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Generalized surface multifractality in two-dimensional disordered systems
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Recently, a concept of generalized multifractality, which characterizes fluctuations and correlations of critical
eigenstates, was introduced and explored for all 10 symmetry classes of disordered systems. Here, by using the
nonlinear sigma-model (NLσM) field theory, we extend the theory of generalized multifractality to boundaries of
systems at criticality. Our numerical simulations on two-dimensional systems of symmetry classes A, C, and AII
fully confirm the analytical predictions of pure-scaling observables and Weyl symmetry relations between critical
exponents of surface generalized multifractality. This demonstrates the validity of the NLσM for the description
of Anderson-localization critical phenomena, not only in the bulk but also on the boundary. The critical exponents
strongly violate generalized parabolicity, in analogy with earlier results for the bulk, corroborating the conclusion
that the considered Anderson-localization critical points are not described by conformal field theories. We further
derive relations between generalized surface multifractal spectra and linear combinations of Lyapunov exponents
of a strip in quasi-one-dimensional geometry, which hold under the assumption of invariance with respect to a
logarithmic conformal map. Our numerics demonstrate that these relations hold with an excellent accuracy.
Taken together, our results indicate an intriguing situation: the conformal invariance is broken but holds partially
at critical points of Anderson localization.
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I. INTRODUCTION

A quantum state in a disordered electronic system can
be either localized or delocalized [1,2]. Transitions between
these localized and delocalized phases, which can be driven,
e.g., by varying the strength of disorder or the energy, are
called Anderson transitions [3]. In a broader sense, Anderson
transitions can also occur between two localized phases of
different topology. At the critical point of an Anderson transi-
tion, wave functions have unusual statistical properties: their
moments scale in a nontrivial, power-law way with the size
of the system, Ld〈|ψ (r)|2q〉 ∝ L−τq , where τq are independent
critical exponents. This property is called multifractality [3].

It was discovered [4–8] that the scaling of moments
of wave functions at surfaces S at Anderson transitions is
characterized by a distinct set of critical exponents τ (s)

q ,

i.e., Ld−1〈|ψ (r ∈ S)|2q〉 ∝ L−τ (s)
q , which is the phenomenon

known as surface (or, equivalently, boundary) multifractal-
ity. Experimental studies of the Anderson transition usually
require transport measurements, which can be performed by
attaching leads to the surfaces of the system, making it possi-
ble to directly study the surface multifractality. For example,
the surface multifractality is expected to be of relevance
for experiments on scanning tunneling microscopy of the
surface of a magnetic semiconductor Ga1−xMnxAs near the
three-dimensional metal-insulator transition [9]. Furthermore,
it was shown that for a certain range of q, surface effects have
a dominant contribution to the multifractality of the entire
system (including bulk and surface) [4].

The field-theoretical approach to Anderson localization is
based on the nonlinear sigma model (NLσM) [3] formalism.
The problem is greatly enriched by the existence of as many as
10 symmetry classes of disordered fermionic systems [10–12]
and by associated topologies. The NLσM framework allows
one to address various symmetry and topology classes, focus-
ing on key properties of a given universality class.

The “conventional” multifractality characterizes the statis-
tics of amplitudes of a single wave function. It was recently
recognized that the Anderson-transition criticality implies a
much broader pattern of critical correlations that involve sev-
eral wave functions; the corresponding concept was termed
“generalized multifractality” [13]. Pure-scaling observables
of generalized multifractality are characterized by a fam-
ily of critical exponents τλ, where the multi-index λ =
(q1, q2, . . . , qk ) labels different observables. (Such a construc-
tion has already appeared, although in a restricted sense, in
the early works of Wegner in the context of the classifica-
tion of polynomial composite operators in NLσM formalism
[14–16].) In the last few years, the generalized multifractality
has been explored analytically for all 10 symmetry classes
[13,17–21]. In particular, pure-scaling observables for all λ

were constructed using the NLσM approach. These results
were verified by numerical simulations at two-dimensional
(2D) Anderson transitions of symmetry classes A, C, AIII,
AII, D, and DIII [13,18–21]. Scaling exponents xλ of the field-
theory pure-scaling composite operators directly translate to
exponents τλ of the corresponding eigenfunction observables.
(The difference is only in a term representing a linear function
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of |λ| ≡ q1 + · · · + qk , with coefficients determined by the
spatial dimensionality and the scaling of the average den-
sity of states.) Furthermore, the analytical works predicted
exact symmetry relations between the exponents xλ of gen-
eralized multifractality, which follow from Weyl symmetries
associated with the NLσM manifolds. These relations (which
extend earlier derived relations for the conventional multi-
fractality [22,23]) have also been confirmed by numerics. In
fact, Weyl symmetries—which are exact and highly nontrivial
symmetry relations between critical exponents—can serve as
a benchmark for numerical simulations.

An important question is whether Anderson-transition crit-
ical points are described by conformal field theories (CFTs).
It was recently demonstrated [13] that if a 2D Anderson
transition is described by a CFT, the critical exponents xλ

(and thus also τλ) have a quadratic dependence on the com-
ponents q1, q2, . . . of multi-index λ, i.e., the property called
generalized parabolicity. (We refer the reader to Ref. [13]
for a detailed discussion of the question of what correla-
tion functions at the Anderson transition could be possibly
described by a CFT.) Remarkably, in the presence of Weyl
symmetries, a generalized parabolic spectrum xλ is uniquely
fixed (for a given symmetry class), up to a single constant (an
overall prefactor). Numerical simulations for 2D Anderson
transitions of several symmetry classes showed strong vio-
lation of generalized parabolicity [13,18,19,21] and thus of
conformal invariance. These results were further corroborated
by an exact analytical calculation of a subset of generalized-
multifractality exponents at spin quantum Hall transition
(class C) [18]. Very recently, the results of Ref. [13] were
extended to systems of arbitrary spatial dimensionality [24],
with an implication that conformal invariance does not also
hold at Anderson transitions in d > 2 dimensions.

The goal of this paper is to explore the generalized
multifractality at surfaces of critical systems at Anderson
transitions. For this purpose, we extend the construction
of pure-scaling generalized-multifractality observables to the
surface for all 10 symmetry classes. We then perform a nu-
merical study of generalized surface multifractality for 2D
models of three symmetry classes: the Ando model [25] in
class AII (both metallic phase and metal-insulator transi-
tion), the integer quantum Hall (IQH) plateau transition in
the U(1) Chalker-Coddington network model in class A, and
the spin quantum Hall (SQH) transition in the SU(2) version
of the network model. We analyze the resulting generalized-
multifractal spectrum, in particular whether it satisfies Weyl
symmetries and to which degree it is independent from the
bulk spectrum.

The numerical results fully confirm the analytically derived
form of pure-scaling observables, thus demonstrating that the
NLσM theory also works at the boundary of a critical system.
As another manifestation of this fact, we find that Weyl sym-
metry relations hold with a very good accuracy. At the same
time, the generalized parabolicity is strongly violated.

We further derive exact relations between surface
generalized-multifractality exponents of a 2D system and
Lyapunov exponents for a quasi-one-dimensional (quasi-1D)
strip, which hold under the assumption that the system is in-
variant under the exponential map from a strip to a semicircle
(generalizing the result obtained in Ref. [26] for conventional

multifractality). Our numerical results demonstrate that these
relations hold with an excellent accuracy, thus providing an
indication of the invariance of the critical theory with respect
to this specific conformal transformation.

A terminological comment is appropriate at this point.
Both terms “surface multifractality” and “boundary multifrac-
tality” were used in previous literature, with a fully identical
meaning. In the same way, we use “surface” as a term
equivalent to “boundary” in application to generalized mul-
tifractality in the present work. The surface is understood in
a generic sense, i.e., as a (d − 1)-dimensional boundary of
a d-dimensional system. In particular, for 2D systems, the
surface is a 1D edge.

The structure of the paper is as follows. In Sec. II, we
present the analytical framework of the surface generalized
multifractality and derive relations between 2D and quasi-1D
systems (valid under the assumption of invariance with respect
to the exponential map). Section III contains results of the
numerical analysis for 2D models. Our results are summarized
in Sec. IV, where we also discuss their implications.

