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The interplay of a potential and magnetic disorder in superconductors has remained an active field of research
for decades. Within the framework of the Usadel equation, we study the local density of states (LDOS) near
a solitary classical magnetic impurity in a dirty superconducting film. We find that a potential disorder results
in broadening of the δ-function peak in the LDOS at the Yu-Shiba-Rusinov (YSR) energy. This broadening
is proportional to the square root of a normal-state spreading resistance of the film. We demonstrate that
modification of multiple scattering on the magnetic impurity due to intermediate scattering on surrounding
potential disorder crucially affects a profile of the LDOS in the vicinity of the YSR energy. In addition, we find
that a scanning-tunneling-microscopy tip can mask a YSR feature in the LDOS. Also, we study the LDOS near
a chain of magnetic impurities situated in the normal region of a dirty superconductor/normal-metal junction.
We find a resonance in the LDOS near the YSR energy. The energy scale of the resonant peak is controlled by
the square root of the film resistance per square in the normal state.
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I. INTRODUCTION

Studies of the effect of imperfections on superconducting
properties have remained an active field of research since
the middle of the last century. Initially, it was believed that
the potential scattering in s-wave superconductors does not
affect superconducting properties (so-called Anderson theo-
rem) [1–3]. Later, it was understood that a significant amount
of potential disorder results in a superconductor-to-insulator
transition [4] which is a manifestation of competition be-
tween Anderson localization and Cooper-channel attraction
(see Refs. [5–7] and references therein).

Classical magnetic impurities, being a source for time-
reversal symmetry violation, cause a more severe effect on
s-wave superconductivity than potential imperfections. With-
out any quantum interference effects considered (mean-field
approximation), magnetic impurities suppress the supercon-
ducting state, provided their concentration is high enough
[8,9]. Beyond the Born approximation, the scattering of quasi-
particles by a magnetic impurity leads to the appearance of
subgap Yu-Shiba-Rusinov (YSR) states in a superconductor
[10–13]. At a finite concentration of magnetic impurities,
YSR states are hybridized and can form energy bands with
hard gaps in the averaged density of states. Depending on the
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concentration of magnetic impurities and their strength, a rich
phase diagram arises (see Ref. [14] for a review).

Various inhomogeneity effects, such as rare fluctuations of
a random potential [15–18], fluctuations in concentration of
magnetic impurities [19], and fluctuations of the supercon-
ducting order parameter [20], lead to smearing of hard gaps
in the density of states (see Refs. [21,22] for a review). Re-
cently, it has been shown [23] that mesoscopic (point-to-point)
fluctuations of effective exchange interaction between spins of
magnetic impurity and quasiparticles caused by nonmagnetic
disorder result in strong modification of the YSR bands in the
average density of states in comparison with the mean-field
analysis.

For a long time, modification of the superconducting state
by a single magnetic impurity has remained a theoretical con-
cept only [24,25]. Progress in scanning tunneling microscopy
(STM) makes it possible to resolve the spatial and energy
dependence of YSR states [26–33]. Recent STM experimental
studies have revealed rich physics of YSR states in supercon-
ductors (see Ref. [34] for a review).

Currently, experimental studies of solitary YSR states are
limited to relatively clean superconductors (typically, Mn or
Cr atoms in Pb film or monolayer). Nevertheless, there is an
intriguing and still unresolved question of how nonmagnetic
disorder affects the spatial and energy dependence of YSR
states. This question can be of additional importance due to
the presence of intrinsic magnetic imperfections in nominally
nonmagnetic disordered superconducting films [35].

Recently, the effect of a random potential on the YSR
state was theoretically studied in Ref. [36]. The authors
extended the scattering approach used in Ref. [13] to incorpo-
rate additional scattering on the nonmagnetic impurities. The
broadening of the YSR state has been estimated within the
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FIG. 1. Left: A schematic view of a dirty superconducting film with a solitary magnetic impurity with spin S. Potential impurities are
shown as yellow circles. A singlet Cooper pair is depicted as a wavy green line. The mean free path is assumed to be much shorter than
clean superconducting coherence length � � ξcl. Right: A schematic view of a dirty superconductor/normal-metal junction, with a chain of
magnetic impurities with one-dimensional concentration ns situated in the normal region at a distance b from the boundary of the materials.
Potential impurities are shown as yellow circles.

lowest-order perturbation theory in potential disorder. How-
ever, behavior of the local density of states (LDOS) near a
magnetic impurity has not been addressed.

Another interesting question is the fate of YSR states in su-
perconducting heterostructures, e.g., superconductor/normal-
metal/superconductor (SNS) or superconductor/normal-
metal (SN) junctions. In a clean SNS junction, a magnetic
impurity situated in the normal region leads to an interesting
interplay of YSR states and Andreev levels (see Refs. [37,38]
and references therein). We are not aware of similar studies of
the LDOS near a magnetic impurity in the normal region of
superconducting heterostructures in the dirty regime.

In this paper, we study the LDOS near a solitary classi-
cal magnetic impurity in a dirty superconducting film with
elastic mean free path � being shorter than the supercon-
ducting coherence length ξcl � � (see Fig. 1, left panel).
Our theoretical analysis is based on the Usadel equation. We
investigate the energy and spatial profiles of the LDOS. In
the absence of potential disorder, the YSR state due to a
single magnetic impurity yields the δ-function contribution
to the energy dependence of the LDOS. We demonstrate that
potential disorder results in broadening of the δ function into
a peak. Its energy width is controlled by the square root of the
spreading resistance of the film in the normal state, see Eq. (8)
for the precise definition. We find that the profile of the LDOS
near the YSR energy is significantly affected by modification
of multiple scattering on the magnetic impurity due to inter-
mediate scattering on surrounding potential disorder (treated
in the Born approximation). Surprisingly, the corresponding
term in the Usadel equation seems to be analogous to the term
which considers the effect of the mesoscopic fluctuations of
the effective magnetic scattering amplitude in the case of finite
concentration of magnetic impurities [23].

Unexpectedly, we find that the potential-disorder-induced
broadening of the YSR state at a solitary magnetic impurity
seems to be of the order of the variance for the YSR energy
which is caused by point-to-point fluctuations of the dimen-
sionless strength of the magnetic impurity due to the potential
disorder found in Refs. [23,36]. Additionally, we study how
the STM tip applied in the vicinity of the magnetic impurity
masks the YSR feature in the LDOS.

Also, we investigate the LDOS near a chain of magnetic
atoms situated in the normal region of a dirty SN junction (see
Fig. 1, right panel). We find that magnetic impurities increase
the LDOS in the vicinity of the YSR energy. However, on the
contrary to a homogeneous superconductor, the energy con-
trolling the position of the LDOS peak acquires an imaginary
part. The latter means that magnetic impurities in the normal
region of the SN junction result in quasibound states rather
than the bound ones.

The outline of this paper is as follows. In Sec. II, we calcu-
late the LDOS in a dirty superconducting film with a solitary
magnetic impurity. The LDOS in the SN junction with a chain
of magnetic atoms is analyzed in Sec. III. The discussion
of the obtained results as well as conclusions are given in
Sec. IV. Some technical details are present in Appendixes.

II. A DIRTY SUPERCONDUCTING FILM
WITH MAGNETIC IMPURITY

In this section, we consider a dirty superconducting film
with a single classical magnetic impurity. We assume that
the elastic mean free path � is much shorter than the clean
superconducting coherence length ξcl = vF /�. Here, vF and
� denote the Fermi velocity and the superconducting gap,
respectively. We shall treat the problem in the framework of
the Usadel equation [39] which is a standard approach for
description of superconductors in the dirty limit � � ξcl.

A. Standard Usadel equation

In the presence of a solitary magnetic impurity situated
at the origin of the coordinate system, the standard Usadel
equation acquires the following form [40]:

D

2
∇2θσ + iE sin θσ + � cos θσ

= [iσ
√

α/(πν)] sin θσ

1 − α + 2iσ
√

α cos θσ

δ(r). (1)

Here, D is the diffusion coefficient in the normal phase, σ =
± stands for the projection of an electron spin onto the direc-
tion of the impurity spin, and δ(r) is the two-dimensional (2D)
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Dirac δ function. The dimensionless parameter α = (πνJS)2

is the effective strength of the magnetic impurity expressed in
terms of the impurity spin S, the exchange interaction constant
J , and the density of states at the Fermi level in the normal
state (per one spin projection) ν. The spectral angle θσ (E , r)
parameterizes the quasiclassical Green’s function (see
Appendix B). The spin-resolved LDOS is given as

ρσ (E , r) = νRe cos θσ (E , r). (2)

We note that the right-hand side of Eq. (1) is essentially
a T-matrix describing the multiple scattering on the mag-
netic impurity. Also, we mention that the standard Usadel
equation has the following symmetry: the solution θσ for
the impurity strength α coincides with the solution θ−σ for
1/α. Therefore, below, when discussing the solution of the
standard Usadel equation, we shall consider the case α �
1. The opposite case, α > 1, can be restored by changing
σ to −σ .

In Eq. (1), we approximate an exchange potential of the
magnetic impurity by the δ function δ(r). In fact, the poten-
tial has some radius λ. Since the Usadel equation describes
physics at length scales larger than the mean free path, an im-
purity with λ � � can be described by the δ-function potential.

It is worthwhile to mention that we neglect the spin-
independent part of the potential of the magnetic impurity in
Eq. (1). We shall discuss its effect in Sec. IV.

