )δεn1+εn2 ,ωn sin θεn1
sin θεn2

}

→
32πTNrV

g
(Γs − 3Γt )

∑
ε,ε′>0

sin θε sin θε′

∫
ddq
(2π )d

Dq(iε, −iε′) . (28)

Here, in the last line, we omitted the term proportional to Γs +3Γt that involves θεn in the diffusion
propagator only, as it yields a negligible correction with respect to the term we retain. In a similar
way, one can renormalize the interaction in the Cooper channel,

Ŝ(c)int → −
πTΓc

4

∑
α,n

∑
r=1,2

∫
dr
⟨(
Tr
[
Rtr0Lα

nR
−1W

])2⟩
+

πTΓc

4V

∑∑ ⟨(∫
dr Tr

[
Rtr0Lα

nR
−1W

])2
⟩

α r=1,2

7
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= −
64πTΓcVNr

g

∑
n1,n2

∫
ddq
(2π )d

Dq(iεn1 , iεn2 )
∑
n

{
δεn1−εn2 ,ωn +

(
δεn1+εn2 ,ωn − δεn1−εn2 ,ωn

)
×

[
cos2

(
θεn1

/2
)
cos2

(
θεn2

/2
)

+ sin2
(
θεn1

/2
)
sin2

(
θεn2

/2
)][

1 − (2π )dδ(q)δn,0/V
] }

→ −
32πTΓcNr

g

∑
ε>0

Dq=0(iε, −iε) sin2 θε. (29)

s above, we have neglected here the terms that involve θεn in the diffusion propagator only. As
one can see, the renormalization of Ŝ(c)int results in the non-extensive term, proportional to V 0. In
what follows, we shall safely neglect this term in the thermodynamic limit V → ∞.

We mention that the above computation is similar to the background field renormalization in
the normal state but with the specific slow field Q (see Supplemental Materials of Ref. [25] and
ppendix A of Ref. [26] for details). We also note that to the lowest order in interactions γs,t,c the
enormalization of the parameter Zω coincides with the renormalization of the Q matrix, i.e., with
he Z factor that determines the renormalization of the average density of states.

Eqs. (28)–(29) determine the correction δSfl[Q ] to the classical action due to quantum fluctua-
ions (treated to the lowest order in 1/g). Including this correction, we obtain the perturbatively
odified action in the following form:

S[Q ] + δSfl[Q ] =16πTZωNrV

{
∆2

4πTγc
+

∑
ε>0

[
ε cos θε + ∆ sin θε

]
+

2πT (γs − 3γt )
g

∑
ε,ε′>0

sin θε sin θε′

∫
ddq
(2π )d

Dq(iε, −iε′)

}
. (30)

This action will serve as a basis for the modified equations of motion with the quantum interference
and interaction effects included.

4.3. Modified usadel equation

Minimizing Eq. (30) with respect to θε and ∆, we find (ε > 0)

−ε sin θε+

{
∆ + 2πT

(γs − 3γt )
g

∑
ε′>0

∫
ddq
(2π )d

[
Dq(iε, −iε′)

+Dq(iε′, −iε)
]
sin θε′

}
cos θε = 0 ,

∆ = 2πT |γc |
∑
ε′>0

sin θε′ . (31)

It is convenient to introduce the energy-dependent quantity

∆ε = −2πT
∑
ε′>0

{
γc −

(γs − 3γt )
g

∫
ddq
(2π )d

[
Dq(iε, −iε′) + Dq(iε′, −iε)

]}
sin θε′ , (32)

that we shall term the gap function. Then, we can write the modified Usadel equation in the
following concise form (ε > 0),

−ε sin θε + ∆ε cos θε = 0 . (33)

Solving Eq. (33), we find the spectral angle,

sin θε =
∆ε√
2 2

, cos θε =
ε√

2 2
. (34)
ε + ∆ε ε + ∆ε

8
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Supplemented by Eqs. (34), (32) becomes a self-consistent equation for the gap function. We note
that, contrary to the gap function, the Hubbard–Stratonovich field (the order parameter) ∆ remains
ndependent of the energy,

∆ = 2πT |γc |
∑
ε>0

∆ε√
ε2 + ∆2

ε

. (35)

A few remarks are in order here. First, we note that a similar form of the modified Usadel
equation has been derived in Refs. [47,49] in the case of a residual Coulomb interaction and without
the exchange interaction, i.e., for γs = −1 and γt = 0, by means of the diagrammatic technique.2
econd, the accuracy of our approximation does not allow us to see that ∆ in the definition of Eε ,

Eq. (26), is changed to ∆ε . However, there is an argument in favor of such transformation from
∆ to ∆ε . Let us make a shift in the spectral angle θε → θε + δθε . Then, on one hand, δθε can be
reabsorbed into some W matrix. Therefore, the propagator for δθε is related with the propagator for
diffusive modes, Eq. (25). On the other hand, the very same propagator can be obtained from the
linear variation of the modified Usadel equation. The latter fact implies the presence of ∆ε in the
expression for the propagator of diffusive modes. Therefore, we make the following substitution in
the diffusive propagator,

D−1
q (iε, −iε′) → q2 + L−2√

ε2+∆2
ε+

√
ε′2+∆2

ε′

, (36)

where Lε =
√
D/ε. We note that for energies larger than the spectral gap edge the transformation

rom ∆ to ∆ε is not essential.
Finally, the form of the second term in the curly brackets in the right hand side of Eq. (32) coin-

ides exactly with the perturbative correction to the interaction in the Cooper channel originating
rom the interplay of disorder and interactions in the particle–hole channel. Since this correction
ppeared in a procedure similar to the background field renormalization, we are allowed to rewrite
q. (32) as the following self-consistency equation for ∆ε ,

∆ε = −2πT
∑
ε′>0

γc

(
L√

ε2+∆2
ε+

√
ε′2+∆2

ε′

)
∆ε′√

ε′2 + ∆2
ε′

, (37)

where the dependence of γc on L is governed by the following equation

dγc

dy
= −

t
2
(γs − 3γt ) . (38)

Here y = ln L/ℓ and t = 2/(πg) denotes the dimensionless resistance. Comparison of Eqs. (37) and
(35) suggests that the order parameter ∆ coincides with the value of the gap function at energy of
the order of 1/τ , i.e. ∆ = ∆ε∼1/τ .

5. Critical temperature for the transition to the superconducting state

The modified self-consistency equation (37) allows us to determine the superconducting transi-
tion beyond the mean-field approximation. The latter yields the BCS result,

T BCS
c ∼ τ−1 exp(−1/|γc0|), (39)

see Eq. (21).

5.1. Estimate for Tc from the renormalization group equations in the normal phase

We start by reminding the reader on how the superconducting transition temperature can be
estimated from the renormalization group equations in the normal phase. In the case of weak

2 The Cooperon screening factor of Ref. [47] is given as w(ε) = ∆ /∆.
ε

9
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short-range interactions, these renormalization group equations, to the lowest order in t , read
[25,26,50]

dt
dy

= t2
(
1 − γs/2 − 3γt/2 − γc

)
, (40a)

dγs

dy
= −

t
2

(
γs + 3γt + 2γc

)
, (40b)

dγt

dy
= −

t
2

(
γs − γt − 2γc

)
, (40c)

dγc

dy
= −

t
2

(
γs − 3γt

)
− 2γ 2

c , (40d)

d ln Zω

dy
=

t
2

(
γs + 3γt + 2γc

)
. (40e)

It is worthwhile to mention that, within the lowest order in t , the dependence of the
renormalization-group functions on the interaction parameters can be computed exactly [40,41].
There are subtleties (extensively discussed in the past, see e.g. Ref. [16–18]) related with the
renormalization of the Cooper-channel interaction. Recently, the difficulties with the Cooper-
channel renormalization have been resolved within the background-field renormalization scheme,
and the renormalization-group functions for interaction parameters γs,t,c have been computed
exactly (including dependence on γc) within the lowest order in t [26] (see also Ref. [46]). For
the purpose of this paper, it will be sufficient to use Eqs. (40a)–(40e) which are of the lowest order
in γs,t,c (and are not affected by the above subtleties).

