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Interaction of a Néel-type skyrmion with a superconducting vortex
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Superconductor-ferromagnet heterostructures hosting vortices and skyrmions are a new area of the interplay
between superconductivity and magnetism. We study the interaction of a Néel-type skyrmion and a Pearl vortex
in thin heterostructures due to stray fields. Surprisingly, we find that it can be energetically favorable for the
Pearl vortex to be situated at some nonzero distance from the center of the Néel-type skyrmion. The presence
of a vortex-antivortex pair is found to result in the increase of the skyrmion radius. Our theory predicts that
a spontaneous generation of a vortex-antivortex pair is possible under some conditions in the presence of a
Néel-type skyrmion.
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I. INTRODUCTION

Topological objects have been remaining at the focus of
theoretical and experimental research for more than half a cen-
tury. The existence of topologically stable configurations in
ferromagnets with the Dzyaloshinskii-Moriya interaction has
been predicted by Bogdanov and Yablonskii [1]. Now these
topological excitations, termed as skyrmions, are intensively
explored in an emergent field of skyrmionics [2].

Research on an interplay between magnetism and
superconductivity in heterostructures has long history
[3–7]. Recently superconductor-ferromagnet bilayers hosting
skyrmions have attracted great theoretical interest. It was
understood that skyrmions in proximity with a supercon-
ductor can not only induce Yu-Shiba-Rusinov-type bound
states [8,9] but can also host Majorana modes [10–16].
It was found [17] that the presence of skyrmions affects
strongly Josephson current via superconductor-ferromagnet-
superconductor junction. It has been also shown [18] that
skyrmion configurations can be stabilized by a superconduct-
ing dot or antidot situated at the top of a ferromagnetic film. In
ferromagnet-superconductor heterostructures, superconduct-
ing vortices and skyrmions can form bound pairs either due
to the interplay of proximity effect and spin-orbit coupling
[19,20] or due to their interaction via stray fields [21–24].

In this paper, we study the interaction between a Néel-
type skyrmion and a superconducting vortex in a chiral
ferromagnet-superconductor heterostructure, see Fig. 1. We
assume that the proximity effect is suppressed by the presence
of a thin insulating layer between ferromagnet and super-
conductor such that the interaction between a skyrmion and
a vortex is due to stray fields only. At first, by solving the
Maxwell-London equation, we determine the Meissner cur-
rent induced by a Néel-type skyrmion in the superconductor.
Contrary to the previous work [23], we consider the case of
ferromagnet and superconducting films of arbitrary widths.

Analysis of the general expression, cf. Eq. (6), in the case
of thin ferromagnetic and superconducting films yields that
the supercurrent has a maximum at distance of the order of
the skyrmion size from the center of the skyrmion. Secondly,
for thin ferromagnetic and superconducting films, we compute
the interaction energy between a Néel-type skyrmion and a
Pearl vortex due to stray fields. Contrary to previous results,
see Refs. [21–23], we find that in the case of a Néel-type
skyrmion with the positive and negative chiralities, it can be
energetically favorable for a vortex to settle at some distance
from the skyrmion’s center. At third, we study the effect of
the presence of superconducting vortex-antivortex pair on the
skyrmion size in thin heterostructures. We find that a Pearl
vortex leads to increase of a skyrmion radius. Under some
conditions, the spontaneous generation of a vortex-antivortex
pair in a superconducting film is possible in the presence of a
skyrmion.

The outline of the paper is as follows. In Sec. II, the so-
lution of the Maxwell-London equation is presented, and the
results for the supercurrent are given. The interaction energy
between a Néel-type skyrmion and a Pearl vortex is computed
and analyzed in Sec. III. In Sec. IV, the effect of a Pearl vortex
on the skyrmion radius is estimated. We end the paper with
summary and conclusions in Sec. V. Some technical details
of computations are presented in Appendix.

II. SUPERCURRENT GENERATED
BY A NÉEL-TYPE SKYRMION

We start from calculation of the supercurrent in the chiral
ferromagnet-superconductor heterostructure which is gener-
ated by a Néel-type skyrmion (see Fig. 1). The width of
the chiral ferromagnet (superconductor) film is dF (dS). We
assume the presence of a thin insulating layer between the
chiral ferromagnet and the superconductor that allows us to
neglect the proximity effect. The magnetization profile of
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FIG. 1. Sketch of a ferromagnet (green) - superconductor (blue)
heterostructure. There is also a thin insulating layer (black) which
suppresses the proximity effect. The ferromagnetic layer hosts a
Néel-type skyrmion. The magnetic profile of the skyrmion with the
positive chirality is schematically shown. The superconducting layer
hosts a vortex at some distance from the skyrmion’s center. The
vortex is shown schematically by blue lines, the yellow arrow points
towards the direction of its magnetic flux. dF and dS denote the width
of the ferromagnet and superconductor film, respectively (see text).

a Néel-type skyrmion in the chiral ferromagnet film in the
cylindrical coordinate system with the origin at the center of
the skyrmion is given as follows [25]:

MSk = Ms[erη sin θ (r) + ez cos θ (r)]. (1)

Here η = ±1 denotes the chirality of the skyrmion, θ (r)
stands for the skyrmion angle, Ms is the saturation magne-
tization of the chiral ferromagnet film, and er and ez are unit
vectors along the radial direction and the z axis (perpendicular
to the interface), respectively.

The spatial distribution of the vector potential ASk is gov-
erned by the Maxwell-London equation:

∇ × (∇ × ASk ) + λ−2
L �(−z)�(z + dS )ASk

= 4π�(z)�(dF − z)∇ × MSk, (2)

where �(x) denotes the Heaviside step function (with �(0) =
1) and λL stands for the London penetration depth. The
Maxwell-London equation should be supplemented by the
boundary conditions of continuity of the normal compo-
nent of BSk = ∇ × ASk and tangential component of BSk −
4πMSk�(z)�(dF − z) [26].

Since the right-hand side of Eq. (2) is proportional
to the unit vector eϕ, the vector potential ASk has only
the azimuthal component ASk,ϕ that depends on r and z.
The component ASk,ϕ is continuous at z = −dS, 0, dF ; its
derivative ∂ASk,ϕ/∂z is continuous at z = −dS and has the
jumps at z = 0 and z = dF : ∂ASk,ϕ/∂z|z=+0

z=−0 = −4πMSk,r and
∂ASk,ϕ/∂z|z=dF +0

z=dF −0 = 4πMSk,r .

The solution for ASk,ϕ (r, z) can be cast as the sum of two
terms, ASk,ϕ (r, z) = A(+)

Sk,ϕ (r, z) + ηA(−)
Sk,ϕ (r, z), where

A(σ )
Sk,ϕ (r, z)=−

∫ ∞

0
dq J1(qr)

G(σ )(q)

q

×

⎧⎪⎪⎨
⎪⎪⎩

κ
V,(σ )
2 e−qz, z � dF ,

1+σ
2 +κ

F,(σ )
1 eqz+κ

F,(σ )
2 e−qz, dF > z � 0,

κ
S,(σ )
1 eQz+κ

S,(σ )
2 e−Qz, 0 > z � −dS,

κ
V,(σ )
1 eqz, −dS > z.

(3)

Here Jn(z) stands for the Bessel function of the first kind. Also

we introduced Q =
√

q2 + 1/λ2
L and the functions

G(+)(q) = −4πMs

∫ ∞

0
dr rJ1(qr)θ ′(r) sin θ (r),

G(−)(q) = −4πMs

∫ ∞

0
dr rqJ1(qr) sin θ (r).

(4)

Here and afterwards, we use the following notation θ ′(r) ≡
dθ/dr. Using the continuity of the azimuthal component of
the vector potential, ASk,ϕ , and the boundary conditions for its
derivative, ∂ASk,ϕ/∂z, at z = −dS, 0, dF , we obtain (σ = ±),

κ
V,(σ )
2 = σ

2
(eqdF − 1) − sinh(QdS )X

qλ2
L

, κ
V,(σ )
1 = 2QeqdsX ,

κ
F,(σ )
1 = −1

2
e−qdF , κ

F,(σ )
2 = −σ

2
− sinh(QdS )X

qλ2
L

,

κ
S,(σ )
1 = (Q + q)eQdsX , κ

S,(σ )
2 = (Q − q)e−QdsX ,

X = q(1 − e−qdF )

(Q + q)2eQdS − (Q − q)2e−QdS
. (5)

The current density in the superconducting film, i.e., at
−dS � z � 0, can be calculated by means of the London
equation, j = −ASk/(4πλ2

L ). It is more convenient to trace
the total supercurrent flowing in the superconducting film,
Jϕ (r) = ∫ 0

−dS
dz jϕ (r, z). Then, we retrieve Jϕ = J (+)

ϕ + ηJ (−)
ϕ ,

where

J (±)
ϕ =

∫ ∞

0
dq

J1(qr)

4πλ2
L

G(±)(q)(1 − e−qdF )(1 − e−QdS )

Q[q + Q − (Q − q)e−QdS ]
, (6)

We mention that this expression is similar to the expression
for the current induced by a domain wall [27]. In the limit of a
thick superconductor, dS � λL, R, Eq. (6) transforms into the
result of Ref. [23]. Here R stands for the characteristic spatial
scale (radius) of a skyrmion.