1. The LDOS inside the gap |E| < �

To study the LDOS inside the superconducting gap
E < �, it is convenient to parametrize the spectral angle as
θσ = π/2 + iψσ so that

ρσ (E , r) = νIm sinh ψσ . (3)

In terms of ψσ , the Usadel equation [Eq. (1)] becomes

D

2
∇2ψσ + E cosh ψσ − � sinh ψσ

= (cosh ψσ )/(2πν)

σ
√

β + sinh ψσ

δ(r), β = (1 − α)2

4α
. (4)

In the absence of a magnetic impurity, Eq. (4) has the homoge-
neous solution ψ∞ = arcsinh(E/

√
�2−E2), corresponding

to the density of states in the Bardeen-Cooper-Schrieffer
(BCS) theory. The magnetic impurity disturbs the homoge-
neous solution ψσ = ψ∞+δψσ , where δψσ satisfies the 2D
sinh-Gordon equation:

ξ 2∇2δψσ − sinh δψσ = [ξ 2/(πνD)] cosh ψσ

σ
√

β + sinh ψσ

δ(r). (5)

Here, the length ξ ≡ ξ (E ) =
√

D/(2
√

|�2 − E2|) controls
the spatial extent of the perturbation of the homogeneous
solution.

As we shall see below, the perturbation δψσ appears to
be small |δψσ | � 1. Then we can approximate the function
sinh δψσ by its argument in such a way that Eq. (5) reduces to
the quantum mechanical problem of a 2D particle in the pres-
ence of a δ-function potential (see Appendix A). Therefore,

we find

δψσ (r) = ψ̃σ − ψ∞
ln(ξ/�)

K0

(
r

ξ

)
, r � �. (6)

Here, K0(x) denotes the modified Bessel function. We note
that the mean free path � appeared under the logarithm in
Eq. (6) as a short-distance regularization for the δ function.
The quantity ψ̃σ satisfies the following nonlinear algebraic
equation:

ψ̃σ = ψ∞ − tσ cosh ψ̃σ√
β + σ sinh ψ̃σ

. (7)

The perturbation of the homogeneous solution by the impurity
is controlled by the parameter:

t = 2

πg
ln

ξ

�
, (8)

where g = 4πνD ≡ h/(e2R�) is the bare dimensionless nor-
mal state conductance of the film. Here, R� is the resistance
per square in the normal phase. We emphasize that the param-
eter t is energy dependent since ξ depends on energy.

Our approach based on the Usadel equation does not con-
sider the localization effects. Therefore, our results are limited
to the range of energies such that ξ � ξloc, where ξloc �
� exp(πg/2) is the localization length in 2D. This condition
is equivalent to the following inequality:

t � 1. (9)

In view of the relation in Eq. (9), one could try to solve
Eq. (7) iteratively, substituting ψ∞ for ψ̃σ on the right-hand
side. However, there are two energies E = ±EYSR, where

EYSR = �

√
β

1 + β
= �

1 − α

1 + α
, (10)

at which the denominator
√

β + σ sinh ψ∞ on the right-hand
side of Eq. (7) diverges. We note that ±EYSR are just the ener-
gies of the localized YSR states in a clean superconductor. The
divergence of the denominator in Eq. (7) indicates that, near
the energy −σEYSR, the spectral angle ψ̃σ can be perturbed
from the homogeneous solution ψ∞ parametrically larger than
by the term ∼t . Also, the zero in the denominator implies
the existence of a complex solution for the spectral angle
ψ̃σ near the energy −σEYSR, as illustrated in Fig. 2. As it
follows from Eq. (3), the complex solution for ψ̃σ implies the
nonzero density of states in some interval of energies around
the energy −σEYSR. As shown in Fig. 2, the boundaries of this
interval can be found from the combined solution of Eq. (7)
and the following equation:

t (1 − σ
√

β sinh ψ̃σ )

(
√

β + σ sinh ψ̃σ )2
= 1. (11)

Although, Eq. (7) can be easily solved numerically, it is in-
structive to discuss its analytical solution using the condition
in Eq. (9).

Expanding sinh ψ̃σ (cosh ψ̃σ ) in the denominator (enumer-
ator) of the fraction on the right-hand side of Eq. (7) to the
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0.8

FIG. 2. Graphical illustration for Eqs. (7) and (11). The function
−tσ cosh ψ̃σ /(

√
β + σ sinh ψ̃σ ) is shown in orange color, and the

function ψ̃σ − ψ∞ is shown in green lines that correspond to differ-
ent values of energy E = E< and E = E>. The shaded bright green
area corresponds to straight lines ψ̃σ − ψ∞ that do not cross the or-
ange curve and, therefore, correspond to the complex solution for ψ̃σ .
Thus, the nonzero density of states appears at energies E< < E <

E>. We use the following values: α = 0.3, t = 0.0025, and σ = −1.
For such parameters, the boundary energies are E</� � 0.46 and
E>/� � 0.60.

first (zeroth) order in deviation ψ̃σ−ψ∞, we find

ψ̃σ � ψ∞ − σ
√

β + sinh ψ∞
2 cosh ψ∞

+i

√
t − (σ

√
β + sinh ψ∞)2

4 cosh2 ψ∞
. (12)

We note that the choice of the sign in front of the square root
corresponds to Imψ̃σ � 0, which guarantees nonnegativity of
the density of states. Using the explicit solution in Eq. (12),
one can check that the assumption |ψ̃σ − ψ∞| � 1 is justified
in virtue of the inequality in Eq. (9).

Now we can compute the LDOS, see Eq. (3). The result
reads

ρσ (E , r) = δρ0(−σE )

ln(ξβ/�)
K0(r/ξβ ), r � �,

δρ0(E ) � ν(1 + β )3/2

2�
Re[�2 − (EYSR − E )2]1/2,

� = 2
√

tβ
1 + β

�, tβ = 2

πg
ln

ξβ

�
, (13)

where ξβ = ξ (0)(1 + β )1/4. Therefore, the energy depen-
dence of the density of states has a semicircle shape with
the width 2� around the YSR energy EYSR. We mention that
the square-root energy dependence of the density of states
corresponds to the treatment of the nonmagnetic random
potential within the self-consistent Born approximation (see
Refs. [36,41] for details). Unexpectedly, �/2 coincides with
the variance of the YSR energy due to the presence of po-
tential disorder calculated in Ref. [36]. This indicates that the
nonzero LDOS around EYSR caused by diffusive motion of
quasiparticles around the magnetic impurity can be thought,
physically, as a result of fluctuations of the YSR energy (more
precisely, of α, see Ref. [23]) due to dependence on a realiza-
tion of potential disorder.

A few remarks are in order here. First, we note that, for
α → 0, the condition tβ � 1 implies that α � (ξ (0)/ξloc)4,
i.e., the result in Eq. (13) is not applicable for extremely weak
impurity strengths. Secondly, we mention that the perturbation
of the LDOS around the YSR energy contains exactly one
fermion state: ∫ �

−�

dE
∫

d2rρσ (E , r) = 1

2
. (14)

Third, there is the critical impurity strength αc such that the
density of states at the Fermi energy becomes nonzero for α >

αc. Using Eq. (13), one finds the critical strength as

αc = 1 − 4
√

t0. (15)

Fourth, we note that the LDOS per spin in Eq. (13) is asym-
metric with respect to the chemical potential.

In Fig. 4 (left panel), we plot the LDOS obtained from the
numerical solution of Eq. (5) and compare it with the analytic
solution in Eq. (13). There is hardly any difference between
the numerical and analytical solutions. In accordance with the
analytical result in Eq. (13), the nonzero LDOS region around
EYSR broadens with an increase in α. We note an interesting
nonmonotonous behavior of the total LDOS with energy. For
αc < α < (1 + 3αc)/4, the total LDOS has three local max-
ima: at E = ±EYSR and 0. At α > (1 + 3αc)/4, only a single
maximum at the Fermi energy E = 0 remains.

2. The LDOS outside the gap |E| > �

For description of the effect of the magnetic impurity on
the LDOS outside the superconducting gap E > �, it is con-
venient to parametrize the spectral angle as θσ = iχσ . Then
the LDOS becomes

ρσ (E , r) = νRe cosh χσ . (16)

In terms of χσ , the Usadel equation [Eq. (1)] reads

D

2i
∇2χσ + E sinh χσ − � cosh χσ

= [1/(πν)] sinh χσ

σ
√

β + i cosh χσ

δ(r). (17)

Without the right-hand side, Eq. (4) has the homogeneous
solution χ∞ = sgnEarcsinh(�/

√
E2−�2) which reproduces

the BCS density of states:

ρ0(E ) = ν|E |√
E2 − �2

, |E | > �. (18)

The magnetic impurity perturbs the homogeneous solution:
χσ = χ∞ + δχσ , where δχσ solves the following equation:

iξ 2∇2δχσ − sgnE sinh δχσ

= − (4σξ 2/g) sinh χσ√
β + iσ cosh χσ

δ(r) . (19)

As we shall see below, the correction δχσ appears to be small
|δχσ | � 1. Then Eq. (19) can be easily solved:

δχσ (r) = χ̃σ − χ∞
ln(ξ/�)

K0

[
exp

(
− iπsgnE

4

)
r/ξ

]
,

r � �. (20)
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The quantity χ̃σ satisfies the following nonlinear algebraic
equation:

χ̃σ = χ∞ − itσ sinh χ̃σ√
β + iσ cosh χ̃σ

. (21)

It is worthwhile to mention the difference between Eqs. (7)
and (21). In the latter case, we seek the solution χ̃σ with a
nonzero real part. Due to the imaginary unity in the denom-
inator of the fraction on the right-hand side of Eq. (21), the
denominator does not vanish for any real χ̃σ . Considering
the inequality in Eq. (9), we can solve Eq. (21) iteratively.
Substituting χ∞ for χ̃σ on its right-hand side, we obtain

χ̃σ � χ∞ − itσ sinh χ∞√
β + iσ cosh χ∞

. (22)

As one can check, the condition in Eq. (9) guarantees the
inequality |χ̃σ−χ∞| � 1. Now using Eq. (16), we find the
LDOS at E > � and r � �:

ρσ (E , r) = ρ0(E ) + Re
δρ0(E )

ln(ξ/�)

(
1 + i

√
β

√
E2 − �2

|E |
)

× K0

[
exp

(
− iπσ sgnE

4

)
r/ξ

]
, (23)

where

δρ0(E ) � −ν
t

1 + β

�2|E |(
E2 − E2

YSR

)√
E2 − �2

. (24)

We note that δρ0(E ) is the change of the LDOS at the posi-
tion of the magnetic impurity. The condition t � 1 implies
that the result in Eq. (23) is not applicable for |E | − � �
(ξ (0)/ξloc)4�. As we shall see below in Sec. IIA3, the region
in which the result in Eq. (23) is not applicable turns out to be
wider.

