
PHYSICAL REVIEW B 107, L220409 (2023)
Letter

Chirality inversion and radius blowup of a Néel-type skyrmion by a Pearl vortex
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We develop a theory for the coaxial configuration of a Néel-type skyrmion and a Pearl vortex in thin
superconductor-chiral ferromagnetic heterostructures. Using an exact numerical solution of the Euler-Lagrange
equation and micromagnetic simulations, we demonstrate that the inhomogeneous magnetic field of the Pearl
vortex significantly modifies the skyrmion profile with respect to the same profile in the absence of the vortex.
We discover drastic enlargement of the radius of the skyrmion and inversion of the chirality of the skyrmion.
To unravel the physics behind these effects, we invent a two-parameter ansatz for the magnetization profile of
the skyrmion in the presence of the vortex. Chirality inversion and radius blowup are controlled not only by the
material parameters of the heterostructure but also by the thickness of the superconductor. Our findings can have
implications for Majorana modes localized at skyrmion-vortex pairs.
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I. INTRODUCTION

Interest in the coexistence of magnetism and supercon-
ductivity in heterostructures has resurged over the last two
decades [1–5]. Superconductor–chiral ferromagnet (SF) bi-
layers have recently attracted a great deal of attention
[6–8] due to their potential to exhibit two topologically
nontrivial configurations: (i) skyrmions stabilized by the
Dzyaloshinskii-Moriya interaction (DMI) in a ferromagnetic
film [9], and (ii) vortices in a superconductor. Skyrmions
in SF bilayers demonstrate rich physics, as they can in-
duce Yu-Shiba-Rusinov-type bound states [10,11], modify the
Josephson effect [12], and change the superconducting crit-
ical temperature [13]. Skyrmion-vortex pairs host Majorana
modes [14–21] and can serve as a scalable topological quan-
tum computing platform [22]. An experimental demonstration
of stable skyrmion-vortex coexistence has been recently re-
ported in a [Ir1Fe0.5Co0.5Pt1]10/MgO/Nb sandwich [23].

Skyrmions and vortices in SF bilayers can form bound
pairs due to the interplay of spin-orbit coupling and thr prox-
imity effect [24,25] as well as due to their interaction via
the magnetic stray fields [26–29]. Traditionally, analysis of
Majorana modes in skyrmion-vortex pairs ignores the effect
of stray fields. However, for a thin SF bilayer, the interaction
due to stray fields results in a dramatic effect: Repulsion of
a Néel-type skyrmion from a Pearl vortex to a finite distance
stable position [29].

In this letter, we develop a theory for the coaxial config-
uration of a Néel-type skyrmion and a Pearl vortex in a thin
SF heterostructure. We use two complementary approaches:
Exact numerical solution of the Euler-Lagrange equation,
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cf. Eq. (3), and micromagnetic simulations based on the
Landau-Lifshitz-Gilbert equation. To perform the free energy
minimization, we invent a two-parameter ansatz, cf. Eq. (5),
inspired by exact numerical solutions of the Euler-Lagrange
equation. We create this anzatz based on naturally arising
synergy of the profile of a sole skyrmion and the magneti-
zation induced by the vortex. We find that the inhomogeneous
magnetic field of the Pearl vortex significantly modifies the
profile of the skyrmion and results in two effects: (i) drastic
enlargement of the radius of the skyrmion with respect to that
in the absence of the vortex and (ii) inversion of the chirality
with respect to the natural chirality fixed by the sign of the
DMI. Both effects can have implications for the existence of
Majorana modes localized at skyrmion-vortex pairs.

II. MODEL

We consider a heterostructure consisting of two films,
superconducting and ferromagnetic, separated by a thin insu-
lating layer (of thickness �λL) that suppresses the proximity
effect. The superconducting film is assumed to be much thin-
ner than the London penetration depth, dS�λL, and to contain
a Pearl vortex. The main goal of this letter is to study the
situation in which a Néel-type skyrmion in the ferromagnetic
film is located directly above (i.e., coaxially) a Pearl vortex in
the superconducting film.

The free energy of a thin chiral ferromagnetic film interact-
ing with a Pearl vortex is given by

F[m] = dF

∫
d2r

{
A(∇m)2 + K

(
1 − m2

z

)

+ D[mz∇ · m − (m · ∇)mz] − Msm · BV|z=+0
}
.

