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Driven-dissipative protocols are proposed to control and create nontrivial quantum many-body correlated
states. Protocols conserving the number of particles stand apart. As well-known, in quantum systems with the
unitary dynamics the particle number conservation and random scattering yield diffusive behavior of two-
particle excitations (diffusons and cooperons). Existence of diffusive modes in the particle-number-conserv-
ing dissipative dynamics is not well studied yet. We explicitly demonstrate the existence of diffusons in a par-
adigmatic model of a two-band system, with dissipative dynamics aiming to empty one fermion band and to
populate the other one. The studied model is generalization of the model introduced in F. Tonielli,
J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020). We find how the diffusion coef-
ficient depends on details of a model and the rate of dissipation. We discuss how the existence of diffusive
modes complicates engineering of macroscopic many-body correlated states.
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Dissipative dynamics of open quantum many-body
systems has recently attracted a lot of interest [1–5]
because it paves the way to deal with non-equilibrium
states of matter, theoretically [6–10] and experimen-
tally [11]. This area of research abounds with non-triv-
ial and non-intuitive results, including, for instance,
non-equilibrium phase transitions [12–18]. Driven-
dissipative preparations allow one to create in a con-
trolled way quantum many-body correlated steady
states that have no analogue in the Hamiltonian
dynamics [19–44].

One of the most common analytical methods for
describing quantum systems subjected to external
source of dissipation is Gorini–Kossakovski–Sudar-
shan–Lindblad (GKSL) master equation [45, 46] in
which the dynamics of the density matrix is explicitly
divided into unitary and dissipative parts, defined by
the Hamiltonian and jump operators, respectively.
Recently, the mapping of GKSL equation to the quan-
tum field theory on Keldysh time contour has been
developed (see [1, 5] for a review).

As well-known, symmetries and conservation laws
are guiding principles for the quantum field theory.
For Hamiltonian systems, the particle number conser-
vation in combination with random scattering results
in diffusive dynamics. Also, diffusion can appear due
to dephasing caused by a coupling to a bath [47–50].

How does diffusion emerge in driven-dissipative
preparations, conserving the number of particles? It is
not established so far. One of the obstacles is that dis-
sipative state preparation is constructed in such a way
that avoids randomness in GKSL master equation.

In this Letter, we address a general question of the
existence of diffusion modes in particle-number-con-
serving dissipative dynamics. Do diffusive two-parti-
cle excitations (diffusons and cooperons), which are
familiar for disordered Hamiltonians, exist in num-
ber-conserving dissipative systems described by
GSKL master equation? We show that in a wide class
of number-conserving dissipative systems diffusion
occurs naturally, as it occurs under the unitary evolu-
tion.

To be specific, we consider a generalization of the
model studied in [35, 51]. It is a two-band fermions,
which are scattered off by random dynamical bosonic
fields, serving as a quantum noise. In contrast to [35,
51], our generalized model allows for non-local scat-
tering. Averaging over quantum noise manifests itself
as dissipative dynamics within GKSL equation with
jump operators transferring the fermion population
from the upper band to the lower one (and vice versa)
with the rate determined by scattering on bosonic
fields. Calculation of the sum of ladder-type diagrams
(diffuson) with the dissipation-induced interaction
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lines, leads to the canonical-type expression with a
diffusion pole, cf. Eq. (21). The corresponding diffu-
sion coefficient depends on parameters of the model,
cf. Eq. (22).