The renormalization group equations are supplemented by the initial conditions t = t0, γs = γs0,
γt = γt0, and γc = γc0 at y = 0 (L = ℓ). We assume that the initial values of resistance and
interaction parameters are small, t0 ≪ 1 and |γs0|, |γt0|, |γc0| ≪ 1. In addition, we limit our
iscussion to the case of t0 ≫ |γc0|. We mention that for t0 ≪ |γc0| disorder modifies the BCS
ransition temperature only slightly. Under the above assumptions, we can neglect the γ 2

c term in
he r.h.s. of Eq. (40d) at the initial stage of the renormalization group flow. Then, the interaction
arameters flow towards the BCS line,

−γs = γt = γc = γ .

The initial value of γ is equal to γ0 = (3γt0 + 2γc0 − γs0)/6. We assume that γ0 < 0. Projecting
enormalization group Eqs. (40a)–(40d) onto the BCS line, we find

dt
dy

= t2,
dγ
dy

= 2tγ − 2γ 2/3 . (41)

Let us emphasize that the disorder-induced correction to the renormalization group equation
(the term 2tγ in Eq. (41) is intimately related to the multifractality of wave functions in the
noninteracting theory. The coefficient 2t coincides with the lowest-order term in the expansion
of the absolute value of the multifractal exponent |∆2| in powers of the resistance t [51]. As
known [52], the exponent ∆2 < 0 governs the scaling behavior of the disorder-averaged fourth
moment of the wave functions. In the NLSM formalism, the scaling of the fourth moment of the
wave functions is governed by an operator bilinear in Q . Therefore, to the linear order in interaction,
the renormalization-group equations of the interacting theory are controlled by scaling dimensions
at the noninteracting fixed point [25,53].

According to the renormalization group Eqs. (41), γ flows towards negative values and diverges
eventually at a finite length scale Lc . For |γ0| ≫ t20 one can estimate this lengthscale as [25]

Lc = ℓ exp
(
1/t0 − 1/tRGc

)
, (42)

where

tRG = 3t2/(2|γ |). (43)
c 0 0

10
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The divergence of γ at the finite length scale signals instability of the normal phase towards
uperconducting order at temperature T RG

c = D/L2c . Hence, we obtain

T RG
c ∼

1
τ
exp

(
−

2
t0

+
2
tRGc

)
. (44)

We emphasize that T RG
c is enhanced parametrically in comparison with the clean BCS transition

temperature T BCS
c given by Eq. (39). This enhancement occurs due to the positive sign of the

disorder-induced term 2tγ in Eq. (41). As explained above, this is a consequence of the multifrac-
tality in the noninteracting theory. Therefore, the origin of the enhancement of the superconducting
transition temperature is deeply rooted into the multifractality of two-dimensional disordered
electrons. Also we note that at t0 ∼

√
|γ0| transition into the insulating phase occurs [25].

.2. Relation between renormalization group flow and the modified self-consistency equation

We note that Eq. (38) has a striking resemblance with the renormalization group equation for γc
n the normal state, Eq. (40d). As we shall demonstrate below, this fact is not occasional. As usual,
n order to estimate the superconducting transition temperature, we can linearize Eq. (37). Then
e find

∆ε = −2πT
∑
ε′>0

γc(Lε+ε′ )
∆ε′

ε′
. (45)

In order to make connection of Eq. (45) with the renormalization group equations in the normal
state, following Refs. [47,49], we substitute Lε+ε′ by min{Lε, Lε′}. We also substitute the sum over
atsubara energies by an integral over continuous energies (see below for arguments as to why it

s possible). Then Eq. (45) can be reduced to the following differential equation,

d2Υε

dy2ε
= −t(γs − 3γt )

[
Υε − Υε=πT

]
,

d2Υε

dy2ε

⏐⏐⏐⏐⏐
ε=πT

= 0 ,
d lnΥε

dyε

⏐⏐⏐⏐⏐
ε=1/τ

= 2γc0 , (46)

here ∆ε = −(1/2)dΥε/dyε and yε = ln Lε/ℓ. Eq. (46) is worthwhile to compare with the equation

d2Υ
dy2

= −t(γs − 3γt )Υ ,
d lnΥ

dy

⏐⏐⏐⏐⏐
y=0

= 2γc0 , (47)

that can be obtained from Eq. (40d) upon the substitution γc = (dΥ /dy)/(2Υ ). Eqs. (46)–(47)
ecome identical if we impose the additional condition Υε=πT = 0. Such condition for Υε in Eq. (46)

is needed in order to have one-to-one correspondence between Υε and ∆ε . For Υ in Eq. (47), the
condition Υ = 0 appears automatically, since γc diverges at the length scale Lc . Therefore, we can
identify Υε with Υ (Lε):

Υε ≡ Υ (Lε) . (48)

Then the condition Υε=πT = 0 determines a certain temperature Tc for which LπTc = Lc .
Temperature Tc defined in this way is given by Eq. (44). Thus, the superconducting transition
temperature determined from the self-consistency equation coincides with the one found from the
renormalization group equations in the normal phase. It is worthwhile to mention that there is a
subtle difference between Eq. (46) and (47). The variables t , γs, and γt in Eq. (47) are governed by
enormalization group equations (40a)–(40d), whereas in Eq. (46) they obey Eqs. (40a)–(40c) and
38). In the arguments given above we neglected this subtlety.

.3. Estimate for Tc from the modified self-consistency equation

Now we shall compare the prediction for the transition temperature (44) that stems from the
enormalization group flow in the normal state with the one obtained from the accurate analysis
11
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Fig. 1. (a) Dependence of the inverse maximum eigenvalue, 1/λ(M)
max on ζ . The dots are numerical values, the red solid

line is a fit. Extrapolation to the infinite size of the matrix M is performed. (b) Comparison between the function f (z),
Eq. (56), (red curve), the function f (z) (blue dot-dashed curve) and the eigenvector (blue dots) corresponding to the
maximal eigenvalue of the matrix M for t0 = 0.14 and γ0 = −0.05.

of the modified self-consistency equation (45). In order to analyze this equation, we project the
renormalization group equations onto the BCS line −γs = γt = γc = γ and neglect interaction
orrections to the renormalization of t (see Section 5.1). This implies substitution of γc by γ in
q. (45), where the length-scale dependence of γ is governed by the following renormalization
roup equations:

dt
dy

= t2 ,
dγ
dy

= 2γ t . (49)

Solving the above equation for t(L) and γ (L), we find

t(L) =
t0

1 − t0 ln L/ℓ
, γ (L) = γ0

t2(L)
t20

. (50)

Eq. (45) can be viewed as an eigenvalue problem, such that the transition temperature is
determined by the maximum eigenvalue of a corresponding matrix. We parametrize the transition
temperature as Tc = (2πτ−1) exp(−2/t0 + 2/tc) where tc satisfies inequality 1 ≫ tc ≫ t0. Then,
ewriting Eq. (45) with the help of Eq. (50), we obtain

∆n =
4|γ0|

t20

∑
n′⩾0

Mn,n′ (2/tc)∆n′ , Mn,n′ (ζ ) =
1

[ζ + ln(n + n′ + 1)]2
1

n′ + 1/2
. (51)

he above approximate analysis of the self-consistency equation suggests that in the case ζ ≫ 1, the
aximum eigenvalue of M(ζ ) behaves as λ

(M)
max ∝ 1/ζ . The numerical data for λ

(M)
max can be viewed in

ig. 1a. The numerical results support the above expectation. For ζ ≫ 1, one finds λ
(M)
max = uM/(2ζ )

ith uM ≈ 1.26. We note that this result satisfies the Perron–Frobenius bound at ζ ≫ 1,