(1)
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Here, m(r) is the unit magnetization vector, Ms is the
saturation magnetization, and dF is the thickness of the ferro-
magnetic film. Parameters A > 0, K > 0, and D stand for the
exchange, effective perpendicular anisotropy [30], and DMI
constants, respectively. The z axis is directed perpendicularly
to the film. The magnetic field due to the Pearl vortex BV is
centered at the origin:

BV = φ0sgn(z)∇
∫

d2q
(2π )2

e−q|z|+iqr

q(1 + 2qλ)
, (2)

where φ0 = hc/2e is the flux quantum and λ = λ2
L/dS is the

Pearl length (see Refs. [31,32] and the Supplemental Material
[33]). The free energy F[m] is normalized in such a way that
F = 0 for the ferromagnetic state (mz = 1) in the absence of
the Pearl vortex (BV = 0).

Due to the radial symmetry of the problem, the magnetiza-
tion of the Néel-type skyrmion coaxial with the Pearl vortex
can be written as m = er sin θ (r) + ez cos θ (r). Minimizing
the free energy F[m] with respect to the skyrmion angle θ (r),
one can derive the Euler-Lagrange equation:

�2
w

r
∂r[r∂rθ (r)] −

(
�2

w + r2
)

2r2
sin 2θ (r) + 2ε

sin2 θ (r)

r/�w

+ γ [bz(r) sin θ (r) − br (r) cos θ (r)] = 0, (3)

where �w = √
A/K is the domain wall width. In Eq. (3), we

have two dimensionless parameters: The DMI strength
ε = D/2

√
AK and the effective strength of the Pearl

vortex γ = (�w/λ)(Msφ0/8πA). The functions br (r)
and bz(r) are the rescaled projections of the magnetic
field of the Pearl vortex in the ferromagnetic film
BV |z=+0 = −(φ0/4π�wλ)[br (r)er + bz(r)ez].

Equation (3) should be accompanied by appropriate bound-
ary conditions. The first boundary condition θ (r → ∞) = 0
accounts for the fact that, far from the origin, where the vortex
and the skyrmion are situated, the magnetization is uniform,
i.e., mz = 1. The second boundary condition describes the
magnetization at r = 0 and depends on the particular system
configuration. The possible configurations are described in
detail below.

A. Vortex without skyrmion

If the condition θ (r = 0) = 0 is assumed, the solution
θ (r) = θγ (r) of Eq. (3) describes the magnetization of an
initially homogeneous ferromagnetic film in the absence of
any skyrmion in the magnetic field of the Pearl vortex. In
this letter, we focus on the most realistic case in which the
Pearl length λ is much larger than the skyrmion radius. In
that case, both the rescaled magnetic field of the vortex and
the magnetization angle θ (r) need only be considered at dis-
tances r � λ. In that approximation, br (r) ≈ bz(r) ≈ �w/r
[34], and the solution of Eq. (3) with the boundary condition
θ (r = 0) = 0 can be expressed analytically as [35]

θγ (r) ≈ γ

[
K1

(
r

�w

)
− �w

r

]
, γ � 1, (4)

where K1(x) is the modified Bessel function of the second
kind.

B. Skyrmion with vortex

If we impose the condition θ (r = 0) = χπ with χ = ±1,
the solution of Eq. (3) corresponds to a skyrmion with chi-
rality χ . The chirality χ = +1 (−1) means that the in-plane
projection of the magnetization is directed from (to) the center
of the skyrmion. As is well known [36], without the Pearl
vortex γ = 0, the only solution of Eq. (3) exists for |ε| < 2/π

[37] and has a single chirality χ = sgn(ε). It should be em-
phasized that, in the presence of the vortex γ > 0, solutions
of Eq. (3) with single or both chiralities χ = ±1 can be found
depending on the magnitudes of γ and ε.

The exact solution of Eq. (3) with the boundary condition
θ (r=0) = χπ can be found numerically, e.g., by the shooting
method. This procedure is computationally expensive because
the shooting parameter must be determined to exponentially
high accuracy compared with the solution itself. However,
an approximate solution can be found using an alternative
method, which is convenient both for numerical computations
and analytical study.

