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Boundary multifractality in the spin quantum Hall symmetry class with interaction
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Generalized multifractality characterizes system size dependence of pure scaling local observables at An-
derson transitions in all 10 symmetry classes of disordered systems. Recently, the concept of generalized
multifractality has been extended to boundaries of critical disordered noninteracting systems. Here we study
the generalized boundary multifractality in the presence of electron-electron interaction, focusing on the spin
quantum Hall symmetry class (class C). Employing the two-loop renormalization group analysis within the
Finkel’stein nonlinear sigma model, we compute the anomalous dimensions of the pure scaling operators located
at the boundary of the system. We find that generalized boundary multifractal exponents are twice larger than
their bulk counterparts. Exact symmetry relations between generalized boundary multifractal exponents in the
case of noninteracting systems are explicitly broken by the interaction.
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I. INTRODUCTION

A fascinating example of a quantum phase transition in
a free fermion system is the Anderson transition [1]. This
transition is controlled by disorder and separates metallic
and insulating phases. An additional boost to studies of the
Anderson transition is provided by the fact that some Ander-
son transitions occur between distinct topological (insulating)
phases, e.g., integer quantum Hall plateau-plateau transitions.
An intriguing feature of the Anderson transition is the strong
mesoscopic fluctuations of electron wave functions at critical-
ity [2,3]. Consequently, the disorder-averaged moments of the
local density of states (LDOS) demonstrate pure power-law
scaling with the system size, 〈ρq〉∼L−x(q) . Here, values of the
multifractal exponents x(q) depend on a symmetry class of the
considered random Hamiltonian (see Refs. [4,5] for a review).

There are many more pure scaling observables in addition
to the moments of LDOS [6]. They can be expressed in terms
of disorder averages of specific combinations of wave func-
tions [7–10]. The corresponding set of multifractal exponents
xλ, termed as generalized multifractality, is a unique charac-
teristic of the Anderson transition in each symmetry class.
Exponents xλ are related by symmetry relations specific for
each symmetry class [7,11,12].

Recently, it has been established that the statistics of wave
functions at the surface (s) of a system undergoing a bulk
Anderson transition is different from the statistics in the bulk
[13–17]. In particular, the scaling of the LDOS moments at

the boundary is given as 〈ρq(r∈s)〉∼L−x(s)
(q) , with x(s)

(q) �= x(q). In
Ref. [18], the theory of generalized multifractality has been
extended to boundaries of critical systems.

The picture of generalized multifractality at Anderson
transitions has recently been fully supported by numer-
ics in the symmetry classes A, C, AIII, AII, D, and DIII
[8–10,19,20]. However, multifractality is of relevance for
experiments as well. Light waves spreading in an array of

dielectric nanoneedles demonstrated multifractal behavior in
experiments reported in Ref. [21]. Multifractal behavior of ul-
trasound waves was observed while they propagated through
a system of randomly packed Al beads [22]. In the experiment
[23], the electron LDOS was measured by scanning tunneling
microscopy on a surface of diluted magnetic semiconductor
Ga1−xMnxAs. While it was tuned through a bulk Ander-
son transition, multifractal signatures in LDOS have been
measured. In the experiment on Ga1−xMnxAs, the surface
multifractality was presumably observed. The multifractal be-
havior of the LDOS amplitude has recently been measured
in a weakly disordered superconducting state in the stripped
incommensurate phase of monolayer Pb/Si(111) [24].

Multifractality is responsible for many nontrivial physical
effects. It was shown [25–32] that multifractal correlations
effectively increase electron-electron attraction and, thus, lead
to strong enhancement of the superconducting transition tem-
perature and the superconducting gap at zero temperature.
Moreover, it was found that multifractality is responsible
for the log-normal distribution of the superconducting order
parameter [26,33,34] and LDOS [30,31,35] in dirty supercon-
ducting films. Multifractal correlations result in instabilities
of surface states in topological superconductors [36,37]. The
multifractal behavior of LDOS causes strong mesoscopic
fluctuations of the Kondo temperature [38–40]. Multifrac-
tality affects electron-phonon coupling, making the cooling
of electrons more efficient [41]. The Anderson orthogonality
catastrophe is also affected by the multifractal properties of
wave functions [42]. Multifractality in LDOS enhances the
depairing effect of magnetic impurities on the superconduct-
ing state in dirty films [43] and the superconducting LDOS
around Yu-Shiba-Rusinov states [44].