Using Eq. (23), we find∫
d2rδρσ (E , r) = σν

√
β

2π (1 + β )

sgnE√
E2 − �2

�2

E2 − E2
YSR

.

(25)

We note the appearance of sgnE in Eq. (25). Therefore, inte-
grating the above expression over |E | > �, we find that there
is no change in the number of states for a given spin projection
σ at |E | > �.

3. Suppression of the order parameter near the magnetic impurity

To study the suppression of the order parameter near the
magnetic impurity, it is convenient to rewrite the Usadel equa-
tion [Eq. (1)] for the imaginary (Matsubara) ε = πT (2n + 1)
rather than real energies:

D

2
∇2θσ − |ε| sin θσ + � cos θσ = [i/(2πν)] sin θσ

σ
√

β + i cos θσ

δ(r).

(26)
The superconducting order parameter satisfies the self-
consistent equation:

�(r) = πT |γc0|
∑
σ=±

∑
ε>0

sin θσ (r), (27)

where γc0 < 0 is the bare dimensionless attraction interaction
in the Cooper channel.

In the absence of the magnetic impurity, Eqs. (26) and (27)
reduce to the standard self-consistent equation of the BCS
theory for the homogeneous superconducting order parameter
�0:

�0 = 2πT |γc0|
∑
ε>0

sin θ∞, sin θ∞ = �0√
ε2 + �2

0

. (28)

It is convenient to introduce δθσ = θσ − θ∞ and δ� = � −
�0. They describe the deviations of θσ and � from the ho-
mogeneous solutions. As we shall see below, these deviations
are small. Therefore, we can linearize Eqs. (26) and (27) as
follows:

ξ 2
ε ∇2δθσ − δθσ + |ε|δ�

ε2 + �2
0

= (4iσξ 2
ε /g) sin θ∞√

β + iσ cos θ∞
δ(r),

δ�(r) = πT |γc0|
∑
ε>0

εδθσ (r)√
ε2 + �2

0

, (29)

where ξ 2
ε = D/(2

√
ε2 + �2

0
1). We note that the denominator

on the right-hand side of the linearized Usadel equation does
not turn into zero. Making the Fourier transform from the
spatial coordinate r to the momentum q:

δ�q =
∫

d2r δ�(r) e−iqr,

δθσ,q =
∫

d2r δθσ (r) e−iqr, (30)

we find

δ�q

�0
= −4ξ (0)2

g

Fβ[qξ (0), T/�0]

F[qξ (0), T/�0]
. (31)

Here, the functions Fβ and F are defined as follows:

Fβ[qξ (0), T/�0] = T
∑
ε>0

1

1 + q2ξ 2
ε

ε2�0/
(
ε2 + �2

0

)
[
(1 + β )ε2 + β�2

0

] ,

F[qξ (0), T/�0] = T
∑
ε>0

q2ξ 2
ε + �2

0/
(
ε2 + �2

0

)
(
1 + q2ξ 2

ε

)√
ε2 + �2

0

. (32)

We note that this result coincides with the expression derived
previously (see eq. (B11) in Ref. [22]).

To estimate the effect of the magnetic impurity on the
superconductor order parameter, we consider the case of zero
temperature. Then at T = 0, the summation over ε in expres-
sions for the functions Fβ[qξ (0), T/�0] and F[qξ (0), T/�0]
can be performed exactly, and we obtain

δ�q

�0
= −4ξ (0)2

g

Fβ (q2ξ (0)2)

F (q2ξ (0)2)
, (33)

where

F (z) = 1

4z
−
√

|1 − z2|
2πz

{
arccos z, z � 1,

(−)arccoshz, z > 1,
(34)
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and

Fβ (z) = 1

(1 + β )z2 − 1

×
{

zF (z) −
√

β + 1 − √
β

4
√

β + 1
− z

√
β

2π
arctan

(
1√
β

)}
.

(35)

The functions F (z) and Fβ (z) have the following asymptotic
behavior at z � 1:

F (z) � ln(2z)

2π
, Fβ (z) � F (z)

z(1 + β )
. (36)

Hence, we find with logarithmic accuracy the modification
of the superconducting order parameter at the location of the
magnetic impurity:

δ�(0)

�0
� − t0

1 + β
. (37)

For |E | < �0, the change in the superconducting order
parameter produces the purely real correction to the δψσ :

δψ (�)
σ,q = 4ξ (0)2

g

�0E/

√
�2

0 − E2√
�2

0 − E2 + q2ξ (0)2�0

Fβ[q2ξ (0)2]

F [q2ξ (0)2]
.

(38)
Therefore, suppression of the superconducting order parame-
ter does not affect the average LDOS at |E | < �0.

For E > �0, we compute the Fourier transform of the
correction δχ (�)

σ (r) as

δχ (�)
σ,q = −4

g

ξ (0)2

sgnE + iq2ξ 2

�0|E |
E2 − �2

0

Fβ[q2ξ (0)2]

F [q2ξ (0)2]
. (39)

Next, we estimate the correction δχ (�)
σ at the spatial point

where the magnetic impurity is situated:

Reδχ (�)
σ (0) = − 1

πg

∫ ∞

0
dz

�0E

E2 − �2
0 + z2�2

0

Fβ (z)

F (z)
. (40)

We note that the integral over z = q2ξ (0)2 is convergent in the
ultraviolet. Performing the integration over z, we find

Reδχ (�)
σ (0) � − �0sgnE

πg(1 + β )
√

E2 − �2
0

×
{

π2(1 + β )Fβ (0), |E | − �0 � �0,

ln
( |E |

�0

)
, |E | � �0.

(41)

In derivation of the above result, we used expansion in δχ (�)
σ .

Therefore, Eq. (41) is valid for |Reδχ (�)
σ (0)| � 1, i.e., for

energies not too close to the unrenormalized gap, (|E | −
�0)/�0 � F 2

β (0)/g2.
Using Eqs. (16) and (41), we obtain the following

correction to the LDOS due to renormalization of the

superconducting order parameter:

δρ
(�)
0 (0) � − ν�2

0

πg(1 + β )
(
E2 − �2

0

)
×
{
π2(1 + β )Fβ (0), |E | − �0 � �0,

ln
( |E |

�0

)
, |E | � �0.

(42)

Comparing Eqs. (42) and (24), one can check that, for |E | �
�, the suppression of the superconducting order parameter
results in the substitution of t in Eq. (24) by t0. Next, near
the band edge |E | − �0 � �0, one can neglect the renor-

malization of � for (|E | − �0)/�0 � π4F 2
β (0)

ln2[ξ (0)/�]
only. In the

opposite case,
π4F 2

β (0)

ln2[ξ (0)/�]
� (|E | − �0)/�0 � [Fβ (0)/g]2, the

correction to the LDOS is dominated by the renormalization
of the superconducting order parameter. Since, in this paper,
we are interested in the behavior of the density of states at
energies |E | < �0, we shall not study that regime in detail.

B. Renormalized Usadel equation and the LDOS at |E| < �

The solution of the standard Usadel equation [Eq. (1)]
results in the broadening of the YSR state due to potential
disorder. However, Eq. (1) produces the LDOS with sharp
edges, cf. Eq. (13). As we discussed above, physically, the
broadening of the YSR state can be understood as the result of
fluctuations of the impurity strength α. Therefore, one expects
a smooth energy dependence of the LDOS around the YSR en-
ergy. This indicates that the standard Usadel equation [Eq. (1)]
is not suited for calculation of the LDOS at |E | − EYSR � �.