MODEL
We consider the following partition function on the

Keldysh contour:

(1)

It depends on auxiliary bosonic fields  and . Here
 ( ) denote spin

 fermionic fields, corresponding to annihila-
tion and creation operators, on the forward (+) and
backward (–) contour. The kinetic part of the action
describes a free electron gas,

(2)

where q is the d-dimensional momentum, and we use
a shorthand notation: . The 2 × 2

Hamiltonian  acts in the spin space. We assume
that  can be diagonalized by a unitary 2 × 2
matrix  such that . Here σz =

 stands for the Pauli matrix. It is convenient
to introduce another set of fermionic fields cq =

 and . These
fermionic fields correspond to creation and annihila-
tion of fermions in the up (with energy ) and down
(with energy ) bands, such that

(3)

The free fermions experience scattering off random
dynamical fields  and  which are described by the
following action local in space and time,

(4)

where . Here we introduce the other set of

fermionic fields  and , where 
is an auxiliary function of momentum. Scattering of
fermions on bosonic fields described by Eq. (4) is
unusual, since during the scattering, fermions trans-
form from one basis to the other. In virtue of the rela-
tion , the scattering of bosonic fields 
becomes effectively non-local in space. However, for a
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given matrix Uq, there is a particular choice of  that
makes the scattering to be spatially local. Although
[35, 51] were focused on such a situation, as we shall
demonstrate below, this is not necessary for appear-
ance of diffusion. Also, we emphasize that the scatter-
ing in Eq. (4) conserves the total number of particles.

The random dynamical bosonic fields  and  in
Eq. (4) are assumed to be Gaussian, uncorrelated in
space and time, and with zero mean. The only non-
zero pair correlation functions are as follows,

(5)

where  and  is the rate of scattering
between a fermion in state with the spin projection

 and a fermion in the band . In
Eqs. (4) and (5) we introduced a number of equal-time
regulators: , .
They satisfy the inequality . At the end
of the calculations, we set them all to zero.

It is worthwhile to mention that after the Keldysh
rotation [52], the bosonic pair correlation function
acquires a standard structure in the Keldysh space:

(6)

where . The superscript R/A indicates

that  corresponds to  after the Fourier
transform to time domain. Also, Eq. (6) indicates that
the random bosonic fields have the distribution func-
tion equal . Therefore, the bosonic fields (in a fre-
quency range of interest) correspond to the equilib-
rium bath at T = 0.

KELDYSH ACTION IN TERMS
OF c-FERMIONS

The partition function (1) is a random quantity
with some distribution function, whose computation
is an interesting problem. In this work, we restrict our-
selves to study the average partition function only,
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Fig. 1. Self-energy diagrams of the Fock- and Hartree-
type in the self-consistent Born approximation. The solid
lines denote the self-consistent Green’s function. The
dashed curve indicates the dissipation-induced interaction
(the boson Green’s function ).α ωa, , ( )p$
The Keldysh action  can be explicitly written in
the basis of c-fermions as

(8)

Here, we also used equal-time regularization
 and , where  and

 > 0. The four matrices  act in the  space
and are defined as follows

(9)

The action  is invariant under global U(1) ×

 transformations,  and 
with . This strong symmetry is a manifestation
of the conservation of the total number of particles in
the model. We emphasize that there is neither strong
nor weak  symmetry of the action that could be
associated with the conservation of - or -fermions
separately. The translation invariance is a weak sym-
metry of the model [1, 53, 54], since  is invariant
under translations  and 
with  only, i.e., acting identically on the for-
ward and backward branches of the Keldysh contour.
We note that if bosonic fields were a real random
potential, then even weak symmetry for translation
invariance would be absent. However, the absence of
strong symmetry for translation invariance makes pos-
sible for -fermions to transfer not only energy but also
to relax momentum during scattering on the bosonic
fields.

MASTER EQUATION
We note that the average partition function

 corresponds to the density matrix  gov-
erned by the following GKSL master equation,

(10)

where the jump operators are given as  =

 and . We note that the
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sipation. In the case of half-filling, the GKSL equa-
tion has a steady state solution – the dark state,

, in which the -band is fully occupied
while the -band is empty.

SELF-CONSISTENT BORN
APPROXIMATION

The dark state can be obtained from the analysis of
the Keldysh action . It corresponds to the self-
consistent solution of the Dyson equation written for
the single-particle Green’s function in the lowest
order in the dissipation strength  (see Fig. 1) [35].

