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The interplay of superconductivity and disorder generates a wealth of complex phenomena. In particular, the
peculiar structure of diffusive electronic wave functions is predicted to increase the superconducting critical
temperature in some range of disorder. In this work, we use an epitaxial monolayer of lead showing a simple
band structure and homogeneous structural disorder as a model system of a two-dimensional superconductor in
the weak-antilocalization regime. Then, we perform an extensive study of the emergent fluctuations of the local
density of states (LDOS) and spectral energy gap in this material and compare them with both analytical results
and the numerical solution of the attractive Hubbard model. We show that mesoscopic LDOS fluctuations allow
us to probe locally both the elastic and inelastic scattering rates, which are notoriously difficult to measure in
transport measurements.
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I. INTRODUCTION

Since the seminal paper by Anderson, the field of wave
localization in disordered media has developed immensely.
In the metallic regime, mesoscopic fluctuations of con-
ductance stemming from the diffusion of electrons in a
quenched disorder potential have been observed in a wealth
of condensed-matter systems and are commonly referred to as
the “weak-localization” signature [1]. A similar signature of
weak localization is predicted to emerge in maps of the local
density of states (LDOS) of two-dimensional (2D) metallic
systems [2–4] and has already been observed for surface-
plasmon modes [5,6]. For electronic modes, however, despite
several reports of electronic LDOS spatial fluctuations [7–10],
theoretical predictions still lack a quantitative comparison
with experiments.

The interplay of disorder and superconductivity has re-
cently received renewed experimental (see Refs. [11,12] for
a review) and theoretical interest [13–24]. In particular, the
pairing of weakly localized “multifractal” electrons was sur-
prisingly predicted to yield a disorder-enhanced Tc compared
to the clean metal case in well-chosen conditions [25,26].
Recently, an experimental demonstration of a possible multi-
fractal enhancement of Tc in NbSe2 monolayers was reported
[9]. Subsequently, the spatial distribution of the superconduct-
ing gap in this material recently demonstrated multifractal
statistics [27]. However, a clear picture of multifractal super-
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conductivity is still lacking because the multifractal properties
of the underlying eigenstates were not revealed in systematic
LDOS measurements. In addition, a recent study suggested
clearly that this experimental material presents the inverse
proximity effect from the graphene bilayer, making it more
of an superconductor-normal metal bilayer than a pure 2D
single layer [28]. Thus, a deeper understanding of 2D diffusive
superconductors in the multifractal regime is now required
to strengthen this discovery and stimulate the engineering of
multifractally enhanced superconductors.

In this study, we probe the mesoscopic fluctuations of
the LDOS in a purely two-dimensional weakly disordered
superconductor with high-resolution scanning tunneling spec-
troscopy (STS). In contrast to previous STS studies on thin
films [29–34] and NbSe2 monolayers [9,27], we prove quan-
titatively that coherent electronic diffusion controls both the
LDOS fluctuations close to the superconducting coherence
peaks and the spectral energy gap fluctuations. To general-
ize our interpretation, we compare our measurements with
self-consistent solutions of the attractive Hubbard model on
a state-of-the-art system size [19,22]. We demonstrate that the
energy dependence of mesoscopic LDOS fluctuations allows
us to extract both the elastic and inelastic scattering rates of
low-energy single-particle excitations and argue that LDOS
spatial fluctuations constitute a valuable toolbox for the study
of 2D diffusive systems.

II. EXPERIMENTS

As model systems for the study of 2D weakly disordered
electronic systems, epitaxial monolayers of metals on semi-
conducting surfaces are exceptionally interesting. First, their
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FIG. 1. Tunneling conductance fluctuations in the stripped incommensurate (SIC) phase of Pb/Si(111). (a) Description of the scanning
tunneling spectroscopy measurement and of the SIC phase (1.33 ML of Pb/Si with

√
3 × √

3 symmetry). (b) The tunneling conductance of
the SIC phase measured with a platinum tip along with the best fit with the Usadel formula (see Appendix A). We find �SIC = 0.35 meV and
�SIC = 10 μeV. (c) Topographic image of the SIC monolayer phase. We clearly see the rotational nanodomains of the

√
3 × √

3 phase separated
by domain walls made of the

√
7 × √

3 reconstruction. (d) An atomically resolved image. (e) Several differential conductance spectra (dI/dV )
measured at the positions shown in (f). (f) The isoenergy map corresponding to topography in (c) at the coherence peak energy Vmax = 1.7meV.
(g) Symmetrically, we show the isoenergy dI/dV map corresponding to the topography in (d) at the same bias voltage.

thickness, which is of the order of the Fermi wavelength,
along with their good decoupling from the bulk makes them
truly two-dimensional. Second, they show a wealth of phases
with highly uniform and reproducible structural disorder with-
out the need to evaporate chemical contaminants on the
sample. Thus, these systems fully fabricated in ultrahigh vac-
uum are exceptionally clean and homogeneously disordered,
in contrast to the usually studied substitution alloys [7–9], in
which the disorder itself already has long-range correlations,
as shown in the topographic maps in Refs. [8,9].

