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Disorder-driven transition to tubular phase in anisotropic two-dimensional materials
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We develop a theory of anomalous elasticity in disordered two-dimensional flexible materials with orthorhom-
bic crystal symmetry. Similar to the clean case, we predict the existence of infinitely many flat phases with
anisotropic bending rigidity and Young’s modulus showing power-law scaling with momentum controlled by a
single universal exponent the very same as in the clean isotropic case. With an increase of temperature or disorder,
these flat phases undergo a crumpling transition. Remarkably, in contrast to the isotropic materials where
crumpling occurs in all spatial directions simultaneously, the anisotropic materials crumple into a tubular phase.
In distinction to the clean case in which the crumpling transition happens at unphysically high temperatures, a
disorder-induced tubular crumpled phase can exist even at room-temperature conditions. Our results are applied
to anisotropic atomic single layers doped by adatoms or disordered by heavy ions bombarding.
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I. INTRODUCTION

The discovery of graphene [1–3] and other atomically thin
materials [4] opened the field of flexible two-dimensional
(2D) materials, the so-called crystalline membranes [5]. A
hallmark of such membranes is anomalous elasticity, i.e.,
nontrivial scaling of elastic modules with the system size [6].
Also, 2D materials undergo crumpling with the increasing
temperature [6–13]. However, the critical temperature of the
crumpling transition (CT) in clean isotropic membranes is
unphysically high (of order of a few eV). As has recently
been demonstrated [14,15], the CT can occur at low tem-
perature in a disordered isotropic membrane provided that
disorder strength exceeds a certain critical value. In this paper,
we demonstrate that crystalline anisotropy adds new physics
to the problem. We find that with increasing disorder the
crumpling occurs in an anisotropic way, so that a disordered
membrane undergoes transition to the so-called tubular crum-
pled phase. This transition can happen at the room or even
lower temperature.

There are many examples of anisotropic crystalline mem-
branes, although the hexagonal crystal symmetry of graphene
seems to be high enough to make elasticity and electronic
transport identical to those of isotropic materials. On the
other hand, now researchers are interested in many other 2D
atomically thin materials, for example, 2D black phospho-
rus (phosphorene) [16,17], metal monochalcogenide [18,19],
dichalcogenide [20,21] monolayers, etc. These novel 2D ma-
terials have low crystal symmetry and, thus, can exhibit
anisotropic physical properties, including elastic response,
electron and thermal transport, photolumenescence, Raman
scattering, optical absorption, etc.

Probably the most studied one among novel anisotropic
atomically thin materials is a transition metal dichalcogenide

monolayer that has D3h point symmetry group as opposed
to D6h in graphene. However, elastic properties of a transi-
tion metal dichalcogenide monolayer is identical to that of
graphene, i.e., to an isotropic crystalline membrane.1 In con-
trast, phosphorene, boat- and washboard-graphane [22], metal
monochalcogenide monolayers (SiS, SiSe, GeS, GeSe, SnS,
SnSe), monolayers GeAs2, WTe2, ZrTe5, and Ta2NiS5 have
the orthorhombic crystal symmetry [23] such that their elastic
response does not reduce to that of an isotropic crystalline
membrane.

Next, we recall the basic facts on the anomalous elastic-
ity. The key ideas were put forward for isotropic crystalline
membranes and dates back to the seminal paper [6]. The de-
veloped field theoretical treatment of thermal fluctuations was
used to demonstrate the existence of two distinct phases: the
low-temperature flat phase and the high-temperature isotropic
crumpled phase separated by the CT [7–10,12,13]. Physics
behind the CT is the competition between thermal fluctuations
which tend to crumple membrane and anharmonicity-induced
increase of bending rigidity with the system size L that can
stabilize the membrane in the flat phase at L → ∞. Although
CT occurs at unphysically high temperatures, the anoma-
lous elasticity manifests itself also deep in the flat phase. In
particular, Young’s modulus and bending rigidity in the flat
phase have anomalous power-law scaling with L (or, equiv-
alently, momentum) that leads to the nonlinear Hooke’s law,
a negative Poisson ratio, etc. Currently there is a substantial

1For the point symmetry group D3h (D6h), the second-rank sym-
metric tensor ujk is transformed according to the following irreps:
A′

1 (A1g): uxx + uyy, uzz; E ′ (E2g): uxx − uyy, uxy; E ′′ (E1g): uxz, uyz.
Therefore the elastic energies for D3h and D6h are identical.
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interest in further theoretical understanding of physics of
clean isotropic crystalline membranes [14,15,24–37].

An extension of the anomalous elasticity theory for
anisotropic crystalline membranes has been done in Ref. [38].
A field theoretic analysis for a membrane of D = 4 − ε

dimension (with ε � 1) demonstrated that the membrane be-
comes asymptotically isotropic at large enough length scales
(the so-called universal regime, see below). Thus the effec-
tive elastic response of such anisotropic membranes should
be equivalent to that of an isotropic crystalline membrane.
Recently, two of us have shown that this is not the case for an
orthorhombic crystalline membrane with the physical dimen-
sion D = 2 [39]. In the universal regime, such an anisotropic
membrane has a discrete hidden symmetry preserving the
degree of orthorhombicity. As a membrane size tends to
infinity, L → ∞, the discrete symmetry transforms into an
emergent continuous symmetry that controls anisotropy ef-
fects in elastic response of an orthorhombic 2D membrane.
With increasing the temperature a 2D membrane with the
orthorhombic crystal symmetry undergoes the transition into
the tubular crumpled phase—an anisotropic phase predicted
earlier for strongly anisotropic materials [40,41]. We notice
however that the critical temperature of the transition to the
tubular phase is unphysically high for experimentally studied
clean 2D anisotropic crystalline membranes.

Realistic 2D flexible materials are disordered due to ran-
dom imperfections of the crystal lattice. The degree of
disorder can be increased by doping with adatoms or by
bombarding of membrane by heavy ions [42]. As a result,
in addition to thermal fluctuations, there appear so-called
ripples—the static, frozen deformations. Similarly to thermal
fluctuations disorder-induced ripples affect elastic response
and tend to crumple the membrane [14,15,27,43–47]. An in-
terplay of ripples and thermal fluctuations makes the physics
of disordered membranes much richer than that of the clean
ones. The properties of disordered membranes are not well
understood and are actively discussed both theoretically and
experimentally. In particular, the relevance of disorder for
the 2D flexible materials has recently been proved by ex-
perimental measurements of the nonlinear Hooke’s law in
graphene [48,49]. These results are substantially different
from the ones predicted for the generic clean membranes theo-
retically [10–12] and numerically for the clean graphene [50].
The experimental results can be explained by the one-loop
renormalization group (RG) theory of disordered membrane
[27]. The experimental observations can be also interpreted
as existence of other flat phase (so-called rippled flat phase)
in 2D flexible materials, which reveals itself within two-
loop RG analysis [15]. Additionally, numerical simulations of
graphene clearly demonstrated the disorder-induced CT [42].
It is worth stressing that the disorder-induced CT in isotropic
membranes happens isotropically, so that for a certain critical
value of disorder the membranes simultaneously shrinks in all
directions [15,27,42].

Initially, theoretical studies of disordered 2D membranes
predicted the existence of the marginal rippled flat phase at not
too high temperatures within one-loop RG analysis [46,47].
The scaling of elastic properties of realistic disordered finite-
size membranes is well described by this marginal phase even
at room temperature up to a very large values of L. However,

this phase is unstable and disappears in the thermodynamic
limit, L → ∞. (Similar prediction has been proposed for a
disordered membrane of dimension D = 4 − ε [43–45].)

Moreover, recently, two of us demonstrated that within
two-loop RG analysis the marginal rippled phase is stabilized
by sufficiently large disorder [15]. This, in turn, means the
existence of the transition between clean and rippled flat
phases at finite temperature (and/or disorder) in 2D disor-
dered membranes. Similar conclusion about the existence of
the transition between rippled and clean flat phases has been
drawn in analysis of a disordered D = 4 − ε dimensional
membrane [51–53].

As it was demonstrated by experiments in graphene
[48,49], disorder dramatically changes the elastic response of
2D isotropic flexible materials. Evidently, this implies that
disordered anisotropic membranes would show rich physics
that is very different from the physics of clean anisotropic 2D
materials. In particular, there are several important physical
questions: (i) the existence of a marginal flat rippled phase
within the simplest one-loop approximation, (ii) the stabi-
lization of this phase at finite temperature within a two-loop
approximation, and (iii) the disorder-induced transition to the
tubular crumpled phase. We are not aware of any study of
these questions in the literature. Here we shall focus on the
study of issues (i) and (iii).

In this paper, we develop a theory of anomalous elasticity
in disordered 2D flexible materials with orthorhombic crystal
symmetry. We focus on the universal regime when the typical
size of the membrane is large in comparison with the so-
called Ginzburg scale. We perform one-loop RG analysis of
disordered membranes with orthorhombic crystal symmetry.
We employ the simplest model of disorder that has the same
crystalline symmetry as the bending rigidity.

For a sufficiently weak disorder, the amplitude of rip-
ples decreases with increasing the system size and in
the thermodynamic limit it becomes negligible as com-
pared to the temperature-induced out-of-plane deformations.
Hence, presence of the weak disorder is irrelevant and the
large-size membrane is in a flat clean phase. Similar to re-
cently discussed clean case [39], there are infinitely many
clean anisotropic flat phases. The continuous parameter that
distinguishes different flat phases is related to the degree of or-
thorhombicity of a membrane. These phases have anisotropic
bending rigidity and Young’s modulus, cf. Eq. (76), as well
as anisotropic spatial behavior of roughness correlation func-
tions, cf. Eq. (77).