One way to improve the standard Usadel equation is to
consider solutions lacking symmetry in replica space, as
it was done in Ref. [22]. Here, we employ an alternative
idea introduced in Ref. [23] for the case of dilute concen-
tration of magnetic impurities n(2)

s distributed in the film
according to the Poisson distribution. The standard Usadel
equation [Eq. (1)] can be derived as the saddle point of the
nonlinear sigma model (NLSM) [18]. However, as it was
shown in Ref. [23], since we are interested in physics at the
length scale ξ (alternatively, at the energy scale E ), we need
to renormalize the NLSM action from the mean free path up
to ξ (or from elastic scattering rate 1/τ down to E ). Upon this
renormalization, the term describing scattering by magnetic
impurities is strongly renormalized. In the case of a single
magnetic impurity, there exists similar renormalization of the
NLSM such that the renormalized Usadel equation acquires
the following form (see Appendix B):

D

2
∇2θσ + iE sin θσ + � cos θσ

=
〈

[iσ
√

a/(πν)] sin θσ

1−a+2iσ
√

a cos θσ

〉
a

δ(r). (43)

Here, 〈. . . 〉a is the average with respect to the following log-
normal distribution:

Pα (a, t ) = 1

4a
√

πt
exp

[
− 1

4t

(
1

2
ln

a

α
+ t

)2]
. (44)

Since Pα (a, t → 0) → δ(a − α), Eq. (43) transforms into
Eq. (1) as t → 0.
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FIG. 3. Sketch of quasiparticle scattering on potential disorder
between rescattering on the magnetic impurity. Potential impurities
are shown as yellow circles; a solitary magnetic impurity with spin S
is shown as a purple circle. The schematic trajectory of a quasiparti-
cle is depicted as a dotted green line.

We note that the right-hand side of Eq. (43) can be thought
of as the T-matrix renormalized by scattering of a quasiparti-
cle on potential disorder between rescattering on the magnetic
impurity; this is illustrated schematically in Fig. 3.

Surprisingly, the result in Eq. (43) can be obtained from the
renormalized Usadel equation of Ref. [23] upon substitution
of n(2)

s by δ(r).
To find the LDOS at |E | < �, we follow the same ap-

proach as in Sec. IIA1. Parametrizing the spectral angle as
θσ = π/2 + iψσ with ψσ = ψ∞ + δψσ , we find that δψσ (r)
is given by Eq. (6), where ψ̃σ satisfies the following nonlinear
equation [cf. Eq. (7)]:

ψ̃σ = ψ∞ −
〈

2tσ
√

a cosh ψ̃σ

1 − a + 2σ
√

a sinh ψ̃σ

〉
a

. (45)

Using the condition in Eq. (9), we rewrite Eq. (45) as

ψ̃σ = ψ∞ −
√

tσ cosh ψ̃σ√
1 + βt

H
(√

βt + σ sinh ψ̃σ

2
√

t
√

1 + βt

)
, (46)

where H(z) = √
π exp(−z2)[erfi(z) − isgn(Imz)]/2 and βt =

(1 − αt )2/(4αt ) with αt = αe−2t . Although algebraic Eq. (46)
can be solved numerically, it is instructive to discuss its ana-
lytic solution in limiting cases.

We start from the case of the vicinity of the YSR energy
||E | − EYSR| � �. In this regime, the argument of the func-
tion H in Eq. (46) is small. Performing series expansion of H
in its argument and using |ψ̃σ − ψ∞| � 1, we find a simple

but lengthy result:

ψ̃σ � ψ∞+ 2iz0

√
t

{
1 −

[
8(1 − h1)

√
tβt

(2 + h1)2
√

1 + βt
− iσh1/z0

2 + h1

]

×
√

βt + σ sinh ψ∞
2
√

t
√

1 + βt

+ 2ih2/z0

(2 + h1)3

(√
βt + σ sinh ψ∞
2
√

t
√

1 + βt

)2
}

. (47)

Here, hk ≡ H(k)(iz0) denotes the kth derivative of H(z) at the
point z0 ≈ 0.32. The latter is the positive solution of the equa-
tion z0 = iH(iz0)/2. We note that h1 � 0.59 and h2 � 0.90i.
Hence, we obtain the average LDOS in the form of Eq. (13)
but with δρ0(E ) given as (||E | − ẼYSR| � �̃) [42]:

δρ0(E ) �
[

1 + tβ
1−α

1+α

(
1 + 4c1c2

2
1−α

1+α

)]

× z0ν(1+β )3/2�

�

[
1 − (E−ẼYSR)2

�̃2

]
. (48)

We note that the typical broadening of the YSR state is en-
hanced:

�̃ = �√
c1

, (49)

where c1 = 2|h2|/[z0(2 + h1)3] � 0.32. Also, there is a
nonzero shift of the energy at which the LDOS has its maxi-
mum:

ẼYSR � �

[
1 − α

1 + α
+ 4αtβ

(1 + α)2

(
1 + 4c2

1 − α

1 + α

)]
, (50)

where c2 = z0(4 − h1)(2 + h1)/(2|h2|) � 1.57. We empha-
size that Eq. (48) predicts a dramatic reduction (by a factor
of 2z0 ≈ 0.64) of the maximal magnitude of the LDOS in
comparison with the result in Eq. (13). We reiterate that
the broadening �̃ (as well as �) is of the order of vari-
ance of the YSR energy [Eq. (10) with α substituted by a]
due to log-normal distribution in Eq. (44) of the impurity
strength.

Now we turn our attention to the study of energy tails in
the LDOS. We consider the energy interval in which there
are no states within the standard Usadel equation [Eq. (5)].
In this regime, the argument of the function H in Eq. (46)
is so large that we can use its asymptotic expression H(z) �
1/(2z) − i[sgn(Imz)]

√
π exp(−z2)/2 at |z| � 1. Then assum-

ing that Imψ̃σ � 1, we find

Imψ̃σ =
√

πt cosh ψ̃ ′
σ

2
√

1 + βt

[
1 + t

1 − σ
√

βt sinh ψ̃ ′
σ

(
√

βt + σ sinh ψ̃ ′
σ )2

]

× exp

[
− (

√
βt+σ sinh ψ̃ ′

σ )2

4t (1 + βt )

]
. (51)

Here, the quantity ψ̃ ′
σ is the real part of ψ̃σ , ψ̃ ′

σ ≡ Reψ̃σ and
satisfies Eq. (7). Hence, we obtain the LDOS in the parametric
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FIG. 4. Dependence of the local density of states (LDOS) on energy at the position of the magnetic impurity obtained from standard (left
panel) and renormalized (right panel) Usadel equations for different values of α. The total LDOS is shown in green, whereas ρσ (E , 0) for
σ = −1(+1) is shown in orange (blue) color. The analytical (numerical) result is depicted as a solid (dotted) line. We choose t = 0.0025 and
neglect its weak energy dependence.

form:

δρ0(E ) = ν

√
πt cosh2 x

2
√

1 + βt

[
1 + t

1 + √
βt sinh x

(
√

βt − sinh x)2

]

× exp

[
− (

√
βt − sinh x)2

4t (1 + βt )

]
,

E

�
= tanh

(
x − t cosh x√

βt − sinh x

)
. (52)

This expression holds for a real variable x that satisfies
|√βt − sinh x| � 2

√
t (1 + βt ). This implies that the LDOS

is exponentially small away from EYSR. There is finite albeit
exponentially small ∼ exp{−βt/[4t (1 + βt )]} LDOS at the
Fermi energy E = 0, for α � αc.

In Fig. 4 (right panel), we plot the LDOS obtained from
the numerical solution of Eq. (43) and compare it against the
analytic asymptotes in Eqs. (48) and (52). As can be seen,
analytics and numerics are in full agreement. The renormal-
ized Usadel equation results not only in suppression of the
magnitude of the LDOS near the YSR energy but makes the
LDOS asymmetric. We note that this asymmetry disappears in
the total LDOS after merging peaks around ±EYSR. Also, our
numerical analysis reveals a smaller value of αc in comparison
with Eq. (15), although we find 1 − αc ∼ √

t0 still.
In Fig. 5, we plot the dependence of the total LDOS on en-

ergy and distance to the magnetic impurity for different values
of α. Here, the LDOS is obtained by the numerical solution
of Eq. (43). For convenience, we normalize the LDOS by its
maximal magnitude for each α. As can be seen, the LDOS
decays with distance on the scale ξβ , in full agreement with
Eq. (6).

C. The effect of a tip

The LDOS in the superconductor can be affected by an
STM tip. In this section, we study this effect. We assume that
the tip (either superconducting or metallic) is placed near the
magnetic impurity. The possibility of tunneling from/to the

superconducting film to/from the tip results in modification
of the Usadel equation [43,44]:

D

2
∇2θσ + iE sin θσ + � cos θσ

= [iσ
√

α/(πν)] sin θσ

1−α+2iσ
√

α cos θσ

δ(r)

− 1

2πν

N∑
k=1

√
Tk sin(θtip − θσ )

1 + Tk + 2
√
Tk cos(θtip − θσ )

δ(r) . (53)

Here, we assume N tunneling channels with the tunneling
probability Tk each. The quantity Tk = T 2

k /(2 − Tk )2 is the
Andreev conductance of the kth channel. For the sake of
simplicity, we study the effect of the tip within the standard

FIG. 5. Dependence of the local density of states (LDOS) on
energy and distance to the magnetic impurity (r � l) obtained nu-
merically from renormalized Usadel equations for different values of
α. We choose t = 0.0025 and l/ξ (0) = 0.1.

023202-8



BROADENED YU-SHIBA-RUSINOV STATES IN DIRTY … PHYSICAL REVIEW RESEARCH 4, 023202 (2022)

Usadel equation. As above, we are interested in the modifica-
tion of the LDOS near the YSR energy alone.