In this work, we focus on the stripped incommensurate
(SIC) phase of lead on silicon. The ideal SIC monolayer
described in Fig. 1(a) is made of 1.33 monolayers of lead
atoms on top of a Si(111) surface. The lead is evaporated on
the 7 × 7 reconstruction of silicon in a homemade scanning
tunneling microscope. The SIC phase is made of nanomet-
ric domains oriented preferentially along three directions, as
shown on a large scale in Figs. 1(c) and 1(d). The SIC phase
has a nanometric mean free path much smaller than the su-
perconducting coherence length ξ ∼ 50 nm [35], making it a
prototype system to study 2D diffusive superconductivity at
weak disorder.

The sample is then cooled to 300 mK, well below its crit-
ical temperature of 1.8 K [36]. In Fig. 1(b), we show the tun-

neling spectroscopy at 300 mK measured with a platinum tip.
The solid line is a solution of the Usadel equation for diffu-
sive superconductors [37] (see Appendix A). The spectrum of
Fig. 1(b) was fitted using a gap of �SIC = 0.35 meV and a de-
pairing energy of �SIC = 10 μeV. In order to probe the meso-
scopic fluctuations of this phase, we acquired several large-
scale (250 × 250 nm2) spectroscopic maps with nanometric
spatial resolution. A superconducting tip (bulk lead) is used to
increase the energy resolution to 30 μeV [35,38]. The dI/dV
spectrum [Fig. 1(e)] shows sharp coherence peaks at Vmax ∼
�tip + �SIC = 1.7 mV. Three individual spectra whose posi-
tions are shown in Fig. 1(f) are displayed in Fig. 1(e).

Displaying the local differential conductance at a given
bias voltage Vbias yields isoenergy dI/dV maps. In Figs. 1(f)
and 1(g), we show the dI/dV map measured at the energy
of the coherence peak (1.7 mV) and spatial fluctuations of
the differential conductance spanning various scales below
the superconducting coherence length ξ ∼ 50 nm [35,38]. An
interesting feature of this map is, indeed, that no characteristic
scale can be easily identified. This fractal-like behavior is rem-
iniscent of criticality close to the Anderson transition, driven
by the cooperation of disorder and electronic coherence. The
granular structure observed in the topography [see Figs. 1(c)
and 1(d)] does not correlate at all with these “emergent”
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FIG. 2. Analysis of tunneling conductance fluctuations. (a) Isoenergy maps of the differential conductance η = dI/dV . (b) Variance (green)
and mean value (black) of the tunneling conductance computed on isoenergy maps as a function of the bias voltage. (c) Map of the coherence
peak energy fluctuations, corresponding to gap width fluctuations. (d) The distribution of this map, given along with a Gaussian distribution of
standard deviation �gap = 4μeV. (e) The bias voltage dependence of the normalized standard deviation of dI/dV : σexp = √〈δη(V )2〉/〈η(V )〉.

fluctuations, which we consequently attribute to coherent dif-
fusion.

III. ANALYSIS OF FLUCTUATIONS

In order to reveal the superconducting properties in more
detail, we focus on the LDOS spatial variance close to the
superconducting coherence peaks. At voltage V , the variance
of isoenergy tunneling conductance maps [shown in Fig. 2(a)
for V ∈ {1.7, 2} mV] is written as σ 2

exp(V ) = 〈δ( dI
dV )2〉r , where

to keep notations brief, η = dI/dV is the experimentally
measured differential conductance (see Sec. III D for a more
accurate definition) and the brackets denote spatial averaging.
In Fig. 2(b), we plot (in green) the variance 〈δη2〉 as a function
of bias voltage, showing a maximum close to the coherence
peak energy Vmax = Emax + �tip = 1.7 mV. The normalized
standard deviation is plotted in Fig. 2(e) and shows a charac-
teristic minimum close to Emax followed by a convex increase
at higher energy. As shown in Appendix E, the normalized
standard deviation of the LDOS is symmetric with respect to
the Fermi level (i.e., negative and positive bias voltages). As
gap width granularity is a standard feature of 2D superconduc-
tors [9,12,27,39], we plot the fluctuations of the peak energy
Emax in Fig. 2(c). The distribution [see Figs. 2(d)] shows a
relative standard deviation σEmax of about 1%, much smaller
than the relative fluctuations of the LDOS shown in Fig. 2(e)
ranging from 6% to 20%.