II. ANALYTICAL FRAMEWORK

A. Pure-scaling observables and critical exponents

As discussed in Sec. I, generalized multifractality is a hall-
mark of Anderson-transition critical points. Its essence is a
power-law scaling of a large family of observables character-
izing critical wave functions,

Ld〈Pλ[ψ]〉 ∼ L−τλ . (1)

Here, L is the (linear) system size, Pλ[ψ] is a composite object
expressed in terms of wave functions ψ that are close in
energy and evaluated at close spatial positions, and 〈·〉 de-
notes the disorder averaging. Further, λ is a multi-index, λ =
(q1, q2, . . . , qk ), that labels representations of the symmetry
group of the NLσM. For the case when all qi are positive
integers satisfying q1 � q2 � · · · � qk , the multi-index λ cor-
responds to a conventional Young diagram. The derivation
of the pure-scaling eigenfunction observables Pλ[ψ] goes
[13,17–19,21] through the NLσM pure-scaling composite
operators Pλ(Q). For symmetry reasons, these composite
operators are spherical functions on the NLσM manifold.
Importantly, Pλ(Q), and thus also Pλ[ψ], depend only on sym-
metry class. In other words, we know exact expressions for all
pure-scaling observables Pλ[ψ], even for Anderson transitions
characterized by strong-coupling fixed points. The factor Ld in
Eq. (1) can be equivalently replaced by a summation over sites
of the system (in analogy with a conventional definition of the
inverse participation ratios).

We can now generalize these observables defined in the
bulk of a d-dimensional system to its (d − 1)-dimensional
surface. Importantly, the scaling composite operators Pλ(Q)
of the NLσM retain their form, which is governed only by
the symmetry of the manifold. This also applies to the eigen-
function observables Pλ[ψ]. The only difference is that the
coordinates of eigenfunctions entering Pλ[ψ] should now be
taken near the boundary of the system (e.g., within a distance
of a few lattice spacings from the boundary in a lattice model).
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We thus have

Ld−1〈Pλ[ψ]〉 ∼ L−τ
(s)
λ , (2)

where the coordinates of the wave functions are restricted to
a vicinity of the surface. The superscript s indicates that the
critical exponents τ

(s)
λ describe the generalized multifractality

at the surface.
In the field-theoretical language, natural exponents are

scaling dimensions of the corresponding NLσM composite
operators at the surface,

〈Pλ(Q)〉 ∼ L−x(s)
λ , (3)

where 〈·〉 means the averaging with the σ -model action. The
relation between the field-theoretical exponents x(s)

λ and the
exponents τ

(s)
λ that can be directly obtained by numerical

simulations (as carried out below) reads

x(s)
(q1,q2,...)

= �
(s)
(q1,q2,...)

+ |λ|x(s)
(1), (4)

�
(s)
(q1,q2,...)

= τ
(s)
(q1,q2,...)

− 1 − d (|λ| − 1) − |λ|μ. (5)

Here, |λ| = q1 + q2 + · · · + qk , μ = x(s)
(1) − x(b)

(1), and x(s)
(1) and

x(b)
(1) are exponents that govern the scaling of the local density

of states at the surface and in the bulk, respectively. [When-
ever appropriate, we will label bulk exponents by a superscript
(b) to clearly distinguish them from surface exponents
that have the superscript (s).] Equations (4) and (5) are
a generalization of the relations between the conventional
surface-multifractality exponents [4].

The explicit form of pure-scaling eigenfunction observ-
ables for all symmetry classes is as follows [19]. The building
blocks for the construction are observables with q1 = q2 =
· · · = qk = 1, i.e., λ = (1, 1, . . . , 1). For classes without a
(pseudo-)spin degree of freedom (classes A, AI, BDI, AIII,
and D), they are given by the absolute value squared of a Slater
determinant,

P(1,1,...,1)[ψ] =

∣∣∣∣∣∣∣det

⎛
⎜⎝

ψα,r1 ψβ,r1 . . .

ψα,r2 ψβ,r2 . . .

. . . . . .
. . .

⎞
⎟⎠

∣∣∣∣∣∣∣

2

. (6)

Here, the indices α, β, . . . label eigenfunctions (all of them
close in energy), while ri are spatial coordinates. For classes
with a (pseudo-)spin degree of freedom (AII, CII, CI, C, DIII),
one has instead

P(1,1,...)[ψ] = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψα↑r1 ψβ↑r1 . . . −ψ∗
α↓r1

−ψ∗
β↓r1

. . .

ψα↑r2 ψβ↑r2 . . . −ψ∗
α↓r2

−ψ∗
β↓r2

. . .

. . . . . .
. . . . . . . . .

. . .

ψα↓r1 ψβ↓r1 . . . ψ∗
α↑r1

ψ∗
β↑r1

. . .

ψα↓r2 ψβ↓r2 . . . ψ∗
α↑r2

ψ∗
β↑r2

. . .

. . . . . .
. . . . . . . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where ↑ and ↓ refer to the corresponding spin components.
For a generic multi-index λ = (q1, q2, . . . qk ), the pure-

scaling observables Pλ[ψ] are obtained from the above
building blocks as follows:

Pλ[ψ] = (P(11 )[ψ])q1−q2 (P(12 )[ψ])q2−q3

× · · · × (P(1k−1 )[ψ])qk−1−qk (P(1k )[ψ])qk , (8)

where (1m) is an abbreviation for (1, 1, . . . , 1︸ ︷︷ ︸
m

). It is seen that

the observables Pλ[ψ] exhibit Abelian fusion; it is inherited
from the corresponding property of the appropriately cho-
sen field-theory (NLσM) composite operators Pλ(Q) [13,17–
19,21,27]. Importantly, qi do not need to be integer or positive
here: they can be arbitrary real (or, in fact, even complex)
numbers.

All of the coordinates ri are located at the surface, with a
distance ∼1 (ultraviolet scale) between them. One can also ex-
tend the definition and consider Pλ[ψ] with distances between
the points ri of the order of r, where 1 � r � L. This allows
one to also consider, in addition to scaling with L, a scaling
with r; see Sec. III.

For three chiral symmetry classes (BDI, AIII, and CII),
the above construction holds if one considers observables
belonging to a single sublattice. It can also be extended to
a broader class of observables, which involve eigenfunctions

on both sublattices [21]. Such observables (and the associated
critical exponents) are labeled by a pair of multi-indices λ, λ′.
The observable Pλ,λ′ [ψ] is obtained as a product of Pλ[ψ] cal-
culated on one sublattice and Pλ′[ψ] on the second sublattice.

The Weyl symmetries [13,17–19,21,23] are symmetry re-
lations between the exponents of generalized multifractality,

xλ = xwλ, w ∈ W, (9)

where W is the Weyl group that acts in the space
of multi-indices (weights) λ. The action of W is
generated by two types of transformations: (i) reflections
qi → −ci − qi and (ii) permutations qi → q j + (c j − ci )/2
and q j → qi + (ci − c j )/2. The Weyl symmetries are exact
in symmetry classes A, AI, AII, C, and CI. (Note that all three
classes that are studied numerically in this paper belong to
this subset of symmetry classes.) They also hold in symmetry
classes D and DIII if the domain walls associated with
jumps between two components of the NLσM manifold are
suppressed. We refer the reader to Ref. [21] for specifics of
Weyl symmetries in the chiral classes AIII, BDI, and CII.

It was shown in Ref. [13] that if one assumes that the
critical theory of a 2D Anderson transition is described by a
2D CFT, then the exponents x(q1,q2,...,qk ) are quadratic func-
tions of the set {qi}, i.e., the property termed “generalized
parabolicity.” Moreover, in combination with Weyl symmetry,
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the generalized parabolicity enforces the form

xpara
(q1,q2,...,qk ) = −bzλ ≡ −b

∑
i

qi(qi + ci ), (10)

with a single parameter b characterizing the whole spectrum
of exponents. Here, zλ are eigenvalues of the Laplace-Beltrami
operator on the NLσM target space (quadratic Casimir in-
variants). The constants c j (with j = 1, 2, , . . .) depend on
the symmetry class. They are determined by (the bosonic
part of) the half sum of positive roots, ρb = ∑

j c je j , for the
corresponding NLσM (where e j is the standard basis in the
weight space) and are known for all symmetry classes; see,
e.g., Ref. [17]. In particular, for the three symmetry classes
that are studied numerically below in this work, one has

c j = 1 − 2 j, class A,

c j = 3 − 4 j, class AII, (11)

c j = 1 − 4 j, class C.

B. Connection between 2D generalized-multifractality
exponents and quasi-1D Lyapunov exponents

We consider the following conformal mapping of a 2D
semicircle of radius R to a quasi-1D strip with width M and
length L:

w = M

π
ln z, z = exp

(
π

M
w

)
, (12)

where z = x + iy is a complex coordinate in the semicircle,
with 0 � |z| � R and 0 � arg z � π , and w = u + iv is a
complex coordinate in the strip, with

−∞ � u � M

π
ln R ≡ L, 0 � v � M. (13)

This mapping is illustrated in Fig. 1. An ultraviolet cutoff in
2D at |z| ∼ 1 translates into u � 0 for the quasi-1D system,
yielding a strip of length L with open boundary conditions
on horizontal boundaries. Under the assumption of invariance
of the theory with respect to this particular conformal trans-
formation, the NLσM for a disordered 2D system defined
on a large circle can be mapped on a NLσM describing a
disordered quasi-1D strip.

