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We study the superconducting instability of a two-dimensional disordered Fermi liquid weakly coupled to
the soft fluctuations associated with proximity to an Ising-ferromagnetic quantum critical point. We derive
interaction-induced corrections to the Usadel equation governing the superconducting gap function, and show
that diffusion and localization effects drastically modify the interplay between fermionic incoherence and strong
pairing interactions. In particular, we obtain the phase diagram, and demonstrate that (i) there is an intermediate
range of disorder strength where superconductivity is enhanced, eventually followed by a tendency towards
the superconductor-insulator transition at stronger disorder; and (ii) diffusive particle-particle modes (so-called
“Cooperons”) acquire anomalous dynamical scaling z = 4, indicating strong non-Fermi liquid behavior.
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I. INTRODUCTION

In a variety of strongly correlated materials, superconduc-
tivity develops out of a normal state without well-defined
quasiparticles. Perhaps the best example of such phenomena
is the cuprate family, which exhibit high temperature super-
conductivity optimally enhanced in the vicinity of an apparent
quantum critical point accessed by doping [1,2]. Other exam-
ples include the iron-based superconductors [3–5], and a host
of heavy fermion materials where magnetic quantum critical
fluctuations appear to enhance superconducting tendencies
[6,7]. The interplay between pairing and non-Fermi liquid
(NFL) behavior at two-dimensional (2D) metallic quantum
critical points (QCPs) is often invoked to explain supercon-
ductivity born out of incoherent quasiparticles [8–22]. The
same soft-order parameter fluctuations that enhance supercon-
ductivity act also to destroy Landau quasiparticles, rendering
them incoherent and opposing the trend towards superconduc-
tivity. Thus in principle, there are several logically distinct
possible outcomes of such competing effects, ranging from
superconductivity with significantly enhanced transition tem-
peratures, to “naked” NFLs down to the lowest temperatures
[23–25].

Real materials always host structural imperfections.
Whether such randomness can be neglected or whether they
crucially determine universal properties of the system has
been actively debated for decades. The interplay between
pairing and NFL behavior can significantly be altered by
quenched randomness, which can profoundly influence the
universal behavior near QCPs as well as nearby superconduct-
ing domes. On the experimental side, the recent discovery of
superconductivity in infinite-layer nickelates [26], which ex-
hibit more structural imperfections than their cuprate cousins,
and which also exhibit apparent quantum critical behavior

upon doping, invites us to consider quenched randomness
effects on superconductivity near QCPs. Other experimen-
tal examples where the interplay of quenched disorder and
superconductivity occur include the cuprate and iron-based
superconductor families, each of which possesses members
with varying impurity concentrations. On the theoretical side,
recent studies of the effects of quenched disorder at QCPs
have attracted considerable attention [27–31]. Nevertheless,
the degree to which superconductivity near QCPs is affected
by disorder remains a largely unexplored and fundamental
theoretical challenge. One might naively expect, for instance,
that disorder at QCPs might not change the pairing scale
of an s-wave superconductor, in accordance with so-called
“Anderson’s theorem” [32–34].

Even in conventional dirty superconducting thin films,
Anderson localization [35] significantly modifies the effec-
tive pairing vertex due to strong mesoscopic correlations of
single-particle wave functions in energy and real space (so-
called “multifractality”) [36–39]. Depending on the nature
of the electron-electron interaction, this effect could either
substantially enhance [38–50] or suppress [51–60] super-
conductivity even at relatively weak disorder, long before a
putative superconductor-insulator transition (SIT) [61–63].

The goal of the present paper is to bridge the gap between
the existing theories of NFL superconductivity in “clean”
quantum critical systems, on the one side, and conventional
dirty superconducting thin films, on the other. We study the
concrete problem of disordered electrons near an Ising ferro-
magnetic QCP. We also allow for orbital and spin degeneracy,
which enables us to study the onset of s-wave (with respect
to the Cooper pair angular momentum), spin triplet, orbital
singlet pairing near the QCP.

More specifically, we develop a unified analytic ap-
proach to the superconducting transition in 2D weakly

2469-9950/2023/107(14)/144508(13) 144508-1 ©2023 American Physical Society

https://orcid.org/0000-0002-4829-4939
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.144508&domain=pdf&date_stamp=2023-04-20
https://doi.org/10.1103/PhysRevB.107.144508


NOSOV, BURMISTROV, AND RAGHU PHYSICAL REVIEW B 107, 144508 (2023)

FIG. 1. Schematic T = 0 phase diagram of the model (1) in
terms of the detuning from the QCP δ, and the Drude resistance
t0, for J̃ � 1. The solid light red line corresponds to a transition
from the s-wave, spin-triplet, orbital-singlet SC state to an Anderson
insulator. The dashed red line corresponds to a crossover from a
ballistic regime (at weak disorder), to a dirty limit where multifrac-
tality enhances SC. The black doted lines separate Fermi-liquid and
critical regimes, with a crossover region in between. Above the QCP,
ferromagnetic fluctuations give rise to NFL behavior with dynamical
critical exponent z = 4 (z = 3) in the dirty (ballistic) regime.

disordered fermionic systems coupled to a QCP, accounting
for multifractality, localization, and non-Fermi-liquid effects.
Assuming that the mean-free path is shorter than the su-
perconducting coherence length (so-called “dirty” limit), we
derive the equation for the spectral gap function and solve it
in various limits, interpolating between the Fermi-liquid and
quantum critical regimes. In all cases we find that multifractal
correlations significantly enhance Tc in the range of interme-
diate disorder strength, before the SIT is eventually reached.
This enhancement grows rapidly upon approach to criticality
(see Fig. 1).

The outline of the paper is as follows. In Sec. II we specify
the model of a disordered Fermi liquid coupled to a quantum
critical point. Next, in Sec. III we present the main results of
the paper. The details of our approach based on the modified
Usadel equation are provided in Sec. IV. The analysis of
the Usadel equation is presented in Sec. V and Sec. VI in
the Fermi-liquid and quantum critical regimes, respectively.
Our conclusions are summarized in Sec. VII. Some details of
calculations are presented in the Appendices.

II. MODEL

In the vicinity of a continuous phase transition, the sys-
tem exhibits a diverging correlation length, and exhibits
fluctuations on all length scales. Among such fluctuations,
the slowest modes dominate the universal properties of
the system. Indeed such reasoning underlies the Landau-
Ginzburg-Wilson paradigm of critical phenomena and applies
equally to metallic critical behavior at zero temperature. Due
to the diverging length scales, a microscopic model is not nec-
essary (since many microscopic underlying models lead to the
same low-energy behavior near the phase transition). Instead,
one keeps the most relevant low-energy degrees of freedom
and analyzes their fate as the transition is approached. In the
present context, we consider ferromagnetic ordering tendency

in a disordered metal, and in such a system, slow magnetic
fluctuations result in a diverging magnetic correlation length
and enhanced magnetic susceptibility. The Ginzburg-Landau-
Wilson theory of such a system involves a Landau Fermi
liquid coupled to slow-order parameter fluctuations (as deter-
mined by the magnetic susceptibility). The coupling between
fermions and magnetic fluctuations is determined entirely by
symmetry [64–66]. Moreover, in systems with sizable spin-
orbit coupling, the global spin SU(2) symmetry is explicitly
broken and motivated by such systems, we consider an Ising
ordering transition. In this case, the magnetic susceptibility
will be largest along an “easy axis”, which we take without
loss of generality to be the z direction.