Recently, it has been suggested that multifractality can
serve as a sensitive instrument to test critical theories proposed
to describe Anderson transitions. Although, for each of the 10
Altland-Zirnbauer symmetry classes, an effective, long-wave
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description in terms of a nonlinear sigma model (NLσM) is
known (see Ref. [5] for a review), the Anderson transition
typically occurs in strong coupling. Thus, Anderson transi-
tion criticality is beyond the standard treatment of NLσM.
A prime example of such a situation is the integer quantum
Hall plateau transition for which the Wess-Zumino-Novikov-
Witten models were conjectured to be an ultimate conformal
critical theory [45–50]. It turns out that assumptions of the
local conformal invariance and Abelian fusion rules result
in the parabolic form1 of the generalized multifractal expo-
nents xλ with a single free parameter only [19,52]. However,
available numerical computations of the multifractal spectrum
for the integer quantum Hall plateau transitions demonstrate
significant deviations from the exact parabolicity [16,17,19].
This makes the theoretical suggestions of the Wess-Zumino-
Novikov-Witten models as critical theories for the integer
quantum Hall transition to be highly questionable.

An even more dramatic situation is in the superconducting
cousin of the integer quantum Hall effect—the spin quan-
tum Hall effect (class C) [53–55]. An advantage of the spin
quantum Hall transition in d = 2 is that an infinite subset
of generalized multifractal exponents is known analytically
from exact mapping to the percolation problem [8,15,56–
59]. The rigorous analytical results serve as a benchmark
against numerical computations. Although numerical data for
the generalized multifractal spectrum reproduce exact analyt-
ical results, they demonstrate clear evidence for a violation
of parabolicity [8–10,19,20,58,60]. Similarly, parabolicity is
expected to hold for the surface generalized multifractal expo-
nents in the presence of the local conformal invariance and the
Abelian fusion. Again, for the class C, the numerics does not
support parabolicity of the boundary multifractal exponents,
but coincides, simultaneously, with the exact analytical values
of the exponents [18]. These results prove a lack of the local
conformal invariance at the spin quantum Hall transition in
d = 2.

Electron-electron interaction, typically being a relevant
perturbation, modifies the scaling properties of the ob-
servables at Anderson (or, in that case, the so-called
Mott-Anderson) transitions (see Refs. [61,62] for a review).
Surprisingly, the generalized multifractality exists even in
the presence of interaction, i.e., at Mott-Anderson critical-
ity [63–66]. In this case, the pure scaling operators can be
formulated as proper correlations of single-particle Green’s
functions. In particular, the moments of LDOS remain pure
scaling operators. Although interaction does not change the
form of the pure scaling operators (except straightforward
generalization to incorporate a set of Matsubara frequencies),
it affects the generalized multifractal exponents. In particular,
it breaks the symmetry relations between different multifractal
exponents.

In this paper, we develop the theory of the generalized
boundary multifractality for the spin quantum Hall symmetry
class in the presence of electron-electron interaction. Us-
ing the Finkel’stein NLσM for class C, we compute the
anomalous dimensions of the pure scaling derivativeless local

1We note that the parabolicity of xλ arises in any dimensionality
d � 2 in the case of conformal invariance [51].

operators situated near the boundary in the two-loop renor-
malization group (RG) approximation. Surprisingly, within
the two-loop approximation, we find that the anomalous di-
mensions of pure scaling operators at the boundary and in
the bulk differ by a factor of 2. Also, the interaction breaks
the symmetry relations between the generalized surface mul-
tifractal exponents in the same way as for the bulk ones.

Throughout the paper, we use terms “surface” and “bound-
ary” interchangeably, as they both have been used in the
previous literature on multifractality. Also we note that in d di-
mensions, the surface is understood as a (d − 1)-dimensional
boundary.

The outline of the paper is as follows. In Sec. II, we re-
mind the reader of the formalism of the Finkel’stein NLσM
for class C. We summarize the results for generalized bulk
multifractality in the presence of interaction (Sec. III). The
original results for generalized surface multifractality in the
presence of interaction are presented in Sec. IV. We end the
paper with discussions and conclusions in Sec. V. The details
of the computations are given in the Appendix.