Below we shall focus on the case of a thin chiral fer-
romagnet, dF � R, and a thin superconducting film, dS �
λL, R. As we shall demonstrate in the next section, the
asymptotic behavior of the supercurrent can be found for an
arbitrary smooth skyrmion profile with θ (0) = π and θ (r →
∞) → 0. Commonly used variational examples with such
kind behavior are the exponential ansatz θ (r) = θ̄ (r/R) where
θ̄ (x) = π exp(−x) and the 360◦ domain wall ansatz θ̄ (x) =
2 arctan(sinh(R/δ)/ sinh(Rx/δ)). Also we shall consider the
linear ansatz with θ (r) = π (1 − r/R) for r < R and zero
overwise.
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FIG. 2. The dependence of J (±)
ϕ and the total supercurrent Jϕ on the distance from the skyrmion center for the cases of positive (top)

and negative (bottom) chiralities. The parameters are dS/λL = 0.01, dF /λL = 0.005, and R/λL = 3. The supercurrent is calculated for the
exponential, domain wall (DW) and linear ansatz.

A. The case of a smooth skyrmion profile

The behavior of the supercurrent with the distance from the
center of the skyrmion is controlled by the functions G(±)(q),
see Eq. (4). It is convenient to introduce the dimensionless
functions g(±), such that G(±)(q) = 4πMsR g(±)(qR), where

g(+)(y) = −
∫ ∞

0
dx xJ1(yx)θ̄ ′(x) sin θ̄ (x),

g(−)(y) = −y
∫ ∞

0
dx xJ1(yx) sin θ̄ (x). (7)

Then in the case of a thin superconducting film, dS � λL, R,
and a thin chiral ferromagnet, dF � R, Eq. (6) can be drasti-
cally simplified,

J (±)
ϕ (r) = Ms

dF

R

∫ ∞

0
dy

yg(±)(y)J1(yr/R)

1 + 2yλ/R
. (8)

Here λ = λ2
L/dS denotes the Pearl penetration length [28]. The

asymptotic behavior of the function g(+)(y) is given as (see
Appendix A),

g(+)(y) =
{

2c2y, y � 1,

−9θ̄ ′(0)θ̄ ′′(0)/(2y4), y � 1,
(9)

where we introduced the numerical constants

ck = −1

4

∫ ∞

0
dx xk θ̄ ′(x) sin θ̄ (x), k = −1, 0, 1, . . . (10)

For example, in the case of the exponential ansatz, one finds
c2 ≈ 0.51. The asymptotics of the function g(−)(y) can be
written as (see Appendix A),

g(−)(y) =
{−b2y2/2, y � 1,

−3θ̄ ′′(0)/(2y3), y � 1.
(11)

Here we introduced the numerical constants

bk =
∫ ∞

0
dx xk sin θ̄ (x), k = −1, 0, 1, . . . (12)

We note that b2 ≈ 5.94 in the case of the exponential ansatz.

Let us first consider the case of the skyrmion size much
smaller than the size of the vortex, R � λ. Evaluating the
integral over q in Eq. (8), we obtain asymptotic behavior of
the two components of the supercurrent (see Appendix A),

J (+)
ϕ = MsdF

λ

⎧⎪⎨
⎪⎩

c−1r/R, r � R,

c2R2/(2r2), R � r � λ,

12c2λ
2R2/r4, λ � r,

(13)

and

J (−)
ϕ = MsdF

λ

⎧⎪⎨
⎪⎩

θ̄ ′(0)r/(2R), r � R,

b2R3/(8λr2), R � r � λ,

3b2λR3/(2r4), λ � r.

(14)

We note that for θ̄ (x) = π exp(−x) one finds c−1 ≈ 1.17.
The asymptotic expressions (13) and (14) suggest the non-
monotonous spatial dependence of the both contributions J (±)

ϕ

to the supercurrent with the extremum at the distance of order
of the skyrmion radius R. As it is shown in Fig. 2, the value
of J (+)

ϕ (J (−)
ϕ ) at the extremum is positive (negative) in the

case of exponential and domain wall ansatz. Thus the total
supercurrent seems to be sensitive to the skyrmion chirality.
In the case of the exponential ansatz, the sign of the extremal
value of the supercurrent is opposite to the chirality. In the
case of the domain wall ansatz, the sign of the supercurrent at
the extremum depends also on the ratio R/δ.

In the case of a large skyrmion and a small Pearl length,
R � λ, the part of the supercurrent, J (+)

ϕ , which is related with
the z component of the skyrmion magnetization, can be found
to the lowest order in λ/R as (see Appendix A),

J (+)
ϕ = −Ms

dF

R
θ̄ ′(r/R) sin θ̄ (r/R). (15)

We note that J (+)
ϕ coincides with the current (∇ × MSk )ϕ

integrated over the width of the chiral ferromagnet.
If the function θ̄ (x) decays at x → ∞ faster than 1/x3,

the expression (15) determines J (+)
ϕ at r � rλ only. Then at

distances r � rλ � R the asymptotic behavior of the super-
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current is given as [cf. Eq. (13)]

J (+)
ϕ = 12c2Ms

dF λR2

r4
, rλ � r. (16)

The length scale rλ can be estimated from the condition
|θ̄ (rλ/R)|2 ∼ λR3/r4

λ. In the case of the exponential ansatz,
one finds rλ ∼ R ln(R/λ) � R.

The asymptotic expressions for component J (−)
ϕ of the su-

percurrent read (see Appendix A)

J (−)
ϕ = 3MsdF r

4R2

{
θ̄ ′′(0) ln(r/R), r � R,

2b2R5/r5, r � R.
(17)

We mention that in the case of R � λ, the dependence of
the supercurrent on the distance is qualitatively similar to the
case of a skyrmion of a small radius R � λ. We emphasize
that there is a change of the sign of the supercurrent at some
distance from the center of the Néel-type skyrmion in some
cases, see Fig. 2. Such a change of sign can also occurs in the
case of a thick superconductor-ferromagnet-superconductor
structure [23].

B. The case of the linear ansatz

In the case of the linear ansatz, the expression (7) for the
function g(+)(y) should be modified in order to have continu-
ous solution for Aϕ at r = R,

g(+)(y) → g(+)
L (y) = y

∫ 1

0
dxxJ0(yx)

[
cos (πx) + 4

π2

]

≡ g(+) + δg(+). (18)

Here the function g(+)(y) is given by Eq. (7) and δg(+)(y) =
−4c2J1(y), where in the case of the linear ansatz, c2 = 1/4 −
1/π2. Therefore the function g(+)

L (y) has the following asymp-
totic behavior:

g(+)
L (y) =

⎧⎪⎪⎨
⎪⎪⎩

π2 − 6

2π4
y3, y � 1,

π2 − 4

π2

√
2 cos(y + π/4)√

πy
, y � 1.

(19)

We observe that the abrupt change of θ (r) at r = R results in
oscillating behavior of g(+)(y) at y � 1.

With the help of Eqs. (8) and (19), we obtain the following
results for the asymptotic behavior of the supercurrent in the
case of R � λ (see Appendix A),

J (+)
ϕ = MsdF

4λ

⎧⎪⎨
⎪⎩

(πSi(π ) − 1 + 4/π2)r/R, r � R,

3(6 − π2)R4/(π4r4), R � r � λ,

180(6 − π2)R4λ2/(π4r6), λ � r.
(20)

Here Si(z) stands for the sine integral. We note that in the case
of the linear ansatz the J (+)

ϕ component of the supercurrent
decays faster at r � R than in the case of smooth skyrmion
profile. This occurs due to the fact that the contribution to
the current from δg(+)(y) cancels the leading contributions
from g(+)(y). As in the case of a smooth skyrmion profile,
Eq. (20) suggests nonmonotonous behavior of J (+)

ϕ with r.
There should be the maximum and the minimum in the su-
percurrent at the distances of the order of the skyrmion size
R. Contrary to the case of a smooth skyrmion profile, Eq. (20)

describes asymptotic behavior of the smooth part of J (+)
ϕ only.