More specifically, we consider a 2D system of fermions
at a finite density interacting via critical Ising-ferromagnetic
fluctuations. The effective action S = S0 + Sint given by

S0 =
∫

dτdr
∑
σb

ψ̄σb[∂τ + ε(i∇) + V (r)]ψσb,

Sint = −J

2

∫
dτdrdr′ Sz(r, τ )χ (0)

zz (r − r′)Sz(r′, τ ).

(1)

Here ε(p)=p2/2m − μ (m denotes the fermion mass and μ is
the chemical potential), Sz = 1

2

∑
b(ψ̄↑bψ↑b − ψ̄↓bψ↓b) is the

total z component of the fermionic spin operator, and J > 0
corresponds to ferromagnetic exchange. The indices σ =↑,↓
stand for the spin projections, and b = 1, 2 is the “orbital”
index. The bare spin susceptibility χ (0)

zz (r) (or equivalently, a
static paramagnon propagator) is defined through its Fourier
transform [χ̃ (0)

zz (q)]−1=x + c2q2, and x is proportional to a
tuning parameter for the QCP. A common experimental tun-
ing parameter near a ferromagnetic QCP is pressure (see for
instance Ref. [67]). The parameter x can thus be taken to be
time-reversal invariant and does not cutoff superconducting
instabilities. Since the inverse susceptibility determines the
quadratic coefficient of the Ginzburg-Landau expansion in
powers of the order parameter, it is the most crucial parameter
associated with the magnetic fluctuations. Microscopically,
the interaction in Eq. (1) could emerge, for instance, after
integrating out a subsystem of critical Ising spins [68], or as an
effective contribution from high-energy degrees of freedom in
a model with a short range four-fermion interaction tuned to
a Stoner instability [69,70]. A random potential V (r) coupled
to the fermionic density has a Gaussian distribution with the
zero mean and a variance 〈V (r)V (r′)〉 = (2πντ )−1δ(r − r′).
Here ν is the density of states per spin/orbital degree of
freedom, and τ is the mean free time. The spin fluctuations
induce an attractive interaction in the s wave, orbital-singlet,
spin-triplet Cooper channel, resulting in superconducting or-
der ψ↑1ψ↑2 + ψ↓1ψ↓2.

Our analysis of the model (1) is based on several as-
sumptions. First, we assume that the dimensionless Drude
resistance per spin/orbital degree of freedom t0 ∝ 1/(μτ ) is
the small expansion parameter of the model, t0 � 1. Second,
we work in the “dirty” limit τTc � 1, i.e., the mean-free
path l = vF τ is small compared to the ballistic coherence
length vF /Tc, and the motion of fermions is diffusive (in the
opposite limit, disorder can be ignored, and the existing results
apply [68,69]). The inverse ferromagnetic correlation length
ξ−1

QCP ≡ √
x − 2νJ/c � kF is used to define a dimensionless
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tuning parameter δ = (kF ξQCP)−1 allowing us to interpolate
between two limits: the Fermi-liquid regime, t0 � δ � 1, and
the quantum critical regime, δ � t0J̃1/2. In the former case,
the interaction is effectively short ranged on the diffusive
scales, while in the latter, it behaves as ∼1/q2 for

√
Tc/vF l �

q � 1/l , inducing significant NFL effects.

III. RESULTS

The low-temperature behavior of the model (1) is governed
by the modified Usadel equation derived at the leading order
in t0. This equation exhibits a set of solutions, continuously
varying with δ, with the following features:

(i) In the Fermi-liquid regime, t0 � δ � 1, the supercon-
ducting transition temperature is enhanced by multifractality
in the range of parameters J̃ � t0 � J̃/δ2 � 1, and scales as

Tc ∼ τ−1 exp{−δ/(t0J̃ )1/2}, (2)

where J̃ = J/(4π3c2μ) is the dimensionless coupling
strength. The standard BCS mechanism becomes effective
only at very weak disorder t0 � J̃ (provided that J̃ ln ωDτ �
δ, with ωD serving as a UV frequency cut-off for BCS inter-
actions), when Tc crosses over to the mean-field result TBCS ∼
ωD exp{−δ/J̃} [71]. At stronger disorder (2π )2J̃/δ2 � t0 �
1, the superconductor-insulator transition occurs (see Fig. 1).

In the quantum critical regime, δ�t0J̃1/2, we find that
(ii) there are severe NFL self-energy effects, render-

ing diffusive particle-particle modes (so-called “Cooperons”)
strongly incoherent at scales below ω4 = t0J/(8c)2�τ−1,
with anomalous dynamical scaling z = 4.

(iii) At the same time, the pairing vertex is also enhanced
by multifractality, tipping the balance in favour of supercon-
ductivity, with a power-law scaling of Tc,

Tc ∼ t0J

c2

(
1 + t0

2
ln

1

J̃

)
, (3)

where we also included the first subleading correction in pow-
ers of t0. Remarkably, Tc in Eq. (3) is enhanced compared to
the transition temperature in the absence of disorder (which
is given by a different power-law T (clean)

c ∼ J2/(c4μ), see for
instance [21]) for intermediate values of Drude resistance J̃ �
t0. This behavior continues until the subleading correction in
(3) becomes of the order of O(1), i.e., for t0 � 1/ ln(1/J̃ ). For
stronger disorder (or equivalently, exponentially weaker cou-
pling J̃ � exp{−2/t0}) the system undergoes the localization
transition (see Fig. 1). We also emphasize that the regime of
multifractally-enhanced superconductivity broadens rapidly
upon approach to the QCP.

IV. MODIFIED USADEL EQUATION

At the semiclassical (mean-field) level, properties of dis-
ordered superconductors are usually described by the Usadel
equation governing the quasiclassical Green’s function pa-
rameterized by the spectral angle θε [72]. In order to account
for quantum corrections, we incorporate interactions of diffu-
sive modes in the parametrically broad energy interval Tc �
ε � 1/τ . This is accomplished by means of the standard
fermionic perturbation theory, diagrammatically summarized
in Fig. 2 (this approach is fairly standard in the theory of con-

(a)

(b)

(c)

(d)

FIG. 2. Diagrammatic representation of the one-loop linearized
equation for the pairing vertex �ε [depicted in (b)], involving an
effective pairing amplitude [shown in (c)], and the Cooperon self-
energy �ε (which is related to the Zε factor as |ε|Zε ≡ |ε| + �ε).
The impurity line is denoted by dashed line, and the single-particle
fermionic propagator is denoted by solid line. Wavy solid line
represents the dynamically screened ferromagnetic fluctuation prop-
agator. Grey rectangular area [defined in (a)] represents the Cooperon
dressed by self-energy shown in (d), as well as by weak-localization
corrections to the diffusion coefficient (not shown explicitly). Some
diagrams have their symmetric counterparts.

ventional disordered superconductors, see Refs. [56,58,73] for
details). In addition, we also obtained the same results within
the nonlinear σ -model framework, extending the approach of
[48] to the case of critical interactions (see details in Appen-
dices A and B). As a result, all physical parameters of the
system become scale dependent, and the Usadel equation ac-
quires the following form:

D

2
∇2θεn + �εn cos θεn − |εn|Zεn sin θεn = 0. (4)

Here εn = πT (2n + 1) denotes fermionic Matsubara fre-
quency, and D = v2

F τ/2 is the diffusion coefficient. In striking
contrast to the standard Usadel equation [72], Eq. (4) has the
energy dependent pairing vertex �εn and the self-energy factor
Zεn , which are given by

�εn = �(0) + T
∑

m

Lεn,εm sin θεm ,

Zεn = 1 + T

|εn|
∑

m

sgn(εm)L|εn|,εm cos θεm .