We also demonstrate that at large disorder there exists
infinite number of marginal rippled phases. If the disorder
strength is smaller than a certain critical value, any marginal
phase exists within large but finite interval of scales but in
the thermodynamic limit smoothly transforms into one of
the clean anisotropic flat phases. However, if disorder ex-
ceeds critical value (different for different marginal phases),
a marginal phase undergoes transition to a crumpled phase.
Remarkably, by contrast to the disorder-driven transition in
the isotropic membrane [14], the crumpled phase is tubular, so
that the CT is anisotropic and occurs along a certain direction
(see Fig. 1).

What is also dramatically important, especially in view of
the experimental application, is that in contrast to the clean
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FIG. 1. Phase diagram of an anisotropic membrane for γ > 1. B
is a disorder strength, T is temperature. Solid red curve corresponds
to the critical curve, B(T ), separating the flat phase from the tubular
phase of a membrane crumpled in y direction. For γ < 1, crumpling
occurs in x direction.

case, the disorder-induced transition to the tubular crumpled
phase can occur at realistic temperatures (at room or even
lower temperatures).

Also we briefly discuss a model of disorder having dif-
ferent symmetry than that of bending rigidity. In this case,
we find that the parameter that distinguishes different flat
marginal and tubular crumpled phases may be not directly
related with the degree of orthorhombicity of a membrane.

The outline of is paper is as follows. We formulate the
model of 2D anisotropic crystalline membrane in Sec. II. In
Sec. III, we perform one-loop renormalization of the free
energy in the universal regime (below the inverse Ginzburg
length) for the invariant manifold. The derived RG equa-
tions are analysed in Sec. IV. In Sec. V, we study the transition
to the tubular phase. The RG flow away from the invariant
manifold is studied in Sec. VI. We end the paper with discus-
sions and conclusions in Sec. VII. Some technical details are
summarized in Appendices.

II. MODEL

We start from the free energy for thermal fluctuations of
a 2D membrane embedded in d = 3 dimensional space. We
assume that the membrane is in the flat phase and has the
orthorhombic crystal symmetry. Then the free energy acquires
the following form [38]:

F = 1

2

∫
x

[
καβ∇2

αr∇2
βr + cαβuααuββ + 4c66u2

xy

]
. (1)

Here,
∫

x = ∫
d2x and uαβ = (∂αr∂βr − δαβ )/2 where α, β =

1, 2. The point on the membrane is parametrized by a d = 3
dimensional vector r.

The four parameters {c11, c12, c22, c66} denote the elastic
moduli of a 2D layer of a crystalline material with the or-
thorhombic crystal symmetry. In the case of κxx = κyy and
c11 = c22, the crystal symmetry is promoted to the tetragonal
one. For graphene which has the hexagonal symmetry, the
bending energy is isotropic, κxx = κyy = κxy together with
c11 = c22 = λ+2μ, c12 = λ, and c66 = μ.

The deformation of the membrane is given as the sum
of the homogeneous and inhomogeneous contributions. In-
plane homogeneous stretching is described by the tensor ξαβ,

which is proportional to the unit matrix for a clean mem-
brane at zero temperature. For simplicity, we do not discuss
shear deformations here. We thus assume that ξαβ has two
nonzero spatially independent diagonal components: ξxx = ξx

and ξyy = ξy. These global deformations play the key role in
the CT. Due to coupling with the out-of-plane displacements,
ξα decreases with increasing both temperature (because of
increase of the thermal fluctuations) and disorder (because
of increase of the ripple’s amplitude). The CT occurs when
one of these deformations turns to zero. In the isotropic case,
ξx = ξy, and CT means shrinking of the global deformation
to the point. By contrast, in the anisotropic case, one of the
stretchings vanishes first, that implies that CT undergoes into
the tubular phase.

Separating homogeneous stretching, we choose a stan-
dard parametrization of the coordinates: r1 = ξxx+ux, r2 =
ξyy+uy, and r3 = h, such that uαβ = (ξ 2

α − 1)δαβ/2+ũαβ ,
where (no summation over repeating indices is assumed)

ũαβ = 1
2 (ξβ∂αuβ + ξα∂βuα + ∂αh∂βh + ∂αu∂βu). (2)

The inhomogeneous deformation is given by the sum of the
in-plane displacement u = {ux, uy} and the out-of-plane de-
formation h. Under assumption that the membrane is in the
flat phase and not too close to the crumpling transition, the
term ∂αu∂βu in Eq. (2) can be neglected in comparison with
∂αh∂βh. Then, the free energy becomes Gaussian with respect
to the in-plane displacements. Following Ref. [6], we integrate
over u and obtain the effective free energy written in terms of
the out-of-plane phonons alone,

F = 1

8

∫
x

cαβεαεβ + 1

2

∫
x

(
καβ∇2

αh∇2
βh + β∇2h

)
+ 1

8

∫
q

Y (θq)

∣∣∣∣ ∫
k
[k × q̂]2hk+qh−k

∣∣∣∣2

. (3)

Here we use a short-hand notation,
∫

q = ∫ d2q
(2π )2 , and in-

troduce q̂ = q/q that is the unit vector along the vector q.
Here εα = ξ 2

α − 1+ ∫
k k2

αhkh−k is displacement, which con-
tains anomalous contribution

∫
k k2

αhkh−k responsible for the
anomalous Hooke’s law. The “prime” sign in the last integral
in Eq. (3) indicates that the interaction with q = 0 is excluded.
Effective coupling between out-of-plane modes is given by the
angle-dependent function

Y (θq) = c66

[
q̂2

x q̂2
y + c66cαβεαα′εββ ′

c11c22 − c2
12

q̂2
α′ q̂2

β ′

]−1

, (4)

where εαβ is fully antisymmetric tensor. In the isotropic case,
the function (4) does not depend on the angle and is given by
the Young modulus 4μ(λ+μ)/(λ+2μ). Hence, Y (θq) repre-
sents the bare value of the anisotropic Young’s modulus [54].

The term (1/2)
∫

x β∇2h in Eq. (3) is responsible for a dis-
order of “random-curvature” type. A standard model of such
disorder implies that β(x) has isotropic Gaussian distribution

Piso{β(x)} = N−1e− ∫
x β2(x)/4λ0 = N−1e− ∫

k βkβ−k/4λ0 . (5)

Here N is the normalization coefficient and λ0 characterizes
the disorder strength. For the distribution (5), the correla-
tion function in the momentum space is isotropic: βkβ−k′ =
4λ0 δk,k′ . However, as we shall demonstrate below, the RG
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flow forces this correlation function to become anisotropic in
the momentum space:

βkβ−k′ = 4λ(θk) δk,k′ , λ(θ ) = k̂2
αλαβ k̂2

β. (6)

Here we introduced symmetric tensor λαβ instead of single
variable λ0. Such correlation function is consistent with the
RG flow. In the isotropic case all λαβ are equal to λ0. This
implies that the RG flow generates two additional coupling
constants, cf. Eq. (14). We also notice that Eq. (6) is repro-
duced by distribution function

P{β(k)} = N−1e− ∫
k βkβ−k/4λ(θk ). (7)

We stress that the distribution function changes its functional
form under the RG. We assume that the function λ(θ ) in
Eq. (6) is non-negative for all angles, i.e.,

λxx > 0, λyy > 0, λxy > −√
λxxλyy. (8)

It is convenient to introduce the bare angle-dependent
bending rigidity

κ(θk) = καβ k̂2
α k̂2

β = κ0 + κ2 cos(2θk) + κ4 cos(4θk), (9)

where θk is the angle of the wave vector k and
κ0 = (3κxx+2κxy+3κyy)/8, κ2 = (κxx − κyy)/2, and κ4 =
(κxx − 2κxy+κyy)/8. Generally, there are two anisotropic
terms characterized by bending rigidities κ2 and κ4 in Eq. (9).
In the case of the tetragonal crystal symmetry, the second
harmonics proportional to κ2 is absent.

Below we assume that the following inequalities hold

κxx > 0, κyy > 0, κxy > −(κxxκyy)1/2. (10)

They guarantee that κ(θk) is positive for all angles θk. Con-
sequently, the membrane is stable against transition into a
tubular phase at zero temperature and in the absence of
disorder.

Next we make two more adjustments of the effective free
energy (3). At first, we introduce N replica in order to be
able to perform averaging of lnF over disorder. Secondly,
we extend the dimensionality of the membrane’s embedding
space d from 3 to 2 + dc. Additional dimension dc plays a role
of the flavor index Nf for the out-of-plane phonons. Below
we use standard approach, analogous to 1/Nf expansion over
number of flavors: we assume that additional dimension is
large and use perturbation theory controlled by the parameter
1/dc � 1. All in all, we substitute the scalar field h by a tensor
field h(a)

j where j = 1, . . . , dc and a = 1, . . . , N . In what fol-

lows, we shall use the vector notation h(a) = {h(a)
1 , . . . , h(a)

dc
}.