On the top of the monotononic dependence, there is also weak
oscillating contribution to J (+)

ϕ with the typical length scale of
the order of R as shown in Fig. 2. This oscillating contribution
is the consequence of the abrupt boundary of the skyrmion
configuration.

The asymptotic behavior of J (−)
ϕ can be read from Eq. (14).

It suggests the existence of the minimum and the maximum at
the distance of the order of R. Similarly to J (+)

ϕ , the contribu-
tion J (−)

ϕ has additional oscillations with the distance.
The dependence J (+)

ϕ (r) in the case of large skyrmion size,
R � λ, is more intricate. This component of the supercurrent
is given as the sum of the contribution discussed above for the
case of the smooth skyrmion profile, cf. Eqs. (15) and (16),
and the contribution due to δg(+)(y). At short distance, r � R,
we find (see Appendix A),

J (+)
ϕ = π2MsdF r

R2

(
1 − 3

π2 − 4

π4

λ

R

)
. (21)

In the case of the long distance, r � R the contribution to the
supercurrent is given as

J (+)
ϕ = −45

π2 − 6

π4

MsdF λR4

r6
. (22)

We note that in the case of the linear ansatz J (+)
ϕ is stronger

suppressed at r � R than in the case of a smooth skyrmion
profile. The asymptotic behavior of J (−)

ϕ is given by the gen-
eral expression (17).

III. INTERACTION ENERGY BETWEEN SKYRMION AND
PEARL VORTEX

As above we focus on the case of a thin (dS � λL) su-
perconducting film with a superconducting vortex situated at
the distance a from the center of the Néel-type skyrmion (see
Fig. 1). In order to compensate the magnetic flux carried by
the vortex we assume that there exists antivortex located far
away from the skyrmion-vortex pair. The free energy of this
system, including the magnetic energy of the skyrmion can be
written as

F = FSk + FV + FV + FSk−V + FSk−V + FV−V. (23)

Here FSk denotes the magnetic free energy of the isolated chi-
ral ferromagnet that leads to the appearance of the Néel-type
skyrmion (see its explicit form in the next section). FV and FV
are the free energies of the isolated superconducting vortex
and antivortex, respectively. The electromagnetic interaction
between the skyrmion and the vortex is described by the
following free energy:

FSk−V =
∫

dzd2r
4π

[BSkBV + λ2
L(∇ × BSk )(∇ × BV)

× �(−z)�(z + dS ) − 4πMSkBV�(z)�(dF − z)],

(24)

where BV = ∇ × AV and BSk = ∇ × ASk are the magnetic
fields generated by the vortex and the skyrmion, respectively.
We note that the first two terms in the right-hand side of
the expression for FSk−V compensate each other in virtue of
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Eq. (2). Therefore one can have an impression that the distri-
bution of the supercurrent does not influence the interaction
energy between the skyrmion and the vortex. In fact, FSk−V

is intimately related with the supercurrent, see below. In what
follows, we shall neglect the free energies of the interaction of
the antivortex with the skyrmion, FSk−V, and with the vortex,
FV−V.

The magnetic field of a Pearl vortex in a thin film, dS � λL,
can be written in a standard form [29]

BV = φ0sgn(z)∇
∫

d2q
(2π )2

e−q|z|+iq(r−a)

q(1 + 2qλ)
. (25)

Here φ0 = hc/2e is the flux quantum, a is the coordinate
vector of the vortex center with respect to the skyrmion center.
Since FSk−V should depend on the distance a between the
skyrmion and the vortex only, we can average the magnetic
field BV over directions of the vector a. This procedure im-
plies that

BV → −φ0

∫ ∞

0

dq

2π

q e−q|z|

1 + 2qλ
J0(qa)[sgn(z)J1(qr)er

+ J0(qr)ez]. (26)

We emphasize that the magnetic field BV is directed along −ez

at the vortex center. The opposite case can be obtained by re-
versing the sign of the flux quantum φ0 → −φ0 in expressions
below.

The free energy of the Pearl vortex (as well as antivortex)
in a thin superconducting film is given by [28]

FV = FV = φ2
0

16π2λ
ln

λ

ξ
, (27)

where the superconducting coherence length is assumed to be
much shorter than the Pearl length, ξ � λ.

Using Eqs. (1) and (26), we express the interaction part of
the free energy (24) as

FSk−V = Msφ0dF + Msφ0

∫ ∞

0
dq

1 − e−qdF

1 + 2qλ
J0(qa)

∫ ∞

0
dr r

× [ηJ1(qr) sin θ (r) + J0(qr)
(
cos θ (r) − 1

)
]. (28)

We note that the first term in the right-hand side of Eq. (28)
corresponds to the homogeneous magnetization of the ferro-
magnetic film. Using the relation xJ0(x) = d (xJ1(x))/dx and
the definition (4), the above expression can be rewritten as

FSk−V = Msφ0dF − φ0

4π

∫ ∞

0
dq

1 − e−qdF

q(1 + 2qλ)
J0(qa)

× [G(+)(q) + ηG(−)(q)]. (29)

We emphasize that in the agreement with general expecta-
tions [29], the interaction part of the free energy can be
expressed in terms of the supercurrent as, FSk−V = Msφ0dF −
φ0

∫
d2rJϕ (r)/(2π |r − a|). This implies that the derivative of

the free energy with respect to the vortex position yields the
supercurrent (6), Jϕ (a) = φ−1

0 (∂FSk−V/∂a), cf. Eqs. (6) and
(29). Consequently, when the sign of the current Jϕ (a) is
positive (negative), the vortex placed at a distance a tends to
move towards (away from) the skyrmion center. Therefore the
equilibrium position of the vortex is determined by the zero

of the total supercurrent. We note that in the case of the linear
ansatz the function G(+) in Eq. (29) should be modified in
accordance with Eq. (18).

Below we analyze the general expression (29) in the case
of a thin ferromagnetic film, dF � R, λ.

A. The case of a smooth skyrmion profile

In the case of a smooth skyrmion profile, and for dF �
R, λ, we find from Eq. (29),

FSk−V

Msφ0dF
= 1 +

∫ ∞

0
dy

J0(ya/R)

(1 + 2yλ/R)

×
∫ ∞

0
dx x[ηy + θ̄ ′(x)]J1(yx) sin θ̄ (x).

(30)

As in the case of the supercurrent, we start from the case of
a skyrmion of size R � λ. Neglecting unity with respect to
2yλ/R in the denominator of the integrand in the right-hand
side of Eq. (30), we obtain the following asymptotic expres-
sion for the interaction free energy at short distances a � λ

(see Appendix B)1:

FSk−V

Msφ0dF
= 1 + R

2λ
fη

( a

R

)
, (31)

where the function fη(z) has the following asymptotic behav-
ior:

fη(z) =
{
ηb0 − 4c1 + (2c−1 + ηθ̄ ′(0))z2/2, z � 1,

−2c2/z − c4/(4z3), z � 1.

(32)

At very long distances, a � λ, the free energy of inter-
action between the skyrmion and the vortex becomes (see
Appendix B),

FSk−V

Msφ0dF
= 1 − 4c2R2λ

a3
. (33)

We emphasize that at long distances, a � R, FSk−V becomes
insensitive to chirality of the Néel skyrmion. The coefficient
c−1 is typically positive, whereas θ̄ ′(0) is negative, therefore
the interaction free energy may decrease with increase of a
for η = +1. Since the ratio FSk−V/(Msφ0dF ) tends to unity
at a → ∞ irrespective of the chirality, one can expect the
existence of the minimum of FSk−V at some nonzero value
of the distance a. This situation is realized for the exponential
ansatz. In the case of 360◦ domain wall ansatz with η = +1,
the nontrivial minimum exists for δ/R � 0.64 only.