(5)

Here we introduced some infinitesimal “external” pairing field
�(0), which will be set to zero at the end. The effective pairing
amplitude is given by

Lε,ε′ = J

2

∫
d2q

(2π )2

χ̃zz(|ε − ε′|, q)

Dε,ε′q2 + Eε + Eε′
, (6)

with |q| � 1/l . Here Eε = |ε| cos θε + �(0) sin θε, and
[χ̃zz(|ωn|, q)]−1 = c2(ξ−2

QCP + q2) + πν2J�zz(|ωn|, q) is
the RPA-dressed spin susceptibility. We also allow for weak
localization (WL) corrections to the diffusion coefficient
Dε,ε′/D = 1 + t0

2 ln[τ (Eε + Eε′ )] [74]. �zz(|ωn|, q) is
the dynamical part of the polarization operator and for
arbitrary θε is given in Eq. (A22). In the normal state,
θε = 0, it reduces to the usual diffusive Landau damping
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form �zz(|ωn|, q) = (2/πν)|ωn|/(Dq2 + |ωn|) [27], and the
paramagnon propagator reads as

[χ̃zz(|ωn|, q)]−1
θε=0 = c2(ξ−2

QCP + q2) + 2νJ|ωn|
Dq2 + |ωn| . (7)

Assuming that the superconducting state is spatially ho-
mogeneous on the scale of the coherence length, the gradient
term in (4) can be ignored, and the formal solution reads as
sin θεn = �εn/

√
(|εn|Zεn )2 + �2

εn
, such that Eqs. (5) become

the self-consistency equations for �εn and Zεn . For the present
study, we are only interested in the transition to the supercon-
ducting phase, and thus, we can assume that �εn is small, and
approximate Zεn and Lεn,εm by their normal state expressions.
As a result, we arrive at

�εn = �(0) + T
∑

m

Lεn,εm

|εm|Zεm

�εm ,

Zεn = 1 + T

|εn|
∑

m

sgn(εm)L|εn|,εm ,

(8)

with the cutoff at |εm| ∼ 1/τ , and Lεn,εm is now understood
as the θε = 0 limit of Eq. (6). The set of equations (8), sup-
plemented by the effective interaction (6), is in the core of
our analysis. The diagrammatic representation of Eqs. (8) is
depicted in Fig. 2. A few comments are in order. First, Eqs. (8)
were derived perturbatively in the disorder strength t0, with
no additional a priori assumptions on J̃ or δ other than that
Tc � 1/τ (i.e., that we work in the “dirty” limit). Therefore,
all higher-order diagrams (including more complicated vertex
corrections) are explicitly subleading, and could be safely ig-
nored in our analysis of the pairing instability. This surprising
simplicity stems from the interplay between two independent
energy scales associated with disorder (1/τ ) and interactions
(J/c2): the latter sets the overall energy units, whereas the for-
mer is used to control perturbation theory. This is in striking
contrast to the “clean” case Tc 
 1/τ , where J/c2 is the only
relevant low-energy scale, and thus, no small dimensionless
parameter is available. Remarkably, this implies that our the-
ory remains under control even in the quantum critical regime
δ = 0, with no need for any artificial small parameters (such
as 1/NF , where NF is a large number of fermionic flavours,
etc.). Second, Eqs. (8) bare some resemblance with the stan-
dard Eliashberg equations [8,11]. However, we stress that Zεn

is not a characteristic of a single particle Green’s function
but rather encodes information about Green’s function corre-
lations. For similar reasons, Lεn,εm is not translation-invariant
on the Matsubara axis, i.e., it is not a function of |εn − εm|
alone. Finally, we note that Eqs. (8), in principle, allow for a
full finite temperature analysis in a parametrically broad range
Tc � T � 1/τ . It is known that in some cases [for instance,
for a fully SU(2)-invariant QCP], the thermal self-energy ef-
fects could become significant due to the exchange of virtual
bosons of zero Matsubara frequency [25]. However, in case of
the Ising symmetry, the contributions from such static modes
cancel out in Eqs. (8), and do not affect the pairing instability
in accordance with the Anderson’s theorem [8,34]. Therefore,
for the purposes of identifying the superconducting transition
temperature it is sufficient to perform analytic continuation
and replace Matsubara summations with continuous integrals

over frequencies, in which finite temperature T serves mostly
as a regularization for low-energy divergences [20,22,24].
This procedure is essentially equivalent to the T = 0 analysis,
and correctly determines the asymptotic scaling of Tc with the
relevant coupling constants, as well as dynamical scaling of
the slow modes. The latter is guaranteed by the fact that the
dynamical part of the fermionic self-energy usually dominates
over the thermal one at sufficiently low temperatures. We now
proceed with solving Eqs. (8) in several limits.

V. FERMI-LIQUID REGIME

We begin with the Fermi-liquid regime t0 � δ � 1, in
which the interaction can be approximated as χ̃zz(|ωn|, q) ≈
ξ 2

QCP/c2 for the entire range of momentum integration in (6).
In a coordinate representation, this condition implies that
χzz(r) decays on a scale ξQCP much shorter compared to the
mean-free path l . Therefore, our model in this regime effec-
tively describes a disordered two-orbital Fermi-liquid with
strong anisotropy in the spin-exchange Landau parameters.
After evaluating Lε,ε′ , we find that Zε ≡ 1, and the equa-
tion for the pairing vertex �εn acquires the following form:

�εn = �(0) − 2παT
∑
m�0

[
ln τ (εn+εm)

1+ t0
2 ln τ (εn+εm)

]
�εm

εm
, (9)

where α = π2t0J̃/(2δ)2 � 1 is the emergent dimensionless
coupling constant. The denominator of the kernel in (9)
describes WL renormalization of the resistance. This equa-
tion can easily be solved with logarithmic accuracy. To this
end, we approximate Matsubara sums by integrals, intro-
duce a new variable ζ = ln 1

τε
, and replace ln τ (ε + ε′) by

ln(τ max{ε, ε′}). As a result, we find

�ζ = �(0) + α

∫ ζ

0
dζ ′ ft0 (ζ ′)�ζ ′ − α ft0 (ζ )