C. Skyrmion-vortex ansatz

To describe the skyrmion-vortex coaxial pair, we propose
using the following ansatz:

θR,δ,γ (r) = θR,δ (r) + θγ (r) cos θR,δ (r), (5)

which is a modified version of the well-known 360◦ domain
wall ansatz:

θR,δ (r) = 2 arctan
sinh(R/δ)

sinh(r/δ)
. (6)

By replacing θ (r) with this modified skyrmion angle θR,δ,γ (r)
in the free energy, F[m] can then be minimized with respect
to two parameters only: R and δ. While the latter plays the
role of the skyrmion wall width, the former encodes both the
skyrmion chirality χ = sgnR and its radius |R|.

The qualitative idea of the construction of the ansatz in
Eq. (5) is as follows. One may expect that the skyrmion
magnetization shape is described by the 360◦ domain wall
ansatz which gains additional rotation due to the magnetic
field of the vortex, i.e., θ (r) ≈ θR,δ (r) + δθ (r). To determine
the rotation angle δθ (r), we consider the magnetization of
the ferromagnet in three different regions: Near the center
of the skyrmion, at r ∼ |R|, and far from the origin. Far
from or near the center of the skyrmion, the magnetization
is nearly homogeneous mz ≈ ±1, and its variation is deter-
mined mostly by the magnetic field of the vortex, hence
δθ (r) ≈ ±θγ (r). In the intermediate region, mz ≈ cos θR,δ (r),
such that the rotation angle δθ (r) can be smoothed out to
give δθ (r) ≈ θγ (r)mz = θγ (r) cos θR,δ (r), and we arrive at the
ansatz in Eq. (5).

D. Micromagnetic modeling

In addition to the exact solution of Eq. (3) and the mini-
mization of F[m] with the ansatz in Eq. (5), we have run a
series of micromagnetic simulations using OOMMF software
[38]. We simulated the system as a set of classical magnetic
vectors placed at the centers of the grid cells in the xy plane.
We impose periodic boundary conditions, meaning that the
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total energy on such a lattice can be taken in its continuous
limit and is thus given by Eq. (1). The Pearl vortex is located
at the origin x = y = 0. We initiate the system with the mag-
netization determined by the ansatz in Eq. (5).

III. RESULTS

The magnetic field of the vortex makes the free energy
landscape more complicated than at γ = 0. There are regions
of γ and ε in which several minima of F[m] exist. To illustrate
this behavior, in Fig. 1(a), we plot the shifted free energy
�F[R] = F[R] − F[R → 0] normalized by the energy scale
AdF as a function of the skyrmion radius |R| for ε = 0.3
and γ = 0.522 [39]. Here, F[R] is the free energy F[m]
computed with the help of the ansatz θ (r) = θR,δ,γ (r) and
minimized with respect to the skyrmion wall width δ only.
As can be seen in Fig. 1(a), �F[R] has three minima: Two
minima corresponding to the positive chirality χ = +1 (green
square and red diamond) and one minimum for negative
chirality χ = −1 (blue disk). These minima may potentially
correspond to the skyrmion stable states (see below). We
emphasize that the radius of the stable skyrmion configuration
(red diamond in Fig. 1) is R ≈ 8.6�w, which is ∼25 times
larger than the skyrmion radius R0 ≈ 0.33�w at γ = 0. Addi-
tionally, �F[R] has two maxima (brown and magenta circles)
which correspond to the saddlelike solutions [40] of Eq. (3).

In Fig. 1(b), we show the exact solutions of Eq. (3) (solid
curves) in comparison with the instances of the ansatz (dashed
curves) for the five extrema of �F[R] in Fig. 1(a). To plot
θR,δ,γ (r), we use R and δ found by minimizing the free energy.
There is very good agreement between the exact solution and
the ansatz. We have checked that such an agreement is a
general situation provided that γ � 1.

The solutions with positive chirality shown in Fig. 1 have
an interesting feature. The magnetization is parallel to the
z axis not only at the origin and at infinity but also at two
intermediate distances [see Fig. 1(b)]. This is related to the
fact that, at small distances from the origin, the magnitude of
the skyrmion angle is larger than π , whereas at large distances,
the angle becomes negative. Both features arise because the
spatial dependence of the skyrmion angle at small and large
distances is controlled by the vortex solution in Eq. (4), see
dotted curves in Fig. 1(b).

By exploring different initial magnetizations in the micro-
magnetic modeling, we have managed to observe all three
stable skyrmion profiles for ε = 0.3 and γ = 0.522. They
are shown as color-plot insets in Fig. 1. For three sta-
ble skyrmions, we have also extracted a dependence of the
skyrmion angle on distance r; these are represented by sym-
bols in Fig. 1(b). We emphasize that the exact solution of
Eq. (3), the ansatz in Eq. (5), and the result of the micromag-
netic simulations agree remarkably well.