Our analysis generalizes that performed in Ref. [26] for
conventional multifractality. We assume that the 2D semicir-
cular system is coupled to a metallic electrode (“absorbing
boundary condition”) at |z| = R, like in Ref. [26]. The rest
of the boundary (i.e., that on the real axis of z) is reflecting.
(Alternatively, the same relation can be derived by placing a
small metallic electrode at R ∼ 1. We briefly comment on this
at the end of the derivation.)

We choose an “observation point” in the 2D system at some
point r on the real-axis boundary, with 1 � r � R. The quasi-
1D image of this point is at w = u = (M/π ) ln r, so that 0 <

u < L. The starting point is a relation between averages of
operators related by the conformal transformation formula,

〈O(w)〉Q1D =
∣∣∣∣ dz

dw

∣∣∣∣
x(s)
λ

〈O(z)〉2D. (14)

By calculating the scaling of both sides, we will re-
late the Lyapunov exponents of the quasi-1D system to

FIG. 1. Logarithmic (exponential) conformal mapping (12) be-
tween a semicircle and an infinite strip with open boundary
conditions (on horizontal boundaries). On a lattice, there is an ul-
traviolet cutoff, shown as a dashed line here, at |z| = 1 or u = 0,
respectively. The observation point is located at the real-axis bound-
ary along the real axis of the 2D system; it is shown, as well as its
image in the quasi-1D system, by a red dot.

the 2D generalized-multifractality spectrum. For this pur-
pose, we will consider observables corresponding to λ =
(q, q, . . . , q) ≡ (qn) with q → 0.

In the quasi-1D image, the metallic electrode is attached
at u = L. We need to study how the observable 〈P(qn )[ψ]〉Q1D

decays when the coordinate u moves away from L. Clearly,
in view of the quasi-1D geometry, this decay is exponential
as a function of (L − u). We need to find the rate of this
exponential decay.

The wave functions ψα of the quasi-1D strip are deter-
mined by their boundary values Aα at u = L and the transfer
matrix T from this boundary to the observation point u.
We will need n different wave functions that are as close
as possible in energy. This amounts to restricting to a fixed
energy E for the transfer matrix. For definiteness, we focus
on the spinless situation; generalization to spinful classes is
straightforward and leads to the same result.

All n spatial arguments wi of wave functions entering
〈P(qn )[ψ]〉 are within a distance of the order of unity from
w = u. Using the transfer matrix TL−u for a part of the strip
of the length L − u, we write

ψα (wi) = BiTL−uAα, (15)

where Bi = Pvi Tu−ui selects row vi of the transfer matrix over
u − ui additional slices and Aα are the initial conditions at
Rew = L. Due to the boundary conditions, the columns of Aα

correspond to the subspace of wave functions exponentially
decaying in the direction of smaller u. Without restricting
generality, we can choose them to be mutually orthogonal. We
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have

P(1n )[ψ](u) � |det(BPn×n)det(Pn×nTL−uPn×n)det(Pn×nA)|2,
(16)

where the rows of B are given by the Bi and the A is the matrix
formed by the Aα as columns. The projection Pn×n restricts to
the space of the lowest n Lyapunov exponents. Here we have
neglected exponentially small corrections coming from higher
Lyapunov exponents.

Since all n points are distinct by construction, the determi-
nants det(BPn×n) and det(Pn×nA) are finite. Importantly, they
do not scale with L − u and are therefore of no importance for
our purposes. Using Oseledets theorem, we obtain the rate of
the exponential decay (in the limit L − u → ∞),

〈ln det(Pn×nTL−uPn×n)〉 = −(L1 + · · · + Ln)(L − u), (17)

where L1,L2, . . . ,Ln are the n smallest Lyapunov exponents.
Note that the Lyapunov exponents describe the exponential
decay of a transfer matrix in a typical realization, which cor-
responds to averaging the logarithm. Thus,

〈ln P(1n )[ψ](u)〉Q1D = −2(L1 + · · · + Ln)(L − u), (18)

up to subleading corrections. This argument bears similarity
with a discussion of implications of generalized multifractal-
ity for transport observables at criticality in Ref. [17].

We turn now to the 2D system, for which we have

〈Pλ(z)〉2D ∼ R−x(s)
λ , (19)

where Pλ(z) is the field-theory composite operator at the point
z. We use the exponential-map relation (14), which involves
the factor∣∣∣∣ dz

dw

∣∣∣∣
x(s)
λ

=
(

π

M

)x(s)
λ

|z|x(s)
λ =

(
π

M

)x(s)
λ

exp

[
π

M
x(s)
λ u

]
. (20)

Thus, we obtain

〈Pλ(w)〉Q1D ∼
(

π

M

)x(s)
λ

exp

[
− π

M
x(s)
λ (L − u)

]
. (21)

We now set λ = (qn) with small q, use P(qn ) = [P (1n )]q, and
differentiate both sides of the equation with respect to q at
q = 0. The result reads

〈lnP(1n )(w)〉Q1D = − π

M

dx(s)
(qn )

dq

∣∣∣∣∣
q=0

(L − u). (22)

Equating the exponential decay rate in Eq. (22) to that
in Eq. (18) finally yields the sought relation connecting
the quasi-1D Lyapunov exponents with the 2D generalized-
multifractality spectrum,

π
dx(s)

(qn )

dq

∣∣∣∣∣
q=0

= 2M
n∑

i=1

Li. (23)

As has been pointed out above, an alternative way of deriv-
ing this relation is to attach a metallic electrode near the point
z = 0 of the 2D system. We take its radius to be unity. In the
quasi-1D image, this corresponds to attaching a metallic lead
at u = 0. The observation point z remains unchanged: it is on

the real axis of the 2D system, z = r, with 1 � r � R. Thus,
Eq. (18) becomes

〈ln P(1n )[ψ](u)〉Q1D = −2(L1 + · · · + Ln)u. (24)

On the 2D side, we now have, instead of Eq. (19),

〈Pλ(z)〉2D ∼ r−2x(s)
λ . (25)

The factor two in the exponent is because, in this case (dis-
tance r is much larger than the electrode radius unity), we
effectively have a two-point function. (See Ref. [28] for a
discussion of scaling of bulk correlation functions in the pres-
ence of a pointlike lead.) Using the conformal relation (14) in
combination with Eq. (20), we come to

〈Pλ(w)〉Q1D ∼
(

π

M

)x(s)
λ

exp

[
− π

M
x(s)
λ u

]
, (26)

which is a counterpart of Eq. (21). Setting here λ = (qn),
taking a derivative with respect to q at q = 0, and comparing
with Eq. (24), we again come to the relation (23).

The above derivations of the relation (23) can be straight-
forwardly extended to the case of bulk generalized multifrac-
tality. In this case, one considers a map of the full circle to a
strip with periodic boundary conditions, with π replaced by
2π in Eq. (12). The result reads

2π
dx(b)

(qn )

dq

∣∣∣∣∣
q=0

= 2M
n∑

i=1

L(p)
i , (27)

where the superscript (p) indicates that the Lyapunov expo-
nents are now calculated for a strip with periodic boundary
conditions.

A set of relations (23) with n = 1, 2, . . . provides an ex-
cellent tool to check whether the critical theory is indeed
invariant with respect to the exponential map. Performing
such a numerical test for several Anderson-transition critical
points is one of the goals of Sec. III.

III. NUMERICAL RESULTS

To explore numerically the generalized surface multifrac-
tality, we have performed numerical simulations for L × L
critical 2D systems of symmetry class AII (at metal-insulator
transition and in the metallic phase, which is “weakly criti-
cal”), class A (IQH transition), and class C (SQH transition).
The systems sizes L are in the range L ∈ [32, . . . , 832]. We
perform averaging over N = 104 realizations of disorder as
well as over the sample boundary. Critical exponents and
their statistical errors are determined by using the procedure
described in Ref. [13].

To test the relations (23) (and thus the invariance with
respect to the exponential map between quasi-1D and 2D
systems), we have also performed the transfer-matrix analysis
in quasi-1D geometry. Specifically, we consider very long
strips (length L = 105) of width M in the range [32, . . . , 160].
To estimate the statistical errors of this approach, an average
over 10 disorder configurations is computed. (We recall that
Lyapunov exponents are self-averaging in the large-L limit.)
For the n = 1 case of Eq. (23) (corresponding to conven-
tional multifractality), our results below agree with those of
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FIG. 2. Generalized multifractality at MIT in class AII for polynomial observables with |λ| = 2 (left), 3 (middle), and 4 (right). The
pure-scaling observables L2|λ|〈Pλ[ψ](L, r)〉 are averaged over N = 104 realizations of disorder and over points on the boundary. The data are
scaled with r�(q1 )+···+�(qn ) , yielding a collapse as a function of r/L, as predicted. Data corresponding to the smallest r = 2 are highlighted as
large dots. (These data were used to extract the exponents, as shown in Table I.)