A. Semianalytical theoretical predictions

To rationalize the energy dependence of the LDOS spatial
variance, we now compute the fluctuations of the density

of states ρ(E , r) in a 2D diffusive superconductor. In the
following, we sketch a simplified derivation. Like in the
mean-field solution to the BCS Hamiltonian, we introduce the
Bogoliubov operators and coherence factors u2

α/v2
α = (1 ±

εα/
√

ε2
a + �2)/2 associated with the single-particle eigen-

states φα for the eigenvalue εα , which are the solutions of the
single-particle Schrödinger equation including the disordered
potential. The LDOS can be written conveniently as

ρ(E , r) =
∑

α,s=±
φ2

α (r)(1 + εα/E )δ
(
E − s

√
ε2
α + �2

)
. (1)

Here, s = ± denotes states above and below the Fermi level,
respectively. The density of states correlations are then com-
puted from this expression along with the dynamical structure
factor, which is a spatially averaged product of wave func-
tions measured at positions r and r′ and at well-determined
energies. If one neglects the dependence of the single-particle
density of states on energy in the normal state, this struc-
ture factor can be computed from the polarization operator

R(ω, r, r′) (see, e.g. [40]),

F (ε, ω, r, r′) � 1

πω
Im 
R(ω, r, r′). (2)

In the diffusive regime at weak disorder, one gets, for the
Fourier transform of the polarization operator,


R(ω, q) = ρ0
Dq2

Dq2 − iω
, (3)

where D denotes the diffusion coefficient and ρ0 is the density
of states of the noninteracting problem at the Fermi level. The
full derivation then yields the pair LDOS correlation function
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at different spatial points (r1, r2) and different energies (E1, E2) [21–23]:

〈δρ(E1, r1)δρ(E2, r2)〉 = ρ2
0

2πg
Re

{
[1 + XE1 X ∗

E2
]K0

(
R

√
2γ� − iE1/XE1 + iE2/X ∗

E2

h̄D

)

− [1 − XE1 XE2 ]K0

(
R

√
2γ� − iE1/XE1 − iE2/XE2

h̄D

)}
, (4)

where R = |r1 − r2| and K0(z) stands for the modified

Bessel function. Also, we introduce XE = E/

√
E2 − �2

E ,
where we phenomenologically substitute � with the com-
plex energy-dependent gap function �E , which we estimate
using the Usadel model for diffusive superconductors (see
Appendix A). We check that, as observed experimentally,
Eq. (4) is symmetric with respect to the Fermi level: E1 =
E2 = V and E1 = E2 = −V yield the same correlations.
Finally, two parameters control the strength of LDOS fluc-
tuations: the dimensionless conductivity g = hDρ0/2 and the
effective dephasing rate γ� = h̄D/L2

�, which we assume are
energy independent. We note that strong spin-orbit coupling
results in a factor of 1/4 (in comparison with the case when
spin-orbit coupling is absent) due to suppression of triplet dif-
fusons. This well-known fact (see, e.g., Ref. [41]) was taken
explicitly into account in Eq. (4) (see Ref. [23]). In Fig. 3(a),
we show the energy dependence of the density of states
normalized variance σ 2

ρ (E ) = 〈δρ(E )2〉r/〈ρ(E )〉2
r . Here, the

conductance is fixed at g = 30, and we show the plots for
several values of γ� typically ranging between � ∼ kBT ∼
30 μV and � ∼ 350 μV. In black, we show the spectrum of
the mean density of states where Re(XE ) used in this compu-
tation corresponds to the best Usadel fit for the SIC phase (see
Appendix A). We show that σ 2

ρ has a local minimum close to
the coherence peak energy Emax, in good agreement with the
minimum of normalized variance σ 2

exp at the superconducting
coherence peak [Fig. 2(c)]. In Figs. 3(b) and 3(c), we show
that at fixed energy, σ 2

ρ decreases with increasing conductivity
[as expected from the 1/g dependence in Eq. (4)]. In Figs. 3(b)
and 3(d), we demonstrate that increasing the dephasing rate
γ�, corresponding to a smaller system size in a transport
experiment (Thouless energy), reduces the variance σ 2

ρ . We
stress that these dependences are very natural in the context of
mesoscopic fluctuations. A larger electronic phase coherence
length and stronger disorder lead to enhanced fluctuations,
whether one measures conductance in transport experiments
or the LDOS with a scanning tunneling microscope.

B. Electronic diffusion in the SIC phase and quantitative
extraction of transport parameters

In order to compare the amplitude of the LDOS fluctua-
tions with theoretical predictions, we evaluate the diffusion
coefficient in the SIC phase by independent means. We re-
fer to previous work by some of the authors in which the
proximity effect between the SIC phase and small bulky lead
islands allowed them to estimate the diffusion coefficient of
the monolayer [35]. These results are supported by another
measurement in which the spatial profile of a vortex core
allowed us to extract the effective coherence length in the dif-

fusive limit and thus the electronic diffusion coefficient [38].
Both these measurements yield a dirty coherence length ξ ∈
[45, 50] nm. Writing ξ = √