∫ ζ

ζT

dζ ′�ζ ′ ,

(10)

where ft0 (ζ ) = ζ (1 − t0ζ
2 )−1, and ζT = ln 1

τT . After differen-
tiating this integral equation several times with respect to ζ , it
reduces to a second-order differential equation, which can be
readily solved as

�ζ

�(0)
=

∑
s=±

(1 − t0ζ/2)−(1+s
√

1−η)/2

1 + (
1 − 2

η
(1 + s

√
1−η)

)(
1 − t0

2 ζT
) , (11)

where η=16α/t2
0 ≡(2π/δ)2J̃/t0. Note that η can be arbitrary

in magnitude even if both α and t0 are small. When this
ratio is smaller than 1 (i.e., t0 
 J̃/δ2), the superconducting
susceptibility χsc(T ) ∝ ∑ζT

ζ=0 �ζ/�
(0) remains finite for all

ζT < 2/t0 indicating that superconductivity fails to prevent
the renormalized resistance from growing uncontrollably, and
thus, the ground state is insulating. In contrast, for η > 1 the
square root

√
1 − η becomes complex, meaning that super-

conductivity intervenes and sets in when χ−1
sc (Tc) = 0, where

Tc is

ln
1

τTc
= 2

t0

{
1 − exp

[
2(arctan

√
η − 1 − π )√

η − 1

]}
. (12)

144508-4



INTERPLAY OF SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 107, 144508 (2023)

In the limit t2
0 � α, or equivalently t0 � J̃/δ2, Eq. (12) trans-

forms into Eq. (2). Crucially, the renormalized resistance at
the transition remains small t (ζTc ) = t0/(1 − t0ζTc/2) � 1 in
this range of parameters, implying that our calculation is con-
trollable.

We also mention in passing that, after taking the limit
t0 → 0 while holding α fixed (i.e., ignoring WL corrections
to the resistivity), the superconducting susceptibilities χsc(T )
acquires a particularly simple form

lim
t0→0
α fixed

χsc(T ) = 1√
α

tan(
√

αζT ), (13)

which leads to the same expression for Tc as in Eq. (2). In this
limit, Eq. (9) is formally analogous to the gap equation derived
in [73,75] for Coulomb repulsion. In our case, however, α is
positive, which leads to attraction.

Another interesting limit of Eq. (11) is η − 1 � 1, which
corresponds to the interactions and disorder strength being
comparable in magnitude. In this case, the transition tempera-
ture takes the following form:

Tc ∼ 1

τ
exp

{
− 2

t0

[
1 − exp

{
− 2π√

η − 1
+ 2

}]}
, (14)

where the second term in square brackets is a small correc-
tion to the leading-order estimation Tc ∼ τ−1e−2/t0 (note that
a similar scaling of Tc was reported in [40] for a different
problem). In order for our analysis to be self-consistent, we
also have to make sure that the resistance at this scale is still
small, t (ζTc ) � 1, which leads to the following applicability
condition: ln−2 1

t0
� η − 1 � 1.

The above expressions for Tc are derived assuming that the
bare large momentum BCS scattering is weak, and supercon-
ductivity emerges primarily due to attractive interaction with
small momentum scattering in a particle-hole channel. In our
model, this approximation is well satisfied in a parametrically
broad regime because χ̃ (0)

zz (q = 0) 
 χ̃ (0)
zz (q = 2kF ) provided

that ξQCP 
 k−1
F , and thus, the bare value of the corresponding

dimensionless coupling constant λBCS is suppressed by an
extra small factor δ � 1. Let us now allow for small but finite
λBCS in the spin-triplet orbital-singlet Cooper channel, which
leads to a mean-field superconducting transition at some
temperature TBCS � 1/τ , i.e., 1/λBCS = ln 1

τTBCS
≡ ζTBCS 
 1.

Then the actual transition temperature can be determined from
the equation 1 − λBCSχsc(Tc) = 0, leading to

Tc ∼ τ−1 exp

{
− 2

t0
Pη

(
t0ζTBCS

2

)}
, (15)

where the function Pη(x) is explicitly defined as

Pη(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
(

x−2+x
√

1−η

x−2−x
√

1−η

) 1√
1−η

, η < 1

1 − exp
{
− 2√

η−1

(
πθ (x − 2)

− arctan
[ x

√
η−1

x−2

])}
, η > 1

. (16)

The full expression in Eq. (15) reduces to either Eq. (12) or
Eq. (14) under the assumption δ2/(J̃ ln2 τTBCS ) � t0 � J̃/δ2.
The resulting dependence of Tc on the Drude resistance t0

(as well as the temperature dependence of the renormalized
resistance) is depicted in Fig. 3(a).

It is also worth mentioning that Eq. (15), formally contin-
ued to negative η, could be used to determine suppression of
the superconducting transition temperature in the spin-singlet
Cooper channel because the Ising-ferromagnetic interaction is
repulsive in that channel (in this case, TBCS should be viewed
as a mean-field transition temperature for a spin-singlet SC
state). The SIT occurs when t0ζTc/2 ∼ 1, which yields a crit-
ical value of the resistance t0,crit ≈ 4δ2/(π2J̃ζ 2

TBCS
) � 1. Here

we also assumed that J̃ζ 2
TBCS


 δ2 for the theory to remain
self-consistent. We note that this critical point is analogous
to the Finkelstein’s result for Coulomb repulsion [55].

In addition, one could also extend this analysis by allowing
for a competing BCS attractive coupling constant in a s-
wave spin-singlet (orbital-triplet) channel ψ↑1ψ↓1 + ψ↑2ψ↓2,
in which ferromagnetic fluctuations mediate repulsion. Under
these circumstances, any increase in disorder strength will
result in suppression of Tc in the spin-singlet channel [see
Fig. 3(b)], while the pairing fluctuations in the spin-triplet
channel will grow. Depending on the coupling strength J̃ ,
there are two possibilities [see the phase diagram in Fig. 3(c)]:
first, if the coupling is weak, the system can undergo a SIT
transition directly from a spin-singlet state, and second, there
could be an intermediate disorder-driven phase transition be-
tween the two distinct superconducting states, preceding a
SIT [the corresponding highly nonmonotonic t0 dependence
of Tc is depicted in Fig. 3(b)]. The latter scenario takes place
provided that Tc for both superconducting channels coincide,
leading to the condition

(
1 + √

1 + η − 4/(t0ζTBCS )

1 − √
1 + η − 4/(t0ζTBCS )

)√
η−1
η+1

= exp[−2π + 2 arctan(
√

η − 1)], η > 1. (17)

This equation determined the boundary between the spin-
singlet and spin-triplet SC phases in Fig. 3(c). On the other
hand, the onset of the SIT occurs when the renormalized
resistance t (ζTc ) becomes of the order of one, i.e., t0 � 1 −
P−η(

t0ζTBCS
2 ). The latter condition sets the boundary for the

insulating phase in Fig. 3(c). The magnitude of Tc in a spin-
triplet superconducting phase could become both higher or
lower than the initial mean-field transition temperature TBCS ,
depending on the coupling strength [both possibilities are
depicted in Fig. 3(c)].