As the choice of parameters ε and γ corresponds to a par-
ticular heterostructure, varying these parameters may cause
the number of extrema in �F[R] to change. To investigate
this relationship, we show in Fig. 2 semilog dependencies of
R on γ for several values of ε. The solid and dashed curves
on the plane (γ , R) correspond to the minima and maxima of

FIG. 1. (a) Dependence of shifted dimensionless free energy
�F [R]/(AdF ) on skyrmion radius |R| for ε = 0.3 and γ = 0.522.
The thicker (thinner) curve describes it for the positive (negative)
chirality χ = +1(−1). The blue disk, green square, and red diamond
indicate the minima of �F [R], while the brown and magenta circles
indicate the maxima. (b) The skyrmion angles θ (r) corresponding
to the minima and maxima of �F [R] from (a). The solid and
dashed curves show the exact solution of Eq. (3) and the approxima-
tions given by the ansatz in Eq. (5) with {R, δ}/�w ≈ {−0.28, 0.78},
{0.16, 0.62}, {2.0, 0.91}, {3.8, 0.96}, and {8.6, 0.99}, respectively.
The functions θγ (r) and π − θγ (r) are plotted as the black dotted
curves. The points marked by blue disks, green squares, and red
diamonds are extracted from the micromagnetic modeling. Insets:
The spatial distribution of magnetization for stable skyrmion states
is obtained by micromagnetic simulations. The colors of the inset
frames correspond to the color of the curves θ (r) of (b). The color
gradient indicates the magnitude of the z component of magneti-
zation (see color bar). The black arrows guide the magnitude and
direction of the in-plane magnetization. The pink and cyan curves
shown in the insets in (a) (green and red frames) correspond to the
distances from the center at which mr = 0.
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FIG. 2. Dependence of skyrmion radius |R|/�w on the effective
vortex strength γ for several values of DMI parameter ε in semilog
scale for chiralities χ = ±1. The solid and dashed curves correspond
to the minima and maxima of �F [R], respectively. The area of
unstable coaxial states and the area of metastable states are marked
by the darker and lighter gray fillings, respectively. The values of ε

used for the curves with the corresponding numbers from 1 to 14
are provided in the lower panel. The blue disk, green square, and
red diamond correspond to the stable skyrmions in Fig. 1, while
the brown and magenta circles show the solutions corresponding to
maxima of �F [R] there.

�F[R], respectively. The extent of the saddlelike metastable
states is marked by the lighter gray filling in Fig. 2.

Both the exact solution of Eq. (3) and the relevant instances
of the ansatz in Eq. (5) give stable skyrmions, provided that
the skyrmion center coincides with the center of the Pearl
vortex. However, these states can be unstable due to the fact
that, for particular ε and γ , the skyrmion center can shift
from the center of the vortex. As is shown in Ref. [29], a
skyrmion-vortex pair can remain stable when the skyrmion
is located at some finite distance a from the Pearl vortex.
To determine the stability of the coaxial configuration, we
shift the skyrmion from the center to the infinitesimally small
distance a → 0 and compare the free energy of the shifted
and coaxial configurations. The corresponding analysis [41]
shows that coaxial skyrmion-vortex states with chirality χ =
+1 for ε < εcr ≈ 0.49 and γ < γcr (ε) are unstable, in which

case the skyrmion is repulsed from the vortex. If any of the
above conditions are not satisfied, the coaxial configuration
appears to be stable with respect to the shifting. In Fig. 2, we
mark the area of the unstable configurations by the darker gray
filling, while the white background indicates the stable coaxial
configurations.

The diagram in Fig. 2 has several interesting features.
Firstly, all curves for skyrmions of chirality χ = +1 (the
upper panel) are located in quadrants which are produced on
the plane (γ , R) by the curve at ε = εsep ≈ 0.266 (black line
#7). For ε < εsep, curves R(γ ) are located in the left-bottom
and right-top quadrants, while the curves for ε > εsep are situ-
ated in the right-bottom and left-top quadrants. We emphasize
that, even for ε � 0, there are skyrmions with χ = +1 in the
right-top quadrant (see curves #12 and #13).