h̄D/�SIC with �SIC = 0.35 meV
gives a diffusion coefficient D ∈ [10, 15] cm2/s. We now
consider the Einstein relation for the conductivity (per spin
orientation) of the monolayer g = hDρ0/2, and using the
2D electron gas model (shown to be appropriate by angle-
resolved photoemission spectroscopy measurements [42]), we
write for the density of states ρ0 = 2 kF

hvF
= 2m

2π h̄2 (the factor
of 2 is for the two spin orientations). This leaves us with
g = mD

h̄ . Using the known effective mass m = 1.27me in the
SIC phase [36], we can estimate g ∼ 20. We insist that this
value may be underestimated because in the former experi-
ments used to evaluate ξ , the disorder was higher than in the
present experiment due to scattering nanoislands that do not
appear here. Thus, we infer that g = 20 is, in fact, a lower
bound of the actual conductance, and we roughly estimate
g ∈ [20 − 100]. Like we stated earlier, the lead monolayer is
weakly disordered and lies deep in the diffusive regime as the
mean free path � ∼ 1–5 nm is much smaller than ξ .

C. Gap width fluctuations

For a diffusive 2D superconductor in the weak-disorder
regime, fluctuations of Emax can be estimated theoretically
(see Appendix D). We find σEmax�

√
c/g(�SIC/�SIC)2/3, where

c ∼ 0.3. Here again, these mesoscopic fluctuations scale as
1/

√
g and are extremely small compared to the peak width

at weak disorder. In the relevant conductance range for our
system g ∈ [20 − 100], we obtain σEmax ∈ [0.5, 1.1]%, in ex-
cellent agreement with the 1% obtained experimentally [see
Fig. 2(d)]. We compare these results for a weakly disordered
phase with what was obtained in much more disordered nio-
bium nitride (NbN) thin films (g ∼ 2) where the relative gap
fluctuations are of the order of 6% [43], in good agreement
with the theory (7%) and much higher than what we measure
here.

D. LDOS variance: Comparison with experiments

We now attempt to quantitatively compare our theoretical
analysis for the energy-dependent LDOS fluctuations with
our experiments on the SIC phase of lead on silicon. Using
Eq. (4), we compute the normalized variance of the tunnel-
ing conductance: σ 2

η = 〈δη(V )2〉r/〈η(V )〉2
r at a bias voltage

V . Here, we take into account the tip density of states and
variations of the tip height above the sample during the mea-
surement. All details are given in Appendix B. The formula
we obtain for σ 2

η [Eq. (B5)] is a straightforward energy inte-
gration of the density of states correlator given in Eq. (4).
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FIG. 3. Analysis of tunneling conductance fluctuations. In (a)–(d), we describe the fluctuations of the density of states computed
semianalytically as a function of energy E , conductance g, and effective dephasing rate γ�. In (a), we show the energy dependence of the
normalized variance σ 2

ρ (red) at g = 30 and several values of γ� ∈ {0.03, 0.06, 0.1}mV. In black, we show the mean density of states used
for the calculation (solution of the Usadel equation; see Appendix A). In (b)–(d), we now fix the energy at Emax = 0.35 mV and plot in (b) a
color map of the log of σ 2

ρ as a function of both conductance and dephasing rate. In (c), we show the dependence of σ 2
ρ on conductance for

γ� ∈ {0.03, 0.25, 0.5} mV. In (d), we show the dependence on the dephasing rate for g ∈ {20, 30, 50}. In (e), we compare the experimentally
measured normalized variance of tunneling conductance σ 2

η with the one computed semianalytically from the density of states correlations
[Eq. (B5), derived in Appendix B from Eq.(4)]. We plot the theoretical prediction for g ∈ {20, 30, 50, 100} and the levels of dephasing which
best reproduce the experimental data in each case. We stress that no free parameter is used here.

The tunneling conductance variance can then be compared
to the experimentally measured σ 2

exp (in green) in Fig. 3(e).
The thin lines are semianalytical calculations of ση for g ∈
{20, 30, 50, 100} from Eq. (B5). For each value of g, we plot
the theoretical curve for a few dephasing rates γ� which best
reproduce the experimental variance. We stress that no free
parameter is used here because g takes very reasonable values
for the SIC phase [35,38], while the dephasing rate γ� is
constrained in a rather narrow window of physically relevant
energies, γ� ∈ [1, 150] μeV ∼ [kBT/30,�SIC/2]. We obtain
excellent quantitative agreement between experiment and the-
oretical predictions for a range of parameters corresponding
to g ∈ [50, 100], where the energy dependence of the nor-
malized variance close to the coherence peak is very nicely
reproduced.