VI. QUANTUM CRITICAL REGIME

Next, we turn to the quantum critical regime, emerging in
the limit δ � t0J̃1/2 (i.e., ξ−1

QCP is negligible). In this limit, the
effective pairing amplitude can be estimated as

Lε,ε′ ≈ π

2

(
ω4

|ε − ε′|
)1/2

ϒτ (|ε|+|ε′|). (18)

The square-root scaling here appears after expanding (6) at
the lowest order in disorder strength, while preserving energy
dependence of resistance. The latter contributes a factor ϒx ≡
[1 + t0 ln(x)/2]−1/2, smoothly varying on top of the overall
power-law behavior of (18). The corresponding self-energy
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(a) (b) (c)

FIG. 3. Superconducting transition temperature in a “Fermi-liquid” regime (t0 � δ � 1), as a function of the bare Drude resistance t0 for
ln 1/(τTBCS ) = 30. (a) The BCS coupling is in the spin-triplet channel, and J̃/δ2 = 0.002, 0.005, 0.011 (from bottom to top). Vertical dashed
lines correspond to the SIT taking place when the renormalized resistance becomes of the order of one. Inset: Temperature dependence of
the renormalized resistance for J̃/δ2 = 0.003, ln 1/(τTBCS ) = 30, and for t = 0.06, 0.075, 0.085, 0.1 (bottom to top). (b) The BCS coupling
is in the spin-singlet channel. Black dotted lines indicate a transition between spin-singlet and spin-triplet superconducting phases, while the
colored dashed lines correspond to a SIT. (c) The T = 0 phase diagram with two distinct superconducting (SC) phases, in case of bare BCS
attraction in the spin-singlet channel only, for ln 1/(τTBCS ) = 30.

factor for a Cooperon reads as

Zε = 1 +
√

t0J

32c

∫ +∞

0

dε′

ε
(
1 + t0

2 ln τ (ε + ε′)
)1/2 ×

×
(

1

|ε − ε′|1/2
− 1

|ε + ε′|1/2

)

≈ 1 + ω
1/2
4 |ε|−1/2ϒτ |ε|. (19)

As a result, the self-consistent solution for the diffusive
particle-particle propagator (“Cooperon”) at the lowest order
in t0 takes the form

[Dq(ε, ε′)]−1 = Dq2 + ω
1/2
4 (|ε|1/2 + |ε′|1/2), (20)

where the nonanalytic frequency dependence originates from
the self-energy factor Zεn in Eq. (19), with ϒτ |ε| ≈ 1 for
t0 � 1. After combining these results together, we arrive at
the pairing vertex equation

�εn = �(0) + πT

2

∑
m �=n

|εm|− 1
2 ϒτ (|εn|+|εm|)�εm

|εn−εm| 1
2
(| εm

ω4
| 1

2 +ϒτ |εm|
) . (21)

In solving this equation, one can make use of the fact that
ϒτε varies very smoothly compared to the power-law factor
in the kernel, allowing to approximate ϒτε by its value at
ε = Tc. The remaining constant factor ϒτTc can be eliminated
by rescaling frequencies as ε → ϒ2

τTc
ε̃, leaving us with a par-

ticular limit (γ = 1/2) of the general gap equation extensively
studied in [21]. Following the logic of [21], we approximate
|ε − ε′| by max{|ε|, |ε′|} in Eq. (21), and reduce the resulting
integral equation to a differential one, similarly to our analysis
of the Fermi-liquid regime [76]. It is also convenient to intro-
duce a physical gap function �εn = �εn/Zεn , which obeys the
following integral equation:

�εn = �(0) + T
∑

m

L|εn|,εm

|εm|
(

�εm − εm

|εn|�εn

)
. (22)

From this representation, it is clear that the term with εm =
|εn| in the sum is canceled out. After replacing Matsubara

sums with integrals, we obtain

(1 + 2vgt0 (ξ ))�ζ

= v

∫ ζ

0
dζ ′ gt0 (ζ ′)�ζ ′ + vgt0 (ζ )

∫ ζT

ζ

dζ ′�ζ ′ (23)

where v = π J̃1/2/8, and gt0 (ζ ) = eζ/2(1 − t0ζ/2)−1/2. It is
instructive to compare this equation with its analog Eq. (10),
analyzed in the Fermi-liquid regime. The main conceptual
distinction between these two equations, apart from hav-
ing different kernels ft0 (ζ ) �= gt0 (ζ ), is that here we have a
self-energy term, suppressing superconductivity due to NFL
effects. After differentiating this equation twice with respect
to ζ , and taking the limit t0 → 0 (which corresponds to the
absence of weak localization corrections to the resistance), we
find

(1 + 2veζ/2)�̈ζ +
(

veζ/2 − 1

2

)
�̇ζ + v

2
eζ/2�ζ = 0. (24)

The general solution of this equation can be easily found
in terms of certain hypergeometric functions. Crucially, this
solution changes sign at v exp ζ/2 ∼ 1, and then starts oscil-
lating. Indeed, for v exp ζ/2 
 1 we have

�ζ = Ce−ζ/4 cos(
√

3ζ/4 + φ), (25)

where C is the overall normalization constant. The phase φ

could be determined by matching Eq. (25) with the solution
in the opposite limit, v exp ζ/2 � 1, where we obtain

�ζ = C1eζ/4J1(2
√

2veζ/4) + C2eζ/4Y1(2
√

2veζ/4). (26)

Here C1,2 are some constants, and J1(x) and Y1(x) are the
Bessel functions of the first and second kind, respectively.
Therefore, the gap function indicates a pairing instability at
the scale Tc ∼ τ−1v2 ∼ τ−1J̃ , which is exactly the leading
term in Eq. (3). In order to retain the first correction to this

144508-6



INTERPLAY OF SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 107, 144508 (2023)

result, one has to expand gt0 (ζ ) to the lowest order in t0,
leading to the following equation:

(
1 + 2ve

1
2 (1+ t0

2 )ζ
)
�̈ζ +

[
1 + t0

2

](
ve

1
2 (1+ t0

2 )ζ − 1

2

)
�̇ζ

+ v

2

[
1 + t0

2

]
e(1+t0/2)ζ/2�ζ = 0. (27)

In turn, Eq. (27) can also be solved with hypergeometric func-
tions. Thus, the oscillations develop when e(1+t0/2)ζ/2 ∼ v−1,

leading to Tc ∼ τ−1J̃
1

1+t0/2 ≈ τ−1J̃ (1 + t0
2 ln 1/J̃ ), in agree-

ment with Eq. (3).
Therefore, we find that the pairing instability in a critical

regime sets in at the scale determined by Eq. (3). At the same
time, it is known that in the absence of disorder T (clean)

c scales
as J2/(c4μ) [21]. The ratio of these scales is proportional
to the ratio of two small dimensionless parameters t and J̃ ,
controlling disorder and interaction strength, respectively,

T (dirty)
c /T (clean)

c ∼ t0/J̃. (28)

Therefore, the conclusion is quite remarkable: Even in the
presence of strong NFL effects, the transition temperature is
enhanced at intermediate (but still weak) disorder J̃ � t0 �
1. We emphasize that even though J̃ � 1 in the regime of
interest, this result has nothing to do with perturbation theory
in J̃ . The actual expansion is performed in powers of t0 only.

