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In this paper we study repulsion of a Néel-type skyrmion in a chiral ferromagnetic film from a superconduct-
ing Pearl vortex due to the stray fields. Taking into account an effect of the vortex magnetic field on the sky-
rmion non-perturbatively, we find that the repulsion between them is suppressed with increase in the dimen-
sionless strength of the vortex magnetic field. This manifests itself in complicated evolution of the free energy
with increase in the vortex magnetic field and reduction of the equilibrium distance between the centers of
Néel-type skyrmion and Pearl vortex.
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INTRODUCTION
Mutual influence of magnetism and superconduc-

tivity in heterostructures has long history of research
[1–5]. Recently, superconductor–ferromagnet (SF)
bilayers hosting topologically nontrivial magnetic
configurations have attracted much attention [6–8].
Such topologically stable configurations can be stabi-
lized by Dzyaloshinskii–Moriya interaction (DMI) in
ferromagnetic films [9]. Skyrmions in SF heterostruc-
tures induce Yu–Shiba–Rusinov-type bound states
[10, 11], host Majorana modes [12–20], affect the
Josephson effect [21], and change the superconduct-
ing critical temperature [22].

Skyrmions and superconducting vortices can form
bound pairs in SF heterostructures due to interplay of
spin–orbit coupling and proximity effect [23, 24]. In
addition, vortices and skyrmions interact via stray
fields [25–28]. Recently, stable skyrmion-vortex
coexistence has been experimentally observed in
[Ir1Fe0.5Co0.5Pt1]10/MgO/Nb sandwich structure [29].

In [28] two of the authors predicted that a
Néel-type skyrmion and a Pearl vortex interacting via
stray fields are repelled from each other to be located
at a finite distance. However, the analysis of [28] has
been limited to the lowest order perturbation theory in
the magnetic field induced by the vortex.

In this work, we study interaction between a super-
conducting Pearl vortex and a Néel-type skyrmion in

a chiral ferromagnetic film due to stray fields (see
Fig. 1). Contrary to [28], we take into account the
change of the skyrmion profile due to magnetic field
induced by the Pearl vortex. Performing non-pertur-
bative treatment of the effect of vortex magnetic field
on the one hand by analytical approach and on the
other hand by micromagnetic modeling, we find that
the free energy  of the system as a function of the dis-
tance a between the skyrmion and the vortex experi-
ences drastic changes with increase in the dimension-
less strength γ of the vortex magnetic field, cf. Eq. (6).
In particular,  has (i) the single minimum at

 for , (ii) two minima at 
and at  with  for

, (iii) two minima at  and at
 with  for , and

(iv) the single minimum at  for  (cf.
Fig. 2). With increase in γ the distance  between
the centers of a Néel-type skyrmion and a Pearl vortex
is reduced and jumps to zero abruptly at  (cf.
Fig. 3). All three critical values  and  depend on
the dimensionless DMI strength (cf. Fig. 4). In gen-
eral, we can make somewhat counter-intuitive state-
ment: the repulsion between the skyrmion and the
vortex is suppressed with increase in the dimensionless
vortex magnetic field.
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Fig. 1. (Color online) Sketch of a ferromagnet (blue)–
superconductor (green) heterostructure. A thin insulating
layer is not shown. The ferromagnetic layer hosts a Néel-
type skyrmion (Sk). The superconducting film hosts a vor-
tex (V). The distance between their centers is a.
SKYRMION–VORTEX INTERACTION
Following [28], our setup consists of ferromagnetic

and superconducting films of thicknesses dF and dS,
respectively. We assume that both films are thin,
dS ≪ λL and dF ≪ R, where λL is the London penetra-
tion length and  denotes the skyrmion radius. In addi-
tion, we assume the presence of a thin insulating layer
between superconducting and ferromagnetic films in
order to suppress the proximity effect. The supercon-
ducting film hosts a pair of Pearl vortex and antivortex
separated by a distance much larger than the Pearl pen-
etration length  [30] (see Fig. 1).