Ref. [26]. (Note that our 2ML1 corresponds to 2/�c in the
notations of Ref. [26].) We emphasize, however, that going
beyond n = 1 yields a much more stringent test of the in-
variance with respect to the exponential map. Indeed, as we
will see below, the generalized multifractality reveals much
stronger violation of generalized parabolicity in comparison
with conventional multifractality.

A. Class AII: MIT and metallic phase

The symmetry class AII (symplectic Wigner-Dyson class)
describes disordered systems with broken spin-rotational
symmetry due to a spin-orbit coupling. This symmetry class
exhibits a 2D metal-insulator transition (MIT) [19,29–31].
Since this is a spinful symmetry class, the pure-scaling ob-
servables have the form (7). We use the Ando model [25] to
study the eigenfunction observables numerically. The Hamil-
tonian is a spinful tight-binding square-lattice model,

H =
∑

iσ

εic
†
i,σ ci,σ +

∑
〈i, j〉σσ ′

Vi,σ ; j,σ ′c†
i,σ c j,σ ′ , (28)

where random potentials εi at each site are drawn uniformly
from [−W/2,W/2], with i = (x, y) labeling 2D lattice sites.
The nearest-neighbor hoppings in the x and y directions
are spin dependent, Vi,σ :i+k,σ ′ = V0 exp(iθkσk ), with θx = θy =
π/6 and V0 = 1. The defining time-reversal symmetry of this
class is realized by T = σ2K, where K stands for complex
conjugation. Since we are interested in (generalized) surface
multifractality, we introduce a boundary at y = 0 by setting
the hopping V(x,0),σ ;(x,1),σ ′ to zero for all x.

It is known from previous studies [31] that an Anderson
MIT takes place in this model at Wc ≈ 5.84. In addition to
studying the generalized multifractality at this MIT critical
point, we also perform numerical simulations for substantially
weaker disorder, W = 3, which puts the system deeply into
the metallic phase.

Extracting numerically the generalized-multifractality ex-
ponents, we test the Weyl-symmetry relations predicted by
the NLσM. The Weyl symmetry in class AII implies, in
particular, the following relations between the exponents cor-
responding to polynomial observables:

x(1) = 0, x(1,1) = x(2,2), x(1,1,1) = x(2,2,1),

x(3,1) = x(2), x(3,2) = 0. (29)

We also study numerically the dependence of critical expo-
nents of the type x(qn ) on q. The numerical results allow us
to find out whether the generalized-multifractality spectrum
satisfies the generalized parabolicity (10).

It is worth noting that x(s)
λ ≡ �

(s)
λ for class AII, since x(s)

(1) =
0. This holds for all three Wigner-Dyson classes, including
class A that is studied numerically below in Sec. III C.

1. Metal-insulator transition

a. Generalized surface multifractality exponents. To ex-
plore the surface generalized multifractality at the MIT, we
tune the disorder strength to criticality, W = 5.84 ≈ Wc. Nu-
merical results for the dependence of polynomial observables
L2|λ|〈Pλ[ψ]〉 with |λ| = 2, 3, 4 on r/L are presented in Fig. 2.
Here, r is the point splitting, i.e., the distance between the
nearby spatial points entering as arguments of wave func-
tions in Pλ[ψ]. The studied values of r are in the range
{2, 3, . . . , 11}. The data are scaled by the factor r�(q1 )+···+�(qn ) ,
which yields a nice collapse, as expected (cf. Ref. [19]). Ac-
cording to analytical predictions,

L2|λ|〈Pλ[ψ](L, r)〉r�
(s)
(q1 )+···+�

(s)
(qn ) ∼ (L/r)−x(s)

λ , (30)

i.e., when plotted in the log-log representation, the data should
represent a fan of straight lines. This is indeed what is ob-
served in Fig. 2. Thus, the prediction of the NLσM concerning
the form of pure-scaling eigenfunction observables is now
verified not only in the bulk, but also on the surface.

The scaling exponents extracted from the slopes in Fig. 2
are presented in Table I. We also show results for two observ-
ables corresponding to |λ| = 5, namely, for λ = (3, 2) and
λ = (2, 2, 1). More specifically, we use the data for a fixed
small r (r = 2), highlighted in Fig. 2 by larger dots. (An
analogous procedure is used for other critical points studied
below.) We also present in the table estimated statistical errors
(standard deviation). It is seen that these errors increase with
the total order λ of the operator, which is fully expected. For
a given λ, errors increase with the renormalization group rele-
vance of the operator (quantified by −x(s)

λ ). This is because,
with increasing −x(s)

λ , the averages are progressively more
determined by rare events, which enhances statistical errors.
A similar behavior was found earlier for bulk observables.

Comparing the results in Table I with those for the bulk
generalized multifractality at the same critical point, given in
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TABLE I. Surface generalized-multifractality critical exponents
τ

(s)
λ and x(s)

λ at 2D MIT in class AII for all polynomial pure-scaling
observables with |λ| � 4 (and for two observables with |λ| = 5).
Statistical error bars (one standard deviation) are shown. The averag-
ing is performed over 2L points on the boundary and over N = 104

realizations of disorder. The bulk exponents x(b)
λ are taken from

Ref. [19]. The column x(s)
λ /x(b)

λ demonstrates the independence of
surface exponents on bulk ones: x(s)

λ /x(b)
λ �= const.

λ τ
(s)
λ x(s)

λ x(s)
λ /x(b)

λ

(1) 1.005 0.005 ± 0.006
(2) 2.18 −0.82 ± 0.06 2.27 ± 0.17
(1, 1) 3.945 0.945 ± 0.015 1.94 ± 0.03
(3) 2.99 −2.01 ± 0.17 1.76 ± 0.15
(2, 1) 5.46 0.46 ± 0.05 2.04 ± 0.22
(1, 1, 1) 7.48 2.48 ± 0.04 1.86 ± 0.03
(4) 3.82 −3.18 ± 0.30 1.40 ± 0.13
(3, 1) 6.63 −0.37 ± 0.18 1.02 ± 0.50
(2, 2) 7.95 0.95 ± 0.12 1.94 ± 0.24
(2, 1, 1) 9.03 2.03 ± 0.09 1.83 ± 0.08
(1, 1, 1, 1) 11.66 4.66 ± 0.05 1.85 ± 0.02
(3, 2) 9.44 0.44 ± 0.25
(2, 2, 1) 11.39 2.39 ± 0.19 1.80 ± 0.14

Ref. [19], one can see that for each λ, statistical errors for the
surface are typically a few times larger than for the bulk. The
main reason for this is a much more efficient averaging over
points of a sample in the bulk case. For a given realization of
disorder, the number of points in the bulk of an L × L sample
is L2, while it is 2L on the boundary. Thus, for the bulk, we
have a gain in a size of the statistical ensemble by a factor
L/2 (which is ∼500 for largest system sizes, L ∼ 1000), in
comparison with the boundary. One would thus need a corre-
sponding increase of the computation time in order to reduce
errors in the surface exponents down to the scale of errors for
the bulk.

We see from the data that all the Weyl symmetry relations
(29) are fulfilled within the statistical uncertainty (for the first
three, within standard deviation σ ; for the other two, within
2σ ). The Weyl symmetries between the critical exponents,
which were also demonstrated earlier by numerics in the bulk,
serve as an excellent confirmation of the validity of the sym-
metry analysis based on NLσM. Thus, we now also have this
confirmation for boundary observables.

In Fig. 3, we show the dependence of the critical exponents
x(s)

((q/n)n ) for n � 4 on q and compare them to the prediction
from generalized parabolicity (10). (We recall that this is
the form of generalized parabolicity for the case when the
system obeys Weyl symmetry.) The data clearly show that
generalized parabolicity is strongly violated. Indeed, full lines
(numerical data) for n = 2, 3, and 4 differ dramatically from
the corresponding generalized-parabolicity curves (shown by
dashed lines of the corresponding colors). Crucially, these
large deviations already exist for small q, which is the region
where the accuracy of the numerics is particularly high.

b. Lyapunov exponents. We turn now to studying numer-
ically whether the equality (23) holds. To find the Lyapunov
exponents, we implement the transfer-matrix approach to the
Hamiltonian of the Ando model (28). The transfer matrix for

FIG. 3. Dependence of critical exponents x(s)
((q/n)n ) on q for n =

1, 2, 3, 4 at MIT in class AII. Solid lines correspond to numeri-
cal data; dashed line of the same color correspond to generalized
parabolicity (10) (with b = 0.423 chosen in such a way that the
parabolic approximation is optimal for x(s)

(q) with 0 < q < 1.6). It is
evident that generalized parabolicity (10) is strongly violated.

the Ando model is derived in the same way as in Ref. [32].
Then, we carry out numerical calculations for several values
of the strip width M. The results for the sums 2M

∑n
i=1 Li

standing on the right-hand side of Eq. (23) are shown in Fig. 4
for n = 1, 2, 3, and 4. It is seen that the results are nearly
independent of M, as they should be for large M. Since the M
dependence is so weak, we do not perform any extrapolation
to M → ∞, but rather average over M (dashed lines in Fig. 4).