λ(M)
max < min

n

∑
n′⩾0

Mn,n′ (ζ ) = 1/ζ . (52)

herefore, the self-consistency equation (51) results in the following expression for the supercon-
ucting transition temperature, cf. Eq. (44):

T SC
c ∼

1
τ
exp

(
−

2
t0

+
2
tSCc

)
, tSCc = uM t20/|γ0| . (53)

We note that the assumption ζ = 2/tc ≫ 1 is indeed satisfied.
The fact that ζ is large allows us to find the eigenvector ∆n that corresponds to the maximum

igenvalue λ
(M)
max. Let us use the Euler–Maclaurin formula for the summation over n′ in Eq. (51). This

s justified by the condition ζ ≫ 1. In addition, we approximate ln(n+n′
+1) by ln(max{n, n′

}+1)
as we shall see below, such simplification provides qualitatively correct results). With these
12
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approximations, we arrive at the following equation:

∆(un) = 2u2
n

∫ u0

un

du
u2 ∆(u) + 2

∫ un

u∞

du ∆(u) +
t20

|γ0|
u2
n∆(u0) , (54)

here

un =
2|γ0|

t20 [2/tc + ln(n + 1)]
.

he quantity u∞ = |γ0|/t0 ≪ 1 corresponds to un with the maximally allowed index n ≃ 1/(2πTcτ ).
Let us parametrize ∆(un) as ∆(un) = ∆(u0)f (un), where a function f (u) satisfies the normalization
condition f (u0) = 1. Then the function f (u) satisfies the following differential equation,

uf ′′(u) − f ′(u) + 4f (u) = 0 , f ′(u0) = Cu0 , f ′(u∞) = 2f (u∞)/u∞ , (55)

where C = 2t20/|γ0| ≪ 1. Using the smallness of u∞, the solution of the above equation can be
written as

f (u) =
F (u)
F (u0)

, F (u) = uJ2(4
√
u) . (56)

Here, J2(x) denotes the Bessel function of the first kind. The yet unknown parameter u0 can be found
rom the boundary condition at u = u0, f ′(u0) = Cu0. To the lowest order in C ≪ 1, the parameter
0 can be found as

u0 = uc −
Cu2

c

4
, (57)

here uc ≈ 0.92 is the solution of the equation F ′(uc) = 0. Hence, neglecting the difference between
u0 and uc (proportional to t20/|γ0| ≪ 1), we find that the superconducting transition temperature
is given by [cf. Eqs. (44) and (53)]

Tc ∼
1
τ
exp

(
−

2
t0

+
2
tc

)
, tc = uc t20/|γ0| . (58)

We note that the 25% discrepancy in the numerical values of uc and uM indicates that the approx-
mation ln(n + n′

+ 1) by ln(max{n, n′
} + 1) is not justified by any small parameter. Nevertheless,

ur approximate solution for the eigenvector with the maximum eigenvalue, Eq. (56), is in good
greement with the eigenvector determined numerically, as shown in Fig. 1b.
The estimate (44) for the superconducting temperature from the analysis of the renormalization

roup equations in the normal phase and the estimates (53) and (58) on the basis of the self-
onsistency equation are essentially the same except for different numerical values of the constant
. In all three cases its value is of the order of unity (1.5, 1.26, and 0.92, respectively). We emphasize
lso that significant dependence of the gap function ∆ε on the Matsubara energy ε appears just at
he superconducting transition temperature.

. The energy dependence of the gap function

.1. The gap function near Tc

The non-trivial energy dependence of the gap function at the transition temperature suggests
hat ∆(z0) vanishes at T = Tc . The dependence of the gap function on temperatures at Tc − T ≪ Tc
can be found in a way similar to the BCS theory. We expand the modified self-consistency equation
(37) to the third order in the gap function:

∆ε = 2πT
∑

|γ (Lε+ε′ )|
∆ε′

ε′
− πT

∑
|γ (Lε+ε′ )|

∆3
ε′

ε′3 . (59)

ε′>0 ε′>0

13
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We note that the expansion of γ

(
L√

ε2+∆2
ε+

√
ε′2+∆2

ε′

)
in powers of ∆ε and ∆ε′ leads to the terms

hich are proportional to a small factor t40/γ
2
0 ≪ 1. Such terms can be safely neglected. Let us

arametrize the gap function as ∆ε = ∆0(T )f (uε) where uε = |γ0|t(Lε)/t20 . Then taking into account
hat the sum over ε′ in the last term of the right-hand side of Eq. (59) is dominated by ε′

∼ Tc , we
ind

f (uε) = 2u2
ε

∫ uT

uε

du
u2 f (u)+2

∫ uε

u∞

duf (u)+
C
2
u2

ε, C =
2t20
|γ0|

(
1 −

7ζ (3)∆2
0(T )

8π2T 2
c

f 3(zT )
)

, (60)

here uT = |γ0|t(LπT )/t20 . The above integral equation is reduced to Eq. (55) but with uT instead
f u0. Using Eq. (57) and expressing uT and u0 in terms of T and Tc , respectively, we obtain the
ollowing well-known result of the BCS theory:

∆0(T ) =

[
8π2

7ζ (3)
Tc(Tc − T )

]1/2
, Tc − T ≪ Tc . (61)

We note that the corrections to the BCS-type temperature dependence are controlled by the small
parameter t20/|γ0| ≪ 1.

6.2. The gap function at low temperatures T ≪ Tc

Let us first analyze the energy dependence of the gap function ∆ε at the zero temperature. We
xpect that the function ∆ε has a form similar to the one at T = Tc , see Fig. 1b. We introduce
he energy ε0 which is given by the solution of the equation ε0 = ∆ε0 . Then, we assume that for
< ε0 the gap function ∆ε is close to its value ∆0 at ε = 0. For ε > ε0 the gap function ∆ε is a

monotonously decreasing function that reaches the value ∆ at ε ∼ 1/τ .
At ε < ε0 the self-consistency equation (37) can be approximately written as

∆ε =

∫ 1/τ

0

dε′∆ε′√
ε′2 + ∆2

ε′

⏐⏐γ (L
∆0+

√
ε′2+∆2

ε′

)
⏐⏐ ⎡⎣1 −

√
ε2 + ∆2

ε − ∆0

∆0 +

√
ε′2 + ∆2

ε′

t(L
∆0+

√
ε′2+∆2

ε′

)

⎤⎦
=∆0 −

[√
ε2 + ∆2

ε − ∆0
] ∫ 1/τ

0

dε′∆ε′√
ε′2 + ∆2

ε′

⏐⏐γ (L
∆0+

√
ε′2+∆2

ε′

)
⏐⏐t(L

∆0+

√
ε′2+∆2

ε′

)

∆0 +

√
ε′2 + ∆2

ε′

. (62)

ince the dependence of γ on L, governed by Eq. (50), is only logarithmical, the integral over ε′ in
Eq. (62) is dominated by ε′

∼ ε0. We then find:

∆ε ≃ ∆0 −
t40
γ 2
0
u3

∆0+
√
2ε0

[√
ε2 + ∆2

ε − ∆0

] ∫
∞

0

dx
√
1 + x2(∆0/ε0 +

√
1 + x2)

. (63)

his result implies that ∆ε is constant at ε < ε0 up to corrections of the order of t40/γ
2
0 . With the

ame accuracy the energy scale ε0 coincides with ∆0. Further, we can substitute u∆0 for u∆0+
√
2ε0

n Eq. (63). Therefore, at ε < ∆0 the gap function behaves as

∆ε ≃ ∆0 −
t40
γ 2
0
u3

∆0

[√
ε2 + ∆2

0 − ∆0

]
. (64)

At ε ⩾ ε0 ≃ ∆0 we approximate the self-consistency equation (37) as follows:

∆ε =
⏐⏐γ (Lε)

⏐⏐ ∫ ε0

0

dε′∆0√
ε′2 + ∆2

0

+
⏐⏐γ (Lε)

⏐⏐ ∫ ε

ε0

dε′∆ε′

ε′
+

∫ 1/τ

ε

dε′∆ε′

ε′

⏐⏐γ (Lε′ )
⏐⏐ . (65)

Here, the dependence of γ on L is governed by Eq. (50). We note that Eq. (65) is justified for ε ≫ ε0.
For ε ≃ ε0, a more accurate treatment of the self-consistency equation (37) results in corrections
of the order of t2/|γ |. Parametrizing the energy dependence of the gap function at ε ⩾ ε as
0 0 0
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Fig. 2. Dependence of ratio ∆ε/∆0 on ln(ε/∆0) at T = 0 for γ0 = −0.005 and t0 = 0.03. The monotonously decreasing
art of the curve corresponds to the function f (zε).