Then, after averaging over disorder the replicated free energy
becomes

F = 1

8

∫
x

N∑
a=1

cαβε(a)
α ε

(a)
β + 1

2

N∑
a,b=1

{∫
k

κab(θk)k4h(a)
k h(b)

−k

+ 1

4

∫
q

Y (θq)δabX (a)
q X (b)

−q

}
,

X (a)
q =

∫
k
[k×q̂]2h(a)

k+qh(a)
−k, (11)

where ε(a)
α = ξ 2

α − 1+ ∫
k k2

αh(a)
k h(a)

−k. The quantities κab(θ ) are
the elements of the N × N matrix in the replica space,

κ̂(θ ) = κ(θ )1̂ − ψ (θ )Ĵ. (12)

Here Ĵ is the identity matrix, Jab = 1. The function ψ (θ ) is
defined as follows:

ψ (θk) = 1

T
k̂2
αλαβ k̂2

β. (13)

Similar to κ(θ ), cf. Eq. (9), the function ψ (θk) can be ex-
panded in the Fourier series

ψ (θ ) = ψ0 + ψ2 cos(2θ ) + ψ4 cos(4θ ). (14)

Here we introduce ψk = λk/T with k = 0, 2, 4 and harmon-
ics λ0 = (3λxx+2λxy+3λyy)/8, λ2 = (λxx − λyy)/2, and λ4 =
(λxx − 2λxy+λyy)/8. Below we shall also use the notation
ψαβ = λαβ/T .

III. RENORMALIZATION ON THE
INVARIANT MANIFOLD

Generically, there are no relations between components of
matrices καβ and ψαβ . Inspired by the emergent symmetry
in the clean case [39], at first, we assume that the following
relation holds (

κxx

κyy

)1/4

=
(

ψxx

ψyy

)1/4

≡ γ , (15)

where 0 < γ < ∞. The parameter γ controls asymmetry be-
tween x and y axes existing in the orthorhombic symmetry
class. We note that in the case of tetragonal crystal symmetry
the relation (15) holds trivially with γ = 1.

Below we shall demonstrate that the RG flow preserves
Eq. (15). A more general case when Eq. (15) does not hold
for bare values of καβ and ψαβ is discussed in Sec. VI.

A. Elimination of the second harmonics

We use the same approach as it was developed in Ref. [39]
for the analysis in the clean case. Specifically, we eliminate
the second angular harmonic of angle-dependent bending
rigidity κ(θ ) and disorder function ψ (θ ), having in mind
to reduce the problem to analysis of the system with the
tetragonal symmetry.

The condition (15) allows us to eliminate the second an-
gular harmonics in both κ(θ ) and ψ (θ ), simultaneously. We
perform the affine transformation of momenta and coordinates

kx �→ kx/
√

γ , ky �→ ky
√

γ , x �→ x
√

γ , y �→ y/
√

γ .

(16)

Employing this transformation we find that the free energy
(11) keeps the same form but the bending rigidities, Young’s
modulus, and displacements become modified. The functions
κ(θ ) and ψ (θ ) transform as

κ(θ ) �→ κ̃(θ ) = κ̃0 + κ̃4 cos(4θ ),

ψ (θ ) �→ ψ̃ (θ ) = ψ̃0 + ψ̃4 cos(4θ ). (17)

Here the zeroth and fourth angular harmonics are expressed
in terms of components of the bending rigidity and disorder
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function as follows:

κ̃0 =
√

κxxκyy

1 + t
, κ̃4 = tκ̃0, ψ̃0 =

√
ψxxψyy

1 + s
, ψ̃4 = sψ̃0,

t =
√

κxxκyy − κxy

3
√

κxxκyy + κxy
, s =

√
ψxxψyy − ψxy

3
√

ψxxψyy + ψxy
. (18)

It is worth noting that in the case of the tetragonal crystal
symmetry, when κxx = κyy 
=κxy and ψxx = ψyy 
= ψxy, we
have κ̃0 = κ0 and ψ̃0 = ψ0, although t 
=0 and s 
=0. We also
note that the assumptions (10) restrict the parameter t to be
within the range |t | < 1. It describes the tetragonal distortion
of the bending energy of the membrane. Similarly, conditions
(8) restrict the values of s to the interval |s| < 1.

After the affine transformation (16) is performed, the
Young’s modulus becomes

Y (θ ) �→ Ỹ (θ ) = 4c66

[
sin2(2θ ) + 4c66

c11c22 − c2
12

(
c11

γ 2
cos4 θ

− c12

2
sin2(2θ ) + c22γ

2 sin4 θ

)]−1

. (19)

Similarly, after affine transformation (16) the displacements
become

ε(a)
x �→ ε̃(a)

x = ξ 2
x − 1+ 1

γ

∫
k

k2
x h(a)

k h(a)
−k,

ε(a)
y �→ ε̃(a)

y = ξ 2
y − 1+γ

∫
k

k2
y h(a)

k h(a)
−k. (20)

We stress that although the orthorhombicity parameter γ

disappears from the bending part of the free energy, the
Young’s modulus as well as deformations ε̃(a)

x,y depend ex-
plicitly on it. Thus the symmetry of the free energy F after
the rescaling (16) is still lower than the tetragonal one. In
the next section we shall demonstrate that screening of the
interaction between the out-of-plane modes removes the con-
stant γ from the effective coupling in the universal regime.
Hence, the symmetry of the free energy increases up to the
tetragonal one. In turn, it implies that there exists a hidden
symmetry in the problem in a full analogy with the clean case
[39]. Hence, there are infinite number of phases characterized
by parameter γ which is not changed under the RG flow
[39]:

γ = const. (21)

Remarkably, the parameter γ is still involved in Eqs. (20), so
that the orthorhombical crystal symmetry is of crucial impor-
tance for the CT to the tubular phase.

B. Screening of interaction

In this and next sections, we use the rescaled frame of
reference. For a sake of brevity we shall not use “tilde” sign
below for quantities in that rescaled coordinate system. In-
formation on renormalization of the effective bending rigidity
κ(θ ) and disorder function ψ (θ ) can be extracted from the
exact two-point Green’s function〈

h(a)
i (k)h(b)

j (−k)
〉 ≡ Gab(k)δi j, (22)

(a)

(b)

FIG. 2. (a) The RPA-type resummation for the interaction.
(b) The one-loop self-energy correction. The solid line represents the
bare Green’s function. The thin (thick) dashed line denotes the (bare)
screened interaction. The superscripts denote indices in the replica
space.

where the average is taken with respect to the free energy F .
The quadratic part of F determines the bare Green’s function

Ĝ(k) = T

κ(θk)k4
(1̂ + f (θk)Ĵ ), f (θ ) = ψ (θ )

κ(θ )
. (23)

As usual, the bare interaction, Y (θ ), between the flexural
phonons is screened by diagrams of RPA-type shown in Fig. 2.
After taking such screening into account the diagonal in
replica space interaction, cf. Eq. (11), becomes non-diagonal
one,

Y (θq)1̂ �→ Ŷ (θq) = Y (θq)(1̂ + 3Y (θq)�̂(q)/2)−1. (24)

In the leading order in small parameter 1/dc, the polarization
operator is given by the bare bubble:

�ab(q) = dc

3T

∫
k
[k×q̂]4Gab(k)Gab(k + q) = dcT

κ
2
0q2

Pab(θq),

(25)

where the matrix P̂ (θq) is dimensionless. As one can see
from Eqs. (24) and (25), the screened interaction becomes
independent of Y (θq) in the long wave limit, q � q∗ [6,7,10].
Here the inverse Ginzburg length can be estimated as
q∗∼(

√
dcY /κ) max{T, λ}, where κ, Y , and λ are typical

values of bending rigidity, Young’s modulus, and disorder
variance, respectively. Additionally, at q � q∗ the interac-
tion between flexural phonons becomes small (∼1/dc) being
determined by the inverse polarization operator ∼�̂−1. Con-
sequently, the free energy F becomes independent of the
orthorhombicity parameter γ as the consequence of the emer-
gent hidden symmetry. We note that although γ remains in the
expressions for the displacements εa, cf. Eqs. (20), it does not
affect renormalization of κ0,4 and ψ0,4.

Before going to the computation of the renormalization
of the free energy F , we discuss the polarization operator in
more details. It is convenient to represent it as follows:

P̂ (θq) = κ
2
0q2

3

∫
k
[k×q̂]4 [1 + 2 f (θk+q)]1̂ + f (θk+q) f (θk)Ĵ

|k + q|4k4
κ(θk+q)κ(θk)

= [π00(θq) + 2 foπ10(θq)]1̂ + f 2
o π11(θq)Ĵ. (26)

Here we introduce fo = ψ0/κ0 (we emphasize that fo is
not the zeroth angular harmonics of f (θ )).The dimensionless
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function πnm(θ ) is given as

πnm(θ ) =
∫ ∞

0

dzz

6π

∫ 2π

0

dϕ

2π

sin4(ϕ − θ )[κ (s, ϕ)]n

[κ (t, ϕ)]1+n

× [(1 − s)(z2+2z cos(ϕ − θ )+1)2+2s(z2 cos(2ϕ)+2z cos(ϕ+θ )+ cos(2θ ))2]m

[(1 − t )(z2+2z cos(ϕ − θ )+1)2+2t (z2 cos(2ϕ)+2z cos(ϕ+θ )+ cos(2θ ))2]1+m
, (27)

where we introduce κ (t, ϕ) = 1+t cos(4ϕ). The function πnm

depends on s and t and does not depend on fo [for a sake
of brevity we skip arguments s and t in the notation πnm(θ )].
We mention that πnm(θ − π/2) = πnm(θ ). This implies that
πnm(θ ) can be expanded in the Fourier series in quartic angu-
lar harmonics cos(4mθ ). We note that the function π10(θ ) can
be expressed in terms of π00(θ ):

π10(θ ) = π00(θ ) − (s − t )∂tπ00(θ )/2. (28)

We present the discussion of the behavior of the functions
πnm(θ ) in various regimes in Appendices A and B.