It is clear from the numerical data in Table II that the equal-
ity (23) holds with an excellent precision. This demonstrates
invariance with respect to the exponential map [at least for the
observables whose scaling is described by Eq. (23)].

2. Metallic phase

We now consider the metallic phase in class AII, by choos-
ing the disorder in the Ando model to be W = 3, i.e., well

FIG. 4. Dependence of Lyapunov exponent sums 2
∑n

i=1 Li, with
n = 1, 2, 3, 4, on the inverse width of the strip 1/M for the MIT of
class AII. Dashed lines correspond to the values averaged over M.
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TABLE II. Numerical results for the expressions on both sides of
Eq. (23) (with n = 1, 2, 3, and 4) at MIT in class AII: the derivative
of the exponent x(s)

(qn ) and the sum of n lowest Lyapunov exponents
Li.

π
dx(s)

(qn )

dq |q=0 2M
∑n

i=1 Li

n = 1 1.337 ± 0.020 1.331 ± 0.005
n = 2 5.42 ± 0.03 5.39 ± 0.02
n = 3 12.12 ± 0.05 12.05 ± 0.06
n = 4 21.18 ± 0.07 21.25 ± 0.14

below Wc. This system is not truly at criticality: it flows
logarithmically to a “supermetal” fixed point with infinite
conductivity. However, since this flow is logarithmically slow
and, obviously, our numerical study is performed in a limited
range of L, the system behaves almost as a critical one.

a. Generalized surface multifractality. The scaling of
generalized-multifractality observables at the surface of a
class-AII metallic system is shown in Fig. 8 of Appendix A.
The data exhibit fans of almost straight lines, which illustrates
a smallness of logarithmic corrections in this range of L.

The numerically extracted exponents for polynomial ob-
servables are collected in Table III. In the limit of large
conductance, the one-loop NLσM calculation predicts that the
bulk and surface multifractal exponents are related by a factor
of two,

x(s)
λ � 2x(b)

λ , (31)

up to parametrically small higher-loop contributions. The
exponents presented in Table III indeed satisfy well this pre-
diction. Further, it is seen that the Weyl symmetry relations
(29) are nicely fulfilled.

TABLE III. Surface generalized-multifractality critical expo-
nents τ

(s)
λ and x(s)

λ in the metallic phase of the Ando model (class
AII) for all polynomial pure-scaling observables with |λ| � 4 (and
for two observables with |λ| = 5). Statistical error bars (one standard
deviation) are shown. The averaging is performed over 2L points on
the boundary and over N = 104 realizations of disorder. The bulk
exponents x(b)

λ are taken from Ref. [19]. The analytical (one-loop
NLσM) prediction 2x(b)

λ � x(s)
λ holds with a good accuracy.

λ τ
(s)
λ x(s)

λ 2x(b)
λ

(1) 0.9988 −0.0012 ± 0.0015
(2) 2.890 −0.110 ± 0.004 −0.110
(1, 1) 3.206 0.206 ± 0.003 0.219
(3) 4.667 −0.333 ± 0.010 −0.332
(2, 1) 5.095 0.095 ± 0.006 0.109
(1, 1, 1) 5.615 0.615 ± 0.007 0.655
(4) 6.32 −0.68 ± 0.02 −0.67
(3, 1) 6.864 −0.136 ± 0.012 −0.111
(2, 2) 7.198 0.198 ± 0.012 0.219
(2, 1, 1) 7.503 0.503 ± 0.008 0.5456
(1, 1, 1, 1) 8.231 1.231 ± 0.009 1.309
(3, 2) 8.950 −0.050 ± 0.029 −0.0012
(2, 2, 1) 9.600 0.600 ± 0.017 0.654

FIG. 5. Dependence of critical exponents x((q/n)n ) on q for n =
1, 2, 3, 4 in the metallic phase of the Ando model (class AII).
Solid lines correspond to numerical data; dashed lines correspond
to generalized parabolicity (10) (with b = 0.052). It is seen that the
generalized parabolicity holds with good precision.

The q dependence of critical exponents x(s)
((q/n)n ) for n � 4

is presented in Fig. 5. In contrast to the MIT critical point
(Fig. 3), the generalized parabolicity (10) of the spectrum of
xλ is fulfilled with a good accuracy, in full agrement with
analytical predictions based on one-loop NLσM analysis.

b. Lyapunov exponents. In order to find Lyapunov expo-
nents in the AII metal phase and to check numerically the
equality (23), we proceed in the same way as for the MIT
point in Sec. III A 1. The results for the sums 2

∑n
i=1 Li

of Lyapunov exponents, with n = 1, 2, 3, 4, are presented in
Fig. 6. A weak logarithmic flow towards smaller values of
Lyapunov exponents is visible. Our largest value of the strip
width, M = 160, is roughly equal to the geometric mean of the
range of L that we use in 2D geometry to extract the critical
exponents. We thus take the values of the Lyapunov exponents
at M = 160. In Table IV, we present numerical values for the
expressions on both sides of the relation (23). One can see
that the equality (23) holds with good precision, as expected.

FIG. 6. Dependence of Lyapunov exponent sums 2
∑n

i=1 Li, with
n = 1, 2, 3, 4, on the inverse width of the strip 1/M in the metallic
phase of class AII (Ando model with disorder W = 3).
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TABLE IV. Numerical results for the expressions on both sides
of the relation (23) (with n = 1, 2, 3, and 4) in a metallic system of
class AII (Ando model with W = 3): the derivative of the exponent
x(s)

(qn ) and the sum of n lowest Lyapunov exponents Li. The Lyapunov
exponents are calculated for M = 160.

π
dx(s)

(qn )

dq |q=0 2M
∑n

i=1 Li

n = 1 0.162 ± 0.006 0.174 ± 0.005
n = 2 0.978 ± 0.007 1.034 ± 0.007
n = 3 2.434 ± 0.010 2.565 ± 0.010
n = 4 4.497 ± 0.013 4.804 ± 0.017

It is worth mentioning that in view of the logarithmic flow
discussed above, there is uncertainty in the exact choice of M
at which the Lyapunov exponents should be determined. This
leads to a relative uncertainty of the order of 1/σ , where σ

is 2D conductivity, which is one of the possible sources of
observed small deviations.

B. Class C: SQH transition

We now turn to the SQH transition, which is a transition
between two topologically distinct phases of a 2D system
belonging to class C. It can be viewed as a “superconducting
cousin” of the IQH transition. A remarkable property of the
SQH transition is that a certain subset of critical exponents can
be exactly calculated by a mapping to a classical percolation.
This yields a possibility to benchmark numerics and provides
a stringent test to any candidate theory of the SQH critical
point.

1. Surface generalized-multifractality exponents:
Analytical results

The mapping to percolation was first constructed for the
average local density of states (LDOS) and average two-
point conductance [33,34]; this yielded, in particular, exact
values of the localization length exponent ν = 4/3 and the
exponent x(b)

(1) = 1/4 controlling the scaling of (bulk) average
LDOS. It was subsequently demonstrated in Refs. [35,36]
that the mapping to percolation can also be developed for
the multifractality observables P(q) with q = 2 and q = 3,
yielding exact values x(b)

(2) = 1/4 and x(b)
(3) = 0. In Ref. [6], this

mapping was further extended to the corresponding surface
observables, with the results x(s)

(1) = x(s)
(2) = 1/3 and x(s)

(3) = 0.
More recently, it was discovered [18] that the mapping can be
constructed to an infinite series of exponents of generalized
multifractality. Specifically, it was shown in Ref. [18] that the
mapping to percolation can be constructed for the observables
P(1q )[ψ] with any positive integer q. As a result, the corre-
sponding exponents x(1q ) can be expressed in terms of scaling
dimensions xh

q of q-hull operators of the percolation theory,

x(1q ) = xh
q . (32)

The (bulk) q-hull exponents of 2D percolation have been
found analytically in Ref. [37],

xh(b)
q = 4q2 − 1

12
, q = 1, 2, . . . . (33)

Thus, Ref. [18] obtained exact analytical predictions for the
(bulk) generalized-multifractality exponents x(b)

(1q ), which were
also confirmed by numerical simulations for q � 5.