Next we consider the opposite case of the skyrmion with
the radius much larger than the size of the Pearl vortex, R �
λ. The interaction free energy can be written as a series in

1We mention that FSk−V/(Msφ0dF ) at large distances, a � R, has
a subleading term that depends on chirality, −ηb2R3/(8aλ2). This
term does not affect the behavior of FSk−V with the distance a for the
smooth ansatz but becomes essential in the case of the linear ansatz,
see Sec. III B.
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powers of λ/R (see Appendix B),

FSk−V

Msφ0dF
= 1 + hη,0

( a

R

)
+ λ

R
hη,1

( a

R

)
+ . . . (34)

The function hη,0 that determines the magnitude of the inter-
action free energy has the following asymptotic behavior (see
Appendix B):

hη,0(z) = ηb−1 − 2 +
[

3

4
ηθ̄ ′′(0) ln z + θ̄ ′2(0) + ηβ0

]
z2

2
(35)

at z � 1 and

hη,0(z) = −ηb2

2z3
, z � 1. (36)

Here the parameter β0 is given by the following lengthy ex-
pression:

β0 = 3

2
θ̄ ′(0) + θ̄ ′′(0)

[
7

4
− 3(1 + 2G)

2π
− 6

π

∫ 1

0

dx

x3

(
K (x2)

− π

2
− πx2

8

)]
+ 3

2

∫ ∞

1
dx

sin θ̄ (x)

x3

+ 3

2

∫ 1

0
dx

[
sin θ̄ (x)

x3
+ θ̄ ′(0)

x2
+ θ̄ ′′(0)

2x

]
, (37)

where G ≈ 0.916 denotes the Catalan’s constant and K (x)
stands for the complete elliptic integral of the first kind. The
function hη,1(z) that determines the dependence on distance
of the subleading contribution to FSk−V has the following
asymptotic behavior (see Appendix B):

hη,1(z) = 4(2c−1 + ηθ̄ ′(0)) + 3ηθ̄ ′′(0)z −
[

9

4
θ̄ ′(0)θ̄ ′′(0) ln z

+ 4

3
η(θ̄ ′3(0) − θ̄ ′′′(0)) − β1

]
z2, z � 1, (38)

and

hη,1(z) = −4c2

z3
, z � 1. (39)

Here the parameter β1 is given as

β1 = 9

2π
(1 + 2G)θ̄ ′(0)θ̄ ′′(0)−1

2

∫ ∞

1

dx

x3
∂x(xθ̄ ′(x) sin θ̄ (x))

− 1

2

∫ 1

0

dx

x3
∂x

(
xθ̄ ′(x) sin θ̄ (x)+θ̄ ′2(0)x2

+ 3

2
θ̄ ′(0)θ̄ ′′(0)x3

)

+ 18

π
θ̄ ′(0)θ̄ ′′(0)

∫ 1

0

dx

x3

[
K (x2) − π

2
− πx2

8

]

+ θ̄ ′2(0) − 9

2
θ̄ ′(0)θ̄ ′′(0). (40)

We mention two discrepancies with the case of a skyrmion
of a small radius. At first, the short distance behavior of the
interaction free energy in the case of R � λ is not parabolic
generically, see Eq. (35). Secondly, the asymptotic behavior
of FSk−V at a � R depends on the skyrmion’s chirality.

Provided θ̄ ′′(0) > 0, the analytic results (35) and (36), sug-
gest the existence of the global minimum of FSk−V at a certain
nonzero distance a in the case of positive skyrmion’s chirality
η = +1. For negative chirality, η = −1, the minimum of the
interaction free energy is situated at a = 0. Interestingly, the
360◦ domain wall ansatz is special since θ̄ ′′(0) = 0. Thus, for
the 360◦ domain wall ansatz, the existence of the minimum
in FSk−V is controlled by the sign and magnitude of β0,
see Eq. (37). For δ � 0.63R (δ � 0.36R), the interaction free
energy, FSk−V, has the minimum at nonzero value of a for the
case of positive (negative) chirality, η = +1 (η = −1).

In Fig. 3, we show the behavior of the interaction free
energy as a function of a/R for both chiralities, η = ±1 and
for the skyrmion radius equal to the Pearl length. As one can
see, for positive chirality, η = +1, the minimum of FSk−V is
reached at nonzero value of the distance a.

We mention that the sign of interacting free energy is deter-
mined by the sign of the magnetic flux of the superconducting
vortex. If the direction of the magnetic flux at the center of
the vortex is opposite to the direction of magnetization at the
center of the skyrmion, i.e. magnetic flux is parallel to the
vector ez, the interacting free energy above will reverse its
sign. Then instead of the minimum at a = 0 (at a finite value
of a) the minimum will occur at a = ∞ (at a = 0).

B. The case of the linear ansatz

As in the case of supercurrent, the interacting free energy
for the linear ansatz for the skyrmion profile needs a separate
treatment. The interaction energy can be written in the form
similar to (29),

FSk−V,L = Msφ0dF − Msφ0R
∫ ∞

0
dq

1 − e−qdF

q(1 + 2qλ)
J0(qa)

× [g(+)
L (qR) + ηg(−)(qR)]. (41)

Here the functions g(−) and g(+)
L are defined in Eqs. (7) and

(18), respectively. As it was described in Sec. II, the func-
tion g(+)

L (y) is given by a sum of two terms: one identical
to the case of the smooth profile θ (r), g(+), and the other
one, δg(+), arising due to discontinuity of θ ′(r) at r = R, see
Eq. (18). Accordingly we can represent the free energy as
a sum FSk−V,L ≡ FSk−V + δFSk−V. Here FSk−V is given by
Eq. (30) with θ̄ (x) = π (1 − x) for x � 1 and zero overwise.
The second term for a thin ferromagnetic film, dF � R, λ, is
defined as

δFSk−V = −Msφ0dF

∫ ∞

0
dy

J0(ya/R)

(1 + 2yλ/R)
δg(+)(y). (42)

We have studied the behavior of FSk−V in the previous sec-
tion, thus we can focus on examining solely the contribution
from δFSk−V.

Similar to the previous sections, we begin with the case of
a small skyrmion radius, R � λ. At short distances, a � λ,
we present the free energy likewise Eq. (31),

δFSk−V

Msφ0dF
= R

2λ
δ fη

( a

R

)
, (43)
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FIG. 3. The dependence of the normalized interaction free energy, FSk−V, on a/R for the chirality η = +1 (left) and η = −1 (right). The
ratio of the skyrmion radius and the Pearl length is unity, λ/R = 1 (see text).

where δ fη behaves as follows (see Appendix B):

δ fη(z) = 4c2

{
1 − z2/4, z � 1,

1/(2z) + 1/(16z3), z � 1.
(44)

Collecting both contributions, FSk−V and δFSk−V, to-
gether, we can determine the behavior of the free energy
FSk−V,L ≡ 1 + (R/2λ) fη,L(a/R). The function fη,L has the
following asymptotic behavior at short distances z � 1:

fη,L(z) = ηb0 − 4(c1 − c2) + [c−1 − c2 + ηθ̄ ′(0)/2]z2,

(45)
whereas at z � 1, it becomes

fη,L(z) = (c2 − c4)/(4z3). (46)

Therefore, at R � r � λ, the interacting free energy in the
case of the linear ansatz can be written as

FSk−V

Msφ0dF
= 1 + (c2 − c4)R4

8λa3
− ηb2R3

8aλ2
. (47)

Here, also, we add the term of the next order in R/λ which
depends on the skyrmion chirality (see Ref. [30]). This term
dominates the second term in the right-hand side of Eq. (47)
for

√
Rλ � r � λ. Since for the linear ansatz c2 − c4 =

2(π2 − 6)/π4, the second term proportional to 1/a3 matches
with the corresponding asymptotic of the current J (+)

ϕ , cf.
Eq. (20).

Due to strict localization of the skyrmion and stronger
suppression of the supercurrent at distances, a � λ, we expect
the interaction energy to decay faster as compared to the case
of a smooth profile. Indeed, the expression (42) yields (see
Appendix B)

δFSk−V

Msφ0dF
= 4c2R2λ

a3
, λ � a, (48)

that cancels out contribution (33). Therefore the interacting
free energy at large separations a becomes sensitive to the
chirality of skyrmion opposed to the case of smooth profile,

FSk−V

Msφ0dF
= 1 − ηb2R3

2a3
, λ � a. (49)

Different asymptotic expressions, Eqs. (45), (46), (47), and
(49), suggest that the vortex resides at a distance a ∼ √

Rλ

from the center of the skyrmion for η = +1 and at a = 0 for
η = −1.

In the opposite case of a large skyrmion radius, R � λ, the
additional contribution δFSk−V to the interacting free energy
can be expanded in a series in powers of λ/R, much the same
as Eq. (34),

δFSk−V

Msφ0dF
= δhη,0

( a

R

)
+ λ

R
δhη,1

( a

R

)
+ . . . (50)

Asymptotic behavior of functions δhη,0(z), δhη,1(z) is in-
vestigated in Appendix B. Combining them with contributions
from hη,0(z) and hη,1(z) [see Eqs. (35), (36), (38), and (39)],
we obtain

hη,0,L (z) =
{
ηb−1 − 2 + 4c2 + [π2 + ηβ0] z2

2 , z � 1,

−ηb2/(2z3), z � 1,

(51)
and

hη,1,L (z) = 8
(

c−1 − c2 − πη

2

)
+ 6

(
2π3η

9
− c2 − β1

6

)
z2,

(52)
for z � 1, and

hη,1,L (z) = 9(c2 − c4)/(2z5), z � 1. (53)

The above asymptotic expressions suggest that for the positive
chirality, η = +1, the vortex have to be settled at a distance of
order R from the skyrmion’s center, whereas for η = −1 the
vortex is situated exactly at the center of the skyrmion, a = 0.