We emphasize that the variable fo is proportional to
disorder strength and inversely proportional to temperature.
Physically, it describes competition between the ripples and
thermal fluctuations: for fo � 1 the contribution of the ripples
is negligible and a membrane can be considered as a clean one.
The opposite limit, fo 
 1, corresponds to “dirty” membrane
such that elasticity is fully determined by the ripples. As we
shall demonstrate below, in this limit temperature drops out
from both the RG equations and the conditions for the CT. In
fact, this case of strong disorder is formally equivalent to the
T = 0 limit (since thermal fluctuations give negligible contri-
bution), although the physical temperature can be sufficiently
large.

C. Self-energy

The smallness of screened interaction allows us to con-
struct the regular perturbation theory in 1/dc for the self-
energy �̂(k) = Ĝ−1(k) − Ĝ−1(k). To the lowest order in 1/dc

the self-energy is given as (see diagram in Fig. 2),

�ab(k) = −
∫

q
[k×q̂]4Yab(q)Gab(k − q)

�− 2κ
2
0

3dcT

∫
q

[k×q]4

q2

δab + f (θk−q)Jab

|k − q|4κ(θk−q)

× (P̂−1(θq))ab. (29)

In order to extract the renormalization of harmonics κ0,4 and
ψ0,4, we need to compute the self-energy in the limit k→0.
The integral over absolute value of q in Eq. (29) is logarithmi-
cally divergent with k providing the low energy cut off. With
logarithmic accuracy we find at k → 0,

�ab(k) � − κ
2
0

24πdcT
k4 ln

q∗
k

∫ 2π

0

dθq

2π
(3 − 4 cos 2θk cos 2θq

+ cos 4θk cos 4θq)
δab + f (θq)Jab

κ(θq)
(P̂−1(θq))ab.

(30)

Here we use approximation θk−q�π − θq for k→0. Using the
inverse of the polarization operator

P̂−1 = 1̂

π00 + 2 foπ10
− f 2

o π11Ĵ

(π00 + 2 foπ10)2
, (31)

we obtain

�̂(k) � − κ0

24πdcT
k4 ln

q∗
k

∫ 2π

0

dϕ

2π
(3 − 4 cos 2θk cos 2ϕ

+ cos 4θk cos 4ϕ)
1

κ (t, ϕ)

1

π00(ϕ) + 2 foπ10(ϕ)

×
{[

1 + fo
κ (s, ϕ)

κ (t, ϕ)
− f 2

o π11(ϕ)

π00(ϕ) + 2 foπ10(ϕ)

]
1̂

− f 3
o π11(ϕ)

π00(ϕ) + 2 foπ10(ϕ)

κ (s, ϕ)

κ (t, ϕ)
Ĵ

}
. (32)

The properties of the functions κ (t, ϕ) and πnm(ϕ) guaran-
tee that the second harmonic of the self-energy, the term in
Eq. (32) proportional to cos 2θk, vanishes identically.

D. Renormalization group equations

The perturbative correction (32) to the self-energy can be
translated into the RG equations for harmonics (m = 0, 2) in
a standard way

dκ2m

d�
= 2κ0

(1 + m)dc
F2m( fo, t, s),

dψ2m

d�
= 2ψ0

(1 + m)dc
�2m( fo, t, s). (33)

Here � = ln(q∗/k) and we introduced the following func-
tions:

F2m( fo, t, s)

= 1

16π

∫ 2π

0

dϕ

2π

cos(2mϕ)

κ (t, ϕ)

[
1 + foκ (s, ϕ)/κ (t, ϕ)

π00(ϕ) + 2 foπ10(ϕ)

− f 2
o π11(ϕ)

[π00(ϕ) + 2 foπ10(ϕ)]2

]
(34)

and

�2m( fo, t, s) = 1

16π

∫ 2π

0

dϕ

2π

cos(2mϕ)

κ (t, ϕ)

κ (s, ϕ)

κ (t, ϕ)

× f 2
o π11(ϕ)

[π00(ϕ) + 2 foπ10(ϕ)]2
. (35)
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We note that the functions F0 and �0 are even under simulta-
neous change of signs of t and s whereas F4 and �4 are odd,

F2m( fo,−t,−s) = (−1)m/2F2m( fo, t, s),

�2m( fo,−t,−s) = (−1)m/2�2m( fo, t, s). (36)

We mention that Eqs. (33) are valid to the lowest order in
1/dc. Using Eqs. (33), we can write down closed set of RG
equations for dimensionless variables, fo, t , and s:

dfo
d�

= 2 fo
dc

[�0( fo, t, s) − F0( fo, t, s)],

dt

d�
= 2

dc

[
1

3
F4( fo, t, s) − tF0( fo, t, s)

]
,

ds

d�
= 2

dc

[
1

3
�4( fo, t, s) − s�0( fo, t, s)

]
. (37)

As consequence of relations (36), the RG flow is symmetric
with respect to simultaneous change of signs of t and s. One
can easily check that these equations generate nonzero mag-
nitude of s even if one starts from s = 0. Therefore the RG
flow induces anisotropy for the disorder [see Eq. (6)] even if
initially the disorder is isotropic at the ultraviolet scale. Below
we shall analyze the three-parameter RG flow governed by
Eqs. (37).

We note that the difference �0( fo, t, s) − F0( fo, t, s) in
Eq. (37) can have both positive and negative signs such that
the RG flow of fo is non-monotonous, contrary to the isotropic
case. Below we shall discuss the RG flow in more detail.

IV. RG FLOW WITHIN THE INVARIANT MANIFOLD

A. Isotropic clean fixed point

The system (37) has an infrared stable fixed point: fo = 0,
t = 0, and s = const. Although formally it is a line of fixed
points since s is an arbitrary constant, all points on the line are
equivalent since fo = 0. Physically, this means that for large
system size, the ripples have a fixed degree of anisotropy s
and their amplitude decreases much faster than the amplitude
of the thermal fluctuations. Hence, disorder is irrelevant in
the thermodynamic limit, L → ∞. There are infinitely many
flat phases characterized by parameter γ . These phases are
realized provided that bare value of disorder is sufficiently
small: fo � 1.

Expanding RG Eqs. (33) and (37) at fo→0, we find

dfo
d�

= −2 fo
dc

F 0(t ),
dt

d�
= − 2

dc
g(t ),

ds

d�
= 0 + O

(
f 2
o

)
,

dκ0

d�
= 2

dc
κ0F 0(t ). (38)

Here F 2m(t ) is the function F2m in the absence of disorder,

F 2m(t ) = F2m( fo = 0). (39)

We note that the later is independent of s. Also we introduced
the function

g(t ) = tF 0(t ) − F 4(t )/3. (40)

The behavior of the functions g(t ) and F 0(t ) are shown in
Fig. 3. At |t | � 1, the functions F 0(t ) and g(t ) have the

FIG. 3. Functions g(t0), χ (t0), and F̄0(t0) that determine
Eqs. (48) and (63), and f̄ (t0) that determines critical disorder [see
Eq. (64)].

following expansion [39]:

F 0(t ) � 1 − 25

81
t2, g(t ) � 65t

54

(
1 − 9527

35100
t2

)
. (41)

Hence, in a closed vicinity of the fixed point fo = 0, t = 0,
and s = const, we find

dfo
d�

= −2 fo
dc

,
dt

d�
= − 65t

27dc
,

ds

d�
= 0,

dκ0

d�
= 2

dc
κ0. (42)

As one can see, t and fo approach zero with decrease of mo-
mentum as a power law: t∼(k/q∗)65/27dc and fo∼(k/q∗)2/dc .
We note that these exponents coincide with the ones found
in Refs. [39] and [14], respectively. The zeroth harmonics
of the bending rigidity grows as in the isotropic clean case:
κ0∼(k/q∗)−2/dc [6].

The RG flow around the isotropic clean fixed point is
shown in Fig. 4 (left panel).

B. Renormalization group flow at fo � 1

The RG flow in the case of the strong disorder fo 
 1
can be read from Eqs. (37), in which the functions F2m and
�2m are replaced by their asymptotics F̃2m and �̃2m, which
are independent of fo,

F̃2m(t, s) = 1

32π

∫ 2π

0

dϕ

2π

cos(2mϕ)

κ (t, ϕ)π10(ϕ)

×
[
κ (s, ϕ)

κ (t, ϕ)
− π11(ϕ)

2π10(ϕ)

]
(43)

and

�̃2m(t, s) = 1

64π

∫ 2π

0

dϕ

2π

cos(2mϕ)

κ (t, ϕ)

κ (s, ϕ)

κ (t, ϕ)

π11(ϕ)

π2
10(ϕ)

. (44)

235415-7



PARFENOV, KACHOROVSKII, AND BURMISTROV PHYSICAL REVIEW B 106, 235415 (2022)

FIG. 4. RG flow near isotropic clean fixed point fo = t = 0 (left) and at fo 
 1 (right). Solid red line is the line s = t .