Thus, we claim that emergent dI/dV spatial fluctuations
in the 2D superconductor are a direct probe of coherent
diffusion, well reproduced by a simple analytical model
(Sec. III A). Although a quantitative extraction of γ� is dif-
ficult in our case, our results show that scanning tunneling
spectroscopy intrinsically allows for a local measurement
of both dimensionless conductance and electronic coherence
length. This noninvasive local probe explores structurally op-
timized regions far from step edges or contacts. This direct
probe of electronic diffusion should be considered com-
plementary to transport measurements. Moreover, it shows
a huge, yet almost unexplored, potential for improvement
through the detailed analysis of spatial correlations and, in
particular, of the spatial structure of wave functions, which
is expected to be the very cause of multifractal Tc enhance-
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FIG. 4. dI/dV spatial correlations. In (a), we show several isoenergy high-resolution differential conductance maps for E = V − �tip ∈
{1, 2, 3, 4}Emax. In (b), we show the angle-averaged two-point correlations on large-scale maps as a function of distance and bias voltage [color
scale for (b)–(e) is given in (d) and (e)]. In this plot, we also show the position of superconducting coherence length ξ (red) and the diffusion
length corresponding to the energy scale kBT ∼ 30 μeV (black). In (c), we plot the angle-averaged autocorrelation computed on small-scale
maps. In (d) and (e), we use lin-log scales to evidence the peculiar behavior of the autocorrelation (normalized by its zero-distance value). In
(d), we focus on energies below Emax, and in (e), we focus on energies above Emax.

ment. In this regard, creating constant-height spectroscopic
maps would allow a more direct comparison to theoretical
predictions and is therefore a very exciting perspective.

IV. SPATIAL CORRELATIONS

After considering the variance of the isoenergy maps and
thus disregarding the spatial structure of dI/dV fluctuations,
we briefly focus on the analysis of the spatial correla-
tions of the local conductance 〈δηrδηr+r0〉r . In Fig. 4(a),
we show several high-resolution conductance maps at var-
ious energies above the coherence peak E = V − �tip ∈
{0.35, 0.7, 1.2, 1.5} mV ∼ {1, 2, 3, 4}Emax. We observe very
clearly that large-scale spatial structures at Emax tend to disap-
pear with increasing energy.

To explore the isoenergy spatial correlations of tunneling
conductance, we plot in Fig. 4(b) the angle-averaged two-
point correlation function as a function of distance r0. The
color of the curve represents the energy at which it is mea-
sured. In Fig. 4(c), we give a log-log representation of the

autocorrelation function for high-resolution maps (normalized
by its value at 0.1 nm). To better show the angle-averaged
radial decay at various energies on large-scale 250 nm maps,
we normalize the autocorrelation by its value at r0 = 1 nm
and plot it for energies below Emax in Fig. 4(d) and above
Emax in Fig. 4(e), where a curve’s color indicates its en-
ergy between 1.4 and 2 mV. It is apparent that above Emax,
these autocorrelation profiles depend only very weakly on
energy. In Fig. 4(d), we show that the spatial autocorrelation
function has a short-range regime with steep decay up to
approximately 10 nm followed by a long-range regime with
a slower decay. As made visible by the black lines, two ap-
parently log-decay regimes are identified with characteristic
distance slopes of 12 and 50 nm for the short- and long-range
regimes, respectively. Although they are not true correlation
lengths, these two characteristic lengths in the autocorrelation
function seem very natural because a value of 10 nm corre-
sponds to the typical nanocrystal size of the SIC monolayer
and a value of 50 nm corresponds to its superconducting
coherence length.
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(a) (c)

(d) (f)
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FIG. 5. Disordered attractive Hubbard model and LDOS distributions. In (a) and (b), we show the local density of states maps taken at
E = Emax and 2Emax using the attractive Hubbard model. The density of states is given in units of 1/t , with t being the hopping energy. In (c),
we show the mean density of states of the numerical model (black line) along with the normalized variance σ 2 (red). We plot the analytical
prediction from Eq. (4) for g ∈ {10, 11, 12}. We stress that no free parameter has been optimized. In (d), we plot the LDOS distribution at
fixed energy along with the corresponding Gaussian (dotted line) and log-normal (solid line) distributions (i.e., same variance). Distribution
functions are given in Appendix C. In (e), we show the rms deviation from, respectively, Gaussian (dark gray) and log normal (light gray)
models. Panels (f) and (g) are analogous to (d) and (e) for the experimental dI/dV distribution.

To deepen our understanding of these LDOS fluctuations,
we complement our experimental work with a numerical
study of superconducting electrons on a 2D disordered lattice
in the weak-disorder regime. The great similarity between ex-
perimental models and our fully self-consistent tight-binding
model then allows us to make a very precise comparison
between numerical, experimental, and analytical studies.