We now extend the mapping of Ref. [18] to the observables
P(1q )[ψ] at the boundary. This yields, for the corresponding
exponents,

x(s)
(1q ) = xh(s)

q , (34)

where xh(s)
q are surface counterparts of q-hull percolation ex-

ponents. The exponents xh(s)
q are known [38] (see Eq. (3.12)

there with μ = 2 for the percolation problem and S �→ q; see,
also, Ref. [33]),

xh(s)
q = q(2q − 1)

3
, q = 1, 2, . . . . (35)

Thus, we obtain exact analytical results for the surface
generalized-multifractality exponents x(s)

(1q ) at the SQH transi-
tion. Substituting them in Eqs. (4) and (5), and using

μ = x(s)
(1) − x(b)

(1) = 1
3 − 1

4 = 1
12 , (36)

we also find exact values of the exponents τ
(s)
(1q ),

τ
(s)
(1q ) = 8q2 + 17q − 12

12
, q = 1, 2, . . . . (37)

The Weyl-symmetry relations (9) in class C imply, in par-
ticular,

x(3) = 0, x(2,1m ) = x(1m+1 ), m = 0, 1, 2, . . . . (38)

As discussed above, they are equally applicable for surface ex-
ponents. We thus obtain, in addition to x(s)

(1q ), another sequence
of analytically known exponents,

x(s)
(2,1m ) = x(s)

(1m+1 ) = xh(s)
m+1 = (2m + 1)(m + 1)

3
, (39)

with m = 0, 1, 2, . . ..
The following comment is in order at this point. The SQH

transition as described by the SU(2) network considered here
corresponds to a transition between the phases with zero-
and one-edge modes. In principle, one can also consider a
situation with a certain integer number of additional ballis-
tic edge modes (in analogy with IQH transitions between
higher plateaus). While bulk exponents are insensitive to these
additional edge modes, the surface critical behavior will, in
general, be modified [39].

2. Surface generalized-multifractality exponents:
Numerical results

Class C is a class with a (pseudo-)spin degree of freedom,
so that pure-scaling eigenfunction observables are given by
Eqs. (7) and (8). As a microscopic model, we use the SU(2)
generalization of the Chalker-Coddington random network
model [40–43], which belongs to class C. Wave functions
are defined on (directed) links of the network, which form
a square lattice. Each random realization of a network is
characterized by a unitary evolution matrix, which is built out
of matrices on links and at nodes. For each link, we have an
SU(2) matrix (chosen randomly, with the Haar measure). The
nodes can be subdivided in two sublattices, with scattering
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matrices having, respectively, the following form:

S = I2 ⊗
(− cos θ sin θ

sin θ cos θ

)
,

S′ = I2 ⊗
(− sin θ cos θ

cos θ sin θ

)
, (40)

where the factor I2 corresponds to the spin SU(2) space.
Each link connects two nodes of different sublattices. We are
interested here in properties at the critical point, so that we
set θ = π

4 . We introduce a boundary to this system by setting
θ = 0 for all nodes which lie on a straight line going through
S′ nodes (at 45◦ with respect to the links).

Numerical results for the polynomial observables 〈Pλ[ψ]〉
with |λ| � 4 are shown in Appendix A; see Fig. 9. The ana-
lytically predicted scaling reads

L(2+μ)|λ|〈Pλ[ψ](L, r)〉r�
(s)
(q1 )+···+�

(s)
(qn ) ∼ (L/r)

−�
(s)
(q1 ,q2 ,...) , (41)

which differs from Eq. (30) by the presence of a nonzero μ

related to the average LDOS scaling. By plotting the data
with r = 2, 3, . . . , 11 in this way, we indeed observe a nice
collapse. As for class AII above, the straight lines on a log-
log scale correspond to the expected power-law dependence.
Further, the fact that we have fans of lines with different slopes
confirms that Pλ[ψ] are pure-scaling observables. In Table V,
we presented the results for the numerically obtained (by
using the data with r = 2) surface generalized-multifractality
exponents. We also included in the table exact analytical val-
ues of the exponents x(s)

λ,perc and τ
(s)
λ,perc obtained by mapping

to percolation. A very good agreement between the numerical
and analytical results is observed. The Weyl symmetries (38)
are also nicely fulfilled.

In the upper-left panel of Fig. 7 we display the q de-
pendence of critical exponents x[(q/n)n] with n = 1, 2, 3, and
4. Dashed lines represent the generalized parabolicity ansatz
(10) with b = 1/6. This value of b is chosen in such a way
that the analytically known exponents x(s)

(1) = x(s)
(2) = 1/3 are

exactly reproduced. It is seen that the generalized parabolicity
is strongly violated. In fact, this already follows from the
values of the analytically known exponents x(s)

λ,perc given in
Table V.

3. Lyapunov exponents

Implementing a transfer-matrix analysis for the SU(2) net-
work model, we determine Lyapunov exponents. The results
for the sums of Lyapunov exponents, up to n = 4 and for
various values of width M, are shown in Fig. 7. To check the
validity of the exponential-map relation (23), we compare, in
Table VI, numerical values of the corresponding expressions.
It is seen that Eq. (23) holds with a very good accuracy
(∼1–1.5% corresponding to statistical error bars) for n = 1, 2,
and 3. At the same time, the generalized parabolicity is very
strongly violated for the corresponding exponents (compare
the full and dashed lines in the upper-left panel of Fig. 7). We
consider this as a strong evidence in favor of the exactness
of Eq. (23), i.e., of invariance with respect to the exponential
map.

For n = 4 (last line of Table VI), we observe a somewhat
larger deviation. While the difference is still relatively small

TABLE V. Surface generalized-multifractality critical exponents
τ

(s)
λ , �

(s)
λ , and x(s)

λ at the SQH transition (class C) for all polynomial
pure-scaling observables with |λ| � 4. Statistical error bars (one
standard deviation) are shown for x(s)

λ . The averaging is performed
over 2L points on the boundary and over N = 104 realizations of
disorder. Also included are exact analytical results x(s)

λ,perc and τ
(s)
λ,perc

obtained by percolation mapping (for those λ, for which the mapping
is available).

λ τ
(s)
λ τ

(s)
λ,perc �

(s)
λ x(s)

λ x(s)
λ,perc

(1) 1.0815 13/12 −0.0018 0.3315 ± 0.0022 1/3
(2) 2.838 17/6 −0.329 0.338 ± 0.009 1/3
(1, 1) 4.487 4.5 1.320 1.987 ± 0.007 2
(3) 4.36 4.25 −0.89 0.11 ± 0.05 0
(2, 1) 6.27 6.25 1.02 2.02 ± 0.03 2
(1, 1, 1) 9.15 9.25 3.90 4.90 ± 0.04 5
(4) 5.74 −1.59 −0.26 ± 0.18
(3, 1) 7.86 0.52 1.86 ± 0.09
(2, 2) 8.92 1.58 2.92 ± 0.05
(2, 1, 1) 10.83 11 3.49 4.83 ± 0.12 5
(1, 1, 1, 1) 14.41 46/3 7.07 8.41 ± 0.06 28/3

(∼8%), it is a few times larger than expected from statistical
errors. While we cannot exclude a possibility that this is a
manifestation of weak violation of invariance with respect to
the exponential map, we find it unlikely that they start to show
up only starting from n = 4. In our view, a much more likely
reason is systematic errors due to finite-size effects, which are
expected to become stronger for large n.

C. Class A: IQH transition

Finally, we turn to the numerical analysis of the IQH tran-
sition (class A), which is arguably the most celebrated 2D
Anderson-localization critical point. Much work over the past
few decades has been devoted to attempts to provide an “ed-
ucated guess” for the corresponding field theory at criticality,
within the assumption that this is some known CFT, including
such closely related theories as free-boson models, Liouville
theory, and Wess-Zumino-Novikov-Witten (WZNW) models
[27,44–52]. It was found numerically that the spectrum of
conventional multifractal dimensions �

(b)
(q) (which is the same

as x(b)
(q) for class A) is close to parabolic [53]. Would this

parabolicity be exact, this would provide a support to the
above class of theories. However, later works, with improved
numerical precision, reported clear (although relatively small)

TABLE VI. Numerical results for the expressions on both sides
of Eq. (23) (with n = 1, 2, 3, and 4) at the SQH transition: the
derivative of the exponent x(s)

(qn ) and the sum of n lowest Lyapunov
exponents Li.

π
dx(s)

(qn )

dq |q=0 2M
∑n

i=1 Li

n = 1 1.805 ± 0.007 1.821 ± 0.017
n = 2 8.60 ± 0.02 8.46 ± 0.05
n = 3 19.51 ± 0.08 19.81 ± 0.19
n = 4 32.84 ± 0.09 35.54 ± 0.43
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FIG. 7. Results of network-model simulations for the SQH (top) and IQH (bottom) transitions. Upper left panel: Dependence of critical
exponents x(s)

((q/n)n ) on q for n = 1, 2, 3, 4 at the SQH transition. Solid lines correspond to numerical data; dashed line of the same color
corresponds to generalized parabolicity (10) with b = 1/6. Upper right panel: Dependence of Lyapunov exponent sums 2

∑n
i=1 Li, with n =

1, 2, 3, 4, on the inverse width of the strip 1/M for the SQH transition. Dashed lines correspond to the values averaged over M. Lower panels:
Analogous plots for the IQH transition. The parameter b for the generalized-parabolicity (dashed) lines, given by Eq. (10), is b = 0.385; it is
chosen in such a way that the parabolic approximation is optimal for x(q) with q < 1.6.

deviations from parabolicity [7,8]. Furthermore, these papers
also explored the surface multifractality at the IQH transition.
It was found that, first, the nonparabolicity is stronger at the
surface and, second, the bulk and surface exponents are not
related in a simple way. In particular, the ratio x(s)

(q)/x(b)
(q) is very

different from two, which is the value expected for free-boson
and related CFTs. These results provided a clear numerical
evidence against a CFT description of the IQH transition.