The physical reason of this enhancement is twofold. At the
semiclassical level, the ferromagnetic order parameter mixes
with the continuum of diffusive particle-hole excitations of
the Fermi surface. As a result, the effective electron-electron
interaction gets Landau-overdamped, but with a dynamical
scaling z = 4 (i.e., ω ∼ q4 at low energies), instead of z = 3
as in case of ballistic dynamics. This effect by itself is already
enough to produce nonanalytic corrections in the Cooper
channel. But most importantly, strong mesoscopic (multifrac-
tal) correlations of single-particle wave functions [represented
by the diagrams in Fig. 2(c)] manifest themselves in the
appearance of a Cooperon in the effective pairing amplitude
(6), further enhancing the degree of nonanalyticity. In com-
bination, multifractality and diffusive Landau damping lead
to Eq. (18), and eventually, to the power-law scaling of Tc in
Eq. (3).

We also note that the critical interaction remains dynami-
cally screened at the relevant momentum scales q 
 √

ω/D
contributing to the scattering processes in Fig. 2(c). This pre-
cludes local mesoscopic correlations from being effectively
“averaged out” at large distances, as it happens for unscreened
Coulomb repulsion [55]. Moreover, despite the Cooperon
propagator Eq. (20) exhibiting anomalous dynamical scaling,
the superconducting coherence length ξ still obeys a standard
relation to Tc, i.e., ξ = √

D/Tc, characteristic of conventional
disordered superconductors. However, the magnetic correla-
tion length ∼√

t0ξ , as inferred from the critical paramagnon
propagator Eq. (7), appears to be parametrically shorter than
ξ .

At even weaker coupling (or stronger disorder), localiza-
tion corrections to resistance become more noticeable, and the
full frequency-dependence of ϒτε starts to play a role, giving
way to more complicated behavior of the pairing vertex �ε. In
particular, the renormalized resistance evaluated at the super-

conducting transition temperature t (Tc) ≡ t0ϒ2
τTc

becomes of
the order of one at t0 ∼ 1/ ln(1/J̃ ), indicating that the system
undergoes a localization transition.

VII. CONCLUSIONS

We have developed the theory of a pairing instability in
a disordered 2D fermionic system coupled to a ferromag-
netic quantum critical point. Our approach, based on the
modified Usadel equation, allows to treat weak localization
and non-Fermi liquid effects on equal footing, and predicts
a strong enhancement of superconductivity at intermediate
disorder strength, both away and near the critical point, caused
by mesoscopic (“multifractal”) correlations of single-particle
wave-functions. In its present form, our approach does not
account for phase fluctuations of the superconducting order
parameter, which drive the true transition to be of Berezinskii-
Kosterliz-Thouless (BKT) type. However, it is known [77]
that the actual transition temperature TBKT differs only slightly
from the mean-field transition temperature Tc in the limit of
small resistance, and thus, our predictions are expected to
remain qualitatively correct even for TBKT .

Our results constitute a first step towards our understanding
of the fundamental interplay between disorder and supercon-
ductivity in 2D quantum critical itinerant electron systems.
Our theory and the predicted enhancement of superconduc-
tivity could in principle be tested using sign problem free
Monte Carlo simulations of metallic criticality along the lines
of Ref. [68]. In the future, we wish to investigate properties of
the emerging superconducting phase, where the full nonlinear
form of the Usadel equation (4) will be required. Particularly
intriguing observables include mesoscopic fluctuations of the
local density of states [48], and the superfluid stiffness [77].
In addition, it would be interesting to explore other types
of QCPs, including cases where the critical-order parameter
is not conserved [17,78,79], and thus, couples differently to
diffusive modes compared to the present case.
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APPENDIX A: σ MODEL

In this section we provide details of the σ -model approach
to the problem of dirty superconductivity in quantum criti-
cal systems. On the technical side, our analysis extends the
methodology suggested for a different problem in [48] by
allowing for arbitrary coupling strength, as well as frequency
and momentum dependence of the interaction in the one-loop
derivation of the effective action. As a first step, we follow
the standard procedure: We average over disorder using the
replica trick, decouple the resulting interaction via a matrix-
valued Hubbard-Stratonovich field Q, and integrate out the
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fermions. The resulting integral over Q is computed via the
saddle-point method justified in the limit of weak disorder.
Finally, we obtain the action for the low-energy modes (so-
called “diffusons” and “Cooperons”) Sσ + Sint, where

Sσ = πν

8

∫
dr Tr[D(∇Q)2 − 4ε̂Q − 4�̂(0)Q],

Sint =
(πν

4

)2
JT

∑
nγ

∑
r=0,3

∫
drdr′ χ (0)

zz (|ωn|, r − r′)

× Tr
[
Iγ
n tr30Q(r)

]
Tr

[
Iγ
−ntr30Q(r′)

]
, (A1)

where Q are matrices operating in the replica, Matsubara,
particle-hole, spin, and orbital spaces. The interaction ampli-
tude is given by[

χ̃ (0)
zz (|ωn|, q)

]−1 = c2
(
ξ−2

QCP + q2
)
. (A2)

The inverse screening length ξ−1
QCP = √

x − 2νJ/c describes
the deviation from the quantum critical point (QCP). Here
x is the tuning parameter, and 2νJ comes from the static
polarization operator. In principle, the initial electron-electron
interaction of our model [Eq. (1) of the main text] also leads to
a number of additional operators in Sint representing inelastic
scattering with large momentum transfer ∼2kF . However, in
a vicinity of a QCP, the bare interaction is sharply picked at
q = 0, and all other bare scattering amplitudes are suppressed
by extra small factors ∼(kF ξQCP)−1 � 1 compared to the term
that we retain in Sint .

The definitions of all the matrices in (A1) are standard,

(ε̂)αβ

nn′ = εnδnn′δαβt000,
(
Iγ

k

)αβ

nn′ = δn−n′,kδ
αβδαγ t000,

(�̂(0) )αβ

nn′ ≡ �(0)δn+n′,0δ
αβt122, (A3)

where �(0) represents an external infinitesimal pairing poten-
tial in the s-wave, orbital-singlet, spin-triplet Cooper channel,
which we introduce for future convenience. The Greek indices
α, β = 1, ..., Nr stand for different replicas. The generators
trsB span the particle-hole/spin/orbital matrix space, and are
defined as

trsB = τr ⊗ σs ⊗ TB, r, s, B = 0, 1, 2, 3. (A4)

Here τi/σi/Ti, i = 0, 1, 2, 3, are the standard Pauli matri-
ces. The Q-matrix field obeys the following constraints and

charge-conjugation symmetry:

Q2 = 1, Tr Q = 0, Q† = CT QT C,

C = iτ1 ⊗ σ2 ⊗ T0, CT = −C. (A5)

1. Superconducting saddle point

In order to investigate properties of the dirty supercon-
ducting state, one has to look for the following saddle point
structure:

Qαβ
nm = (t000 cos θεn sgn εnδεnεm + t122 sin θεnδεn,−εm )δαβ,

(A6)

which is parameterised by a yet unknown function θε called
the “spectral angle”. The dependence of θε on ε and other
parameters will be determined from the minimization of the
resulting effective action. The off-diagonal matrix elements in
(A6) are encoded into the generator t122 corresponding to our
particular choice of the superconducting order parameter. One
can easily check that 1

8 tr t122t∗
122 = 1, and− 1

8 tr t122CtT
122C =1.