V. NUMERICAL STUDY OF LDOS FLUCTUATIONS WITH
THE ATTRACTIVE HUBBARD MODEL

We write and solve a tight-binding model tailored to match
the experimental system: a weakly disordered 2D diffusive su-
perconductor of comparable conductivity and dephasing rates.
We consider the attractive-U Hubbard model on the square
lattice in two dimensions with double-periodic boundary con-
ditions. Within the mean-field approximation the Hamiltonian
reads (U > 0)

Ĥ = −t
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ +
∑
i,σ

[Vi − μ − Un(ri )/2]n̂i,σ

+
∑

i

�(ri )ĉi,↑ĉi,↓ + H.c., (5)

where ĉ†
j,σ and ĉ j,σ denote the creation and annihilation op-

erators of an electron with spin σ = ±1/2 on site j. The
on-site disorder potential is drawn from a box distribution,
Vi ∈ [−W,W ], with the disorder strength fixed at W = 0.5 in

an attempt to match the experimental disorder strength. The
chemical potential μ fixes the filling factor to 0.3. Throughout
this work the interaction is taken to be U = 2.2t , and the
system size is L = 192; the local occupation number n(ri ) and
the pairing amplitude �(ri ) are determined self-consistently:

n(ri ) =
∑

σ

〈n̂i,σ 〉, �(ri ) = U 〈ĉ†
i,↓ĉ†

i,↑〉, (6)

where n̂i,σ = ĉ†
i,σ ĉi,σ . We solve Eqs. (5) and (6) iteratively

until a self-consistent solution is obtained (see Ref. [19]
for further computational details). The ensemble averaging
typically involves more than 100 samples, and the density
of states is computed by averaging on an energy scale of
〈�〉/10, in good agreement with the experimental situation
(�tip = 20 μeV ∼ �SIC/10). We note that the numerical
model does not reproduce the strong spin-orbit coupling of
the SIC phase. Nevertheless, as explained in Sec. III A, the
theoretical analysis predicts that strong spin-orbit coupling
reduces the normalized standard deviation σ by a factor of
2 [23]. Keeping this twofold reduction in mind allows us
to quantitatively compare experiments, analytical predictions,
and numerical calculations.

In Fig. 5, we show the results of the numerical inves-
tigation and compare them with both the analytical theory
derived earlier and the experimental results. We check that,
as expected at weak disorder [23] and in quantitative agree-
ment with the experiment, the spectral gap shows very small
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fluctuations of about 2%. In Figs. 5(a) and 5(b), we show
local density of states maps at E = Emax and E = 2Emax. In
excellent agreement with the experimental results (Fig. 4),
we observe that LDOS fluctuations exhibit much longer range
correlations close to Emax than at higher energy [see the size
of the structures in Figs. 5(a) and 5(b)].

A. Gap width fluctuations

Following the analysis in Sec. III C for the analytical the-
ory, we start our systematic comparison between the SIC
phase and the attractive Hubbard model using gap fluctua-
tions. In the self-consistent numerical model, we find relative
fluctuations σEmax ∼ 2% slightly above our experimental result
of 1% [see Fig. 2(c)]. A detailed study of the spectral gap and
order parameter statistics in the disordered attractive Hubbard
model is underway [44].

B. Normalized variance

Like in the experimental section above, we now proceed
to study the normalized variance of the LDOS spatial fluctua-
tions. In Fig. 5(c), we show the mean density of states of the
numerical model (black line) along with the normalized vari-
ance σ 2 (red). We compare the numerically obtained LDOS
variance with the analytical prediction derived from Eq. (4)
depending on the dimensionless conductance g and dephasing
rate γ�. As our tight–binding approach considers solutions
of the stationary Schrödinger equation, it does not include
dephasing. γ� is thus substituted by a Thouless energy cor-
responding to diffusive motion at the scale of the system size:
γ� = h̄D

L2 . Knowing the density of states and Fermi velocity
of the 2D electron gas, we manage to compute Eq. (4) as a
function of a single parameter, the dimensionless conductance
g (with γ� = gta2/L2). We find that g ∼ 10 almost perfectly
reproduces the numerical results (red) in the entire energy
range we considered. This lower conductance compared to the
SIC phase is fully consistent with the gap width fluctuations:
two times higher for the model than for experiments. We
conclude, based on enhanced fluctuations of both the LDOS
and the gap width, along with a similar energy dependences,
that the tight-binding system is slightly more disordered than
its experimental counterpart.

C. LDOS distributions

We already know from several experiments that disordered
systems tend to yield log-normal LDOS distributions [7,8].
More precisely, close to the Anderson transition, a log-normal
distribution of the LDOS is expected [4,16,21]. In the low-
disorder regime relevant here, log-normal distributions for the
LDOS have also been predicted analytically [45] and observed
in numerical models [22].

Here, we study the distribution functions of both our exper-
imental dI/dV maps and the ones obtained from the attractive
Hubbard model. Starting with the numerical results, we plot
in Fig. 5(d) the distribution of the LDOS distribution at fixed
energy along with the corresponding (i.e., same variance)
Gaussian and log-normal laws (see Appendix C). A clear
log-normal behavior is identified in the entire energy range
between Emax and 3Emax, as confirmed by Fig. 5(e), which

compares the rms deviation of the distribution to the Gaus-
sian log-normal models. Turning to the experimental data,
we show in Fig. 5(f) the dI/dV distribution with Gaussian
(dotted line) and log-normal (solid line) laws with the same
variance at voltages corresponding to Emax and 1.5Emax. Like
before, we plot in Fig. 5(g) the rms deviation of the Gaussian
and log-normal models. The fact that the log-normal model
is more accurate hints at the multifractal nature of the LDOS
fluctuations close to the superconducting coherence peak.