We illustrate the dependence of the interacting free energy
on the distance a in the case of the linear ansatz in Fig. 4. On
the left panel of Fig. 4, one can see the minimum of FSk−V

(marked by the black dot) for the positive chirality and λ/R =
0.1. For λ/R = 10 (right panel of Fig. 4) and positive chirality,
the shallow global minimum of FSk−V (also indicated by the
black dot) is located at a ≈ 2.8R, which is consistent with our
prediction, see Eq. (47).

It should be noted that, in contrast to the case of a smooth
ansatz, the transformation φ0→ − φ0 interchanges the qual-
itative behavior in cases of positive and negative chirality.
Namely, for η = +1, the free energy will have the minimum
at a = 0, whereas for η = −1, the minimum of the free energy
will be shifted from a = 0 to some nonzero a.
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FIG. 4. The dependence of the normalized interacting free energy, FSk−V, on a/R for the linear ansatz for the skyrmion’s profile. The plots
are for two chiralities and for two values of ratio of the skyrmion radius and the Pearl length: λ/R = 0.1 (left) and 10 (right). Black dot near
a ≈ 1.2R on the left panel marks the location of the global minimum of the interaction energy. For λ/R = 10 (right), the global minimum is
resided at a ≈ 2.8R (see text).

We note that in the case of the linear ansatz the existence of
the minimum of the interaction free energy on a finite distance
from the skyrmion’s center has been noticed in Ref. [31].

IV. THE EFFECT OF THE PEARL VORTEX ON THE
SKYRMION

The magnetic free energy of the chiral ferromagnetic film
is given by [1]

Fmagn[m] = dF

∫
d2r

{
A(∇m)2 + K

(
1 − m2

z

)

+ D[mz∇ · m − (m · ∇ )mz]
}
. (54)

Here m(r) denotes the unit vector of magnetization di-
rection, A > 0 stands for the exchange constant, D is the
Dzyaloshinskii-Moriya interaction, and K > 0 denotes the
perpendicular anisotropy constant. The magnetic free energy
is normalized in such a way that Fmagn is zero for the ferro-
magnetic state, mz = 1. We note that we include the energy
of the magnetic field BSk created by the skyrmion into the
definition of the anisotropy constant K (see Appendix C).
Substituting m = mSk = MSk/Ms, see Eq. (1), into Eq. (54),
we find

FSk ≡ Fmagn[mSk]

= 2πdF

∫ ∞

0
dr r

{
A

[
θ ′2(r) + sin2 θ (r)

r2

]

+ Dη

[
θ ′(r) + sin(2θ (r))

2r

]
+ K sin2 θ (r)

}
. (55)

Assuming a scaling form of the skyrmion profile, θ (r) =
θ̄ (r/R), we obtain

FSk = dF (αAA − αDηDR + αK KR2/2), (56)

where

αA = 2π

∫ ∞

0
dx x

[
θ̄ ′2(x) + sin2 θ̄ (x)

x2

]
,

αD = −2π

∫ ∞

0
dx x

[
θ̄ ′(x) + sin(2θ̄ (x))

2x

]
,

αK = 4π

∫ ∞

0
dx x sin2 θ̄ (x). (57)

We note that αA,D,K are positive constants in the case of the
linear and exponential ansatz and are positive functions of the
parameter R/δ in the case of the 360◦ domain wall ansatz.

It is worthwhile to mention that the free energy (54) does
not account for the dipole-dipole interaction. However, since
the dipole-dipole energy scales as the first power of the
skyrmion radius R (see, e.g., Ref. [32]), it can be taken into
account by modification of the magnitude of the parameter
αD.

Minimizing FSk with respect to R, one can find the optimal
radius of the skyrmion

R0 = αD|D|/(αK K ) (58)

and the chirality η = sgnD. We note that the existence of a
skyrmion in a chiral ferromagnetic film is possible under the
following condition:

αAA < αK KR2
0/2. (59)

In order to simplify the presentation, we shall start our con-
siderations from the cases of the linear and exponential ansatz.
In the presence of vortex antivortex pair the skyrmion radius
is obtained by minimization of FSk + FSk−V with respect to
R and a. Let us start from the case of a skyrmion of small
radius, R∗ � λ. For the negative chirality, the optimal distance
between the skyrmion and the vortex is zero. Therefore, as
it follows from Eqs. (31) and (56), for η = −1, the interac-
tion between skyrmion and vortex results in increase of the
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TABLE I. The parameters Ms, A, Ku, and D for a number of thin chiral ferromagnet films. The estimates for the bare radius in zero external
field (R0), change of skyrmion radius (δR ≡ R∗ − R0) and an anisotropic scale (�K ) for the exponential ansatz are given. In order to obtain the
estimate for change of radius δR we choose λ = 200 nm.

PtCoPt [33,34] IrCoPt [35] PtCoNiCo [36] PdFeIr [37,38] [IrFeCoPt]10 [24]

Saturation magnetization Ms (103 A/m) 580 956 600 1100 1450
Exchange constant A (10−12 J/m) 15 10 20 2.0 13.9
Anisotropy constant Ku (106 J/m3) 0.7 0.717 0.6 2.5 1.4
DMI parameter D (10−3 J/m2) +3 +1.6 +3 +3.9 +2.1
Bare radius R0 (10−9 m) 4.1 2.1 4.8 1.5 1.4
Change of radius δR (10−9 m) 0.06 0.09 0.07 0.03 0.07
Anisotropy scale �K (10−9 m) 10 13 10 7.5 12

skyrmion radius,

R∗ = R0 + (2c1 + b0/2)�2
K/λ. (60)

Here �K = √
Msφ0/(αK K ) is the length scale associated with

the anisotropy energy. In the case of linear ansatz one needs
to make the following substitution, c1 → c1 − c2 in Eq. (60),
see Eq. (45).

In the case of the positive chirality, the optimal distance be-
tween the vortex and the skyrmion for the exponential ansatz
is proportional to the skyrmion radius, a0 = ζ0R, see Eq. (31).
Interestingly, we find that in the case of η = +1, the skyrmion
radius is also enlarged due to interaction with the vortex,

R∗ = R0 − f+1(ζ0)�2
K/(2λ). (61)

We note that f+1(ζ0) < 0.
In the case of the linear ansatz with η = +1, using Eq. (47),

we can find the following result for the skyrmion radius:

R∗ = R0 + 5b3/2
2

24(3(c2 − c4))1/2

�2
K R3/2

∗
λ5/2

. (62)

Although, the above equation predicts ehnancement of the
skyrmion radius due to interaction with the vortex, the nu-
merical constant 5b3/2

2 /[24(3(c2 − c4))1/2] ≈ 0.04 such that
the enhancement is extremely small. The results (60)–(62) are
applicable for λ � max{R0, �K}.

In Table I, we present estimates of the change of the
skyrmion radius due to interaction with the vortex for several
ferromagnet structures. As one can see from the Table I, the
increase of the skyrmion radius δR = R∗ − R0 is typically
small (of the order of a few percent). Also we note that
the estimate of δR depends on the form of the skyrmion
profile. We mention that the estimates of the bare skyrmion
radius R0 given in Table I on the basis of values of the pa-
rameters D and K can significantly deviate from the values
actually measured in the experiment. For example, for the
[Ir1Fe0.5Co0.5Pt1]10/MgO/Nb heterostructure the skyrmion
radius of the order of 50 nm has been reported [24]. This
observation can indicate that in order to estimate δR in a
realistic structure one needs to find the actual skyrmion profile
in the presence of the vortex-antivortex pair.