Secondly, for 0.25 � ε � 0.35, there are values of γ where
two skyrmions of chirality χ = +1 may exist. An example of
this situation can be seen in Fig. 1(a), in which the solid curve
displays two minima of �F[R] which correspond to positive
chirality.

Thirdly, for each pair of ε and γ , there is a skyrmion of
chirality χ = −1 with a certain radius |R|, see the lower panel
of Fig. 2. However, it should be emphasized that, for small γ

and ε > 0, the skyrmion radius appears to be extremely small
(R ≪ �w). In this case, Eq. (1) is no longer valid, and thus,
solutions with such small radii are not included in Fig. 2. As
can be clearly seen in Fig. 2, the radius |R| for the skyrmions
with χ = −1 increases monotonically with the growth of γ .

Finally, for each ε and for both chiralities χ = ±1, there
exists a critical value γ±(ε). When an increasing γ approaches
γ±, the skyrmion radius grows significantly. For |R| 	 �w, the
free energy can be calculated in the leading approximation:

�F[R]

8πAd f
≈ (1 ∓ επ/2)|R|

�w

− γ �−2
w

∫ |R|

0
dr rbz(r). (7)

The first term involves the energy of the domain wall sep-
arating the interior and exterior skyrmion regions, while the
second term comes from the energy of the inner skyrmion
region in which magnetization mz ≈ −1 is directed opposite
to the magnetization in the ferromagnetic state mz ≈ +1. For
�w � |R| � λ, we can approximate bz(r) ≈ �w/r and esti-
mate the second term in Eq. (7) as γ |R|/�w. Therefore, the
critical value of γ can be estimated as γ±(ε) ≈ 1 ∓ επ/2 > 0.
If γ � γ±, the skyrmion radius becomes comparable or larger
than the Pearl length |R| � λ 	 �w, and the minimum of
�F[R] is determined by the relation |R|bz(|R|) ≈ �wγ±/γ .
For γ 	 γ±, we can approximate the magnetic field of the
vortex as bz(|R|) ≈ 4�wλ2/|R|3 at |R| 	 λ. Therefore, the
minimum of �F[R] occurs at |R| ≈ 2λ

√
γ /γ±.

IV. DISCUSSION

As shown in Fig. 2, the most interesting effects are pre-
dicted to occur in the range ε = 0.25 ÷ 0.45 and γ = 0.3 ÷
0.7. However, in the SF heterostructures which have been
studied experimentally thus far [23,42–47], ε varies from 0.25
to 0.45, whereas γ � 0.1 due to the large magnitude of the
Pearl penetration length. Therefore, to observe the effects
predicted here, γ should be enlarged by increasing dS , and
cleaner superconductors should be used to reduce λL.
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Our results imply that a superconducting vortex stabilizes
a Néel-type skyrmion in the absence of DMI, as shown by the
curve #12 in Fig. 2 (for a similar effect in the absence of a
vortex, see Ref. [48]).

We note that experiments are usually performed under
an external out-of-plane magnetic field. Such a field can be
readily incorporated into our approach [49]. In addition, the
case of an antivortex (γ < 0) cannot be easily related to
the case γ > 0 via a simple symmetry transformation and,
therefore, requires separate investigation [49]. Finally, our
theory can be extended to skyrmions and vortices in confined
geometries [50–52], skyrmion-vortex lattices [53], and more
exotic topological spin textures [7], such as bimerons [54] and
antiferromagnetic skyrmions [55].

V. SUMMARY

Using three complementary approaches, namely, the exact
numerical solution of the Euler-Lagrange equation in Eq. (3),
the free energy minimization with two-parameter ansatz in
Eq. (5), and micromagnetic simulations, we have developed
a theory of the magnetization profile for the coaxial con-
figuration of the Néel-type skyrmion and the Pearl vortex
in thin superconductor-chiral ferromagnetic heterostructures.

We have found that the inhomogeneous magnetic field of
the Pearl vortex significantly influences the skyrmion profile,
leading to drastic enhancement of the radius of the skyrmion
(experimental indication of which has been recently reported
in a weak parameter range [56]) and inversion of the chirality
of the skyrmion. Both effects are controlled by the dimen-
sionless magnetic field strength γ , which is proportional to
the thickness of the superconductor dS . Such a significant
modification of the skyrmion magnetization profile in the
presence of a vortex can affect Majorana modes localized at
skyrmion-vortex pairs [14–21].
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