Therefore the RG equations for t and s form a closed system
of equations:

dt

d�
= 2

dc

[
1

3
F̃4(t, s) − t F̃0(t, s)

]
,

ds

d�
= 2

dc

[
1

3
�̃4(t, s) − s�̃0(t, s)

]
, (45)

while fo obeys

dfo
d�

= 2 fo
dc

[�̃0(t, s) − F̃0(t, s)]. (46)

From Eqs. (43) and (44), one can find

�̃0(t, s) − F̃0(t, s) = (t − s)R(s, t ), (47)

where R(s, t )�5(2s+3t )/162 for |s|, |t | � 1 (see Ap-
pendix A). Hence, as follows from Eqs. (46) and (47), the
variable fo has very slow change for |s − t | � 1. Thus we
can consider it as a constant. Physically, it means existence
of the infinite number of marginal phases distinguished by the
continuous parameter γ . These phases exist in a wide interval
of scales where fo can be considered as constant. However,
if a bare value of disorder is smaller than a certain critical
value (different for different phases), in the thermodynamic
limit we finally get fo→0 and arrive at one of the anisotropic
flat phases. If a bare magnitude of disorder exceeds critical
value, the system undergoes transition into tubular crumpled
phase as will be discussed in the next section. We note also
that for |s − t | ∼ 1 there is no small parameter that controls
existence of the marginal phase. However, numerical analysis
shows that fo changes slower than t and s also generically.

Let us now discuss properties of the marginal phase as-
suming that fo = const. The RG flow at fo 
 1 is shown
in Fig. 4 (right panel). It has an interesting character. Using
definition of πnm, see Eq. (27), one can immediately check
that at s = t all three polarization operators are identical:
π00(t, t, ϕ) = π10(t, t, ϕ) = π11(t, t, ϕ). Consequently, at s =
t the functions F̃2m and �̃2m coincide: �̃2m(t, t ) = F̃2m(t, t ) =
F 2m(t )/4. Therefore it follows that the RG equations for s and

t become identical, i.e., s = t is the invariant line of the RG
flow at fo 
 1.2

The behavior of t and κ0 on the line s = t is governed by
the following RG equations

dt

d�
= − 1

2dc
g(t ),

dκ0

d�
= 1

2dc
F 0(t )κ0. (48)

We emphasize that Eqs. (48) transforms into RG equations for
the clean case of Ref. [39] with the replacement dc → dc/4.

As one can see from Eqs. (48), the variable t flows towards
zero, i.e., the line s = t is not the line of fixed points. More-
over, the line s = t is not always attractive for the RG flow.
Indeed, to the lowest order in the difference s − t one finds

d (s − t )

d�
= − 1

2dc
g′(t )(s − t ). (49)

The derivative g′(t ) is positive only for |t | � 0.8. Hence, the
line s = t is attractive line for the RG flow around the fixed
point t = s = 0. Since at |t | � 1 the function g(t ) is linear, the
exponent that controls approaching the line s = t coincides
with the exponent at which t approaches zero along the line,
s − t ∼ (k/q∗)65/108dc and t ∼ (k/q∗)65/108dc . These features
are clearly seen in the RG flow shown in Fig. 4 (right panel).

As one can see from the right panel in Fig. 4, an interesting
pattern of the RG flow occurs for 1 − |t | � 1. Since RG flow
is symmetric with respect to inversion t → −t and s → −s
we concentrate on the region 1 − t � 1. At first, we remind
that at t = 1 the bending rigidity vanishes along the lines in
the momentum space kx = ±ky (θk = ±π/4). Therefore one
can expect singularities at t = 1 (and s 
=t) in functions F̃2m

and �̃2m, see Fig. 5. For 1 − t � 1 and 1 − t � 1 − s, we
find (see Appendix B)

F̃0 = −F̃4 � cF , �̃0 = −�̃4 � c�

1 − s

1 − t
, (50)

2We note that the condition s = t implies the following relation
between coefficients of matrices ψαβ and καβ , ψxy/

√
ψxxψyy =

κxy/
√

κxxκyy.
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FIG. 5. Dependence of the functions F̃2m and �̃2m [cf. Eqs. (43) and (44)] on t and s at fo 
 1: (a) F̃0, (b) F̃4, (c) �̃0, and (d) �̃4.

where

cF = 3

2π

∫ π/2

0
dφ

3 − 4 sin2 φ

1 + φ tan φ
≈ 0.75,

c� = 3

2π

∫ π/2

0
dφ

cos2 φ

1 + φ tan φ
≈ 0.29. (51)

Using asymptotic expressions (50), we rewrite RG Eqs. (37)
for 1 − t � 1 and 1 − t � 1 − s as

dfo
d�

= 2c�

dc
fo

1 − s

1 − t
,

dt

d�
= −8cF

3dc
,

dκ0

d�
= 2cF

dc
κ0,

ds

d�
= −2c�

3dc

(1 − s)(1 + 3s)

1 − t
. (52)

This system can be solved analytically (see Appendix C). We
note that t flows away from its initial value t0 logarithmi-
cally, t = t0 − [8cF /(3dc)] ln q∗/k. There exits the stable line
of fixed points at s = −1/3 which is clearly seen in Fig. 4
(right panel). We note that this ‘line’ is limited to the close
vicinity of t = 1. Away from s = −1/3 the parameter s flows
slower than t , s ∼ (ln q∗/k)α where α = cF /c� ≈ 0.39. The
magnitude of the parameter fo changes with the same velocity,
fo ∼ (ln q∗/k)α .

V. TRANSITION TO THE TUBULAR CRUMPLED
PHASE IN A “DIRTY” MEMBRANE

In the absence of external tension, the average displace-
ments are zero, 〈ε(a)

α 〉 = 0. These conditions yield equa-
tions for the stretching factors in the original (not rescaled)
frame of reference,

ξ 2
x = 1 − dc

γ

∫
p

p2
xGaa(p), ξ 2

y = 1 − dcγ

∫
p

p2
yGaa(p).

(53)
We note that there is no summation over replica indices.

Following Ref. [14], it is convenient to introduce momen-
tum dependent stretching factors which are given by Eq. (53)
with momentum p restricted to be larger than some infrared
momentum scale k. Neglecting renormalization of the Green’s
function we find logarithmically divergent contributions due
to fluctuations of the out-of-plane phonons,(

ξ 2
x

ξ 2
y

)
= 1 − dcT

2πκ0
ln

(q∗
k

) ∫ 2π

0

dθ

2π

1

κ (t, θ )

×
[

1 + fo
κ (ψ, θ )

κ (t, θ )

](
γ −1 cos2 θ

γ sin2 θ

)
. (54)

Performing integral over the angle θ we cast the above equa-
tions in the form of the RG equations

dξ 2
x

d�
= − dcT

4πγ κ0

√
1 − t2

[
1 + fo

1 − st

1 − t2

]
,

dξ 2
y

d�
= − dcT γ

4πκ0

√
1 − t2

[
1 + fo

1 − st

1 − t2

]
. (55)

We supplement these equations by the initial condi-
tions ξ 2

x (0) = ξ 2
y (0) = 1. Equations (55) together with RG

Eqs. (37) allow us to determine the parameters at which the
CT occurs. We say that the membrane is in the flat phase if
both ξ 2

x (� → ∞) and ξ 2
y (� → ∞) are positive. If only one

of the stretching factors, e.g., ξ 2
x vanishes at some finite RG

time �c, ξ 2
x (�c) = 0, the membrane is in the tubular crum-

pled phase. The membrane is in the isotropic crumpled phase
if both ξ 2

x and ξ 2
y become zero simultaneously, ξ 2

x (�c) =
ξ 2

y (�c) = 0. The later occur in the case γ = 1 alone.
General solution of Eqs. (37) and (55) is complicated,

therefore, we shall discuss some interesting limiting cases
below.
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For the clean case, fo = 0, Eqs. (37) and (55) were derived
and studied in Ref. [39]. It was found that the CT to the tubular
phase is possible but occurs at unphysically high temperatures
of the order of typical values of the bending rigidity (∼1 eV).
Weak disorder fo � 1 yields corrections to the CT tempera-
ture (see Appendix D).

Next, we discuss the most interesting case of strong disor-
der, fo 
 1. In this case, Eq. (55) becomes

dξ 2
x

d�
= − dc

4πγ
B (1 − st )

√
1 + t

(1 − t )3/2(1 + s)
,

dξ 2
y

d�
= −dcγ

4π
B (1 − st )

√
1 + t

(1 − t )3/2(1 + s)
. (56)

Here we introduce the dimensionless effective disorder
strength

B = T
√

ψxxψyy

κxxκyy
= T ψ0

κ
2
0

1 + s

(1 + t )2
= λ0

κ
2
0

1 + s

(1 + t )2
. (57)

From Eqs. (33) and (45) we find RG equation for B:

d lnB
d�

= − 2

dc
�(t, s), (58)

where

� = 2(F̃4/3 − t F̃0)

1 + t
+ s�̃0 − �̃4/3

1 + s
+ 2F̃0 − �̃0. (59)

Equations (45), (56), and (58) represent full set of equa-
tions describing CT in the strongly disordered membrane.

Several comments are in order here. The variable B does
not depend on T, so that temperature drops out from Eqs. (45),
(56), and (58). Hence, the crumpling is fully determined by
disorder, while the thermal fluctuations can be neglected.
Since disorder can be easily increased, for example, by bom-
barding a 2D material by heavy ions, then, in contrast to clean
materials, the CT in a “dirty” membrane can be observed for
realistic temperatures, e.g., at room temperature.

Below we consider several limiting cases in which the
function �(s, t ) can be significantly simplified.