It is also useful to rewrite Qαβ
nm as R−1�R, where

Rαβ

mk = (t000 cos θεk δεkεm + t122 sin θεk δεk ,−εm )δαβ, (A7)

and (�)αβ

nn′ = sgn εnδnn′δαβt000 is the usual metallic saddle
point used in most previous studies. Clearly, Q|θε≡0 ≡ �. Note
also that R−1 = R†, and CT T = R−1C. The σ -model action Sσ

evaluated at the saddle point Q reads as

Scl[θ ] = −8πνNrV
∑
n>0

[
�(0) sin θεn + εn cos θεn

]
, (A8)

where V = ∫
dr is the total volume. After differentiating the

action with respect to θε, we obtain the classical Usadel equa-
tion

−|εn| sin θεn + �(0) cos θεn = 0. (A9)

In principle, the spectral angle could slowly vary in the co-
ordinate space as well, which would lead to a gradient term,
see Eq. (4) of the main text. However, we are interested in the
superconducting state, which is spatially homogeneous on the
scale of the coherence length, so the gradients term in (4) can
be ignored.

The goal of the next sections is to compute interaction-
induced loop corrections to the classical action (A8).

2. Fluctuations around the saddle point

In order to resolve the nonlinear constraints (A5) in combination with the nontrivial structure of the saddle point (A6), the
matrix field Q could parameterized as

Q = R−1(W + �
√

1 − W 2)R, Wεε′ = wεε′θ (ε)θ (−ε′) + w̄εε′θ (−ε)θ (ε′) (A10)

where we explicitly emphasized the structure of W in the Matsubara space. Also, in everything that follows, we implement a
short-hand notation for Matsubara frequencies: instead of writing the full form εn1 , εn′ , etc., we will simply use ε1, ε′, and so on.
The blocks w̄ and w are matrices in both the replica and trsB-spanned spaces. They obey certain symmetry constraints

w̄ = −CwT C, w = −Cw∗C. (A11)

We decompose all fields in terms of generators trsB as

[w(x)]αβ

εε′ =
∑
rsB

[wrsB(x)]αβ

εε′ trsB, [w̄(x)]αβ

εε′ =
∑
rsB

[w̄rsB(x)]αβ

εε′ trsB = −
∑
rsB

[wrsB(x)]βα

ε′εCtT
rsBC, (A12)
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we also note that −CtT
rsBC = mrsBtrsB, where

mrsB = (δr �=3 − δr3)(δs0 − δs �=0)(δB �=2 − δB2). (A13)

Therefore, the the fields w̄ and w are not independent of each other: [w̄rsB(x)]αβ

εε′ = mrsB[wrsB(x)]βα

ε′ε .
Next, we substitute (A10) into the action (A1) and expand up to a quadratic order in fluctuations W . We find

S(2)
σ [θ,W ] = πν

8
D
∫

dr Tr (∇W )2 + πν

4

∫
dr Tr[Ê�W 2],

S(2)
int [θ,W ] = 1

16
(πν)2JT

∑
nγ

∑
r=0,3

∫
drdr′ χ (0)

zz (|ωn|, r − r′) Tr
[
RIγ

n tr30R−1W (r)
]

Tr
[
RIγ

n tr30R−1W (r′)
]
,

(A14)

where Ê = R(ε̂ + �̂(0) )R−1. Note that the term linear in W vanishes due to the classical Usadel equation (A9). The explicit form
of the higher-order terms will be given later. Finally, we compute the effective action Seff [θ ] as

Seff [θ ] = − ln
∫

DWe−S(2)
σ [θ,W ]−S(2)

int [θ,W ] =
∫ J

0

dJ

J

〈
S(2)

int [θ,W ]
〉

(A15)

where the average in the last expression is performed with respect to the quadratic action for Gaussian fluctuations. In the next
section, we compute the propagator of these fluctuations.

3. Gaussian action for fluctuations

One can easily verify that only the modes (030),(112),(330),(212) are affected by interactions at the Gaussian level. The full
quadratic action has the form

S(2)
σ [θ,W ] + S(2)

int [θ,W ] = 2πν

∫
q

∑
{εi>0}

∑
r=0,3

2∑
j,k=1

∑
{αi}

�
α1α2,(r)
ε1,−ε2,k

(q)[Âr (q)]α1α4;α2α3
ε1ε4;ε2ε3;k j (1 − 2δ j1δr0)�α4α3,(r)

ε4,−ε3, j (−q) + . . . , (A16)

where we omitted the terms describing the modes unaffected by interactions. We also used �̄
α1α2,(r)
−ε,ε′, j (q) = (1 −

2δ j1δr0)�α2α1,(r)
ε′,−ε, j (q). The matrix elements of Âr (q) are given by

[Âr (q)]α1α4;α2α3
ε1ε4;ε2ε3;k j = [Dq2 + Eε1 + Eε2 ]δε2ε3δε1ε4δk jδα1α4δα2α3 + 2πνJT

∑
n

χ̃ (0)
zz (|ωn|, q)X (r)

n,k (ε1, ε2)
[
X (r)

n, j (ε4, ε3)
]∗

δα1α4δα2α3δα1α2 ,

(A17)

where Eε = ε cos θε + �(0) sin θε. We also defined the following vector combinations:

�
αβ,(0)
ε1,−ε2

= (
[w030]αβ

ε1,−ε2
, [w112]αβ

ε1,−ε2

)
, �

αβ,(3)
ε1,−ε2

= (
[w330]αβ

ε1,−ε2
, [w212]αβ

ε1,−ε2

)
,

�̄
αβ,(0)
−ε3,ε4

= (
[w̄030]αβ

−ε3,ε4
, [w̄112]αβ

−ε3,ε4

)
, �̄

αβ,(3)
−ε3,ε4

= (
[w̄330]αβ

−ε3,ε4
, [w̄212]αβ

−ε3,ε4

)
,

(A18)

where all εi > 0, and auxiliary vectors X are defined as

X(0)
n (ε1, ε2) =

(
cos

(
θε1 + θε2

2

)
(δε1+ε2,−ωn − δε1+ε2,ωn ), −i sin

(
θε1 − θε2

2

)(
δε1−ε2,ωn − δε1−ε2,−ωn

))
,

X(3)
n (ε1, ε2) =

(
cos

(
θε1 + θε2

2

)
(δε1+ε2,−ωn + δε1+ε2,ωn ), sin

(
θε1 − θε2

2

)(
δε1−ε2,ωn + δε1−ε2,−ωn

))
.