II. FINKEL’STEIN NLσM FOR CLASS C

A. NLσM action

We start from a brief reminder of the Finkel’stein NLσM
for the class C (see Refs. [66–70] for details). We use nota-
tions from Ref. [66]. The grand canonical partition function is
given as

Z =
∫

D[Q] exp S, S = S0 + Sint, (1)

where S0 and Sint are free and interacting parts of the action.
We note that the action also involves the topological term
similar to the class A. However, we omit the topological term
in this paper since we focus on the perturbative treatment of
the model. S0 and Sint are as follows:

S0 = − g

16

∫
r
Tr(∇Q)2 + Zω

∫
r
Trε̂Q, (2a)

Sint = −πT �t

4

∑
α,n

∫
r
Tr
(
Iα
n sQ
)
Tr
(
Iα
−nsQ

)
, (2b)

where
∫

r ≡ ∫ dd r and T stands for temperature. The matrices
Iα
n , ε̂, and s are defined below; cf. Eqs. (5) and (6). The field

variable Q is a Hermitian matrix, Q†=Q, acting in the 2 × 2
spin space, in the Nr × Nr replica space, and in the 2Nm × 2Nm

space of the Matsubara fermionic energies, εn=πT (2n + 1).
The matrix Q satisfies the nonlinear local constraint

Q2(r) = 1, (3)

and obeys the Bogoliubov–de Gennes symmetry relation

Q = −Q̄, Q̄ = s2L0QTL0s2. (4)

Here, superscript T denotes the matrix transposition opera-
tion. Several of the matrices introduced above are given as
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follows:(
Iα
n

)
kmβγ = δk−m,nδ

βαδγαs0, ε̂nmαβ = εn δnmδαβs0,

(L0)nmαβ = δεn,−εmδαβs0, (5)

where s0 is the 2 × 2 identity matrix in the spin space.
The Latin indices represent Matsubara energies, whereas the
Greek indices correspond to replica space. The vector s =
{s1, s2, s3} is the vector of three nontrivial Pauli matrices,

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i
i 0

)
, s3 =

(
1 0
0 −1

)
. (6)

Nonlinear constraint (3) can be resolved by

Q = T−1T, αβ
nm = sgnεn δnmδαβs0. (7)

Here the rotation T is a unitary matrix satisfying

T−1 = T†, (T−1)TL0s2 = s2L0T. (8)

Parametrization (7) and condition (8) fix the target space of
the NLσM as Q∈Sp(2N )/U(N ), where N = 2NrNm. We note
that one needs to take the limits Nm → ∞ and Nr → 0.

The NLσM action (1) involves a bare dimensionless spin
conductance g, a bare exchange interaction �t , and a parame-
ter Zω, which is responsible for frequency renormalization.

As we shall see below, in order to extract singular infrared
behavior within the NLσM action, it is convenient to add the
following regulator into the action (1):

Sh = gh2

8

∫
r
TrQ. (9)

We note that the NLσM action (2a), (2b), and (9) can be
reduced to the NLσM for the class A by breaking spin rotation
symmetry from SU(2) down to U(1) such that the Q matrix in
the spin space acquires the diagonal form,

Q =
(

Q↑ 0

0 Q↓

)
, Q↓ = −L0QT

↑L0. (10)

B. Perturbation theory

In order to proceed, we need to develop perturbation theory
in 1/g  1. Since in this work we are interested in boundary
multifractality, we consider a two-dimensional (2D) sample
with the boundary at x = 0 (see Fig. 1). In what follows, we
will employ the dimensional regularization method such that
we will work in d = 2 + ε dimensions. We parametrize a d-
dimensional coordinate vector as r={x, y1, . . . , yd−1}.

Also we will use the square-root parametrization of the Q
matrix,2

Q = W + 
√

1 − W 2, W =
(

0 w

w† 0

)
, (11)

where we adopt the following notations: Wn1n2=wn1n2 and
Wn2n1=w†

n2n1
with εn1 > 0 and εn2<0. Making expansion

2This transformation has the Jacobian different from the unity [71].
However, the additional contribution to the action due to the Jacobian
vanishes in the dimensional regularization scheme which we employ
in this work [72].