The self-consistent Green’s functions are diagonal
in the -space and given as (see [51] for details)

(11)

where . Here we introduce 2 × 2

matrix . We note that the factor
 determines the distribution function (as

) of the c-fermions in the up and down
bands. Therefore, Eq. (11) describes indeed the dark
state with the fully occupied -band and the com-
pletely empty -band.

LADDER SUMMATION FOR DIFFUSON

As well-known, diffusion of particles in disordered
systems corresponds to diffuson which is a particle-
hole excitation described by the impurity scattering
ladder diagrams [55]. Since there is momentum relax-
ation in the model considered, it is natural to expect
that ladder diagrams with dissipative lines (the
bosonic correlation function (5)) could produce diffu-
sion pole. Let us consider the two-particle irreducible
average
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Fig. 2. Ladder diagram for the diffuson. The solid lines
denote the self-consistent Green’s function. The dashed
lines indicate the dissipation-induced interaction (the
boson Green’s function ).

n n

n n

α ωa, , ( )p$
where , , and  = 1,
2 are indices in the rotated Keldysh space. Such a two-
particle irreducible average corresponds to the den-
sity-density correlation function and in the absence of
dissipation produces the product of two Green’s func-
tions,  (after Fourier
transform from the time domain to the frequency one)
at the level of self-consistent Born approximation,
where . We note that we do not consider
the ladder for cooperon which is generated by correla-
tion function (12) with  substituted by  and

 changed to . Due to the equal-time dissipa-
tion-induced interaction in , the cooperon ladder
vanishes.

In order to treat the two-particle correlation func-
tion (12) beyond the self-consistent Born approxima-
tion, it is convenient to rewrite the action  in the
rotated Keldysh basis. We note that for computation of
the ladder, it is not needed to keep track of the equal-
time regularization. Then we obtain

(13)

Here,  and  are the identity matrix and the standard
 Pauli matrix, respectively. They act in the Keldysh

space. Also, we introduced 2 × 2 matrix  with the
matrix elements , , and .

In addition, to calculate the ladder diagrams, it is
convenient to write the self-consistent Green’s func-
tion as , where
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Let us consider the ladder diagram of the nth order
in  shown in Fig. 2. The corresponding contribu-
tion to the two-particle correlation function (12) is
given by the expression

(15)

Here, we introduced  and ,
, , , , . Also, we

define

(16)

We emphasize that for computation of the diffuson
ladder in the considered problem one has to integrate
over intermediate energies while in the case of disor-
dered fermions, it is not needed since the energy is
conserved during scattering on impurity potential.
Also, we note other difference between Eq. (15) and a
diffuson ladder in the case of impurity scattering. In
the former case, the scattering on boson field has a
non-trivial matrix structure in the Keldysh space such
that the diffuson ladder is sensitive to the distribution
function. In the case of impurity scattering, the
Green’s function causality is preserved and the
Keldysh component of the Green’s function is not
involved.

Using the structure of the projectors , the
matrix , and the matrices  and , we find that
Eq. (15) can be dramatically simplified and occurs to
be nonzero for  only. In that case, it
reads
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Performing summation over all ladder diagrams from
 to , we find the following result for the lad-

der:

(18)

where

(19)

Evaluating  with the help of Eq. (11), we find

(20)

Setting , we obtain , i.e., exis-
tence of the pole in the two-particle correlation func-
tion in the ladder approximation. Such a pole implies
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nian, . We note that the first term in the r.h.s. of
Eq. (22) corresponds to a standard scenario in which
diffusion is determined by the spectrum curvature.
The second term in the r.h.s. of Eq. (22) describes the
contribution to the diffusion coefficient from disper-
sion of parameter  controlling non-locality of scat-
tering. The third contribution to  involves the non-
Abelian vector potential in the combination resem-
bling the quantum metric tensor.

EXAMPLE
To illustrate the general result (22) we apply it to

the model of two-band Chern insulator with the
Chern number equal –1 proposed in [35]. The Ham-
iltonian of that model is , where dq =

. Consequently, we find ξq =

 and Uq = . Also,
we choose  that makes the relation between
fermionic fields  and  to be local in space. Then,
using Eq. (22), we obtain , where

(23)

For  the above expression has been originally
derived in [51].