We now present results of our analysis of the surface
generalized multifractality at the IQH critical point, which
provide additional important insights into the physics of this
transition. As for other critical points, our goals include an-
swering the following questions: Does the NLσM prediction
for pure-scaling observables hold on the surface? Do the
Weyl symmetries predicted by the NLσM hold? Does the
generalized parabolicity hold? Do the relations (23) obtained
from an assumption of the invariance under the exponential
mapping between 2D quasi-1D systems hold? The class-A
Weyl symmetries imply, in particular, the following relations
between exponents of polynomial observables:

x(1) = x(2,1) = x(2,2) = 0,

x(2,1,1) = x(2,2,1), x(3,1) = x(3,2). (42)

1. Generalized surface multifractality

For the numerical analysis, we use the U(1) Chalker-
Coddington network model. The difference with respect to the
SQH transition study described above (Sec. III B 2) is that we
do not have a spin degree of freedom now, and the random
SU(2) matrices on links are replaced by random U(1) phases.
The boundary is introduced in the same way as for the SQH
transition. For the observables, we use Eq. (8) in combination
with Eq. (6), as appropriate for spinless symmetry classes.

Numerical results for the polynomial observables 〈Pλ[ψ]〉
are presented in Fig. 10 of Appendix A. As above, the data are
plotted to verify the scaling prediction (30) and to extract the
corresponding exponents x(s)

λ . We observe an already familiar
fan of straight lines (on the log-log scale), confirming the
predicted form of pure-scaling observables.

Numerically obtained values of surface generalized-
multifractality exponents are presented in Table VII. It is
seen that the Weyl symmetries (42) hold rather well, with
deviations of the order of two standard deviations of statistical
error bars. It is worth reiterating that higher-order observables
are more strongly affected by the limited statistics, which
contributes to an apparent slight violation of Weyl relations.

In the bottom-left panel of Fig. 7, we present results for the
q dependence of critical exponents x(s)

((q/n)n ) for n � 4. Dashed
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TABLE VII. Surface generalized-multifractality critical expo-
nents τ

(s)
λ and x(s)

λ at the IQH transition for all polynomial
pure-scaling observables with |λ| � 4 (and for two observables with
|λ| = 5). Statistical error bars (one standard deviation) are shown.
The averaging is performed over 2L points on the boundary and over
N = 104 realizations of disorder. The bulk exponents x(b)

λ are taken
from Ref. [13]. The column x(s)

λ /x(b)
λ demonstrates the independence

of surface exponents on bulk ones: x(s)
λ /x(b)

λ �= const.

λ τ
(s)
λ x(s)

λ x(s)
λ /x(b)

λ

(1) 1.001 0.001 ± 0.004
(2) 2.18 −0.82 ± 0.05 1.51 ± 0.09
(1, 1) 3.94 0.94 ± 0.03 1.66 ± 0.05
(3) 2.84 −2.16 ± 0.17 1.30 ± 0.11
(2, 1) 5.21 0.21 ± 0.08
(1, 1, 1) 7.81 2.81 ± 0.06 1.75 ± 0.03
(4) 3.5 −3.5 ± 0.3 1.12 ± 0.10
(3, 1) 6.15 −0.85 ± 0.17 0.77 ± 0.16
(2, 2) 7.52 0.52 ± 0.19
(2, 1, 1) 9.27 2.27 ± 0.10 2.06 ± 0.09
(1, 1, 1, 1) 12.54 5.54 ± 0.19 1.77 ± 0.06
(3, 2) 8.68 −0.32 ± 0.24
(2, 2, 1) 11.68 2.68 ± 0.16

lines represent the generalized parabolicity ansatz (10) with
b chosen to optimize the fit to n = 1 data at not too large
q. It is seen that for this critical point also, the generalized
parabolicity is clearly violated. It is worth emphasizing that
this violation is already evident for small q, where the accu-
racy of the numerical determination of the exponents is very
high (within ∼1%).

2. Lyapunov exponents
Proceeding in analogy with other critical points, we

implement the transfer-matrix analysis for the U(1) Chalker-
Coddington network of the IQH transition. The results for
the sums of Lyapunov exponents are shown in Fig. 7. In
Table VIII, we present a comparison of both sides of the
relations (23) for n = 1, 2, 3, and 4. It is seen that the relation
holds with an excellent precision (expected on the basis of
statistical error bars) for n = 1, 2, and 3. For n = 4, we ob-
serve a somewhat larger deviation, similarly to the case of the
SQH transition. However, even though the deviation for n = 4
substantially exceeds the statistical error bars, it is still quite
small numerically (∼3%). A plausible reason for an enhanced
deviation for n = 4 was discussed above in the context of the
SQH critical point.

TABLE VIII. IQH network: Numerical results for the derivative
of subleading exponent x(s)

(qn ) and n smallest Lyapunov exponents Li.

π
dx(s)

(qn )

dq |q=0 2M
∑n

i=1 Li

n = 1 1.22 ± 0.01 1.22 ± 0.01
n = 2 6.18 ± 0.03 6.20 ± 0.01
n = 3 14.77 ± 0.05 14.95 ± 0.04
n = 4 26.45 ± 0.08 27.31 ± 0.09

D. Higher Lyapunov exponents and violation
of generalized parabolicity

As we have seen above, the relation (23) between
Lyapunov exponents and the q → 0 behavior of generalized-
multifractality exponents, which can be reformulated as

2MLn = π

⎛
⎝dx(s)

(qn )

dq
−

dx(s)
(qn−1 )

dq

⎞
⎠
∣∣∣∣∣
q=0

, n = 1, 2, . . . . (43)

holds numerically with excellent accuracy and is likely ex-
act. At the same time, the small-q behavior of the exponents
demonstrates the strong violation of generalized parabolicity
in a very clear form; see Figs. 3 and 7. [Importantly, the
q → 0 limit corresponds to averaging of the logarithm (or,
equivalently, to typical values), implying a particularly high
numerical accuracy.] Thus, the sequence of Lyapunov expo-
nents by itself can serve as a smoking gun for violation of
generalized parabolicity (and thus of conformal invariance).
In Table IX (Appendix B), we summarize numerical results
for the Lyapunov exponents Ln with n = 1, 2, 3, and 4 for the
critical points studied in this paper.

If the multifractality spectrum obeyed generalized parabol-
icity, the sequence of Lyapunov exponents would be pro-
portional to −cn [for the corresponding symmetry class, see
Eq. (11)]. This indeed holds very well for the class-AII metal.
At the same time, this property is strongly violated for all
three Anderson-transition critical points (class-AII MIT as
well as SQH and IQH transitions), demonstrating strong vio-
lation of generalized parabolicity. Interestingly, the Lyapunov
exponents are nevertheless equidistant with a good accuracy.
For example, for the AII MIT, we find numerically L1 : L2 :
L3 : L4 ≈ 1 : 3 : 5 : 7, to be compared with the sequence 1 :
5 : 9 : 13 that would correspond to generalized parabolicity.

For completeness, we also included Table X that contains
results for Lyapunov exponents L(p)

n evaluated at AII MIT,
SQH, and IQH transitions for strips with periodic boundary
conditions, which correspond to bulk generalized multifrac-
tality; see Eq. (27). Violation of generalized parabolicity is
also evident in this case, as well as the fact that there is
no simple relation between the exponents Ln and L(p)

n (or,
equivalently, between surface and bulk generalized multifrac-
tality) at strong-coupling criticality. [Note that for a metal, the
Lyapunov exponents are, to the leading order, independent of
boundary conditions, in correspondence with Eq. (31).]

IV. SUMMARY AND OUTLOOK

In this paper, we have extended the concept of generalized
multifractality to the boundary of a system at Anderson-
transition criticality. We have further numerically explored
generalized surface multifractality in 2D systems of classes
AII (at the MIT and in the“weakly critical” metallic phase),
C (at the SQH transition), and A (at the IQH transition).
We have verified that Eqs. (6)–(8) correctly give pure-scaling
observables on the system surface also and extracted numer-
ical values of surface generalized-multifractality exponents.
The exponents obey well the Weyl-symmetry relations. These
results confirm the validity of the analytical predictions based
on NLσM.
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FIG. 8. Generalized multifractality in the metallic phase of class AII (Ando model with W = 3) for polynomial observables with |λ| = 2
(left), 3 (middle), and 4 (right). The pure-scaling observables L2|λ|〈Pλ[ψ](L, r)〉 are averaged over N = 104 realizations of disorder and over
points on the boundary. The data are scaled with r�(q1 )+···+�(qn ) , yielding a collapse as a function of r/L, as predicted. Data corresponding to
the smallest r = 3 are highlighted as large dots.