In order for a vortex-antivortex pair to be spontaneously
generated in the presence of a skyrmion, the total free energy
(23) should be negative. This implies the following inequality:

αAA − αK KR2
∗

2
+ αK K�2

K + φ2
0

8π2λdF
ln

λ

ξ
< 0. (63)

Since R∗ is larger than R0 this inequality can be fulfilled
provided the condition (59) holds. We note that then the radius
of the skyrmion should satisfy λ � R0 � �K . In particular,
the vortex-antivortex pair cannot be generated spontaneously
in the absence of the Dzyaloshinskii-Moriya interaction, i.e.,
at D = 0. Indeed, in the latter case, R∗ � �K and the left-
hand side of the inequality (63) is positive. In fact, there is
a minimal value of the Dzyaloshinskii-Moriya interaction at
which the spontaneous generation of a vortex-antivortex pair
is possible,

|D| >

[
2αK K

α2
D

(
αAA + αK K�2

K + φ2
0 ln(λ/ξ )

8π2λdF

)]1/2

+ fη(ζ0)
αK K�2

K

2αDλ
. (64)

Now let us assume that the skyrmion radius is large, R �
λ. Then, Eqs. (34) and (56) result in the following equation
for the skyrmion radius modified by the interaction with the
vortex,

R3
∗

R3
0

− R2
∗

R2
0

= hη,1(ζ0)
λ�2

K

R3
0

. (65)

For negative chirality, η = −1, the optimal distance be-
tween the skyrmion and the vortex is zero, ζ0 = 0. We note
that h−1,1(0) = 4[2c−1 − θ̄ ′(0)] > 0, see Eq. (38). For posi-
tive chirality, η = +1, the interaction between skyrmion and
vortex has the minimum at finite distance, ζ0 �= 0. However,
as one can check [see Eq. (B9)], h+1,1(ζ0) > 0. Therefore,
for both chiralities, the skyrmion-vortex interaction leads to
increase of the skyrmion radius,

R∗ = R0(1 + X −1/3 + X 1/3)/3, (66)

where

X = 1 + 27u

2
+ 6

√
3u + 81u2, u = hη,1(ζ0)

λ�2
K

4R3
0

. (67)

We note that for R0 � (λ�2
K )1/3 and �K � λ the skyrmion

radius is parametrically enhanced, R∗ ∼ (λ�2
K )1/3 � R0. For

R0 � (λ�2
K )1/3, the radius of the skyrmion is only slightly

increased, R∗ ∼ R0. In this case Eq. (66) holds under assump-
tion R0 � λ.
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A spontaneous generation of the vortex-antivortex pair re-
quires the negative total free energy (23),

αAA − αK KR2
∗

2
+ αK K�2

K

[
1 + hη,0(ζ0) + 2hη,1(ζ0)

λ

R∗

]

+ φ2
0

8π2λdF
ln

λ

ξ
< 0. (68)

Since R∗ > R0 the above inequality can be satisfied pro-
vided the condition (59) holds. However, it can occur only
for sufficiently large bare skyrmion radius, R0 � λ � �K . In
the case �K � R0 � λ, the skyrmion radius becomes R∗ ∼
(λ�2

K )1/3 � �K . Therefore the negative term −αK KR2
∗/2 is

much smaller than the positive term αK K�2
K and, conse-

quently, spontaneous generation of vortex-antivortex pair is
not possible.

In the case of the 360◦ domain wall ansatz Eqs. (60), (61),
and (65) remain valid. However, the value of ζ0 depends on
the ratio R∗/δ. The latter is determined from the minimum
of the total free energy with respect to δ. The corresponding
analysis can be performed numerically. As one can check,
the following inequalities hold fη(ζ0) < 0 and hη,1(ζ0) > 0.
These inequalities imply that the skyrmion radius increases
always in the presence of a vortex-antivortex pair.

V. SUMMARY AND CONCLUSIONS

To summarize, we have studied an interaction of a Néel-
type skyrmion and a vortex-antivortex pair due to stray fields
in a chiral ferromagnet-superconductor heterostructure. We
computed the supercurrent in a superconducting film induced
by a skyrmion. For thin ferromagnet and superconductor
films, we found that the supercurrent has the maximum at the
distance from the center of a skyrmion that is of the order
of the skyrmion radius. It is worthwhile to mention that the
supercurrent is sensitive to a profile of the skyrmion and its
chirality. For example, in the case of smooth profiles (expo-
nential and domain wall ansatzes), the supercurrent decays
monotonously at large distances from the skyrmion center.
For the case of a linear profile, there are decaying oscillations
of the supercurrent at large distances due to discontinuity in
θ ′(r) at r = R. Therefore measurements of dependence of the
supercurrent on distance can allow one to extract information
on the profile of a skyrmion. We mention that the behavior
of the supercurrent with a distance from the center of the
skyrmion is qualitatively similar to the behavior of the su-
percurrent induced in a thin superconducting film by a Bloch
domain wall in a ferromagnetic film [27]. The radius of the
skyrmion plays the same role as the width of a domain wall.

We have also computed the energy of interaction between
a Néel-type skyrmion and a Pearl vortex. We found that the
interaction with a Pearl vortex is sensitive to the skyrmion
chirality. In the case of a skyrmion with negative chirality,
typically, it is more energetically favourable for a vortex to
be attracted to the skyrmion center. This occurs in the cases
of linear and exponential skyrmion profiles and for a domain
wall ansatz with δ � 0.36R. In the case of positive skyrmion
chirality, a vortex is situated at a finite distance from the center
of the skyrmion. This happens for linear and exponential pro-
files and in the case of domain wall ansatz with δ � 0.63R. For

the exponential and domain wall profiles, the optimal distance
becomes of the order of the skyrmion radius whereas for a
linear ansatz the vortex is located at max{R,

√
Rλ}.

It is worthwhile to mention that in the case of a Bloch-type
skyrmion, it is always energetically favorable for a vortex to
settle at the center of the skyrmion [21]. Such a behavior is
related with the absence of the radial component of magne-
tization in a Bloch-type skyrmion. Therefore the Bloch-type
skyrmion interacts with the z component of the magnetic field
of a Pearl vortex only. This leads to the absence of terms
proportional to the chirality η in Eqs. (32) and (35). As a
result, the function fη(z) and hη,0(z) behave as increasing
parabolas at z � 1. Such a behavior implies the minimum of
the interaction free energy at zero distance between the center
of the Bloch-type skyrmion and the Pearl vortex.

The fact that it is energetically favourable for a Pearl vor-
tex to take place at a finite distance from the center of a
Néel-type skyrmion might have interesting implications for
skyrmion lattices [39,40] and dynamics of skyrmions [22] in
superconductor-ferromagnet heterostructures.

We have investigated how a Pearl vortex affects a Néel-type
skyrmion due to their mutual interaction. We found that a
vortex-antivortex pair leads to an increase of the radius of the
Néel-type skyrmion. We note that this result can be contrasted
with the case of a Bloch-type skyrmion for which a vortex-
antivortex pair can either increase or decrease the skyrmion
radius [21]. It is also possible that a vortex-antivortex pair
will be spontaneously generated in the presence of a Néel-type
skyrmion provided the skyrmion radius and Pearl penetration
length are large enough in comparison with the length as-
sociated with the anisotropy energy in a chiral ferromagnet,
λ, R0 � �K . In the opposite case of small bare skyrmion ra-
dius, R0 � �K , spontaneous generation of a vortex-antivortex
pair is not possible. Although, the relation, λ, R0 � �K , does
not typically holds in chiral ferromagnets (see Table I), re-
cently, spontaneous generation of vortex-antivortex pairs in
the [Ir1Fe0.5Co0.5Pt1]10/MgO/Nb heterostructure with Néel-
type skyrmions of large radius (about 50 nm) and positive
chirality2 has been observed [24].

For R0 � (λ�2
K )1/3 � �K , we predict that a vortex-

antivortex pair existing in a superconducting film can
substantially increase the skyrmion radius: it becomes equal
to R∗ ∼ (λ�2

K )1/3 � R0. The typical values of R0, �K , and R∗
are listed in Table I. Abrupt increase of the skyrmion radius
can be used as indication of appearance of vortex-antivortex
pairs in superconducting films. It is an experimental chal-
lenge to detect enhancement of the skyrmion radius in a thin
ferromagnet-superconductor heterostructure due to generation
of vortex-antivortex pair in a superconducting film.

Our analysis of the skyrmion stability in the presence of a
superconducting vortex was restricted to study of change of
the skyrmion radius under assumption that the vortex does not
affect the skyrmion profile. In fact, this is not necessary the

2We draw a reader’s attention to the fact that in Ref. [24], the
geometry of the heterostructure differs from the one considered in
our work. In Ref. [24], the ferromagnetic layers are above the su-
perconducting film. Our results are applicable for the case of such a
geometry provided the chirality sign is reversed.
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case and one needs to find the skyrmion profile in the presence
of the superconducting vortex from minimization of the total
free energy FSk + FSk−V. In particular, we expect that the
superconducting vortex can lead to an elongated skyrmion
profile.