ε = ε0f (uε), we find that the integral equation (65) results in Eq. (55) with uε0 entering in place of
0 and with the value of the constant C = 2c1t20/|γ0|, where c1 = arcsinh(1). We note that, in order
o find the precise value of c1, one needs to take into account the t20/|γ0| corrections to Eq. (65).
owever, we are not interested in such accuracy and set C to zero. Then, we find that the function
(u) is given by Eq. (56) with uc replacing u0. With the same accuracy, we have ε0 = ∆0 ≃ Tc , cf.
q. (58).
Expressing the right-hand side of Eq. (65) in terms of the function f (z) and setting ε ∼ 1/τ , we

etrieve

∆ = c∆(γ0/t0)2∆0 , c∆ = 2
∫ uc

0

du
u2 f (u) ≈ 5.4 . (66)

e note that ∆ ≪ ∆0. All in all, we can summarize the energy dependence of the spectral gap at
= 0 as

∆ε = ∆0

⎧⎨⎩
1 , ε < ∆0 ,

F
(
|γ0|t(Lε)/t20

)
F (uc)

, ε ⩾ ∆0 ,
∆0 ∼

1
τ
exp

(
−

2
t0

+
2|γ0|

uc t20

)
. (67)

The overall dependence of the gap function ∆ε on ε is shown in Fig. 2.
We emphasize that within our approximate treatment, the values of ∆0 and Tc coincide with the

xponential accuracy, i.e. the exponential factor in Eq. (67) coincides with the exponential factor in
q. (58). However, we cannot exclude a possibility that the magnitude of the ratio ∆0/Tc differs

from the one in the BCS theory. This can result from the corrections of the order of t20/|γ0| that
etermine the coefficient C in Eq. (55), see Eq. (57).
In order to consider the effect of nonzero but low temperatures, T ≪ Tc , we need to perform

summation over Matsubara frequencies in the interval 0 < εn ≲ ∆0 more accurately. We assume
that the parameter ∆0 becomes temperature dependent, ∆0 → ∆0(T ). Then Eq. (65) should be
odified as follows:

∆ε = |γ (Lε)|

⎛⎝2πT
∑
ε′>0

∆0(T )
ε′2 + ∆2

0(T )
−

∫ 1/τ

∆0(T )

dε′ ∆0(T )√
ε′2 + ∆2

0(T )

⎞⎠+

∫ ε

ε0

dε′

ε′
|γ (Lε)|∆ε′

+

∫ 1/τ

ε

dε′

ε′
|γ (Lε′ )|∆ε′ . (68)

Using the parametrization, ∆ε = ∆0(T )f (uε), one can check that the function f (u) satisfies Eq. (55)
ith u replaced by u (T ) = |γ |t(L )/t2. The constant C becomes a T -dependent function given
0 0 0 ∆0(T ) 0
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C(T ) ≃ C(T = 0) −
4t20
|γ0|

∫
∞

0

dE√
E2 + ∆2

0

e−

√
E2+∆2

0/T
= C(T = 0) −

2t20
|γ0|

√
2πT
∆0

e−∆0/T . (69)

sing Eq. (57), we can express u0(T ) in terms of u0, yielding

∆0(T ) = ∆0 − (2πT∆0)1/2e−∆0/T , T ≪ Tc . (70)

Therefore, the dependence of the magnitude of the gap function on temperature T ≪ Tc at ε < ∆0
is the same as in the BCS theory. We note that there are corrections to this result which are of the
order of t20/|γ0|.

7. Disorder-averaged density of states

In this section, we analyze the disorder-averaged density of states of single-particle excitations
in the superconducting state. Within the NLSM formalism, the average density of states can be
obtained as

ρ(E) =
ν

4
Re sp⟨Q αα

nn ⟩ , (71)

where the analytic continuation to real energies, εn → E+i0, is performed. Here symbol ‘sp’ denotes
the trace over particle–hole and spin spaces. Plugging in the parametrization (23) into Eq. (71), one
finds

ρ(E) = ν Re Z1/2
ε cos θε

⏐⏐⏐⏐⏐
ε→−iE+0

= ν Re Z1/2
ε

ε√
ε2 + ∆2

ε

⏐⏐⏐⏐⏐
ε→−iE+0

. (72)

The factor Zε can be written as Zε = Z(L√
ε2+∆2

ε
), where [39]

d ln Z
d ln y

= t(γs + 3γt + γc). (73)

Projecting Eq. (73) to the BCS line, one finds that

Zε ≃ 1 + 2γ (L√
ε2+∆2

ε
). (74)

This factor encodes the interaction-induced corrections to the density of states of the type that leads
to the zero-bias anomaly in the normal state [39].

As one can see, in order to compute the average density of states, we need to make an analytic
continuation for the gap function ∆ε from Matsubara energies to real energies. We emphasize that
the nontrivial dependence of ∆ε on ε implies that the spectral gap at real energies, ∆(E), has both
eal and imaginary parts. The symmetry implies that Re∆(E) is an even function of E whereas
m∆(E) is an odd function of E.

.1. The real and imaginary parts of ∆(E)

We restrict our consideration to the case of zero temperature, T = 0. Performing analytic
ontinuation in Eq. (64), we find that the gap function at E ⩽ ∆0 is purely real,

∆(E) ≃ ∆0 −
t40u

3
0

γ 2
0

[√
∆2

0 − E2 − ∆0

]
. (75)

t energies E ≳ ∆0, the imaginary part of ∆(E) appears. To show that the nonzero imaginary part
does exist, one can consider the perturbative expression (32). Performing analytic continuation to
the real energy, we find that Im∆(E ∼ 1/τ ) ∼ ∆t0. We note that the imaginary part of ∆(E) is
onzero due to the imaginary part of the renormalized interaction in the Cooper channel, γc , which
orresponds to the superconducting fluctuation propagator.
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For ε ≳ ∆0, we energy dependence of the gap function is described by Eq. (67). After analytic
continuation, iε → E + i0, in Eq. (67), we obtain

∆(E) = ∆0f (ũE) , (76)

here

ũE =
|γ0|t̃(LE)

t20
=

|γ0|/t0
1 + (t0/2) ln(Eτ ) − iπ t0/4

≃ uE

(
1 +

iπ t20
4|γ0|

uE

)
. (77)

Here, we have used the fact that t(LE) ≪ 1. The real and imaginary parts of ∆(E) read:

Re∆(E) =∆0f
(

|γ0|t(LE)
t20

)
, (78a)

Im∆(E) =∆0
π |γ0|t2(LE)

4t20
f ′

(
|γ0|t(LE)

t20

)
. (78b)

Expression (78a) has the same range of validity as Eq. (67). It provides us with an estimate for
the real part of the gap function at E ⩾ ∆0 with corrections of the order of t20/|γ0| neglected.
The situation with the imaginary part of the gap function is more delicate. Eq. (78b) means that
Im∆(E ∼ ∆0) ∼ ∆0t40/γ

2
0 . We note that the contribution of the same order will be given by the

continuation of Eq. (75) to energies larger than ∆0. This fact implies that, in order to compute
Im∆(E) at energies E ∼ ∆0, one needs to retain terms of the order of t40/γ