The free energy of a thin chiral ferromagnetic film
subjected to the magnetic field  produced by a Pearl
vortex is given by

(1)

Here,  is the unit vector along direction of the
magnetization M,  stands for saturation magnetiza-
tion of the film. The exchange, DMI, and perpendic-
ular anisotropy energy constants are denoted as A, D,
and K, respectively. We assume that these parameters
are positive, . The magnetic field of the
Pearl vortex centered at the position with coordinate a
is given as [31]:

(2)
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Fig. 2. (Color online) Sketch of dependence  for different r
nonzero distance amin. Middle panel with : Ther
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where  denotes the f lux quantum. The free
energy  is normalized in such a way that 
for the ferromagnetic state, , and without the
Pearl vortex, . We note that we neglect interac-
tion between the skyrmion and antivortex situated at a
large distance away.

SHIFTED SKYRMION AT 
In the absence of the vortex the magnetization cor-

responding to a Néel-type skyrmion can be sought in
the cylindrical coordinate system as [32]

(3)

Minimizing the free energy  with  with
respect to a skyrmion angle , one can derive the
Euler–Lagrange equation,

(4)

Here a dimensionless parameter  con-
trols the strength of DMI, the domain wall width

 sets a natural length scale in the problem
and  is the radial part of Laplacian.

In order to solve Eq. (4) one needs to specify the
boundary conditions. Assuming naturally that the film
is ferromagnetically magnetized away from the skyr-
mion,  ( ). At the center of the
skyrmion magnetization has the opposite direction,

. Since at  only skyrmions of positive chi-
rality are stabilized in the ferromagnet,  corre-
sponds to the condition .

Knowing the solution  of Eq. (4) (in
the absence of the vortex magnetic field), we can cal-
culate [28] the interaction energy as a function of dis-
tance  between the centers of the skyrmion and the
vortex,

(5)
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anges of γ. Left panel, : There is the single minimum at
e is the global minimum at nonzero distance amin and the local
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Fig. 3. (Color online) Distance amin between the skyrmion
and the vortex versus  for several values of γ ranging from
0.01 to 0.3. The dashed curve illustrates analytical predic-
tion for  , see text below Eq. (8). For each
value of  the distance amin varies from  to

. Once γ becomes larger than  the system
reaches coaxial phase. The shaded regions guide the con-
stant value of the vortex strength γ, see the color bar inset.

ε

εmin( )a γ → 0
ε γ →min( 0)a

γmin cr( )a γcr

Fig. 4. (Color online) Phase diagram. The solid curve
shows dependence  extracted from micromagnetic
simulations. The black dashed curve corresponds to

. In the blue shaded region, the distance between
the skyrmion and the vortex is nonzero, amin > 0, cf. Fig. 2.
The points A–F correspond to the respective panels (a–f)
in Fig. 5.
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where the dimensionless strength γ of the vortex mag-
netic field is given as

(6)
Equation (5) is valid in the leading approximation on
small vortex strength . Notation  means that
we subtract the energy of the lonely skyrmion itself
and the energy of the homogeneous ferromagnet in
the vortex field from the total free energy . The
functions  and  means the dimensionless
r- and z-projections of the vortex field  averaged by
rotation of the system around the center of the skyr-
mion, i.e., over all possible directions of the vector a.
They are given as

(7)

Assuming the skyrmion radius to be much smaller
than the Pearl length, , that requires

, we can treat the functions  in the
limit  as

(8)

Here,  denotes the Heaviside step function and
 is the complete elliptic integral of the first kind.

The minimum of  determines the stable posi-
tion amin of the skyrmion. The resulting dependence of
amin on  at  is shown in Fig. 3 by the dashed line.
As one can see, amin is of the order of  and decreases
with increase in .
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It should be emphasized that in the analysis above
we neglect a change of the skyrmion profile due to the
vortex field when calculating Eq. (5). Indeed, such a
reshaping should be taken into account in the next
approximation on small vortex strength γ. For small γ
an account of the next order correction leads only to a
small correction of the magnitude of amin, but does not
change the result qualitatively.