Finally, we mention that it would be interesting to general-
ize our results to the case of skyrmions confined to nanodots
[41] as well as to more exotic magnetic excitations, e.g. anti-
skyrmions, bimerons, biskyrmions, skyrmioniums, etc. [42].
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APPENDIX A: DERIVATION OF THE ASYMPTOTIC
EXPRESSIONS FOR THE SUPERCURRENT

In this Appendix, we present some details of derivation of
asymptotic expressions for the supercurrent.

1. The case of a smooth skyrmion profile

We start from the case of the smooth skyrmion profile.
According to Eq. (8), the supercurrent is determined by the
functions g(±)(y), see Eq. (7).

To find the asymptotic behavior of the functions g(±)(y)
in the case of a small argument, y � 1, we approximate the
Bessel function J1(xy) by xy/2 and find

g(+)(y) = −y/2
∫ ∞

0
dxx2θ̄ ′(x) sin θ̄ (x) � 2c2y,

g(−)(y) = −y2/2
∫ ∞

0
dx x2 sin θ̄ (x) � −b2y2/2.

(A1)

Asymptotic expressions at large arguments, y � 1, can
be found in the following way. Changing the variable x to
xy under the integral sign in the definitions of the functions
g(±)(y), see Eq. (7), one can then expand the function θ in
powers of 1/y. Then, we obtain

g(+) = lim
β→+0

∫ ∞

0
dxJ1(x)e−βx

[
θ̄ ′(0) + 3x

2y
θ̄ ′′(0)

]
θ̄ ′(0)x2

y3

� −9θ̄ ′(0)θ̄ ′′(0)/(2y4),

g(−) = lim
β→+0

y
∫ ∞

0
dxJ1(x)e−βx

[
θ̄ ′(0)

x

y
+ x2

2y2
θ̄ ′′(0)

]
x

y2

� −3θ̄ ′′(0)/(2y3). (A2)

Equations (A1) and (A2) are equivalent to Eqs. (9) and (11).
We will now present derivation of asymptotic expressions

for the supercurrent in the case of a small skyrmion, R � λ.
At the shortest distances from the center of the skyrmion, one
can neglect unity in the denominator of the expressions (8)
and, then, expand the Bessel function in series in r/R � 1.

Then, we retrieve

J (±)
ϕ = Ms

dF r

4λR

∫ ∞

0
dy yg(±)(y). (A3)

The integral
∫ ∞

0 dy yg(±)(y) can be simplified with the help
of the following identity yJ1(xy) = −∂x(J0(xy)). Then, we
obtain∫ ∞

0
dy yg(±)(y) =

∫ ∞

0
dx χ0,1(x)

∫ ∞

0
dy J0(xy)

=
{

4c−1, for ‘ +′ sign,

2θ̄ ′(0), for ‘ −′ sign,
(A4)

where χ0(x) = [x sin θ̄ (x)]′ and χ1(x) = [xθ̄ ′(x) sin θ̄ (x)]′.
This results in Eqs. (13) and (14).

For the case of long distances, r � R, we rewrite the ex-
pressions for the supercurrent components, J (±)

ϕ (r), in a more
convenient way, raising the denominator into exponent by
means of an additional integration,

J (±)
ϕ = Ms

dF

R

∫ ∞

0
dy

∫ ∞

0
dt e−t (1+2yλ/R)yg(±)(y)J1(yr/R).

(A5)
Let us first consider the integration with respect to the y
variable. Since for r/R � 1, the integral over y is dominated
by small values of y, for g(+), we obtain∫ ∞

0
dy ye−2ytλ/RJ1(xy)J1(yr/R) � x

2

∫ ∞

0
dy y2e−y(2tλ/R)

J1(yr/R) = x

2

3(2λt/r)

[1 + (2λt/r)2]5/2

R3

r3

(A6)

and for g(−),∫ ∞

0
dy y2e−2ytλ/RJ1(xy)J1(yr/R) � x

2

∫ ∞

0
dy y3e−y(2tλ/R)

J1(yr/R) = −3x

2

1−4(2λt/r)2

[1+(2λt/r)2]7/2

R4

r4
.

(A7)

Hence for the supercurrent, we find

J (+)
ϕ = 2c2Ms

dF R2

r3

∫ ∞

0
dt

3(2λt/r)e−t

[1 + (2λt/r)2]5/2 ,

J (−)
ϕ = 3b2

2
Ms

dF R3

r4

∫ ∞

0
dt e−t 1 − 4(2λt/r)2

[1 + (2λt/r)2]7/2 .

(A8)

In this integral forms for the supercurrent components,
J (±)
ϕ , one can clearly figure out the behavior of J (±)

ϕ (r) for
r � λ and r � λ. For r � λ, we can substitute e−t by unity
and, then, obtain the asymptotic behavior at intermediate dis-
tances Eqs. (13) and (14), R � r � λ. Otherwise, when r is
much larger than λ, we neglect the term proportional to the
small parameter λ/r in the denominator of (A8). Then, one
gets the last expressions in Eqs. (13) and (14).

Now we consider the case of large skyrmion R � λ. We
start from the limit of short distances r � rλ. In this regime
we neglect the term proportional to λ/R in the denominator in
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the right-hand side of Eq. (8). For J (+)
ϕ , we can use the identity

∫ ∞

0
dy yJα (xy)Jα (zy) = δ(x − z)/x (A9)

and find

J (+)
ϕ = − Ms

dF

R

∫ ∞

0
dxθ̄ ′(x) sin θ̄ (x)δ(x − r/R)

= − Ms
dF

R
θ̄ ′(r/R) sin θ̄ (r/R), r � rλ. (A10)

Equation (A10) is equivalent to Eq. (15).
For the sensitive to chirality component of the supercurrent

J (−)
ϕ , the easiest way to derive the asymptotic expression at

closest distances is done by employing the relation Jϕ (a) =
φ−1

0 ∂ (FSk−V/∂a) and differentiating the expression (35) with
respect to z, inserting z = r/R. The derivation of (35) is pre-
sented in Appendix B.

The asymptotic expressions (16) and (17) for r � rλ can
be easily derived from Eq. (A8).

2. The case of the linear ansatz

Let us start from the case of R � λ and derive the asymp-
totic expression (20) for the nonchiral term in supercurrent,
J (+). At shortest distances, r � R, one can proceed similar to
the case of the smooth profile,

J (+)
ϕ = Ms

dF

2λ

∫ ∞

0
dy g(+)

L (y)J1(yr/R). (A11)

Since g(+)
L (y) = g(+)(y) + δg(+)(y), for the first contribution

to J (+)
ϕ we can use the expression (A4). While for the second

term, δg(+)(y) = −4c2J1(y), we apply the identity
∫ ∞

0
dyJ1(y)J1(yr/R) = 2R

πr
[K (R2/r2) − E (R2/r2)]

� r/(2R) + O(r3/R3), r � R.

(A12)

Here, K (z) and E (z) denotes the complete elliptic integrals of
the first and second kinds. Together, these two contributions
give the final result, cf. Eq. (20),

J (+)
ϕ =

(
πSi(π ) − 1 + 4

π2

)
Ms

dF r

4λR
. (A13)

To find the behavior of the J (+)
ϕ at large distances we use the

method described near Eq. (A5) above. The only difference is
that instead of the expression for the smooth profile function
g(+)(y) we need to use the expression (18) for g(+)

L (y). Then,
we retrieve∫ ∞

0
dy y2e−2ytλ/RJ0(xy)J1(yr/R)

� −x2

4

∫ ∞

0
dy y4e−2ytλ/RJ1(yr/R)

= x2R5

4r5

15(2λt/r)(4(2λt/r)2 − 3)

[1 + (2λt/r)2]9/2 . (A14)

This leads to the following approximate expression:

J (+)
ϕ = Ms

dF R4

r5

6 − π2

2π4

∫ ∞

0
dt e−t 30λt (4(2λt/r)2 − 3)

r[1 + (2λt/r)2]9/2 .