VI. CONCLUSION

As a model system for a two-dimensional weakly dis-
ordered superconductor for which multifractal superconduc-
tivity is being actively pursued, we prepared a single layer
of lead on Si(111), where electrons are antilocalized in a
controlled crystalline disorder and become superconducting
below 1.8 K. Using scanning tunneling spectroscopy, we re-
ported the measurement of tunneling conductance fluctuations
with high spatial and spectral resolutions on scales exceeding
the superconducting coherence length. To support our analy-
sis, we used two theoretical approaches, a semianalytical one
and a numerical one. Our numerical approach consisted of
an attractive Hubbard model with the disorder level tuned to
match the experiment and probed both gap width and LDOS
fluctuations close to the superconducting coherence peak.
Our experimental, semianalytical, and numerical results were
shown to be quantitatively consistent with the mesoscopic
fluctuation physics in the weakly antilocalized regime usually
probed with transport measurements. The LDOS fluctuation’s
amplitude depends on two local parameters which can be
probed and quantitatively extracted in this way: the metal’s
conductance and the effective electronic dephasing rate.
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APPENDIX A: MEAN DENSITY OF STATES

We use the Usadel model [37,46] to describe the diffusive
SIC phase because the mean free path is much smaller than
the superconducting coherence length in this sample: �∼1 nm
� ξ∼50 nm. In more detail, we use the spectral angle θE

parametrization, with θE being a solution of a homogeneous
Usadel equation with the depairing term �:

iE sin(θE ) + � cos(θE ) − � sin(θE ) cos(θE ) = 0. (A1)

The solution of this equation θE yields XE = cos(θE ) (=
E√

E2−�2 at � = 0), from which the density of states Re(XE )
is obtained.

Using Eqs. (A2) and (A1), we convolve the density of
states of the tip with that of the sample (along with the Fermi
distribution at 300 mK) in order to reproduce the mean differ-
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(a) (b) (c)

FIG. 6. Fit of the mean conductance. In (a), the mean differential conductance measured with a platinum tip is shown as a function of the
bias voltage along with the best Usadel fit. In (b), we show the mean dI/dV curve of the large-scale spectroscopic map measured with a bulk
lead tip, while the solid line is a convolution of the Usadel density of states for the sample with the tip density of states at 300 mK. In (c),
we show a zoom of the low-energy sector for the superconducting tip allowing a very precise extraction of �SIC and �SIC (see the excellent
agreement of the Usadel model with the experiment).

ential conductance:

I ∝
∫

ρtip(E − eV )ρSIC(E , r)[ f (E ) − f (E − eV )]dE ,

(A2)

where ρtip and ρSIC are, respectively, the energy-dependent
DOSs of the tip and the SIC phase. As detailed in Fig. 6,

we find that the lead tip is very well described by a Usadel
superconductor (�tip = 1.345 meV, �tip = 20 μeV). The SIC
phase is found to be very well described by �SIC = 0.35 meV
and �SIC = 10 μeV, in excellent agreement with additional
measurements using a normal tip [Figs. 1(b) and 6(a)] and
with earlier works [35,38].

APPENDIX B: DIFFERENTIAL CONDUCTANCE VARIANCE COMPUTATION

We now attempt to rationalize the tunneling conductance spatial fluctuations. Considering a simplified expression for the
tunneling current, we write it as a zero-temperature convolution of the tip and sample density of states (A2). Experimentally, the
tip’s height above the sample and thus the transmission’s coefficient t are not constant but are rather controlled by fixing the high
voltage current I (V� = 3 mV) to 20 pA. Trying to estimate density of states leads us to compute

η(V, r) = I (V�)

I (V�, r)

∂I

∂V
(V, r). (B1)

At T = 0, we write, for the tunneling current I and the tunneling conductance dI/dV ,

I = |t |2
∫ V

0
dEρtip(E − eV )ρ(E , r),

∂I

∂V
= |t |2ρtip(0)ρ(V, r) − |t |2

∫ V

0
dEρ ′

tip(E − V )ρ(E , r), (B2)

where ρ ′
tip(E ) ≡ dρtip(E )/dE . It is convenient to introduce the following notations:

j̄(V ) =
∫ V

0
dEρtip(E − V )ρ(E ), j̄′(V ) = ρtip(0)ρ̄(V ) −

∫ V

0
dEρ ′

tip(E − V )ρ̄(E ). (B3)