A. Small s and t: t � 1, s � 1.

This is the simplest case, which allows us to capture the
underlying physics of the disorder-dominated CT determined
by the following equations:

dξ 2
x

d�
= − dc

4πγ
B,

dξ 2
y

d�
= −dcγ

4π
B,

d lnB
d�

= − 1

2dc
.

(60)

Here, we took into account that �(0, 0) = 1/4.

For the isotropic case, γ = 1, these equations yield critical
value of disorder leading to the CT, Bcr = 2π/d2

c obtained
previously in Ref. [14]. For γ = 1, the CT occurs simultane-
ously along both directions: at B = Bcr, we find ξx = ξy = 0
for � = ∞. Remarkably, this is not the case for anisotropic
membrane. For example, for γ > 1, the CT happens first
along y−direction. Specifically, at

B = Bcr,Y = 2π

γ d2
c

, (61)

the membrane shrinks in y direction, ξy→0 for �→∞, while
ξx remains positive. Hence the membrane undergoes transition
into a crumpled tubular phase. This is the central result of our
work.

B. The case s = t

As we discussed above, the line s = t is the invariant line
of the RG flow at fo 
 1. At s = t Eqs. (55) become

dξ 2
x

d�
= − dcB

4πγ

√
1 + t

1 − t
,

dξ 2
y

d�
= −dcBγ

4π

√
1 + t

1 − t
. (62)

The flow of t and B are governed by the following RG equa-
tions:

dt

d�
= − 1

2dc
g(t ),

d lnB
d�

= − 1

2dc
χ (t ), (63)

where χ (t ) = [F 4(t )/3+F 0(t )]/(1+t ). We mention that after
replacing dc with dc/4 and B with 4T/

√
κxxκyy, Eqs. (62)

and (63) transform into equations describing the CT in the
absence of disorder. Solving Eqs. (62) and (63), we find the
critical disorder (we assume γ > 1)

Bcr,Y = 2π

γ d2
c

f (t0), (64)

where

f (t0) =
[∫ t0

0

dt

g(t )

(
1 + t

1 − t

)1/2

e− ∫ t0
τ

du χ (u)
g(u)

]−1

. (65)

The critical disorder, Bcr,X, for γ < 1 can be obtained from
Eq. (64) by substitution of γ by γ −1. The critical disorder at
s0 = t0 is equal to a quarter of the critical temperature (in units
of bending rigidity) in the clean case for the same t0. The same
one quarter is known to appear in the isotropic case [14]. In
Appendix E, we discuss temperature-induced corrections to
the critical disorder.

VI. RENORMALIZATION GROUP FLOW AWAY
FROM THE INVARIANT MANIFOLD

Now we discuss RG flow when the condition (15) is not
fulfilled. In this case we cannot nullified second harmonics in
κ(θ ) and ψ (θ ) simultaneously.

In this case, we formulate the RG procedure as follows. We
start from the free energy defined at the RG scale �. Then we
make affine transformation (16) with γ = (κxx/κyy)1/4. There
is no second harmonics of κ(θ ) in the transformed frame of
reference. The harmonics of disorder in that coordinate frame
are given as

ψ̃0 = 1

4

(
3
γ 4 + �4

2γ 2�2

√
ψxxψyy + ψxy

)
,

ψ̃2 = �4 − γ 4

2γ 2�2

√
ψxxψyy, (66)

ψ̃4 = 1

4

(
γ 4 + �4

2γ 2�2

√
ψxxψyy − ψxy

)
,

where � = (ψxx/ψyy)1/4. We emphasize the appearance of the
second harmonic ψ̃2. Next we perform the renormalization of
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the free energy from the RG scale � to the RG scale � − d�.
The structure of obtained RG equations for κ̃0,4 and ψ̃0,4

coincide with that of Eqs. (33). However the functions F2m and
�2m depend now on the additional parameter ω = ψ̃2/ψ̃0 via
a substitution κ (s, φ)→1+ω cos(2φ)+s cos(4φ). Similar ac-
count for the second harmonic of ψ̃ (θ ) should be performed in
definition of polarization operators πnm(θ ), cf. Eq. (27). Also
the parameter s = ψ̃4/ψ̃0 depends explicitly on the ratio �/γ .
The second harmonic of ψ̃ (θ ) acquires the RG correction
[cf. Eq. (30)] dψ̃2 = −[8ψ̃0/(3dc)]�2( f0, t, s, ω)d�. Due to
nonzero ω the second harmonic of the bending rigidity is also
induced, dκ̃2 = −[8κ̃0/(3dc)]F2( f0, t, s, ω)d�.

In order to return the form of the free energy at the RG
scale � − d� back to its form at the RG scale � we per-
form infinitesimal affine transformation (16) with parameter
1+dγ instead of γ , where dγ = dκ̃2/[2κ̃0(1+t )]. After this
transformation the second harmonic in the bending rigidity
nullifies. The difference in zeroth and fourth harmonics of κ

between and after the transformation is of the second order
in d� and, thus, can be neglected. After the transformation,
both the zeroth and fourth harmonics of ψ̃ acquire linear in
d� correction, −3ψ̃2dγ /2 and −ψ̃2dγ /2, respectively. The
second harmonic is corrected by the term −2(ψ̃0+ψ̃4)dγ .
Taking these corrections into account we obtain the following
RG equations (m = 0, 2):

dψ̃2m

d�
= 2ψ̃0

(1 + m)dc

[
�2m( fo, t, s, ω) + ω

1 + t
F2( fo, t, s, ω)

]
,

dψ̃2

d�
= − 8

3dc
ψ̃0

[
�2( fo, t, s, ω) − 1 + s

1 + t
F2( fo, t, s, ω)

]
,

dκ̃2m

d�
= 2κ̃0

(1 + m)dc
F2m( fo, t, s, ω). (67)

We note that the functions F0,4 and �0,4 are even in ω whereas
the functions F2 and �2 are odd. From the above equations we
derive the following RG equation for the parameter ω:

dω

d�
= − 8

3dc

[
�2( fo, t, s, ω) − 1 + s

1 + t
F2( fo, t, s, ω)

+ 3ω

4
�0( fo, t, s, ω) + 3ω2

4(1 + t )
F0( fo, t, s, ω)

]
.

(68)

We emphasize that ω is the ratio of the second and zeroth har-
monics in the frame of reference where the second harmonic
of κ is zero.

Since the functions F2 and �2 vanish at ω = 0, Eq. (68)
has the fixed point ω = 0. In the vicinity of this fixed point,
|ω| � 1 and for fo � 1, the RG equation for ω simplifies,

dω

d�
= 2

dc
D(t, s) fo ω. (69)

We emphasize that the RG equations for t, s, and fo remains
intact to the linear order in ω.

The function D(t, s) has the following asymptotic expres-
sion in the limit of |t | � 1 (see Appendix F):

D(t, s) � (1 + s)
(
1 − 119

54 t
)
. (70)

Solving Eq. (69) together with Eqs. (38), we find that ω flows
towards the constant:

ω → ω∞ = ω0

[
1 + fo(0)

∫ t0

0
dt

D(t, s)

g(t )
e
∫ t

t0
dτF 0(τ )/g(τ )

]
.

(71)

Using asymptotic expansions (41) and (70), we obtain from
Eq. (71) that ω∞ = ω0[1+ fo(0)(1+s)] at |t0| � 1.

We emphasize that since fo flows to zero a finite value of
ω corresponds to zero second harmonic of disorder function,
ψ̃2 = 0. Therefore the isotropic clean fixed point at t = f0 =
0 is locally stable even if one starts away from invariant
manifold.

At fo 
 1 and |ω| � 1 Eq. (68) can be simplified,

dω

d�
= 2

dc
D̃(t, s)ω. (72)

We note that the RG flow of the parameters t and s is
unchanged within linear in ω approximation. The func-
tion D̃(t, s) has the following asymptotic expression at |t |,
|s| � 1:

D̃(t, s) � 20
27

(
t − 19

32 s
)
. (73)

Equation (72) together with corresponding equations for t and
s imply that ω flows towards a constant. At fo 
 1 the RG
flow for small magnitudes of ω is qualitatively the same as for
ω = 0.

We note that the parameter ω is related with the difference
between � and γ ,

ω = (1 + s)(�4 − γ 4)

3(�4+γ 4) + 2 + 3s(�2 − γ 2)2
. (74)

Also we mention that the renormalization group procedure
described above implies a scale dependence of the parameters
γ and �. The flow of the orthorhombicity parameter γ with
the RG scale can be found from the following RG equation:

dγ

d�
= − 4

3dc

1

1 + t
F2( fo, t, s, ω)γ . (75)

We emphasize that the parameters fo, t, s, and ω in the
right-hand side of the above equation are governed by RG
Eqs. (67) and (68). The initial condition for Eq. (75) is γ (0) =
(κxx/κyy)1/4. As one can check, in accordance with Eq. (75),
the parameter γ flows towards a constant.

In the case when Eq. (15) is not fulfilled the stretching
factors are given by Eq. (54) with κ depending on ω. One
can write down RG equations similar to Eqs. (55). However,
their analysis becomes too complicated. In the case of small
deviations from the invariant manifold, when |ω| � 1 one
can check that the temperature-driven and disorder-driven CT
occurs qualitatively in the same way as for ω = 0. This means
that the CT is almost insensitive to a weak breaking of the
tetragonal crystal symmetry.