2
0 in the solution of

Eq. (37). However, at large energies, E ≫ ∆0, Eq. (78b) provides the leading result to the imaginary
part of the gap function. For example, at E ∼ 1/τ , Eq. (78b) yields Im∆(E ∼ 1/τ ) ∼ ∆t0 that
atches with the perturbative result. Additional argument that the more accurate (to the order

4
0/γ

2
0 ) expression for the real part of ∆(E) is needed in order to determine Im∆(E) is given by the

ramers–Kronig relations for imaginary and real parts of ∆(E) (see Appendix B).
The above results suggest that there is an energy Eg such that Im∆(E) = 0 for E ⩽ Eg and

m∆(E) > 0 for E > Eg. Making analytic continuation to the real frequencies in the self-consistency
quation (37), we obtain

∆(E) = 2πT
∑
ε′>0

⏐⏐γ (L√
∆2(E)−E2+

√
ε′2+∆2

ε′

)
⏐⏐ ∆ε′√

ε′2 + ∆2
ε′

. (79)

For energies close to the energy Eg, we can expand the right hand side of Eq. (79) as

∆(E) = ∆(Eg) − α

[√
∆2(E) − E2 −

√
∆2(Eg) − E2

g

]
, (80a)

α = 2πT
∑
ε′>0

⏐⏐γ (L√
∆2(Eg)−E2g+

√
ε′2+∆2

ε′

)
⏐⏐ t(L√

∆2(Eg)−E2g+

√
ε′2+∆2

ε′

)
∆ε′

ε′2 + ∆2
ε′

. (80b)

e shall demonstrate below that the parameter α ∼ t40/γ
2
0 ≪ 1. Solving Eq. (80a) for α ≪ 1, we

ind the dependence of the gap function for real energies close to Eg,

∆(E) = ∆(Eg) − α

√
E2
g − E2 , ∆(Eg) = Eg(1 + α2/2) , |E − Eg| ≪ Eg . (81)

In agreement with our assumptions, Im∆(E) = 0 for E ⩽ Eg. We note that ∆(E) ⩾ E for E ⩽ Eg.
For E > Eg the imaginary part of the gap function is non-zero, Im∆(E) = −iα

√
E2 − E2

g . We note
that negative sign of Im∆(E) at energies E > Eg is needed for positivity of the density of states
(see below). However, away from Eg the imaginary part of Im∆(E) has to change sign in order to
be consistent with the asymptotic at large energies, Eq. (78b). The change of the sign of Im∆(E)
occurs at the energy of the order of a few E .
g
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Now we can estimate the parameter α. The comparison of Eq. (81) with Eq. (75) implies that Eg
s of the order of ∆0. The sum over ε′ in Eq. (80b) is dominated by ε′

≃ ∆ε′ ≃ ∆0. Then we find

α ≃
⏐⏐γ (L2∆0 )

⏐⏐t(L2∆0 )
∫

∞

0

dε′ ∆0

ε′2 + ∆2
0

=
πu3

0

2
t40
γ 2
0

. (82)

Here, we have taken into account that
√

∆2(Eg) − E2
g = αEg ≪ ∆0.

.2. The average density of states

With the help of the above results for ∆(E), we can derive the expression for disorder-averaged
density of states as a function of energy. For large energies, E ≫ ∆0, the imaginary part of ∆(E)
an be neglected in comparison with its real part, see Eqs. (78a) and (78b). Since for E ≫ ∆0 the
nergy is always larger than the real part of ∆(E), we find

ρ(E) = ν
E√

E2 − ∆2
0f 2

(
|γ0|t(LE)/t20

) , ∆0 ≪ E ≲ 1/τ . (83)

Here and hereinafter we neglect the factor Zε , see Eq. (72), since it provides negligible corrections
of the order of t20/|γ0| in the parametric regime that we consider.

In order to compute ρ(E) at energies close to Eg ≃ ∆0, we use the expression (81) for ∆(E).
ntroducing ∆E = E − Eg, we find for |∆E| ≪ Eg,

ρ(E) =
ν

α

⎧⎨⎩0, ∆E < 0 ,

Im
[
1 −

2∆E
α2Eg

− 2i
√

2∆E
α2Eg

]−
1
2
, ∆E ⩾ 0 .

(84)

s expected, the energy Eg determines the gap edge in the disorder-averaged density of states. Using
q. (84), we derive a square-root dependence of the density of state near the gap edge:

ρ(E) = ν

√
2

α2

√
E − Eg
Eg

, 0 < E − Eg ≪ α2Eg . (85)

The square-root growth of ρ(E) turns into the maximum at E = Emax = Eg(1+α2/2). The magnitude
at the maximum is given as ρ(Emax) = ν/(2α) ∼ νγ 2

0 /t40 ≫ ν. For energies larger than Emax, the
density of states decays,

ρ(E) =
ν

√
2

√
Eg

E − Eg
, α2Eg ≪ E − Eg ≪ Eg . (86)

e note that Eq. (86) matches the high energy asymptotics, Eq. (83), at energy of the order of Eg .
The dependence of the disorder-averaged density of states on energy is shown in Fig. 3. (See

ection 8.2 for discussion of the mesoscopic fluctuations of the local density of states.) We note that
he profile of ρ(E) is very similar to the density of states in the presence of the depairing term in
he Usadel equation, introduced, e.g., by the scattering off magnetic impurities [54]. The comparison
f Eq. (85), as well as the position of the maximum and its magnitude, with the Abrikosov–Gor’kov
heory suggests that the effective depairing parameter η ∼ α3. We note that the depairing term in
he Usadel equation appears also in the model with a spatially varying, random interaction in the

ooper channel [55] and with a spatially varying random order parameter [56].
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Fig. 3. Sketch of the dependence of the local density of states ρ(E, r)/ν on the energy E for |γ0| ≪ t0 ≪
√

|γ0|. The red
olid curve corresponds to the disorder-averaged density of states (see text in Section 7.2). The dashed red curves and
he shaded region illustrate the mesoscopic fluctuations of the local density of states. There are no quasiparticle states
elow Eg . The energy Eg∗ separates the region of strong and weak mesoscopic fluctuations. The energy E∗ demarcates
he energy regions where the mesoscopic fluctuations are cut off by the length scale L∗ (Eg < E < E∗) and the dephasing
length Lφ (E∗ < E) (see text in Section 8.2). Inset: the region close to the gap edge Eg . The curve corresponds to Eq. (84).

8. Mesoscopic fluctuations of the local density of states in the superconducting state

8.1. Perturbative approach

We start analysis of the mesoscopic fluctuations of the local density of states from the calculation
of its dispersion. It can be expressed in terms of bilinear in Q operators [57],

⟨[δρ(E, r)]2⟩ =
ν2

32
Re
[
P2(iεn1 , iεn3 ) − P2(iεn1 , iεn2 )

]⏐⏐⏐⏐⏐ iεn1,n3→E+i0
iεn2→E−i0

, (87)

here δρ(E, r) = ρ(E, r) − ⟨ρ(E, r)⟩ and

P2(iεn, iεm) = ⟨⟨spQ α1α1
nn (r) · spQ α2α2

mm (r)⟩⟩ − 2⟨sp
[
Q α1α2
nm (r)Q α2α1

mn (r)
]
⟩ . (88)

Here α1 ̸= α2 are some fixed replica indices and ⟨⟨A · B⟩⟩ = ⟨AB⟩ − ⟨A⟩⟨B⟩. Using parametrization
(23) for Q in Eq. (88) and expanding to the second order in W , we obtain

P2(iεn1 , iεn3 ) = −
256
g

∫
ddq
(2π )d

{
sin2

(
θεn1

2

)
cos2

(
θεn3

2

)
Dq(iεn3 , −iεn1 )

+ cos2
(

θεn1

2

)
sin2

(
θεn3

2

)
Dq(iεn1 , −iεn3 )

}
(89)

nd

P2(iεn1 , iεn2 ) = −
256
g

∫
ddq
(2π )d

{
cos2

(
θεn1

2

)
cos2

(
θεn2

2

)
Dq(iεn1 , iεn2 )

+ sin2
(

θεn1

2

)
sin2

(
θεn2

2

)
Dq(−iεn2 , −iεn1 )

}
. (90)
19



I.S. Burmistrov, I.V. Gornyi and A.D. Mirlin Annals of Physics 435 (2021) 168499

M
w

A

l

t

o
b

By means of Eqs. (34) and (36), we find (for arbitrary signs of ε and ε′)

P2(iε, iε′) = −
128
g

∫
ddq
(2π )d

⎡⎣1 −
ε√

ε2 + ∆2
ε

ε′√
ε′2 + ∆2

ε′

⎤⎦ D

Dq2 +
√

ε2 + ∆2
ε +

√
ε′2 + ∆2

ε′

.