Assuming that fluctuations δρ(E , r) = ρ(E , r) − ρ̄(E ) near the average DOS ρ̄(E ) are weak, we find

δη(V, r)

I (V�)
= ρtip(0)δρ(V, r)

j̄(V�)
−

∫ ∞

0
dE δρ(E , r)

ρ ′
tip(E − V ) j̄(V�)�(V − E ) + ρtip(E − V�) j̄′(V )�(V� − E )

[ j̄(V�)]2
. (B4)

Here, �(x) = 1 for x > 0 and zero otherwise. Hence, we obtain

〈δη(V1, r1)δη(V2, r2)〉
[I (V�)]2

= ρ2
tip(0)

j̄(V�) j̄(V�)
〈δρ(V1, r1)δρ(V2, r2)〉 − ρtip(0)

j̄(V�)

∫ ∞

0
dE 〈δρ(V1, r1)δρ(E , r2)〉

× ρ ′
tip(E − V2) j̄(V�)�(V2 − E ) + ρtip(E − V�) j̄′(V2)�(V� − E )

[ j̄(V�)]2
− ρtip(0)

j̄(V�)

×
∫ ∞

0
dE 〈δρ(V2, r2)δρ(E , r1)〉ρ

′
tip(E − V1) j̄(V�)�(V1 − E ) + ρtip(E − V�) j̄′(V1)�(V� − E )

[ j̄(V�)]2
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+
∫ ∞

0
dE1

∫ ∞

0
dE2 〈δρ(E1, r1)δρ(E2, r2)〉

× ρ ′
tip(E1−V1) j̄(V�)�(V1−E1)+ρtip(E1−V�) j̄′(V1)�(V�−E1)

[ j̄(V�)]2

× ρ ′
tip(E2−V2) j̄(V�)�(V2−E2) + ρtip(E2−V�) j̄′(V2)�(V�−E2)

[ j̄(V�)]2
. (B5)

APPENDIX C: ISOENERGY LDOS DISTRIBUTION

We compare the isoenergy dI/dV distributions to Gaussian and log-normal models of variance σ . The distribution of the
logarithm of the normalized density of states x = ln[ρ(E , r)/〈ρ(E , r)〉r] for a Gaussian distribution is written as

flog-n(x) = 1√
2πσ 2

exp

[
x − (ex − 1)2

2σ 2

]
. (C1)

For a log-normal distribution, which is expected in the theoretical analysis and recovered in the numerical work, the log of
the normalized LDOS x is distributed as follows:

fn(x) = 1√
2πσ 2

exp

[−(x + σ 2/2)2

2σ 2

]
. (C2)

APPENDIX D: GAP WIDTH FLUCTUATIONS

Let us assume that the LDOS ρ(E ) at a given realization of disorder potential has the single maximum (for positive energies)
at Emax as a function of energy. Assuming the deviation δEmax = Emax − Emax from the energy Emax of the maximum in the
average LDOS ρ(E ), we can write

0 = ρ ′(Emax) � ρ̄ ′(Emax) + δρ ′(Emax) � ρ̄ ′(Ēmax) + ρ̄ ′′(Ēmax)δEmax + δρ ′(Emax) � ρ̄ ′′(Ēmax)δEmax + δρ ′(Emax)

�⇒ (δEmax)2 � [δρ ′(Ēmax)]2

[ρ̄ ′′(Ēmax)]2
. (D1)

Here, we can the variance of the energy derivative of the LDOS read from Eq. (4).

(a) (b) (c)

(d) (e) (f)

FIG. 7. Symmetry with respect to Fermi energy. For positive bias voltage, we show (a) the LDOS map at Emax = 1.7 mV, (b) the variance
and mean value of tunneling conductance, and (c) the normalized standard deviation ση. In (d)–(f), we show the corresponding data for negative
bias voltage.
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The quantity XE for the Usadel equation (A1) near Emax can be approximated as (assuming � � �) [47,48]

XE =
(

�

�

)1/3

f

(
E − Eg

�2/3�1/3

)
, (D2)

where the spectral gap Eg = �[1 − 3(�/�)2/3/2]. Then we find the following estimates:

[δρ ′(Ēmax)]2 � c1

4πg

�2

�2
, ρ̄ ′′(Ēmax) � c2

(
�

�

)5/3

, (δEmax)2 � c

g

(
�

�

)4/3

, (D3)

where c1 ≈ 0.23, c2 ≈ −0.24, and c = c1/(4πc2
2 ) ≈ 0.32.

APPENDIX E: SYMMETRY WITH RESPECT TO THE FERMI ENERGY

Our analytical calculations predict the same normalized variance in the negative and positive energy ranges. It is important for
the consistency of our analysis to check this symmetry in the experiments. In Fig. 7, we show that not only the visual aspect of
the LDOS map at the coherence peak but also the energy-dependent normalized LDOS standard deviation is perfectly symmetric
with respect to the Fermi level.
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