VII. DISCUSSIONS AND CONCLUSIONS

A. Specific of RG flow in the presence of disorder

In the presence of disorder the RG flow becomes many-
parameterical one. It involves t , s, fo, and γ − � (parameter
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ω). If the flow starts from the invariant manifold γ − � = 0, it
remains within it while t and fo goes to zero whereas s tends
to the constant. The ultimate fate of the RG flow within the
invariant manifold is the fixed point t = fo = 0. The prop-
erties of elastic response at this fixed point is similar to that
of the clean anisotropic membrane. In the original frame of
reference [before the affine transformation (16)] the bending
rigidity and Young’s modulus become [39]

κ(k) ∼ (γ cos2 θk + γ −1 sin2 θk)2−η/2(q∗/k)η,

Y (k) ∼ [(γ cos2 θk + γ −1 sin2 θk)k2/q2
∗]1−η. (76)

Here we find the exponent η�2/dc within the first order ex-
pansion in 1/dc.

In spite of fo = 0 at the clean fixed point, the presence of
disorder is reflected in different spatial behaviors of two types
of roughness correlation functions, (see Ref. [29] for a review)

〈δh(x)δh(0)〉 ∼ (γ x2 + γ −1y2)1−η/2,

〈h(x)〉〈h(0)〉 ∼ (γ x2 + γ −1y2)1−η′/2. (77)

where η′ = 2η�4/dc. The roughness correlation functions
become dependent on the direction in x−y plane. We em-
phasize that a magnitude of the orthorhombicity parameter
is determined by the initial values of the bending rigidity,
γ = (κxx(0)/κyy(0))1/4, and is not changed along RG flow
within the invariant manifold.

Now we discuss what happens if the RG flow starts away
from the invariant manifold, i.e., at nonzero value of the
difference γ − �. Our analysis of the RG flow in vicinity
of the invariant manifold (|ω| � 1) suggests the following
picture. The parameters t and fo flow towards zero while
s tends to the constant. However, the RG flow leaves the
plane γ − � = γ (0) − �(0) while the difference γ − � flows
towards a constant. Therefore ultimately the RG flow ends
at the clean fixed point t = fo = 0 and some values of s,
γ , and �. Thus the bending rigidity, Young’s modulus, and
roughness correlation functions are given by Eqs. (76) and
(77), respectively. But the parameter γ is now determined by
the solution of Eq. (75) and, thus, γ depends on t0, s0, γ (0),
and �(0). This implies that qualitatively, physical properties
of 2D anisotropic flexible material, Eqs. (76) and (77), are
independent of the fulfillment of the condition for the invariant
manifold, γ (0) = �(0).

B. Transition to the tubular crumpled phase

Above we analize the CT for the case of the invariant
manifold γ (0) = �(0). In the clean case the transition to the
tubular crumpled phase occurs at the temperature proportional
to a typical value of the bending rigidity, cf. Eq. (D4). For
κxx(0) > κyy(0), i.e., γ > 1, the tubular crumpled phase cor-
responds to the vanishing stretching along y axis, ξ 2

y = 0. In
the opposite case, γ < 1, vice versa, the stretching along x
axis is zero, ξ 2

x = 0. The presence of disorder reduces the
transition temperature, cf. Eq. (D3). Interestingly, the initial
slope of dependence of the transition temperature on a weak
disorder is independent of the parameter γ , i.e., is the same
for both tubular phases.

At strong disorder fo 
 1, the disorder-induced transi-
tion to the tubular crumpled phase occurs at critical disorder

strength, cf. Eq. (61) and (64). For the line s0 = t0 the critical
disorder decreases monotonously with reduction of t0.

The critical disorder grows with increase of T at low tem-
peratures, cf. (E1). The slope of the dependence of the critical
disorder on T is independent of the ortorhombicity parameter
γ , i.e., is the same for both tubular phases. A positive slope
(which is typical situation) suggests non-monotonous depen-
dence of the critical disorder on temperature as in the isotropic
case [14].

Away from the invariant manifold, γ (0) 
=�(0), the CT
occurs qualitatively in the same way as described above for
the invariant manifold, ω = 0.

C. Anomalous Hooke’s law

For a given stretching ξα , a membrane tension can be
computed as

σα = 1

ξα

∂F
∂ξα

. (78)

Solving Eq. (78) for ξα at a given tension σx applied along x
axis, we obtain the following anomalous Hooke’s law at the
clean isotropic fixed point, t = fo = 0 (see Sec. IV A):

δξ 2
x ∼ γ −1(σx/γ )α, δξ 2

y ∼ γ (σx/γ )α. (79)

Here the exponent α = η/(2 − η) (with η�2/dc). We note
that according Eq. (79) the Hooke’s law seems to have exactly
the same form as in the clean case [39]. However, there is a
subtlety. Equation (79) is indeed exactly the same as expres-
sions in the case of the RG flow starting from the invariant
manifold γ = �. If the RG flow starts away from the invariant
manifold the orthorhombicity parameter γ should be found
from solution of Eq. (75) upto the length scale induced by
the tension, Lσ∼σ 1/(2−η)

x . Neglecting subleading corrections
at σ→0 one can substitute γ (Lσ ) by γ (∞) in Eq. (79).

For strongly disordered membrane, fo 
 1, Hooke’s law
remains in the form of Eq. (79), but with a modified exponent
α:

αt,s∼0 = η̃/(2 − η̃), αs 
=t∼1 = η̂/(2 − η̂). (80)

where η̃ � 1/(2dc) and η̂ = 2cF /dc. We emphasize that the
results (80) describe transient regime while Lσ is not too large
(similar to the isotropic case [27]).

D. Limitations of the 1/dc expansion

In this paper, we consider lowest order of the 1/dc expan-
sion. Similar to the isotropic case, we find that the disorder
parameter, fo, flows always towards zero, i.e., the rippled
(disorder-dominated) flat phase is marginal only.

As known from the isotropic case [15], such an instability
of the rippled flat phase is an artifact of the treatment with the
lowest order in 1/dc. An account of the next order suggests the
existence of the transition between flat rippled and flat clean
phases at fo∼dc. We expect that similar situation occurs in
the anisotropic case. Thus it would be interesting to extend
our theory to the next order in 1/dc.
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E. The role of physical dimension, D = 2

In this paper, we focus on the case of physical dimension
of a membrane, D = 2. As was shown in Ref. [39] for the
clean case, the fact that the orthorhombicity parameter γ is
not renormalized is specific for D = 2. For D > 2, there is a
flow of γ towards the isotropic case, γ → 1. This is related
with the fact that the free energy after affine transformation
depends on γ even in the universal regime, q < q∗. We expect
that similar situation occurs in the disordered case for the
invariant manifold. The existence of the invariant manifold is
limited to the physical dimension D = 2 while for D = 2 it
does not exist. In analogy with the clean case, we expect that
γ and � flow towards unity for D > 2. It would we interesting
to substantiate it by explicit calculations.

F. Conclusions

To summarize, we developed the theory of anomalous
elasticity in disordered 2D flexible materials with the or-
thorhombic crystal symmetry. We demonstrated existence of
infinitely many clean anisotropic flat phases. These phases
have anisotropic bending rigidity and Young’s modulus, cf.
Eq. (76). However their scaling with the absolute value of
momentum is the same as in a clean isotropic membrane.
The disorder in these clean phases is responsible for different
spatial behavior of various roughness correlation functions, cf.

Eq. (77). In the clean flat phase, these roughness correlation
functions are anisotropic, cf. Eq. (77) but with the same scal-
ing with the distance as in the isotropic case. We found that
the parameter γ that distinguishes different flat phases may
be not directly related with the degree of orthorhombicity of a
membrane as it occurs in the clean case.

With increasing of disorder, B, the clean flat phase un-
dergoes the transition into the crumpled phase (see Fig. 1).
The form of the transition curve B(T ) resembles the corre-
sponding curve for the crumpling transition in the isotropic
disordered case. However, the crumpling transition occurs
anisotropically so that a membrane crumples into a tubular
phase. This disorder-driven transition is sensitive to the or-
thorhombicity parameter γ . The flat phase corresponding to
a particular magnitude of γ undergoes transition to a tubular
crumpled phase at a disorder strength which depends on γ , cf.
Eq. (61). Our predictions are amenable to verification within
numerical modeling of disorder-induced melting of flat phase
in anisotropic atomic single layers.
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APPENDIX A: ASYMPTOTIC EXPRESSIONS FOR F2m AND �2m FOR |t|, |s| � 1

Performing integrals in (27) for π00, π10, π00, one can find

π00(θ ) � 1

16π

[
1 + 2

9
cos(4θ )t + 85 − 2 cos(8θ )

90
t2 + cos(4θ )(86 + 3 cos(8θ ))

315
t3

]
, (A1)

π10(θ ) � 1

16π

[
1 + 1

3
cos(4θ )t − 1

9
cos(4θ )s − 85 − 2 cos(8θ )

90
ts + 85 − 2 cos(8θ )

45
t2

]
, (A2)

π11(θ ) � 1

16π

[
1 + 4

9
cos(4θ )t − 2

9
cos(4θ )s − 80 − 2 cos(8θ )

45
ts + 125 − 3 cos(8θ )

45
t2 − 1

18
s2

]
. (A3)

One can see, there are no half harmonics cos(2θ ) in this expansions. After substitution into (34) and (35) and subsequent
integration:

F0 ≈ 1 + 3 fo + f 2
o

(1 + 2 fo)2
+

(
50 fo + 269 f 2

o + 192 f 3
o − 280 f 4

o

)
81(1 + 2 fo)4

ts

−
(
50 + 450 fo + 1419 f 2

o + 1312 f 3
o − 240 f 4

o

)
162(1 + 2 fo)4

t2 +
(
31 f 2

o + 128 f 3
o + 120 f 4

o

)
162(1 + 2 fo)4

s2 (A4)

F4 ≈ −
(
62 f 3

o + 121 f 2
o + 66 fo + 11

)
t

18(2 fo + 1)3
+

(
40 f 3

o + 44 f 2
o + 11 fo

)
s

18(2 fo + 1)3
, �4 ≈ −

(
20 f 3

o + 9 f 2
o

)
9(2 fo + 1)3

t +
(
18 f 3

o + 7 f 2
o

)
18(2 fo + 1)3

s, (A5)

�0 ≈ f 2
o

(2 fo + 1)2
−

(
40 f 4

o + 80 f 3
o + 27 f 2

o

)
162(2 fo + 1)4

s2 +
(
480 f 4

o + 1000 f 3
o + 383 f 2

o

)
162(2 fo + 1)4

t2 −
(
320 f 4

o + 560 f 3
o + 203 f 2

o

)
81(2 fo + 1)4

st . (A6)

One can see, that F0, �0 has only even degrees of anisotropy, and F4, �4 has only odd degrees.