(A15)

In the case of R � r � λ, the exponent e−t in the right-hand
side of Eq. (A15) can be approximated by the unity. Then we
obtain, cf. Eq. (20),

J (+)
ϕ = −3(π2 − 6)

4π4
Ms

dF R4

λr4
. (A16)

In the limit of longest distances r � λ, we neglect the terms
(2λt/r)2 in the enumerator and denominator under the integral
sign in Eq. (A15). Then we find, cf. Eq. (20),

J (+)
ϕ = −45(π2 − 6)

π4
Ms

dF λR4

r6
. (A17)

Finally, we derive asymptotic expressions for J (+)
ϕ for the

case of a large skyrmion radius, R � λ. As it was explained
in the main text, we have to combine the contributions from
the term g(+)(y), given by Eq. (7), and due to δg(+)(y) =
−4c2J1(y). Let us start from the limit r � R. We can use
Eq. (A10) for the asymptotic expression, corresponding to the
contribution from g(+)(y). In the case of the linear ansatz it
reads (MsdF /R)π2(r/R). In order to find the contribution due
to the second term, δg(+)(y), we replace the Bessel function
J1(yr/R) by yr/(2R) and expand denominator in powers of
yλ/R. Then we find

− 2c2
r

R
lim

β→+0

∫ ∞

0
dy e−βyyJ1(y)

[
1 − 2yλ

R
+ O

(
λ2

R2

)]

� −12c2
λr

R2
. (A18)

Bringing these two contributions together, we retrieve, cf.
Eq. (21),

J (+)
ϕ = π2MsdF r

R2

(
1 − 3

π2 − 4

π4

λ

R

)
, r � R. (A19)

For r � R � λ, one can repeat derivation following
Eqs. (A14) and (A15). Then one arrives eventually at the
expression (A17).

APPENDIX B: DERIVATION OF THE ASYMPTOTIC
EXPRESSIONS FOR THE INTERACTION ENERGY

1. The case of a smooth skyrmion profile

In this Appendix, we present some details of derivation of
the asymptotic expressions for FSk−V.

We start from the case of a small skyrmion and a large
vortex, R � λ. In the regime of short distances a � R, we can
neglect the unity in comparison to the large parameter λ/R in
the denominator under the integral sign in the right-hand side
of Eq. (30). Expanding the Bessel function J0(ya/R) in series
of ya/R, we obtain

FSk−V

Msφ0dF
� 1+

∫ ∞

0
dy

1 − (a/R)2y2/4

2yλ/R

∫ ∞

0
dx x[ηy + θ̄ ′(x)]

× J1(yx) sin θ̄ (x). (B1)
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This expression can be easily simplified to the form of
Eq. (31).

For the intermediate distances, R � a � λ, one can sim-
plify Eq. (30) by using the following identities:∫ ∞

0
dy J0(yz)J1(xy) = �(x − z)/x, (B2)

∫ ∞

0

dy

y
J0(y)J1(xy) = 2

πx
[E (x2) − (1 − x2)K (x2)]

× �(1 − x) + 2

π
E (x−2)�(x − 1).

(B3)

After some simplifications, the expression for the interaction
energy can be brought to the form of Eq. (31).

The case of the longest distances, a � λ, can be studied
in the following way. One can transform the expression in
the denominator under the integral sign in the right-hand
side of Eq. (30) into the exponent with the help of an addi-
tional integration, 1/(1 + 2yλ/R) = ∫ ∞

0 dt e−t (1+2yλ/R). Then
expanding the Bessel function J1(xy) in its argument to the
lowest order, we derive Eq. (33).

Now let us consider the opposite case of large skyrmion
radius, R � λ. Making in Eq. (30) expansion in powers of
λ/R, we obtain Eq. (34) with the functions hη,0(z) and hη,1(z)
that are given as

hη,0 =
∫ ∞

0
dxdy xJ0(yz)J1(yx)[ηy + θ̄ ′(x)] sin θ̄ (x) (B4)

and

hη,1 = −2
∫ ∞

0
dxdy xyJ0(yz)J1(yx)[ηy + θ̄ ′(x)] sin θ̄ (x).

(B5)

We shall start with the asymptotic behavior of the functions
hη,0(z) and hη,1(z) at z � 1. Using the following identities
d[xJ1(xy)]/dx = yxJ0(xy), yJ1(xy) = −dJ0(xy)/dx, the iden-
tity (A9), and the relation

∫ ∞

0
dyJ0(yz)J0(yx) = 2

π

{
K (x2/z2)/z, z � x,
K (z2/x2)/x, z < x,

(B6)

we can simplify Eqs. (B4) and (B5) as follows

hη,0(z) = cos θ̄ (z) − 1 + 2η

π

∫ z

0

dx

z
χ0(x)K

(
x2

z2

)

+ 2η

π

∫ ∞

z

dx

x
χ0(x)K

(
z2

x2

)
(B7)

and

hη,1(z) = −2η
χ0(z)

z
− 4

π

∫ z

0

dx

z
χ1(x)K

(
x2

z2

)

− 4

π

∫ ∞

z

dx

x
χ1(x)K

(
z2

x2

)
, (B8)

where χ0(x) = [x sin θ̄ (x)]′ and χ1(x) = [xθ̄ ′(x) sin θ̄ (x)]′.
Next we rewrite the integrals over the region x > z
in the right-hand side of Eqs. (B7) and (B8) in the

following form:

2

π

∫ ∞

z

dx

x
χ0,1(x)K

(
z2

x2

)

=
∫ ∞

z

dx

x
χ0,1(x) + z2

4

∫ ∞

z

dx

x3
χ0,1(x)

+ 2

π

∫ ∞

z

dx

x
χ0,1(x)

[
K

(
z2

x2

)
−

(
π

2
+ πz2

8x2

)]
. (B9)

Written in this way, each of the terms converges at z → 0 and
the asymptotic behavior of hη,0(z) and hη,1(z) can be easily
extracted. Then we reproduce Eqs. (35) and (38).

For large values of the argument, z � 1, it is enough to
consider the term in Eqs. (B7) and (B8) which is proportional
to the integral over the region x < z. We can also expand
the complete elliptic function of the first kind as K (x2/z2) =
π/2 + πx2/(8z2) + 9πx4/(128z4) + . . . Then one can derive
Eqs. (36) and (39).

2. The case of the linear ansatz

For linear ansatz, we represent the free energy as a sum
FSk−V,L ≡ FSk−V + δFSk−V, see Eq. (42). For the analysis of
FSk−V, we refer to the previous section, while in this section,
we are examining exclusively δFSk−V defined in Eq. (42).
We begin with the case of large vortex and small skyrmion,
λ � R. For small distances, a � λ, we neglect the unity in
the denominator of the expression under the integral sign in
Eq. (42) and employ the identity (B3). Expanding the ex-
pression (B3) in powers of x and 1/x, we obtain Eq. (44).
At longest distances one can repeat the derivation, following
Eq. (B3), eventually arriving at Eq. (48).

For large skyrmion radius, R � λ, it is convenient to
present δFSk−V as follows:

δFSk−V

Msφ0dF
= 4c2

∫ ∞

0
dy J0(ya/R)J1(y)

− 8c2
λ

R

∫ ∞

0
dy

yJ0(ya/R)J1(y)

1 + 2yλ/R
. (B10)

The first term can be easily simplified using the identity
(B2). The second term turns into (λ/R)δhη,1(a/R) after set-
ting λ/R → 0 in denominator of the integrand. Its asymptotic
behavior at small distances, a � R, can be extracted by ex-
panding J0(ya/R) in powers of a/R,

lim
β→+0

∫ ∞

0
dy e−βyy(1 − y2a2/(4R2))J1(y) = 1 + 3a2

4R2
.

(B11)
At large distances, a � R, the second term in (B10) is

dominated by very small y, thus one can substitute J1(y) with
(y/2 − y3/16 + . . . ) and find

lim
β→+0

∫ ∞

0
dy e−βyyJ0(ya/R)(y/2 − y3/16)

= −R3/(2a3) − 9R5/(16a5). (B12)

The first term cancels out (39), thus, finding the next order in
the expansion of the function hη,1(z) (see the previous section)
and summing it up with (B12), we find (53).
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We notice that the second term in (B10) converges to a
discontinuous function in a = R with λ/R → 0. However, for
all finite values of λ/R, the function remains continuous.

APPENDIX C: MAGNETIC SELF-ENERGY OF THE
ISOLATED SKYRMION

The magnetic self-energy of the single isolated skyrmion
can be represented as (see, e.g., Ref. [31])

Fmagn
Sk = −1

2

∫ dF

0
dz

∫
d2rMSkBSk. (C1)

Inserting BSk = ∇ × ASk and using the exact solution for ASk,
cf. Eq. (3), we derive the asymptotic expression for Fmagn

Sk in
the case of a thin ferromagnetic film, dF � R,

Fmagn
Sk = −2πdF M2

s

∫
d2r

(
1 − m2

z

)
. (C2)

Consequently, contribution from demagnetization field to the
total free energy of an isolated skyrmion can be included as a
rescaling of the perpendicular anisotropy constant: K → K −
2πM2

s , see Eq. (54).
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