NEARLY CENTERED SKYRMION, 

Now we study at what parameters the coaxial con-
figuration of the skyrmion and the vortex ( ) is
unstable. The magnetization of such skyrmion also
can be sought as given by Eq. (3), due to the radial
symmetry of the problem. Then the minimization of
the free energy  with respect to the skyrmion
angle  yields the Euler–Lagrange equation similar
to Eq. (4), but with 
instead of zero in the right hand side. Boundary con-
ditions remain the same:  and

.

When the solution  for a finite magni-
tude of γ is obtained, we can calculate the interaction
energy  for small . The idea is the same as
beyond Eq. (5). For small spacing , one can neglect
the reshaping of the skyrmion in the leading approxi-
mation and use Eq. (5), but with ,
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Here we introduce . At r ~
 and  these functions can be estimated as

 and . Note
that though the result (9) has been obtained in the
limit of small , it allows to predict the existence of a
minimum of  at  for an arbitrary value

.
At  and for  the free energy

has a maximum at , because .
Hence, the skyrmion is repelled from the vortex in
agreement with [28]. With increase in γ the difference

 changes sign at  and the mini-
mum at  appears in the free energy. Therefore,
for  the skyrmion can be stable right at the vor-
tex. The dependence of  on  extracted from
Eq. (9) is shown in Fig. 4 by the dashed curve. As one
can see  decreases with increase in  and vanishes
at . We expect similar dependence of 
on . Our theoretical analysis demonstrates that 
vanishes at  which is only slightly larger
than . We note that  vanishes at the value of

 which lies between  and . We stress
that with relevant precision .

MICROMAGNETIC MODELING
To explore the skyrmion stable state in the field of

the Pearl vortex with change of  and γ, we perform
micromagnetic simulations. We utilize Object Ori-
ented MicroMagnetic Framework (OOMMF) [33] by
dint of Ubermag [34] Python packages.

The system is modeled as a set of classical magnetic
vectors placed in the center of mesh cells. The distance
is measured in units of the domain wall width . We
note that for the micromagnetic modeling we set the
magnetic anisotropy parameter  and DMI

. Periodical boundary conditions (in -plane)
are imposed to simulate an isolated region of a ferro-
magnet–insulator-superconductor structure. We cre-
ate a skyrmion by initiating a closed region with a
flipped magnetization and letting it relax in the pres-
ence of the Heisenberg exchange, DMI and magnetic
anisotropy interactions as well as in the vortex-
induced magnetic field.

We point out that the system is not subject to any
other external fields, so that the only source of Zee-
man energy comes from the interaction with the vor-
tex. In our simulations we consider a Pearl vortex with
zero-sized core to be pinned in the origin of the grid,
see Eq. (2).

The micromagnetic simulations allow us to find the
dependence of the distance  between the skyrmion
and the vortex on  for a finite value of γ, see Fig. 3. As
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in the case of ,  decreases with increase in 
at constant magnitude of γ. Similarly,  decreases
with the increase in γ at a constant value of . We note
a discrepancy between the theory and the micromag-
netic simulations that becomes more prominent for
smaller , see Fig. 3. We believe that this happens due
to discretization effects which are inevitable in the
numerical approach. In our simulations we have found
that by making the mesh finer, one observes the
declining tendency for  towards the theoretical
value marked by the dashed curve in Fig. 3. However,
for small values of  one needs to account both for
smaller mesh cells and for larger sample size, which is
computationally expensive.

The results of micromagnetic simulations are con-
sistent with evolution of the free energy with γ illustrated
in Fig. 2 schematically. The phase diagram in  and γ
plane extracted from the obtained results is shown in
Fig. 4. Two phases of stable position of the skyrmion,
right on the top of the vortex (white clear upper region)
and at the finite distance  (blue shaded lower
region), are separated by the solid line . One
can see that  drops to zero when  reaches approxi-
mately 0.49 in accordance with theoretical predictions.
As we have mentioned above there is the lower and
upper critical values  at which minimum at

 disappears and minimum at 
appears, respectively. However, we cannot resolve these
values within our micromagnetic modeling.