(A19)

We note that X(r)
−n = −(−1)rX(r)

n . After inverting the matrix in (A16), we obtain the following correlation function for � field

〈
�

α1α2,(r)
ε1,−ε2,k

(q)�̄α3α4,(r)
−ε3,ε4, j (−q)

〉 = 1

4πν
D(0)

q (ε1, ε2)δα1α4δα2α3

{
δε1ε4δε2ε3δ jk − 2πνJδα1α2D(0)

q (ε3, ε4)

× T
∑

m

χ̃zz(|ωm|, q)
[
X (r)

m;k (ε1, ε2)
]∗

X (r)
m; j (ε4, ε3)

}
. (A20)

Here the bare diffusive propagator D(0)
q (ε, ε′) and the RPA-dressed interaction amplitude χ̃zz(|ωn|, q) are given by[

D(0)
q (ε, ε′)

]−1 = Dq2 + Eε + Eε′ , [χ̃zz(|ωn|, q)]−1 = c2(ξ−2
QCP + q2) + πν2J�zz(|ωn|, q). (A21)

Here, �zz(|ωn|, q) is the dynamical part of the spin correlation function

�zz(|ωn|, q) = 4T

ν

∑
ε,ε′>0

D(0)
q (ε, ε′)

[
cos2

(
θε + θε′

2

)
δ|ε+ε′ |,|ωn| + sin2

(
θε − θε′

2

)
δ|ε−ε′ |,|ωn|

]
. (A22)
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In the normal state, θε ≡ 0, this expression reduces to the standard diffusive Landau damping

�zz(|ωn|, q)|θε≡0 =
(

2

πν

) |ωn|
Dq2 + |ωn| . (A23)

In the next section, we use the correlation function (A20) to compute one-loop corrections to the effective action.

APPENDIX B: ONE-LOOP CORRECTION TO THE USADEL EQUATION

According to (A15), in order to compute the effective action, one has to first evaluate the following average

〈
S(2)

int [θ,W ]
〉 = 4(πν)2JT Nr

∫
q

∑
{εi>0}

∑
r=0,3

2∑
j,k=1

〈�αα,(r)
ε1,−ε2,k

(q)�̄αα,(r)
−ε3,ε4, j (−q)〉

∑
n

χ̃zz(|ωn|, q)X (r)
n,k (ε1, ε2)

[
X (r)

n, j (ε4, ε3)
]∗

= NrV

2

∫
q

∑
n

πν2J�zz(|ωn|, q)[
χ̃

(0)
zz (|ωn|, q)

]−1 + πν2J�zz(|ωn|, q)
(B1)

After dividing this expression by J and integrating over J from 0 to J , we obtain the following result for the effective action

Seff [θ ] = −8πνNrV

[∑
ε>0

(
�(0) sin θε + ε cos θε

) − 1

16πν

∫
q

∑
n

ln
(
1 + πν2Jχ̃ (0)

zz (|ωn|, q)�zz(|ωn|, q)
)]

. (B2)

One can now vary this action with respect to θε. For this, the following identity is useful

δ

δθε

�zz(|ωn|, q)

= −4T

ν

∑
ε′>0

D(0)
q (ε, ε′)[sin θε cos θε′ (δε+ε′,|ωn| − δ|ε−ε′|,|ωn|) + cos θε sin θε′ (δε+ε′,|ωn| + δ|ε−ε′ |,|ωn|)]

− 8T

ν
[�(0) cos θε − |ε| sin θε]

∑
ε′>0

[
D(0)

q (ε, ε′)
]2
[

cos2

(
θε + θε′

2

)
δ|ωn|,|ε+ε′| + sin2

(
θε − θε′

2

)
δ|ωn|,|ε−ε′ |

]
. (B3)

At the one-loop level, the modified saddle point equation for the spectral angle has the following form:

Fε(�(0) cos θε − |ε| sin θε ) + �ε cos θε − |ε|Zε sin θε = 0, (B4)

and the expressions for Zε and �ε are given as [compare with Eq.(5) of the main text]

Zε = 1 − JT

2|ε|
∑
ε′>0

∫
d2q

(2π )2
D(0)

q (ε, ε′)[χ̃zz(|ε + ε′|, q) − χ̃zz(|ε − ε′|, q)] cos θε′ = 1 + T

|ε|
∑

ε

sgn(ε′)L(0)
ε,ε′ cos θε′ , (B5)

�ε = �(0) + JT

2

∑
ε′>0

∫
d2q

(2π )2
D(0)

q (ε, ε′)[χ̃zz(|ε + ε′|, q) + χ̃zz(|ε − ε′|, q)] sin θε′ = �(0) + T
∑

ε

L(0)
ε,ε′ sin θε′ , (B6)

Fε = JT
∑
ε′>0

∫
d2q

(2π )2

[
D(0)

q (ε, ε′)
]2
[

cos2

(
θε + θε′

2

)
χ̃zz(|ε + ε′|, q) + sin2

(
θε − θε′

2

)
χ̃zz(|ε − ε′|, q)

]
, (B7)

for ε > 0, [χ̃zz(|ωn|, q)]−1 = c2(ξ−2
QCP + q2) + πν2J�zz(|ωn|, q), and L(0)

ε,ε′ differs from Lε,ε′ in Eq. (6) of the main text by the

absence of WL corrections to the diffusion coefficient. Formally, in order to promote L(0)
ε,ε′ to Lε,ε′ , one has to compute two-

loop corrections to the effective action. This calculation is much more involved than the one-loop derivation presented here,
and the details will be reported elsewhere [80]. Our preliminary analysis of the two-loop corrections indicates that the weak
localization correction D → Dε,ε′ ≡ D[1 + t0

2 ln τ (Eε + Eε′ )] in the diffusive propagator (i.e., [D(0)
q (ε, ε′)]−1 → [Dq(ε, ε′)]−1 ≡

Dε,ε′q2 + Eε + Eε′ ) is the only contribution appearing at the lowest possible order in the coupling constant J̃ , i.e., at the order
∼O(t2

0 J̃ ). Therefore, other two-loop corrections could be neglected assuming that interactions are sufficiently weak (this limit is
particularly relevant for multifractality-induced effects [40]).

In addition, we emphasize that Fε in Eq. (B4) appears from the variation of the spectral angle entering the diffusion propagator
[see the last line in Eq. (B3)]. This contribution is accompanied by an extra factors �(0) cos θ − ε sin θ , which coincides with
the classical Usadel equation (A9). This means that the effect of Fε is always of the higher order in t0 compared to the remaining
terms. In addition, Fε always contains “weaker” nonanalyticities compared to �ε and Zε. For instance, its perturbative effect on
Tc in case of Coulomb repulsion is known [51] to be subleading [of the order O(t0 log2 τTc)] compared to the correction from �ε

[which is of the order O(t0 log3 τTc)]. To summarize, we can ignore Fε in Eq. (B4) and reduce it to the form (4) given in the main
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text. It is also convenient to rewrite Eq. (4) as a system of two coupled equations involving �ε and Zε as independent functions.
This can be accomplished by means of the following formal solution sin θε = �ε/

√
(|ε|Zε )2 + �2

ε , which leads to Eqs. (8) of
the main text.
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