DISCUSSION
The result of self-consistent Born approximation

for the single-particle Green’s function suggests that
the relevant timescale for excitations in our system is of
the order of . However, similarly to the disor-
dered systems, there is typically a much longer time
which determines spreading of the particle density.
Indeed, the two-particle correlation function (12) can
be considered as Green’s function for the linear equa-
tion governing time and spatial dynamics of the devia-
tion of the particle density  from the dark state
with  (see [51]). Our result implies that

 obeys the diffusion equation. Since the diffu-
sion equations for  and  are indepen-
dent, the diffusion can spatially redistribute the - and

-particles within a given band only. In particular, if
one creates a perturbation of particle densities, they
will spread over a system of size  for time .
However, there exists a recombination between -par-
ticles and -holes that results in a nonlinear term,

, that couples the diffusion equations. An
accurate derivation of the recombination contribution

ξ = 0q

vk
a
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for the considered general model is beyond the scope
of our work. We just mention that the recombination
results in a power law decay of density perturbation
from the dark state (see [51] for details). Such slow
decay can obviously complicate engineering of the
desired dark state in a real setup.

Another effect which is also beyond the scope of
our paper is instability of the dark state due to pump-
ing of particles into -band, predicted in [51] for the
model of [35]. In our approach, such instability of the
dark state should appear after inclusion of self-energy
diagrams to the diffuson ladder as a modification of
the denominator of (21),  –

. The nonzero dephasing rate of diffuson is
possible since the diffusion pole is not preserved by
conservation of - or -fermions separately. The neg-
ative sign of the dephasing rate, , would break
causality and indicate instability of the dark state.

In addition to the appearance of the dephasing
rate, there could be corrections (of weak-localization-
type) to the diffusion coefficient found within a ladder
approximation. A source of such corrections is the
momentum dependence of diffuson self-energy. Some
of the corresponding diagrams can be recast in the
form of interaction of several diffusons. As known
from treatment of the disordered systems, such dia-
grams can be conveniently summed by means of the
nonlinear sigma model. For the model of spinless
(single-band) fermions subjected to random measure-
ments, such a nonlinear sigma models have been
recently derived in [56–58]. One can also study the
distribution function of  with the help of the
nonlinear sigma model [58]. It is a challenge to derive
a nonlinear sigma model for the generalized model
considered in this paper. Also, it could be interesting
to extend our model by adding elastic scattering in H0.
Then similar to [59] one can study the interplay of
elastic and dissipative scattering in the diffusion coef-
ficient.

Finally, we mention that our results for diffusion
behavior is different from the ones in [47–50] in the
following ways: (i) our consideration is not restricted
to 1D models; (ii) we demonstrate that diffusion
emerges even in the absence of spectrum dispersion;
(iii) we elucidate the physical origin of the diffusion as
correlated propagation of electron-hole pairs in each
band.

SUMMARY
To summarize, we studied the emergence of the

diffusive excitations in the generalized two-band dissi-
pative quantum many-body state preparation dynam-
ics, which conserves the total number of particles. We
derive the general expression for the diffusion coeffi-
cient that determines the diffusion pole in the diffuson
ladder for intraband particle–hole excitations. In the

u

− Ω →a a( ) ( )
jl j l jl j lD Q Q i D Q Q

φΩ + τ a( )1/i

u d

φτ1/ < 0

Φ Φ[ , ]Z
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presence of the band dispersion and at , the
diffusion coefficient is inversely proportional to the
scattering (dissipation) rate as expected. In the case of
a f lat band or in the absence of the Hamiltonian part,
the diffusion coefficient is still nonzero and propor-
tional to the dissipation rate. Therefore, our analysis
shows that intraband diffusion emerges generically in
the number-conserving dissipative systems described
by GSKL master equation. In contrast, the interband
two-particle excitations are not diffusive. They decay
on the timescale determined by the single-particle
decay rate . Our work opens up many future
research directions.
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