Following the same steps as in Sec. II A, we find the fol-
lowing equation for the spectral angle at the position of the
magnetic impurity, cf. Eq. (7):

ψ̃σ = ψ∞ − tσ cosh ψ̃σ√
β + σ sinh ψ̃σ

+ C(ψ̃σ ),

C(ψ̃σ ) =
N∑

k=1

it
√
Tk cos(θtip − iψ̃σ )

1 + Tk + 2
√
Tk sin(θtip − iψ̃σ )

. (54)

The term C(ψ̃σ ) has no singularity in its denominator at the
YSR energy. Thus, the difference between ψ̃σ and ψ∞ can be
neglected there. Solving Eq. (54) in the same way as Eq. (7),
we find

ψ̃σ = ψ∞ + 1

2
C(ψ∞) − σ

√
β + sinh ψ∞
2 cosh ψ∞

+ i

√
t − 1

4

[
σ
√

β + sinh ψ∞
cosh ψ∞

+ C(ψ∞)

]2

. (55)

The above result allows us to compute the LDOS near the
energy EYSR for arbitrary magnitude of θtip. For concreteness,
we consider the cases of normal metal and superconducting
tips only.

1. Normal-metal tip

For a normal-metal tip, the spectral angle is zero, θtip = 0.
Then using Eq. (55), we find that the LDOS is given by the
expressions in Eq. (13) but with

δρ0(E ) = ν(1 + β )3/2

2�

×{ImẼYSR + Re[�2 − (E − ẼYSR)2]1/2}. (56)

Here, we introduced the complex YSR energy:

ẼYSR = EYSR

(
1 −

N∑
k=1

it
√
Tk/β

1 + Tk + 2i
√

βTk

)
. (57)

The normal-metal tip results not only in a shift ∼t of the
YSR energy but also the appearance of an imaginary part ∼t .
The latter signals that the YSR state becomes a quasibound
one since it can decay into the normal tip. The existence of the
imaginary part in ẼYSR smears the sharp edges of the LDOS.

2. Superconducting tip

In the case of a superconducting tip with a large su-
perconducting order parameter, we can neglect the energy
dependence of the spectral angle and use the following ap-
proximation: θtip = π/2. Then using Eq. (55), we obtain the
LDOS given by Eq. (56) with

ẼYSR = EYSR

[
1 +

N∑
k=1

t
√
Tk/(1 + β )

1 + Tk + 2
√

(1 + β )Tk

]
. (58)

We mention that the superconducting tip results in the shift
of the YSR energy. The imaginary part of ẼYSR is zero due to

the absence of quasiparticle tunneling into the superconduct-
ing tip. Therefore, sharp edges of the LDOS near the YSR
energy remain.

III. YSR RESONANCE IN A DIRTY SN JUNCTION

Now we discuss how magnetic impurities situated in a dirty
normal metal near the boundary of a superconductor affect the
LDOS. We consider a dirty 2D SN junction with a rare chain
of magnetic atoms with one-dimensional concentration ns. For
the sake of simplicity, we assume that both the SN boundary
situated at x = 0 and the chain of magnetic atoms situated at
x = −b are straight and parallel to each other [see Fig. 1(b)].
Also, we suppose that the spins of the magnetic atoms are
classical, statistically independent vectors of the length S with
a flat distribution over their orientations.

The effect of impurities will be estimated based on the
change in the LDOS in comparison with the one without mag-
netic atoms. We expect that, in the presence of a normal metal,
the localized state at the YSR energy is smeared out, forming
a peak with a finite width. Thus, our goal is to determine the
conditions under which the presence of impurities affects the
LDOS near the YSR energy most pronounced.

A. Standard Usadel equation

To describe the LDOS in a dirty SN junction with a chain of
magnetic impurities, we employ the standard Usadel equation.
Contrary to Eq. (1), the spectral angle is now independent of
the spin projection. Due to the heterogeneity of our model, the
Usadel equation should be written separately in the regions
of the superconductor (x > 0) and the normal metal (x < 0).
Under the assumption of an infinite system size in the y direc-
tion [see Fig. 1(b)], the spectral angle depends solely on the x
coordinate. Then the standard Usadel equation becomes

D

2
∂2

x θs + iE sin θs + � cos θs = 0, (59)

for x > 0 (the superconductor), and

Dn

2
∂2

x θn + iE sin θn = [nsα/(πνn)] sin 2θn

1 + α2 + 2α cos 2θn
δ(x + b), (60)

for x < 0 (the normal metal). Here, Dn denotes the diffusion
coefficient of the normal metal, νn is the density of states
per one spin projection in the normal metal, and θs(E , x)
[θn(E , x)] stands for the spectral angle in the superconductor
(the normal metal).

The Usadel Eqs. (59)–(60) need to be supplemented with
boundary conditions. We assume that, away from the SN
boundary, the superconductor and the normal metal behave
as infinite bulk materials, i.e.,

θs(E , x → +∞) = π

2
+ iψ∞, θn(E , x → −∞) = 0.

(61)
At the SN boundary, we employ the following boundary con-
ditions [45,46]:

θs(E , 0) = θn(E , 0),

g∂xθs(E , x)|x=0 = gn∂xθn(E , x)|x=0, (62)

where gn = 4πνnDn is the conductance of the normal metal.
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The LDOS reads, cf. Eq. (2),

ρ(E , x) =
{

2νRe cos θs(E , x), x � 0,

2νnRe cos θn(E , x), x < 0.
(63)

The Usadel equation [Eq. (60)] is justified, provided that
the magnetic impurities are rare enough, so the scattering of
electrons by them can be considered independently. To guar-
antee this situation, we assume that the following conditions
are satisfied:

ns �

⎧⎪⎨
⎪⎩

gn/ξn, b � ξn,

g/ξ, b � min{ξn, ξ}, g/ξ � gn/ξn,

max{g, gn}/ξn, b � min{ξn, ξ}, g/ξ � gn/ξn.

(64)

Here, the length ξn = √
Dn/(2|E |) for the normal metal is

introduced. We note that this inequality is analogous to the
corresponding condition in the case of impurities scattered in
the whole 2D plane (see Ref. [23] and Appendix C).

Solving the Usadel equations [Eqs. (59)–(60)] consists of
finding solutions in three domains (x < −b, −b < x < 0, and
x > 0) and stitching these solutions at the points x = −b and
0, applying the boundary conditions in Eq. (62). Using the
boundary conditions in Eq. (61) at spatial infinity x → ∞, we
can immediately write the solutions for the spectral angle in
the region x < −b:

θn(E , x) = 4 arctan

{
exp

[
x + b

ξn
exp

(
− iπsgnE

4

)]
tan

θb

4

}
,

(65)

and in the domain x > 0:

θs(E , x) = π

2
+ iψ∞ + 4iarctanh

[
exp

(
− x

ξ

)
tanh

ψ0

4

]
.

(66)

The constants θb and ψ0 must be determined from the bound-
ary conditions in Eq. (62).

To find the solution for the spectral angle on the interval
−b � x � 0, we need to write out the first integral of Eq. (60):

ξ 2
n

2
(∂xθn)2 − isgnE cos θn = C, (67)

where C is the constant. This allows us to reduce the solution
of Eq. (60) to the inversion of the incomplete elliptic integral:

x + b

ξn
=
∫ θn (E ,x)

θb

dθ√
2C + 2isgnE cos θ

. (68)

Thus, we have the explicit solutions in Eqs. (65) and (66) in
the regions x � 0, x � −b and the implicit solution in Eq. (68)
in the interval −b < x < 0. To obtain the final result for the
spectral angle, it remains to determine the values of the con-
stants θb, ψ0, and C using the boundary conditions in Eq. (62).
Hence, we can derive a system of algebraic equations for these
coefficients. Boundary conditions at the point x = 0 yield

C = −2g2ξ 2
n

g2
nξ

2
sinh2 ψ0

2
− sgnE sinh (ψ∞ + ψ0). (69)

Boundary conditions at the point x = −b lead to

C = 2

[
exp

(
− iπsgnE

4

)
sin

θb

2
+ (4nsξnα/gn) sin 2θb

1 + α2 + 2α cos 2θb

]2

−isgnE cos θb. (70)

Finally, from Eq. (68) with x = 0 and the boundary conditions
at x = 0, we find the third relation:

b

ξn
=
∫ (π/2)+iψ∞+iψ0

θb

dθ√
2C + 2isgnE cos θ

. (71)

Thereby, the solution of the Usadel equation in Eqs. (59)
and (60) is fully determined by the algebraic system of
Eqs. (69)–(71) and by the functions in Eqs. (65), (66), and (68)
in the domains x < −b, x > 0, and −b < x < 0, respectively.
Although Eqs. (69)–(71) can be solved numerically, at first,
it is instructive to discuss their analytic solutions in some
limiting cases.

B. The LDOS in the case of b = 0

The algebraic system of Eqs. (69)–(71) can be solved ana-
lytically in the case of magnetic impurities situated exactly at
the SN boundary, i.e., at b = 0. In the superconductor, x > 0,
the spectral angle is given by Eq. (66). At x < 0, the spectral
angle is described by Eq. (65) with b = 0 and

θb = π

2
+ iψ∞ + iψ0. (72)

Next, using Eqs. (69) and (70), we find the following closed
equation for ψ0:

iγ sinh
ψ0

2
+ exp

(
− iπsgnE

4

)
sin

(
π

4
+ i

ψ∞ + ψ0

2

)

= (4insξnα/gn) sinh[2(ψ∞ + ψ0)]

1 + α2 − 2α cosh[2(ψ∞ + ψ0)]
. (73)

Here, the energy function γ = gξn/(gnξ ) is introduced. We
note that we choose the sign in front of the term proportional
to γ in Eq. (73) in such a way that the equation reproduces the
known solution for ψ0 in the absence of magnetic impurities,
i.e., at α = 0:

ψ0,0 ≡ ψ0|α=0 = ln
γ + exp

[ iπ (1−sgnE )
4

]
exp

(−ψ∞
2

)
γ + exp

[− iπ (1+sgnE )
4

]
exp

(
ψ∞

2

) . (74)

We mention that the solution of Eq. (73) for E < 0 can be ob-
tained from the solution for E > 0 through the transformation
ψ0 → −ψ∗

0 . It guarantees that the LDOS is symmetric with
respect to E = 0. Therefore, below, we shall focus on the case
E � 0.