The skyrmion profiles obtained by means of micro-
magnetic simulations for  and γ corresponding to the
points A, B, and C in Fig. 4 are presented in Fig. 5
(upper row). As expected, in all three cases skyrmions
are situated right on the top of the vortex, i.e.,

. In lower row of Fig. 5 we demonstrate skyr-
mions for parameters  and γ corresponding to the
points D, E, and F in Fig. 4. In this case the nonzero
distance of the skyrmion from the vortex is clearly
seen.

We draw a reader’s attention to the spatial structure
of the magnetization of the shifted skyrmions corre-
sponding to the points D, E, and F. Naturally, as the
effective strength γ of the vortex magnetic field
increases, the magnetization profile deviates from the
radially symmetric one. This leads to the following.
Firstly, the center of the skyrmion is getting closer the
center of the vortex, and secondly, the radius of the
skyrmion increases. In addition to that, the projection
of the magnetization on the  plane (shown as black
arrows in Fig. 5) partially aligns along the direction of
the magnetic field. These changes in the profile lead to
a decrease in the total free energy  of the dis-
placed skyrmion as a function of γ. However, the free
energy  of a skyrmion placed exactly above
the vortex decreases faster with increasing γ. As a con-
sequence, when γ exceeds , the energy of the shifted
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Fig. 5. (Color online) Distributions of magnetization for different values of  and γ. The Pearl vortex is located at the center of
each picture, i.e., at . The white contours illustrate a level set of the  projection. The most extreme contour in each
panel separates the skyrmion magnetization from purely ferromagnetic spin ordering. The black arrows reflect the magnitude and
direction of the projection of the magnetization m on the  plane. The upper row corresponds to vortex strength γ slightly above
the critical , when skyrmion abruptly changes its position and becomes coaxial with the vortex. The lower row illustrates dis-
tribution of  for γ which is slightly less than , i.e., for the case of nonzero amin. One can clearly see that the skyrmions in the
lower row are shifted from the sample’s center where the Pearl vortex is settled. The panels (a–f) match with the respective points
A–F marked in Fig. 4.

(a) (b) (c)

(d) (e) (f)

ε

= = 0x y zm

xy
γcr

zm γcr
skyrmion becomes greater than the energy of the sky-
rmion located exactly above the vortex.

To clarify significance of critical values of dimen-
sionless vortex strength  and  let us consider the
case of small but finite concentration of skyrmions and
vortices. Then at  one can expect the phase of
(dipole-like) pairs consisting of skyrmion and vortex
separated by a distance . At  one can
observe the phase of (point-like) pairs of skyrmion
and vortex sitting on the top of each other. In the inter-
mediate range  there is the phase in
which there are finite concentrations of dipole-like
and point-like skyrmion-vortex pairs. Under assump-
tion that the system can reach the global minimum of
the free energy, there will be a true thermodynamic
transition at  between the phases with dipole-like
and point-like pairs, respectively. Since the dimen-
sionless vortex strength γ depends on material param-
eters, see Eq. (6), and is proportional to the thickness
of superconducting film , it could be possible to see
the transitions described above with thickness change.
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SUMMARY
In this work, we have extended the study of interac-

tion between a superconducting Pearl vortex and a
Néel-type skyrmion in a chiral ferromagnetic film to
non-perturbative regime with respect to the stray
fields induced by the vortex. Contrary to the previous
work [28] of two of us limited to the regime of a weak
dimensionless vortex magnetic field, , we have
found that the increase in γ suppresses repulsion of
skyrmion and vortex and leads to reduction of the dis-
tance  between the centers of a Néel-type skyr-
mion and a Pearl vortex as shown in Fig. 3. Most sur-
prisingly, we have discovered the existence of interest-
ing evolution of the free energy of the system with γ. In
particular, at  the free energy  has the
only minimum at  whereas at  it has
the only minimum at , see Figs. 2 and 4.

Finally, we mention that it would be interesting to
generalize our results to the case of skyrmions and vor-
tices in confined geometries, e.g., nanodots etc. [35–
37], skyrmion-vortex lattices [38], as well as to more
exotic magnetic excitations, e.g., antiskyrmions,
bimerons, biskyrmions, skyrmioniums, etc. [7].
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