(91)

aking an analytic continuation to real frequencies in accordance with the prescription in Eq. (87),
e obtain the following result for the dispersion of fluctuations of the local density of states:

⟨[δρ(E, r)]2⟩ =
4ν2

g
Re
∫

ddq
(2π )d

[ (
1 +

E2

|∆2(E) − E2|

)
D

Dq2 + 2 Re
√

∆2(E) − E2

−

(
1 +

E2

∆2(E) − E2

)
D

Dq2 + 2
√

∆2(E) − E2

]
. (92)

t energies below the gap edge, E ⩽ Eg , the gap function is real and satisfies ∆(E) ⩾ E. Therefore,
the fluctuations of the local density of states are zero identically,

⟨[δρ(E, r)]2⟩ = 0 , E ⩽ Eg . (93)

Above the superconducting gap, E > Eg the mesoscopic fluctuations are non-zero. At energies
close to the gap, 0 < E − Eg ≪ Eg , we find

⟨[δρ(E, r)]2⟩ ≃ 2t0ρ2(E) ln
min{Lg , L}

ℓ
, (94)

where L stands for the system size and the average density of states, ρ(E) is given by Eq. (84). The
ength Lg is defined as

Lg =
√
D/(αEg ) ∼ (|γ0|/t20 )L2∆0 . (95)

Finally, at large energies, E ≫ ∆0, the general expression (92) can be simplified as

⟨[δρ(E, r)]2⟩ ≃ 2t0ρ2(E)

(
ln

min{L∗, Lφ, L}
ℓ

−
(Re∆(E))2

2E2 ln
min{L∗, Lφ, L}
L
2
√

E2−(Re∆(E))2

)
. (96)

We have neglected Im∆(E) everywhere except the denominator of the first diffusive propagator on
the right-hand side of Eq. (92). Here, the length L∗ is defined through

D/L2
∗

= |Im∆2(E)|/
√
E2 − (Re∆(E))2. (97)

Since Im∆(E) is small, the length scale L∗ is large, L∗ ≫ L2∆0 . In particular, at E ∼ ∆0 one can find
he following estimate: L∗ ∼ L2∆0 |γ0|/t20 ∼ Lg .

We note that the diffusive propagators in Eq. (92) are affected by dephasing due to electron–
electron interactions [39]. This results in appearance of the dephasing length Lφ in Eq. (96). For
energies E ≫ ∆0 the dephasing length can be estimated as

D/L2φ ∼ t(LE)γ 2(LE)E. (98)

At the spectral edge, E = Eg , Lφ diverges due to restriction of the phase volume for quasiparticles
(there are no quasiparticles below Eg ). Therefore, for energies close to the spectral edge, E−Eg ≪ Eg ,
the dephasing length exceeds the length Lg . This is the reason why Lφ is absent in Eq. (94).

The above results (93)–(96) can be summarized as

⟨[δρ(E, r)]2⟩ ≃ 2t0ρ2(E) ln
min{L, L∗, Lg , Lφ}

ℓ
. (99)

We remind the reader that the lengths Lg , L∗, and Lφ are defined in Eqs. (95), (97), and (98),
respectively. We mention that, with a logarithmic accuracy, t0 ln(min{L∗, Lg , Lφ}/ℓ) ∼ 1 for energies
f the order of ∆0. This indicates that the perturbative treatment of mesoscopic fluctuations has to
e extended to a more elaborated renormalization group approach.
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8.2. Renormalization group approach

The perturbative result (99) has exactly the same form as the perturbative correction to the
ispersion of the local density of states above the superconducting transition. Essentially, the
uperconducting state leads to the specific infrared cut off length scale, min{L∗, Lg , Lφ}, only. This
uggests that one can use the one-loop renormalization group equation for m2 ≡ ⟨[ρ(E, r)]2⟩/ρ2(E)
erived in Ref. [39],

d lnm2

dy
= 2t + O(t2) (100)

p to the length scale min{L∗, Lg , Lφ}. Solving Eqs. (100) and (49), we find

⟨[ρ(E, r)]2⟩
ρ2(E)

≃

[
t(min{L, L∗, Lg , Lφ})

t0

]2
. (101)

We note that the length scale L∗ starts from the value of the order of Lg and, then, it grows
ith increasing E. The dephasing length Lφ has the opposite behavior: it decreases with increasing
nergy. Therefore, there is an energy E∗ at which the lengths L∗ and Lφ become of the same order.
sing

D
L2
∗

=
∆2

0

E
t20

|γ0|
u2
E f (uE)|f ′(uE)| ,

D
L2φ

=
t60

|γ0|
3 u

5
EE, (102)

here uE = |γ0|t(LE)/t20 , we can find the following estimate,

E∗ ∼ ∆0

(
|γ0|

t20
ln

|γ0|

t20

)1/2

. (103)

e note that E∗ ≫ ∆0. Substituting expressions (102) for the length scales L∗, and Lφ , into Eq. (101),
e obtain the following energy dependence of the disorder-averaged second moment of the local
ensity of states (in the case L = ∞),

⟨[ρ(E, r)]2⟩ =
u2
c t

2
0

γ 2
0

ρ2(E)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + (2uc t20/|γ0|) ln(|γ0|/t20 ) , E ∼ ∆0 ,

1 − (uc t20/|γ0|) ln[∆0u2
E f (uE)f ′(uE)t20/(E|γ0|)] , ∆0 ≪ E ≪ E∗ ,(

1 + [uc t20/(2|γ0|)] ln[t60u
5
EE/(|γ0|

3∆0)]
)−2

, E∗ ≪ E ≪ 1/τ .

(104)

nterestingly, in accordance with Eq. (104), the disorder-averaged normalized second moment of
he local density of states has the maximum at E = E∗. The magnitude of this maximum can be
stimated as

⟨[ρ(E∗, r)]2⟩
ρ2(E∗)

ρ2(E ∼ ∆0)
⟨[ρ(E ∼ ∆0, r)]2⟩

− 1 ∼ (uc t20/|γ0|) ln(|γ0|/t20 ) . (105)

ince the right hand side of the relation (105) is much smaller than one, we can approximate the
isorder-averaged second moment of the local density of states at Eg < E < E∗ as

⟨[ρ(E, r)]2⟩ = (u2
c t

2
0/γ

2
0 )ρ

2(E) . (106)

his indicates the strong mesoscopic fluctuations of the local density of states at energies Eg < E <

∗. With further increase of energy, the disorder-averaged second moment of the local density of
tates decreases. Using Eq. (104), we find

⟨[ρ(E ∼ 1/τ , r)]2⟩ ≃ ρ2(E ∼ 1/τ ) . (107)

hus, the mesoscopic fluctuations of ρ(E, r) are suppressed at the ultraviolet energy scale, E ∼ 1/τ .
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The dependence of ⟨[ρ(E, r)]2⟩ on the energy is illustrated in Fig. 3, where the functions ρ(E)±
⟨[ρ(E, r)]2⟩ are shown by dashed orange curves. The fluctuations (not normalized) decrease with

increase of the energy. They are strong in the energy interval, Eg < E < E∗. At E∗ the dependence
f ⟨[ρ(E, r)]2⟩ on the energy is changed, as it was explained above. We note that there is a certain
nergy Eg∗ which is the solution of the following equation:

√
⟨[ρ(E, r)]2⟩ = ρ(E). Using Eq. (104),

e find that

Eg∗ ∼

(
∆0

τ

)1/2

∼
1
τ
exp

(
−

1
t0

+
|γ0|

uc t20

)
. (108)

s shown in Fig. 3, for energies E < Eg∗ the fluctuations of the local density of states are strong.
or energies E > Eg∗, the mesoscopic fluctuations are not enough to reduce significantly the local
ensity of states below its average value.