For a sufficiently low concentration of magnetic impurities
ns, we can assume that the solution to Eq. (73) is close to the
function in Eq. (74) due to the smallness of the term propor-
tional to ns. A noticeable effect of that term in Eq. (73) can be
expected if its denominator 1 + α2 − 2α cosh[2(ψ∞ + ψ0)]
becomes close to zero. As we discussed above, this expression
vanishes when ψ0 = 0 and ψ∞ = arcsinh(

√
β ), correspond-

ing to the YSR energy EYSR, are substituted into it. Combining
these ideas, it becomes clear that a peak in the LDOS near
the YSR energy is possible if, at first, the concentration ns is
sufficiently low and, secondly, the function in Eq. (74) for the
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energy EYSR is close to zero. Perturbation of the LDOS away
from the YSR energy is weak, provided

nsξ

g
� 1. (75)

We emphasize that this inequality coincides with the in-
equality given by Eq. (64) for b � min{ξn, ξ}. The second
condition (smallness of ψ0,0 at the YSR energy) means that

√
Dn

D
�

(
gn

g

)√
1 − α

2α
. (76)

Thus, we assume that, when the conditions in Eqs. (75)
and (76) are satisfied, the LDOS determined by Eq. (73)
will coincide with the one given by the solution in Eq. (74)
everywhere outside the vicinity of the YSR energy, where the
peak is expected. This means that, to complete the analytical
description of the considered case b = 0, it is sufficient to
solve Eq. (73) near the YSR energy. Expanding the left-hand
side and the denominator of the right-hand side in Eq. (73) in
a small parameter ψ0 − ψ0,0 up to the first order, we find

ψ0 = ψ0,0

2
+ β − sinh2 ψ∞

2 sinh(2ψ∞)

+i

{
2nsξ

g
−
[
β − sinh2 ψ∞
2 sinh(2ψ∞)

− ψ0,0

2

]2
}1/2

. (77)

We note that this result holds for |ψ∞ − arcsinhβ| � 1. Next,
using Eq. (77), we extract the LDOS for ||E | − EYSR| �
�/(1 + β ). In the superconducting region, x > 0, we find

ρ(E , x) = ρ0(E , x) + δρ(E , x). (78)

Here, the first term on the right-hand side is the LDOS in the
absence of magnetic impurities:

ρ0(E , x) � −2ν(1 + β )3/2

�
exp

(
− x

ξβ

)
ImÊYSR. (79)

The second term describes the contribution of magnetic impu-
rities:

δρ(E , x) � ν(1 + β )3/2

�
exp

(
− x

ξβ

)

×[ImÊYSR + Re
√

�2
ns

− (ÊYSR − |E |)2
]
.

(80)

Here, the energy parameter:

ÊYSR = �
1 − α

1 + α

[
1 − 23/2 α + i

√
α

(1 + α)
√

1 − α

gn

√
D

g
√

Dn

]
, (81)

describes the YSR energy modified by the presence of the
normal region. We note that, in addition to some shift of the
YSR energy in comparison with the case of a homogeneous
superconductor, ÊYSR has a negative imaginary part. It indi-
cates that the YSR state becomes the quasibound state rather
than the bound one [37]. We mention that, for α → 1, the shift
of the YSR energy due to the presence of the SN boundary can
become dominant.

The energy scale:

�ns = 2�
√

2nsξβ/g

1 + β
, (82)

determines the effective width of the YSR resonance. We
mention that, at ns ∼ 1/ξβ , �ns matches the disorder broad-
ening � for a single magnetic impurity problem, cf. Eq. (13).
Also, we note that Eq. (80) resembles the result for the LDOS
on the magnetic impurity in the presence of the STM tip, cf.
Eq. (56).

In the normal region, x � 0, the LDOS can be written in
the form of Eq. (78) with

ρ0(E , x) � νnRe cos

(
4 arctan

{
exp

[
−|x|β1/4(1 − i)√

2ξβ

]
tan

(
π − i ln α

8

)})

+νn
gn

√
D

g
√

Dn

1 + α√
2α(1 − α)

exp

(
−|x|β1/4

√
2ξβ

)[√
α cos

(
xβ1/4

√
2ξβ

)
+ sin

(
xβ1/4

√
2ξβ

)]
, (83)

and

δρ(E , x) � νn(1 + β )3/2

�
exp

(
−|x|β1/4

√
2ξβ

){
cos

(
xβ1/4

√
2ξβ

)[
ImÊYSR + Re

√
�2

ns
− (ÊYSR − |E |)2

]

− sin

(
xβ1/4

√
2ξβ

)[
ReÊYSR − |E | − Im

√
�2

ns
− (ÊYSR − |E |)2

]}
. (84)

We note that, according to Eqs. (83) and (84), the LDOS in
the normal metal oscillates with the distance from the SN
boundary (and the magnetic impurities). However, the period
of these oscillations coincides with the decay length such that
they are not visible.

The obtained analytical results are confirmed by a numeri-
cal solution. The black dashed curves on graphs in Fig. 6 show
the density of states in the absence of magnetic impurities. We
note that the V-shaped form of the density of states appearing
due to the inverse proximity effect is reminiscence of the
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FIG. 6. Dependence of the local density of states (LDOS) on the energy at the position of the magnetic impurities in the case of the impurity
located at the SN boundary, i.e., at b = 0. Vertical dashed lines denote the position of the YSR energy at a given value of α, which is α = 0.3
on the left and α = 0.9 on the right. Blue, orange and green curves show the LDOS for nsξ (0)/g = 0.001, 0.0025, and 0.005, respectively.
The dashed curves denote, for comparison, the LDOS without magnetic impurities (i.e., for ns = 0). We use

√
Dn/D = 20 and g = gn.

density of states with a Thouless energy minigap in the SNS
junction.

The solid curves in Fig. 6 show the sought-for peak in the
energy dependence of the LDOS near EYSR for different val-
ues of α and ns. The position of the peak is shifted relative to
the YSR energy, as predicted in Eq. (84). This picture displays
how the peak grows in height and width as the concentration
of magnetic impurities ns increases. We note that growth of
the peak height and width with increasing ns is limited by
the inequality in Eq. (75). Additionally, in the right panel of
Fig. 6, we present how the peaks for positive and negative
energies merge when α approaches unity.

Figure 7 shows the decrease in the relative size of the
peak (as before, shifted from EYSR) with distance from the
impurity and the superconductor. The effect of magnetic im-
purities extends over distances of the order of the length ξn

FIG. 7. Dependence of the relative change in the local density of
states (LDOS) δρ/ρ0 on energy and the x coordinate as a result of
the magnetic impurities located at the SN boundary (that is, b = 0).
Black vertical lines denote the position of the YSR energy (α = 0.3).
We use nsξ (0)/g = 0.0025,

√
Dn/D = 20, and g = gn.

inside the normal metal. Interestingly, there is no decay with
the distance of the relative correction to the LDOS δρ/ρ0

in the superconductor. This phenomenon can be explained
as follows. In the superconducting part of the NS junction
(x > 0), any spatially dependent perturbation decays on the
scale of superconducting coherence length ξ (E ) for a given
energy E . There is no other spatial scale within the Usadel
equation. The perturbations of the density of states due to
the proximity effect in the absence of magnetic impurities at
the YSR energy, Eq. (79), and due to magnetic impurities,
Eq. (80), decay with the same spatial scale ξβ . That is why
the ratio δρ/ρ0 does not depend on the coordinate, although
the magnitude of δρ tends to zero with increasing x.

C. The LDOS in the general case b > 0

Here, we return to the system of Eqs. (69)–(71), the solu-
tion of which, together with the expressions in Eqs. (63)–(66),
describes the LDOS for b > 0. As in the previous section,
we investigate the region of parameters in which the LDOS
has a peak near the YSR energy and is otherwise close to
the impurity-free solution determined by the expressions in
Eqs. (72) and (74).

It is easy to see that the presence of impurities in the
system in Eqs. (69)–(71) is reflected in only one term from the
second equation. This term completely coincides with the one
investigated in Eq. (73). Repeating the previous reasoning, we
again come to the necessity of fulfilling the inequalities in
Eqs. (75) and (76). However, these conditions are not enough.
If the impurities are moved to the depth of the normal metal,
the proximity effect ceases to work, and the peculiarity in the
YSR energy region disappears. For the impurities to remain in
the superconductor region of influence, the condition:

b � ξn, (85)

is necessary. It means that the spectral angle θn at the point
x = −b, where the magnetic impurities are located, should
not be close to zero—its magnitude in a homogeneous nor-
mal metal [see Eq. (65)]. We mention that the condition
in Eq. (85) becomes more relaxed with increase of α to-
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FIG. 8. Dependence of the local density of states (LDOS) on the energy at the SN boundary (left) and at the position of the magnetic
impurities (right). Vertical dashed lines denote the position of the YSR energy at a given value of α = 0.3. Blue, orange, and green curves
show the LDOS for b/ξn(�) = 0.01, 0.05, and 0.15, respectively. The dashed curves denote, for comparison, the LDOS without magnetic
impurities, i.e., for ns = 0. We use nsξ (0)/g = 0.002,

√
Dn/D = 20, and g = gn.

ward unity. Indeed, at the YSR energy, we find ξn(EYSR) =
ξ (0)

√
(1 + α)/(1 − α).