Deeply in the metallic phase of class AII, the exponents
satisfy with a good accuracy the generalized parabolicity (10),
as expected in the one-loop approximation that is parametri-
cally justified in this regime. Further, the surface exponents
are approximately equal to twice the bulk exponents in this
regime, x(s)

λ = 2x(b)
λ , again in agreement with analytical pre-

dictions.
On the other hand, the generalized parabolicity (10) is

strongly violated at the MIT of class AII as well as at SQH and
IQH transitions. Further, there is no simple relation between
the surface and bulk exponents at these critical points. This
corroborates earlier conclusions that these critical points are
not described by a theory of WZNW or free-boson type and,
more generally, not described by a CFT.

We have further derived relations (23) that hold under an
assumption that the theory is invariant under the exponential
map (12) between a quasi-1D and a 2D system. This formula
connects typical values of the generalized-multifractality ob-
servables P(1n )[ψ] in a 2D system with Lyapunov exponents
of a quasi-1D system. We put the relations (23) under scrutiny
in different symmetry classes A, AII, and C. In class AII, we
analyze both the thermal metal phase and the metal-insulator
transition. Our results show that the relations (23) hold with
an excellent accuracy and are most likely exact. (Deviations
that substantially exceed statistical error bars are observed
only in the case of n = 4 for the SQH and IQH transition, and
even they are of the order of a few percent. We attribute these
deviations to an increase of finite-size corrections at large n.)

Thus, we interpret the obtained results as a strong evidence of
invariance of the theory with respect to the exponential map,
at least for this class of observables.

We close the paper by briefly discussing open questions
and associated prospects for future research.

(i) A natural perspective is the extension of our nu-
merical analysis of surface generalized-multifractality to 2D
Anderson-transition critical points of other symmetry classes.
Also, we foresee a numerical study of generalized multifrac-
tality in system dimensionality d > 2 (in particular, at the
conventional Anderson transition in class AI in three dimen-
sions).

(ii) Our results, in combination with earlier findings, in-
dicate that 2D Anderson-transition critical points have very
peculiar properties. They do not possess full conformal invari-
ance, but at the same exhibit invariance with respect to some
conformal transformations (in addition to scale invariance)—
at least with respect to the exponential map (12). It would
be interesting to understand better under what classes of
conformal transformation such systems are invariant (or not
invariant). A further challenging task is to extend this analysis
to systems above two dimensions and to explore whether there
are some analogies in a broader context of critical phenomena;
see, in this relation, Ref. [24].

(iii) Much previous work was devoted to the investi-
gation of the interplay of multifractality (conventional and
generalized) in the bulk and interparticle (electron-electron)
interaction. This research area has many facets. In particular,

FIG. 9. Generalized multifractality at SQH transition (class C) for polynomial observables with |λ| = 2 (left), 3 (middle), and 4 (right). The
pure-scaling observables L(2+μ)|λ|〈Pλ[ψ](L, r)〉 are averaged over N = 104 realizations of disorder and over points on the boundary. The data
are scaled with r�(q1 )+···+�(qn ) , yielding a collapse as a function of r/L, as predicted. Data corresponding to the smallest r = 2 are highlighted
as large dots.
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FIG. 10. Generalized multifractality at IQH transition (class A) for polynomial observables with |λ| = 2 (left), 3 (middle), and 4 (right).
The pure-scaling observables L2|λ|〈Pλ[ψ](L, r)〉 are averaged over N = 104 realizations of disorder and over points on the boundary. The data
are scaled with r�(q1 )+···+�(qn ) , yielding a collapse as a function of r/L as predicted. Data corresponding to the smallest r = 2 are highlighted
as large dots.

it includes the effects of multifractality on dynamical scaling
at Anderson transitions [54–56], influence of Coulomb inter-
action on the spectra of multifractal exponents [57–62], and
instabilities induced [63,64] or enhanced by multifractality.
A remarkable manifestation of the last point is a parametric
enhancement of the superconducting transition temperature
by multifractality in 2D systems [65–72] (and also near the
Anderson transition in 3D systems [73–76]); recent experi-
mental works [77,78] reported observation of this effect in
monolayer niobium dichalcogenides. Extending the research
in these directions to the interplay of (generalized) multifrac-
tality and interaction at a surface would be of much interest.
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APPENDIX A: NUMERICAL VERIFICATION OF
PURE-SCALING OBSERVABLES AND DETERMINATION

OF SCALING EXPONENTS

In this Appendix, we show the numerical data for the scal-
ing of observables Pλ[ψ], as given by Eq. (8) in combination

with either Eq. (7) (classes AII and C) or Eq. (6) (class A)
for the metallic systems of class AII and for critical systems
at SQH and IQH transitions. The data support the claim that
Pλ[ψ] exhibit pure-scaling behavior and are used to extract
the values of surface generalized-multifractality exponents
presented in the main text. All the data in this Appendix are
presented in a form analogous to Fig. 2 of the main text (where
results for the class-AII MIT are shown).

In Fig. 8, the numerical results for the metallic phase of
the Ando model in class AII are shown. In Figs. 9 and 10, we
present the data for the network models in classes C (SQH
transition) and A (IQH transition), respectively.

APPENDIX B: LYAPUNOV EXPONENTS

In this Appendix, we summarize results for the first four
Lyapunov exponents for all the critical points studied numer-
ically in this work. The Lyapunov exponents Ln (multiplied
by 2M) are presented in Table IX. All of them are calculated
for strips with open boundary conditions (that correspond to
surface generalized multifractality in the framework of the
exponential map). For completeness, we also present (Ta-
ble X) the results for Lyapunov exponents L(p)

n evaluated
with periodic boundary conditions, which correspond to bulk
generalized multifractality.

TABLE IX. Lyapunov exponents Ln with n = 1, 2, 3, and 4 (for strips with open boundary conditions) at critical points studied numerically
in this paper. If generalized parabolicity held, the sequence Ln would be proportional to −cn. The second and first columns for each critical
point nicely illustrate that the surface generalized parabolicity holds for the AII metal, but is strongly violated at the AII MIT, SQH, and IQH
critical points.

AII MIT AII metal SQH IQH

2MLn Ln/L1 −cn 2MLn Ln/L1 −cn 2MLn 3Ln/L1 −cn 2MLn Ln/L1 −cn

n = 1 1.331 ± 0.005 1 1 0.174 ± 0.005 1 1 1.821 ± 0.017 3 3 1.22 ± 0.01 1 1
n = 2 4.062 ± 0.016 3.05 ± 0.02 5 0.859 ± 0.007 4.94 ± 0.18 5 6.64 ± 0.04 10.94 ± 0.17 7 4.95 ± 0.01 4.06 ± 0.04 3
n = 3 6.66 ± 0.04 5.00 ± 0.05 9 1.531 ± 0.005 8.8 ± 0.3 9 11.35 ± 0.14 18.7 ± 0.4 11 8.74 ± 0.03 7.16 ± 0.08 5
n = 4 9.20 ± 0.08 6.91 ± 0.09 13 2.239 ± 0.009 12.9 ± 0.4 13 15.7 ± 0.2 25.9 ± 0.6 15 12.36 ± 0.05 10.13 ± 0.12 7
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TABLE X. Lyapunov exponents L(p)
n with n = 1, 2, 3, and 4 (for strips with periodic boundary conditions corresponding to bulk generalized

multifractality). If generalized parabolicity held, the sequence L(p)
n would be proportional to −cn. The second and first columns for each critical

point nicely illustrate that the bulk generalized parabolicity is strongly violated at the AII MIT, SQH, and IQH critical points.

AII MIT SQH IQH

2ML(p)
n L(p)

n /L(p)
1 −cn 2ML(p)

n 3L(p)
n /L(p)

1 −cn 2ML(p)
n L(p)

n /L(p)
1 −cn

n = 1 0.533 ± 0.028 1 1 1.205 ± 0.032 3 3 0.830 ± 0.012 1 1
n = 2 2.00 ± 0.03 3.74 ± 0.20 5 3.654 ± 0.034 9.10 ± 0.25 7 2.76 ± 0.01 3.32 ± 0.05 3
n = 3 3.33 ± 0.02 6.24 ± 0.33 9 6.02 ± 0.04 15.0 ± 0.4 11 4.64 ± 0.01 5.59 ± 0.09 5
n = 4 4.623 ± 0.03 8.7 ± 0.5 13 8.30 ± 0.04 20.6 ± 0.5 15 6.53 ± 0.02 7.86 ± 0.12 7
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