.3. Distribution function for the local density of states

In a similar way as it was done for the temperatures above Tc [39], one can generalize the result
104) to the higher moments of the local density of states,

⟨[ρ(E, r)]q⟩ = ρq(E)
[
A(E)

]q(q−1)/2
, A(E) = ⟨[ρ(E, r)]2⟩/ρ2(E) . (109)

We note that according to Eq. (104), the function A(E) > 1 in the energy interval Eg < E < Eg∗,
i.e. for region of strong mesoscopic fluctuations. The expression (109) implies the following log-
normal distribution for the normalized local density of states, ρ̃ = ρ(E, r)/ρ(E), (see Ref. [58] for
the case of a normal metal)

P(ρ̃) =
A(E)

√
2π lnA(E)

exp

[
−

1
2 lnA(E)

(
ln ρ̃ +

3
2
lnA(E)

)2
]

, Eg < E < Eg∗ . (110)

The log-normal distribution (110) predicts that the most probable value for the local density of
states is given as

ρmode(E) =
ρ4(E)

⟨[ρ(E, r)]2⟩3/2
. (111)

his result implies that the most probable height of the coherence peak can be estimated as
mode(E ∼ ∆0)/ν ∼ |γ0|

5/t70 . We note that for |γ0| ≪ t0 ≪ |γ0|
5/7 the magnitude of the coherence

eak in ρmode is much larger than ν. In the region |γ0|
5/7

≪ t0 ≪ |γ0|
1/2 the coherence peak is

bsent.
We also introduce the typical value of the normalized local density of states, ρ̃typ = exp⟨ln ρ̃⟩

here ⟨. . . ⟩ denotes the average with respect to the distribution (110). Then we obtain,

ρtyp(E) =
ρ2(E)

⟨[ρ(E, r)]2⟩1/2
. (112)

his result leads to the following estimate: ρtyp(E ∼ ∆0)/ν ∼ |γ0|
3/t50 . For |γ0| ≪ t0 ≪ |γ0|

3/5,
he magnitude of the coherence peak in ρtype is much larger than the bare value of the density of
tates. For |γ0|

3/5
≪ t0 ≪ |γ0|

1/2, the coherence peak is absent. We note that, strictly speaking,
he typical value of ρ̃ should be determined not from the distribution (110) but from the modified
istribution in which rare events of extremely small or extremely large values of ρ̃ are suppressed
see Ref. [59]). However, as one can check, such a modification does not significantly modify the
esult (112).

We mention that the following relation holds:

ρmode(E) ≪ ρtyp(E) ≪ ρ(E) . (113)

his means that for energies Eg < E < Eg∗, an experimentally measured local density of states
ill be typically much smaller than its average value given by Eqs. (83) and (84). Nevertheless, for
22
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|γ0| ≪ t0 ≪ |γ0|
3/5 a measured local density of states will typically have a high coherence peak and

the spectral gap of the order of Eg . For |γ0|
3/5

≪ t0 ≪ |γ0|
1/2, the coherence peak in a measured local

ensity of states will be completely suppressed and the density of states will have a soft spectral
ap of the order of Eg∗. In both ranges of t0, a measured local density of state at some spatial points
ill have much higher coherence peak than in the typical spatial regions. For energies E > Eg∗,
n experimentally measured local density of states will be close to the disorder-averaged density
f states (83). In this energy interval, E > Eg∗, the mesoscopic fluctuations of the local density of
tates are small. This physical picture for the local density of states is illustrated in Fig. 3.
Following Ref. [39], one can also generalize the result (104) to correlation functions of the local

ensity of states at different spatial points and different energies [60]. Finally, we note that the
act of strong mesoscopic fluctuations of the local density of states is consistent with the strong
esoscopic fluctuations of the superconducting order parameter, see Appendix A.

. Summary and conclusions

To summarize, we have developed the theory of the multifractal superconducting state in thin
ilms. Treating the fluctuations around the mean-field spatially homogeneous solution, we derived
he modified Usadel equation that incorporates the interplay of disorder and interactions at energy
cales larger than the spectral gap.
Our key findings are as follows:

(i) The modified Usadel equation, in combination with the self-consistency equation, yields
parametrically the same estimate for the multifractally enhanced superconducting transition
temperature as the one derived by considering the instability in renormalization group
equations in the normal phase.

(ii) The mutual effects of disorder and interactions result in strong dependence of the supercon-
ducting gap function on energy (see Fig. 2): at energies of the order of the spectral gap the
gap function ∆ε is parametrically enhanced in comparison with its magnitude at ultraviolet
energies ∼ 1/τ .

(iii) The spectral gap at zero temperature is multifractally enhanced in the same way as the
superconducting transition temperature.

(iv) The energy dependence of the gap function in the Usadel equation results in the profile of the
disorder-averaged density of states that, near the spectral gap, resembles the one derived in
the model of a spatially random superconducting order parameter (see Fig. 3). We stress that
the interplay of disorder and interactions leads to two opposite effects. On the one hand, it
results in the enhancement of the spectral gap, but on the other hand, it induces the effective
depairing parameter that cuts off the coherence peaks in the average density of states. The
corresponding depairing parameter is estimated as ∼ (t20/γ0)6 ≪ 1.

(v) The mesoscopic fluctuations of the local density of states in the superconducting state are
strong at E < Eg∗ (see Eq. (108)). In the energy interval Eg < E < E∗ (see Fig. 3 and Eq. (103))
their relative amplitude is of the order of t0/|γ0| ≫ 1 that is similar to the estimate in the
normal phase at temperatures close to the superconducting transition temperature [39]. It is
worth emphasizing that strong spatial fluctuations of the local density of states (including the
local value of the gap and the amplitude of coherence peaks) emerge in our theory despite
the fact the model does not involve any macroscopic inhomogeneities. Indeed, our starting
point is a model with short-range disorder and with all parameters being spatially uniform.
Emergent strong fluctuations are a mesoscopic effect resulting from quantum interference in
a disordered system.

Based on these findings for the statistics of fluctuations of the local density of states in thin films
ith multifractally-enhanced superconductivity, we conclude that disorder-induced interference
ffects dramatically affect spectral properties of these superconducting films, by fully governing the
hysics in a wide energy interval where the spectral gap for single-particle excitations establishes.
pecifically, we have identified a parametrically large energy range, Eg < E < Eg∗, where the
uasiparticle spectral gap can be zero in some spatial regions and non-zero in the other. The
23
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distribution function of the local density of states has a log-normal form, such that the typical value
of the density of states is lower that the average value. In other words, the system may locally look
as superconducting at energies much higher than Eg .