Figure 8 shows the energy dependence of the LDOS for
different values of b. Again, the peak is displaced from the
YSR energy [see Eq. (84)]. When the impurity is removed
farther away from the SN boundary, the peak is blurred, be-
coming lower and wider. This behavior is in agreement with
the inequality in Eq. (85).

Figure 9 displays the energy and coordinate dependence
of the relative size of the shifted peak with distance from the
impurity. As in Fig. 7, in the superconductor region, the ratio
δρ/ρ0 does not depend on the coordinate.

As one can see from Figs. 8 and 9, the LDOS for magnetic
impurities situated in the normal metal within the distance
b � ξn is qualitatively the same as the one in the case b = 0.

FIG. 9. Dependence of the relative change in the local density
of states (LDOS) δρ/ρ0 on energy and the x coordinate as a result
of the magnetic impurities located at x = −b = −0.1 ξn(�). Black
vertical lines denote the position of the YSR energy (α = 0.3). We
use nsξ (0)/g = 0.002,

√
Dn/D = 20, and g = gn.

For completeness, in Appendix D, we present the density
of states in the case of the SN junction with a chain of mag-
netic impurities situated in the superconducting region.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we do not consider the spin-independent
part of the magnetic impurity strength α0. However, its effect
can be incorporated into redefinition of the parameter β →
(1−α + α0)2/(4α). Therefore, all our results can be easily
applied to that more general case.

The results of Sec. II A for a solitary magnetic impurity are
related with the case of finite impurity concentration n(2)

s . We
remind the reader that a single magnetic impurity produces
a perturbation of the LDOS with spatial extent of the order
of the superconducting coherence length at the YSR energy
ξβ . Therefore, we can expect our results to be applicable
for a finite impurity concentration n(2)

s ∼ 1/ξ 2
β . In this case,

using eq. (96) of Ref. [22], we find the width of the impu-
rity band to be of the order of �/[(1 + β )

√
g]. The latter

estimate coincides with � up to a logarithm in the definition
of spreading resistance t , cf. Eq. (8). We emphasize that two
seemingly different problems—the spatially inhomogeneous
one for a solitary magnetic impurity and the homogeneous
one for a finite concentration of magnetic impurities—appear
to be related.

As mentioned above, the broadening of the LDOS near the
YSR energy is caused by the fluctuations of the dimension-
less effective strength α of a magnetic impurity. Therefore,
it would be tempting to say that the distribution of the YSR
energy (defined as the energy at which the peak in the LDOS
has the maximum) can be directly read from the log-normal
distribution in Eqs. (44) and (10). However, Eq. (50) demon-
strates clearly that this is not the case. In fact, the problem of
computation of the YSR energy distribution in a dirty super-
conducting film is more complicated and goes far beyond this
paper.

We emphasize that, in the case of a single magnetic im-
purity, randomness of the YSR state is introduced due to
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different realizations of potential disorder. It should be con-
trasted with the case of rare magnetic impurities considered in
Ref. [23] where fluctuations of YSR states at different mag-
netic impurities were related to the point-to-point fluctuations
of the LDOS due to potential disorder. Surprisingly, on the
level of the Usadel equation, both effects can be described
by the very same log-normal distribution of the dimensionless
effective strength α, cf. Eq. (44).

In this paper, to find the LDOS, we solve the Usadel
equation for a spatially dependent spectral angle. We re-
mind the reader that the Usadel equation corresponds to the
saddle-point treatment of the NLSM (see Refs. [18,22,23]
for details). Renormalization of the NLSM action between
the length scales � and ξ should be considered. It leads to
the renormalized Usadel equation. However, one can treat the
renormalized NLSM beyond the saddle-point approximation.
This results in additional fluctuation corrections to the LDOS.
For a finite impurity concentration in a dirty superconducting
film, one can estimate the relative fluctuation correction to the
LDOS to be of the order of ∼(n(2)

s ξ 2)/g2 [47]. Applying this
estimate with n(2)

s ∼ 1/ξ 2 for a solitary magnetic impurity, we
find that the fluctuation corrections to the LDOS are negligible
in comparison with the results derived from the Usadel equa-
tion. We expect a similar conclusion in the case of a magnetic
impurity chain near the SN boundary.

In this paper, we treat the magnetic impurity spin fully
classically. This approximation is formally justified by the
limit S � 1. Since in reality the magnetic impurity spin is
not that large, S � 5

2 , it would be interesting to investigate
the effect of potential disorder on the YSR state treating the
spin quantum mechanically (for a clean case, see Ref. [48] and
references therein).

For a chain of magnetic impurities, the quantum dynamics
of their spins leads to an intriguing competition between the
Kondo effect and the indirect exchange interaction that can be
probed by STM measurements [49,50]. Considering potential
disorder is likely to be important for interpretation of the STM
data.

For a chain of rare magnetic impurities near the SN bound-
ary, we limit our consideration by the simplest geometry when
the chain is parallel to the SN interface. Recently, YSR-type
features in the LDOS at grain boundaries in graphene with
Pb islands have been measured [51]. In view of these ex-
perimental findings, it would be worthwhile to study more
complicated geometries of magnetic impurity chains near SN
interfaces.

To summarize, we reported the results of detailed studies
of the effects of potential disorder on YSR states in supercon-
ducting films. We focus on two setups: (i) a solitary magnetic
impurity in a dirty superconducting film and (ii) a chain of
magnetic impurities situated in a normal region of an SN junc-
tion. Solving the Usadel equation for a spatially dependent
spectral angle, we found that potential disorder broadens the
YSR state. This manifests as the peak in LDOS at energies
near EYSR.

The broadening of the peak is proportional to the square
root of resistance per square of the film. Thus, it is larger
than one could naively expect. The physical mechanism for
appearance of broadening is fluctuations of the LDOS in the
normal state. The latter results in fluctuations of dimension-

less impurity strength α and, consequently, to fluctuations of
an energy of the YSR state. In the case of a single magnetic
impurity in a dirty superconducting film, we demonstrate that
modification of multiple scattering on the magnetic impurity
due to intermediate scattering on surrounding potential dis-
order is of crucial importance for correct description of the
LDOS profile near the YSR energy. The account of this mod-
ification allowed us to remove unphysical abrupt vanishing of
the LDOS obtained within the standard Usadel equation. We
are not aware of any systematic experimental studies of the
dependence of the YSR peak width in the LDOS on the sheet
resistance of a film.

We demonstrated that existence of a normal metal makes
the YSR state the quasibound state rather than the bound one.
For a solitary magnetic impurity in a dirty superconducting
film, such an effect is caused by the normal-metal tip used
for STM measurements. In the case of a magnetic impurity
chain, the normal region of the SN heterostructure provides a
channel for decay of the YSR state.

Finally, we mention that it would be interesting to extend
our study to superconducting systems with spin-orbit coupling
in which a magnetic impurity chain can host Majorana bound
states together with YSR states.
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APPENDIX A: DERIVATION OF EQ. (7) FROM THE
STANDARD USADEL EQUATION [Eq. (1)]

In this Appendix, we present a brief derivation of Eq. (7)
from the standard Usadel equation [Eq. (1)]. It is expressed as
follows:

ξ 2∇2δψσ − sinh δψσ = [ξ 2/(πνD)] cosh ψσ

σ
√

β + sinh ψσ

δ(r). (A1)

Considering the smallness of the deviation from the ho-
mogeneous solution |δψσ | � 1, we can treat the linearized
equation:

ξ 2∇2δψσ − δψσ = [ξ 2/(πνD)] cosh ψσ

σ
√

β + sinh ψσ

δ(r). (A2)

This equation for δψσ is like the 2D Schrödinger equa-
tion with the δ(r) potential. For r > l , the solution of Eq. (A2)
can be written as

δψσ (r) = (ψ̃σ − ψ∞) · K0(r/ξ )

ln ξ/l
. (A3)

Here, we have introduced the notation ψ̃σ = δψσ (l ) + ψ∞
and have considered the small parameter l/ξ � 1.
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To treat the δ-functional potential, we apply the Fourier
transformation to Eq. (A2):

−(q2ξ 2 + 1)δψσ (q) = [ξ 2/(πνD)] cosh ψ̃σ

σ
√

β + sinh ψ̃σ

. (A4)

Here, δψσ (q) is the Fourier transform of δψσ (r). Thus, we
derive the self-consistent Eq. (7) for ψ̃σ .