APPENDIX B: ASYMPTOTIC EXPRESSIONS FOR π10 AND π11 FOR 1 − |t| � 1

For all further applications, we need asymptotic expansions for only π10 and π11 in this case. For F2m and �2m functions
the main contribution in case 1 − t � 1 comes from θ ∼ π/4, 5π/4 [see Eq. (27)], then we change the variables: θ = π/4 +
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r
√

1 − t , ϕ = π/4 + x
√

1 − t , z = 1 + z(1 − t ), after making an expansion, π10 takes the form

π10 � 1

12π2

1 − ψ

(1 − λ)3/2

∫ +∞

−∞

(x − r)4

(1 + 8x2)2

dxdz

(x − r)4 + 8(x − r)2z2
=

√
2 + 4r arctan(2

√
2r)

192π

1 − ψ

(1 − λ)3/2
= 1 − ψ

(1 − λ)3/2
h1(r)

(B1)
for π11 in this way, we obtain

π11 � 1

12π2

(1 − ψ )2

(1 − λ)5/2

∫ +∞

−∞

(x − r)8

(1 + 8x2)2

dxdz

((x − r)4 + 8(x − r)2z2)2
= (1 − ψ )2

2(1 − λ)5/2
h1(r). (B2)

After using Eqs. (43) and (44) and making an expansion near θn ∼ π/4 + πn/2, one can write (50).

APPENDIX C: SOLUTION OF RG EQS. FOR 1 − |t| � 1

At first, we need to rewrite Eqs. (52) for variable u = 1 − t :

du

d�
≈ 8

3dc
cF , u = u0 + 8

3dc
cF �,

ds

du
= −3

4

c�

cF

(
1

3
+ s

)
1 − s

u
,

dfo
du

≈ 3

4dc
fo

c�

cF

1 − s

u
.

(C1)

We can solve this equation analytically:

s = (u/u0)−α (1 + 3s0)/(1 − s0) − 1

3 + (u/u0)−α (1 + 3s0)/(1 − s0)
,

fo = fo(0)

4

(
1 + 3s0 + 3

(
u

u0

)α

(1 − s0)

)
(C2)

here one can see the logarithmic behavior of the coupling
constants.

APPENDIX D: TRANSITION AT WEAK DISORDER

To solve Eq. (55) analytically, we use a formal expansion
of the RG Eqs. (37) to the first order in fo � 1. We shall use
the following expansions

F2m � [1 − fo − fo(s − t )∂t ]F 2m + O
(

f 2
o

)
,

�2m � O
(

f 2
o

)
. (D1)

Then, we find [cf. Eqs. (38)]

dt

d�
= − 2

dc
[g(t )(1 − fo) + (s − t )(F 0(t ) − g′(t )) fo],

dfo
d�

= − 2

dc
F 0(t ) fo,

ds

d�
= 0,

d ln κ0

d�
= 2

dc
[F 0(t )(1 − fo) − (s − t )F

′
0(t ) fo]. (D2)

Solving Eqs. (55) together with Eqs. (D2), we obtain the
transition temperature to the tubular phase with ξ 2

y = 0
(α = X,Y )

Tcr,α = T (0)
cr,α − A(t0, s0)B(0)

√
κxx(0)κyy(0). (D3)

Here κ0(0), fo(0), and t0 denote initial values of the corre-
sponding variables at the ultraviolet momentum scale given
by the inverse Ginzburg length q∗. T (0)

cr,α denotes the transition
temperature in the absence of disorder. For γ > 1, it is given
as [39]

T (0)
cr,Y = 8π

d2
c

(
κxx(0)κ3

yy(0)
)1/4

f (t0). (D4)

The coefficient A(t0, s0) determines the slope of the depen-
dence of the critical temperature on B(0),

A(t0, s0) = 1 + t0
1 + s0

∫ t0

0

dt e− ∫ t0
t dτ

F0 (τ )
g(τ )

g(t )
√

1 − t2

{
e− ∫ t0

t dτ
F0 (τ )
g(τ )

×
[

1 + 1 − s0t

1 − t2
+ (s0 − t )

g′(t ) − F 0(t )

g(t )

]

+
∫ t0

t
dτ (s0 − τ )e− ∫ t0

τ
dτ1

F0 (τ1 )
g(τ1 )

[(
F 0(τ )

g(τ )

)′

+
(

F 0(τ )

g(τ )

)2]}/[ ∫ t0

0

dt e− ∫ t0
t dτ

F0 (τ )
g(τ )

g(t )
√

1 − t2

]
. (D5)

We emphasize that the coefficient A(t0, s0) is independent
of 1/dc. Thus correction to the critical temperature due to
disorder has no smallness in 1/dc. Also it is independent of the
parameter γ , i.e., it is symmetric with respect to interchange
of x and y.

General expression (D5) can be simplified for |t0| � 1:

A(t0, s0) = 1+t0 − 54s0t0/119

1 + s0
. (D6)

As one can see, disorder reduces the transition temperature for
|t0| � 1.

In the case of strong anisotropy, 1 − t0 � 1, the expression
(D5) can be written as

A(t0, s0) � 1 − s0

1 + s0

cA√
1 − t0

, (D7)

where cA ≈ 1.38, we found from numerical calculation. We
assume that s0 is not too close to the unity, 1 − s0 
 1 − t0.
As one can see, for t0 close to the unity, the critical tempera-
ture (D3) becomes particular sensitive to disorder. Numerical
analysis of Eq. (D5) suggests that A(t0, s0) > 0 for |t0|, |s0| <

1 (see Fig. 6), i.e., weak disorder always decreases transition
temperature.

APPENDIX E: TEMPERATURE DEPENDENCE
OF THE CRITICAL DISORDER

The critical disorder slightly depends on temperature.
Specifically, at not too high temperatures, it acquires linear
in T correction (α = X,Y ),

Bcr,α (T ) � Bcr,α[1 + C(t0, s0)T/Tcr,α]. (E1)

The linear-in-T correction appears due to both the direct con-
tribution (proportional to T ) in Eqs. (55) for stretching factors
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FIG. 6. The function A(t0, s0), which determines the slope of the
critical curve T (B) near Tc.

and the 1/ fo corrections to the RG equations at fo 
 1. Typi-
cally, the later is larger than the former such that C(t0, s0) > 0.
The analytical expression for the slope of the critical disorder
with temperature, C(t0, s0), is too cumbersome. Instead, it is
more convenient to extract it directly from numerical solution
of the RG Eqs. (37) and (55).

To illustrate Eq. (E1), we consider vicinity of the fixed
point at t = s = 0. To the linear order in s and t , Eqs. (55)
becomes the same as in isotropic case

dξ 2
x

d�
= − dc

4πγ

T (1 + fo)

κ0
,

dξ 2
y

d�
= −dcγ

4π

T (1 + fo)

κ0
. (E2)

Using the symmetry relations (36), we obtain to the linear
order in s and t ,

dκ0

d�
= κ0

2dc

(
1 + 2

fo

)
,

dfo
d�

= − 3

2dc
. (E3)

Solving the above equations, one finds the critical disorder in
the form of Eq. (E1) with the slope

C(t0, s0) � 16, |t0| � 1, |s0| � 1. (E4)

APPENDIX F: DERIVATION OF D(t, s)

One can find behavior of functions F2m, �2m away from
invariant manifold in limit of fo � 1, |ω| � 1:

F2m � 1

16π

∫ 2π

0

dθ

2π

cos(2mθ )

κ (t, θ )π00(θ )

+ fo
1

16π

∫ 2π

0

dθ

2π

cos(2mθ )

κ (t, θ )π00(θ )

×
(

1 + ω cos(2θ ) + s cos(4θ )

κ (t, θ )
− 2π10(θ )

)
,

�2m � 0. (F1)

After substitutions in (68), we obtain

dω

d�
� 8

3dc

1 + s

1 + t
F2( fo, t, s, ω) = 2

dc
D(t, s) foω, (F2)

where D(t, s) defined as

D(t, s) = 4

3

1 + s

1 + t

∫ 2π

0

dθ

32π2

cos(2θ )

(1 + t cos(4θ ))π00(θ )

×
[

cos(2θ )

1 + t cos(4θ )
− 2π̃10

]
, (F3)

where π̃10 has only the second harmonics contribution.
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