Our results for strong mesoscopic fluctuations of the local density of states are in qualitative
greement with tunneling spectroscopy data on thin superconducting films [31–36] and with
umerical solution of disordered attractive two-dimensional Hubbard model [37,38]. The strong
esoscopic fluctuations of the local density of states are accompanied by strong mesoscopic

luctuations of the superconducting order parameter.
On the technical side, within our approach, we have integrated over the spatial fluctuations of the

uperconducting order parameter from the very beginning. Therefore, they are hidden in the term
ˆ (c)
int that describes the interaction in the Cooper channel. The renormalization group analysis of the
LSM in the normal phase suggests that such a procedure is more convenient, since it allows one
o take into account the interplay between the spatial fluctuations of the superconducting order
arameter (the interaction in the Cooper channel) and charge and spin fluctuations (interaction
n the particle–hole channel). This interplay leads to strong renormalization of the NLSM action
t length scales of the order of LTc . In our approach, the mesoscopic fluctuations of the local
uperconducting order parameter manifest themselves in the course of the renormalization group
low as the energy dependence of the gap function.

Since we considered a macroscopically homogeneous sample, it was natural to address fluc-
uations around the spatially homogeneous mean-field solution. The emergent fluctuations of the
rder parameter encoded in the mesoscopic fluctuations of the density of states, as observed in
xperiments of the ‘‘gap tomography’’, are due to mesoscopic quantum interference effects above
he gap-edge energy. At the same time, it is interesting to see whether nonperturbative tails of the
ensity of states inside the gap would appear in spatially homogeneous disordered films studied
ithin the NLSM formalism. For this purpose, one should consider a possibility of existence of non-
rivial saddle-point solutions of the NLSM action. A more straightforward way to obtain such tails
ould be through the introduction of macroscopic inhomogeneities (say, in the local concentration
f impurities) that could induce ‘‘background’’ fluctuations of the superconducting gap.
We restricted our consideration to the case of a weak short-ranged interaction (suppressed by,

.g., high dielectric constant of the substrate), for which a strong effect of the enhancement of
uperconductivity by multifractality was predicted. The approach developed in this paper can be
eneralized in several directions. Our theory can be extended to include a strong short-ranged
nteraction, as well as the Coulomb interaction. In particular, it would be interesting to study
ow the multifractality affects the BCS–BEC crossover [61,62]. One can also study the multifractal
uperconducting state that occurs in the system that without superconducting instability is near the
nteracting metal–insulator transition. Our theory can also be extended to the case of an applied
agnetic field that destroys the superconducting state and may produce an intermediate phase
ith giant magnetoresistance [63] (for studying the giant magnetoresistance near the transition
ithin the NLSM formalism, see Ref. [26]). Finally, our approach does not take into account phase

luctuations of the order parameter, giving rise to the Berezinskii–Kosterlitz–Thouless phenomena
n superconducting films, as well as the existence of the vortices with a normal state in the core.
uch fluctuations can be incorporated into our theory in the way similar to the one in Ref. [46]. We
ote, however, that for sufficiently high conductance of the normal state, such effects are expected
o influence the results described in this article only slightly.
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Appendix A. Mesoscopic fluctuations of the superconducting order parameter

In this Appendix we estimate the mesoscopic fluctuations of the superconducting order pa-
ameter. While the quantity that is actually measured in experiments on the tomography of the
uperconductors is the local density of states (Section 8), the results of the scanning-tunneling-
icroscopy measurements are frequently translated into the maps of the fluctuating local order
arameter by fitting the density of states with the BCS ‘‘ansatz’’. Here, instead of translating our
esults for the mesoscopic fluctuation of the density of states into the fluctuations of the order
arameter, we calculate the latter directly within the NLSM formalism. The relation (9) suggests
hat the variance of the order parameter can be written as follows:

⟨δ∆2
r (r)⟩ =

(
πTγc

4

)2
[⟨⟨

Tr
[
tr0L

α1
0 Q (r)

]
· Tr
[
tr0L

α2
0 Q (r)

]⟩⟩
− 2

⟨
Tr
[
tr0L

α1
0 Q (r)tr0L

α2
0 Q (r)

]⟩]
,

(A.1)

here α1 ̸= α2 are some fixed replica indices. We note that the operator in the brackets in Eq. (A.1)
s the eigenoperator under renormalization group flow. This can be easily checked with the help of
he following identities:

⟨Tr AW Tr BW ⟩ = 2Y Tr
[
AB − ΛAΛB − ACBTC + AΛCBTCΛ

]
, (A.2a)

⟨Tr AWBW ⟩ = 2Y
[
Tr A Tr B − TrΛA TrΛB + Tr ACBTC − Tr AΛCBTCΛ

]
, (A.2b)

hat follow from Eq. (25). Here, Y = (t/2) ln(L/ℓ) and we have neglected the energy dependence of
he diffusive propagators at scales L ≫ LTc .

Using parametrization (23), expanding the right hand side of Eq. (A.1) to the second order in W ,
nd applying Eq. (25), we obtain the following perturbative result:

⟨(δ∆)2⟩
∆2 =

8
g

(∑
ε>0

sin θε

)−2 ∑
ε,ε′>0

sin θε sin θε′

∫
ddq
(2π )d

Dq(iε, −iε′) (A.3)

ere we have used the self-consistency equation (31). We note that the fluctuations δ∆ do not lead
o a finite single-particle density of states below the gap edge Eg but rather correspond to the spatial
luctuations of the superconducting condensate. The hard spectral gap for the quasiparticles results
rom an effective averaging over such fluctuations with the self-consistency or renormalization
roup procedure. With the logarithmic accuracy, we can estimate the right-hand side of Eq. (A.3)
s

⟨(δ∆)2⟩
∆2 ≃ 2t0 ln

min{LT , L∆0}

ℓ
. (A.4)

sing Eqs. (53) and (67), the perturbative result (A.4) implies that for temperatures T ≲ Tc the
esoscopic fluctuations of the superconducting order parameter are large, ⟨(δ∆)2⟩ ∼ ∆2. This is
onsistent with our results from Section 8.1, where the mesoscopic fluctuations of the density of
tates were calculated, cf. Eq. (99). Including renormalization effects as in the calculation of the
esoscopic fluctuations of the density of states in Section 8.2, one can generalize Eq. (A.4) in a
imilar manner, to obtain yet stronger fluctuations of the superconducting order parameter in thin
ilms with multifractally-enhanced superconductivity [60].

ppendix B. Kramers–Kronig relations for ∆(E)

In this appendix, we demonstrate how the Kramers–Kronig relations for ∆(E),

Im∆(E) = −p.v.

∫
∞ dω Re∆(ω)

, Re∆(E) = p.v.

∫
∞ dω Im∆(ω)

. (B.1)

−∞ π ω − E −∞ π ω − E

25



I.S. Burmistrov, I.V. Gornyi and A.D. Mirlin Annals of Physics 435 (2021) 168499

t

E

W
g
a
(
a
e

are satisfied by the approximate expressions for the real and imaginary parts of ∆(E). Let us rewrite
he Kramers–Kronig relation for Re∆(E) as

Re∆(E) = p.v.

∫
∞

0

dω
πω

[
Im∆(ω + E) + Im∆(ω − E)

]
. (B.2a)

xpressing the imaginary part of ∆(E) in terms of its real part in accordance with Eq. (78b),

Im∆(ω) = −(π/2)ω∂ω Re∆(ω) , (B.3)

we find

Re∆(E) = −p.v.

∫
∞

0

dω
2

[ ∂

∂ω

[
Re∆(ω + E) + Re∆(ω − E)

]
+

E
ω

∂

∂E

[
Re∆(ω + E) − Re∆(ω − E)

]]
= Re∆(E) +

π

2
E

∂

∂E
Im∆(E). (B.4)

e note that here we have neglected the contribution to Im∆(E) from energies close to the spectral
ap Eg . As one can see, when the approximation (B.3), which is valid for E ≫ ∆0, is used for
ll energies, an additional contribution to the real part of ∆(E) appears, which is of the order of
t40/γ

2
0 )z

2(z2f ′(z))′. The latter is of the order of t40/γ
2
0 at E ∼ ∆0. This implies that, in order to be

ble to compute the imaginary part of ∆(E) from the Kramers–Kronig relation, one needs to derive
xpression for Re∆(E) with the accuracy of the order of t40/γ

2
0 .
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