APPENDIX B: DERIVATION OF THE USADEL EQUATION
FOR A SOLITARY MAGNETIC IMPURITY

The NLSM action for a dirty superconducting film with a
solitary magnetic impurity can be written as (see Ref. [7] for
details)

S = Sσ + S� + Smag. (B1)

Here, the first term on the right-hand side of Eq. (B1) is given
by

Sσ = g

32

∫
drTr(∇Q)2 − 2Zω

∫
drTr[ε̂ + �̂]Q. (B2)

The field Q(r) is a matrix in the replica, spin, Matsubara, and
particle-hole spaces. The trace Tr acts in the same spaces.
The matrix field Q obeys the nonlinear constraint and charge-
conjugation symmetry relation:

Q2(r) = 1, TrQ = 0, Q = Q† = −CQT C, (B3)

where C = it12. The action in Eq. (B2) involves two constant
matrices:

ε̂αβ
nm = εn δεn,εmδαβt00, �̂αβ

nm = �δεn,−εmδαβt10. (B4)

Here, α, β = 1, . . . , Nr stand for replica indices, while inte-
gers n, m correspond to the Matsubara fermionic frequencies
εn = πT (2n + 1). The superconducting order parameter � is
assumed to be a real scalar. The 16 matrices:

tr j = τr ⊗ s j, r, j = 0, 1, 2, 3, (B5)

operate in the spin (subscript j) and particle-hole (subscript r)
spaces. The matrices τr and sr are the standard Pauli matrices.
We note that the parameter Zω describes the frequency renor-
malization upon the renormalization group flow (see Ref. [52]
for details). The bare value of Zω is equal to πν/4. The second
term of the action in Eq. (B1) reads

S� = − 4ZωNr

πT γc0

∫
dr�2. (B6)

The last term of S describes the action of the solitary magnetic
impurity:

Smag = − 1
2 Tr ln[1 + i

√
α0Q(0) + i

√
αQ(0)t33]. (B7)

We choose the following form of the saddle-point Q
matrix:

Qαβ

nm
= 1

2

∑
σ=±

[cos θσ (t00sgnεn + σ t33)δεn,εm

+ sin θσ (t10 − iσ t23sgnεn)δεn,−εm ] δαβ. (B8)

Here, we assume that the spectral angle θσ ≡ θσ (εn) is an even
function of εn. Then variation of the saddle-point action S[Q]
with respect to the spectral angle θσ (εn) results in the stan-
dard Usadel equation [Eq. (1)]. Varying S[Q] over � yields a

self-consistent equation for the superconducting order param-
eter, Eq. (28).

To derive the renormalized Usadel equation, we need to
consider the renormalization of the NLSM action. Let us split
the matrix field Q into the fast q and slow Q0 = T −1�T
components. Here, we introduce the matrix:

�αβ
nm = sgnεn δεn,εmδαβt00. (B9)

The renormalized action for a magnetic impurity is deter-
mined as follows:

S(ren)
mag [Q0] = − ln〈exp(−Smag[T −1qT ])〉q. (B10)

Here, the averaging 〈. . . 〉q is with respect to the NLSM action
Sσ for the fast modes q. As was derived in Ref. [23], the
term exp(−Smag[T −1qT ]) transforms upon renormalization as
follows: 〈

exp
{

1
2 Tr ln[1+i

√
αT −1q(0)T t33]

}〉
q

→〈
exp

{
1
2 Tr ln[1+i

√
aQ0(0)t33]

}〉
a. (B11)

Here, we set α0 = 0 for the sake of simplicity. The average
〈. . . 〉a is defined with respect to the distribution function in
Eq. (44). For the derivation of the Usadel equation, we need
to know the saddle-point action in the replica limit Nr → 0
alone. Therefore, we find

S(ren)
mag [Q] � − 1

2 〈tr ln[1 + i
√

aQ(0)t33]〉a. (B12)

Varying Sσ [Q] + S(ren)
mag [Q] over the spectral angle θσ (εn)

yields the renormalized Usadel equation [Eq. (43)].
We note that, for a nonzero α0, we would obtain the renor-

malized Usadel equation with the distribution functions in
Eq. (44) for quantities corresponding to both (

√
α + √

α0)2

and (
√

α − √
α0)2.

APPENDIX C: CONDITION FOR RARENESS OF
MAGNETIC IMPURITIES IN THE CASE OF SN JUNCTION

The MLSM approach allows us to establish the condition
of rareness of magnetic impurities. In the case of a supercon-
ducting film, the corresponding condition can be formulated
as [23]

ns

νn
|D(r, r)| � n2

s

ν2
n

∫
d2r′|D(r, r′)D(r′, r)|, (C1)

where D(r, r′) stands for the diffusion propagator. In the case
of a homogeneous 2D superconductor, the diffusion propaga-
tor can be written as

D(r, r′) =
∫

d2q
(2π )2

exp[iq(r − r′)]
D(q2 + ξ−2)

. (C2)

Hence, we find the inequality in Eq. (C1) reduces to the
condition nsξ

2/g � 1. We note that we neglect a logarithmic
factor.

In the case of a chain of magnetic impurities parallel to the
SN boundary, one needs to find the diffusive propagator. It
satisfies the following equations:

Dn
[− ∂2

x + q2
y − iξ−2

n

]
D(qy; x, x′) = δ(x − x′), x < 0,

D
[− ∂2

x + q2
y + ξ−2]D(qy; x, x′) = δ(x − x′), x > 0.

(C3)
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The boundary condition at x = 0 reads

D(qy; −0+, x′) = D(qy; 0+, x′),

gn∂xD(qy; x, x′)|x=−0+ = g∂xD(qy; x, x′)|x=0+ . (C4)

Here, we perform the Fourier transform with respect to the
y coordinate (which is parallel to the SN boundary). Hence,
in the case of a magnetic impurities chain, the condition in

Eq. (C1) becomes∫
dqy

2π
|D(qy; −b,−b)| � ns

νn

∫
dqy

2π
|D(qy; −b,−b)|2,

(C5)

Solving Eq. (C3), we find the following expression for the
diffusive propagator:

D(qy; −b,−b) = 1

2Dn

√
q2

y − iξ−2
n

⎡
⎢⎢⎣1 −

γ

√
1+q2

y ξ
2√

1+iq2
y ξ

2
n

− exp
(− iπ

4

)
γ

√
1+q2

y ξ
2√

1+iq2
y ξ

2
n

+ exp
(− iπ

4

) exp
(− 2b

√
q2

y − iξ−2
n

)
⎤
⎥⎥⎦. (C6)

In the case b � ξn, the inequality in Eq. (C5) reduces to the
following condition:

nsξn

gn
� 1. (C7)

In the opposite case, b � min{ξn, ξ}, we find from Eq. (C5)
the following inequalities:

nsξ

g
� 1, γ � 1,

nsξn

max{g, gn} � 1, γ � 1. (C8)

As one can see, Eqs. (C7) and (C8) are equivalent to Eq. (64).

APPENDIX D: YSR RESONANCE IN A DIRTY SN
JUNCTION WITH MAGNETIC IMPURITIES SITUATED

INSIDE THE SUPERCONDUCTOR

In this Appendix, we consider how a chain of magnetic
impurities situated inside the superconducting region in a
SN junction affects the density of states. We shall perform
calculations in a way like the one described in Sec. III A. We
assume that the chain is parallel to the SN interface and is
situated at the point x = b. By analogy with Eqs. (65) and

(66), we write out the spectral angle in the region x < 0:

θn(E , x) = 4 arctan

{
exp

[
x

ξn
exp

(
− iπsgnE

4

)]
tan

θ0

4

}
, (D1)

and the region x > b:

θs(E , x) = π

2
+iψ∞+4i arctanh

[
exp

(
−x−b

ξ

)
tanh

ψb

4

]
.

(D2)
Next, to find a solution on the interval 0 < x < b, we use

the first integral of the Usadel equation:

ξ 2

2
(∂xθs)2 + sin (θs − iψ∞) = C, (D3)

where C is the constant. This allows us to reduce the solution
to the inversion of the incomplete elliptic integral:

b − x

ξ
=
∫ θs (E ,x)

(π/2)+iψ∞+iψb

dθ√
2C − 2 sin (θ − iψ∞)

. (D4)

To fully determine the spectral angle, we need to find
constants θ0, ψb, and C. Boundary conditions in Eq. (62) at

FIG. 10. Dependence of the local density of states (LDOS) on the energy at the SN boundary x = 0 (left) and at the point x = 2ξβ (right).
Vertical dashed lines denote the position of the YSR energy at a given value of α = 0.3. Orange and blue curves show the LDOS for the
impurities situated at b = 0 and 2ξβ , respectively. The dashed curves denote, for comparison, the LDOS without magnetic impurities, i.e., for
ns = 0. We use nsξ (0)/g = 0.002,

√
Dn/D = 20, and g = gn.
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the point x = 0 yield

C = 2g2
nξ

2

g2ξ 2
n

exp
(
− iπsgnE

2

)
sin2 θ0

2
+ sin (θ0 − iψ∞),

(D5)
and at the point x = b lead to

C = −2

[
sinh

ψb

2
− (4nsξα/g) sinh(2ψ∞ + 2ψb)

1 + α2 − 2α cosh(2ψ∞ + 2ψb)

]2

+ cosh ψb. (D6)

The last equation is obtained from Eq. (D4) by substituting
x = 0:

b

ξ
=
∫ θ0

(π/2)+iψ∞+iψb

dθ√
2C − 2 sin (θ − iψ∞)

. (D7)

Thus, by substituting the constants θ0, ψb, and C obtained
from the solution of the algebraic system in Eqs. (D5)–(D7)
into Eqs. (D1), (D2), and (D4), we completely determine the
spectral angle.

Using the obtained expressions, one can find the depen-
dence of the LDOS on the energy numerically. In Fig. 10,
we show the dependence of the density of states on energy
at x = 2ξβ for two positions of the impurity chain: at b = 0
and 2ξβ .
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