Sample

Boundary
x

y

FIG. 1. Sketch of the system with a boundary perpendicular to
the x axis and situated at x = 0.

w=∑3
j=0 wjsj, we find that the elements of wj satisfy the

symmetry relations [cf. Eq. (4)]

(wj)
αβ
n1n2

= vj(wj)
βα
−n2,−n1

, (12)

where vj= − tr(sjs2sT
j s2)/2={−1, 1, 1, 1}.

From the second-order expansion of Eq. (1) in W , we find
the propagators of Gaussian theory,〈

(wj)
αβ
n1n2

(r)(w†
j )μν

n4n3
(r′)
〉

= 2

g

[(
δανδβμδn1n3δn2n4 + vjδ

αμδβνδn1,−n4δn2,−n3

)
× D̂
(
iωn12 ; r, r′)− 4πT γ

D
(1 − δj0)δανδβμδαβδn12,n34

× D̂Dt
(
iωn12 ; r, r′)], (13)

where we denote ωn12=εn1 − εn2 and n12=n1 − n2. Next,
D=g/(4Zω ) and γ=�t/Zω are a bare diffusion coefficient and
a dimensionless interaction strength, respectively. Diffuson
and diffuson dressed by interaction via ladder resummation
are given as

D̂
(
iωn12 ; r, r′) =

∑
s=±

D
(
iωn12 ; x − sx′, y − y′), (14a)

D̂t
(
iωn12 ; r, r′) =

∑
s=±

Dt
(
iωn12 ; x − sx′, y − y′), (14b)

where y = {y1, . . . , yd−1}. Here, D(iωn; x, y) and Dt (iωn; x, y)
correspond to the diffusons in an infinite sample [

∫
q ≡∫

dd q/(2π )d ],

D/t (iωn; x, y) =
∫

q
D/t

q (iωn)eiqxx+iq‖y, (15)

with the standard momentum representation

Dq(iωn) = [q2 + h2 + ωn/D]−1, (16a)

Dt
q(iωn) = [q2 + h2 + (1 + γ )ωn/D]−1. (16b)

We note that the diffusons (14a) and (14b) are the Green’s
functions of the corresponding diffusive equations with the
Neumann boundary condition. The latter guarantees the ab-
sence of current flowing out of the system (see Appendix A).
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Also we introduced the following notation:

D̂Dt (iω; r, r1) =
∫ ′

dx2

∫
dd−1y2D̂(iω; r, r2)D̂t (iω; r2, r1)

=
∫

q
DDt

q(iω)
∑
s=±

eiqx (x−sx1 )+iq‖(y−y1 ). (17)

Here the “prime” sign on the integral indicates that we inte-
grate over x2 > 0. Also we introduced the short-hand notation
DDt

q(iωn) ≡ Dq(iωn)Dt
q(iωn).

The NLσM action [see Eqs. (2a), (2b), and (9)] is subjected
to renormalization. Within one-loop order [the lowest order in
t = 1/(πg)], the renormalized parameters (denotes by prime
signs) are given as (for a system without the boundary)

h′2 = gh2Z

g′ = h2

[
1 − bthε

ε

]
, g′ = g

[
1 + a1thε

ε

]
,

Z ′
ω

Zω

= �′
t

�t
= 1 + (1 − 3γ )

thε

ε
, t = 1

πg
,

a1 = v/2 + 6 f (γ ), b = 3 ln(1 + γ ) + 6 f (γ ). (18)

Here we introduced v=∑3
j=0 vj≡2. The above results can be

rewritten in the form of the one-loop renormalization group
equations (with usage of the minimal subtraction scheme
[73]),

dt

d�
= −εt + [v/2 + 6 f (γ )]t2 + O(t3), (19a)

dγ

d�
= 0 + O(t2), (19b)

d ln Zω

d�
= −(v/2 − 3γ )t + O(t2), (19c)

d ln Z

d�
= −[v/2 − 3 ln(1 + γ )]t + O(t2). (19d)

Here, �= ln 1/h′ stands for the logarithm of the infrared
length scale, which is just a system size at T = 0. At fi-
nite temperature, the infrared scale is set by the temperature
length ∼√

D/T . We note that Eqs. (19) have been derived in
Refs. [66–70] by various techniques.

III. GENERALIZED BULK MULTIFRACTALITY

We start with a reminder of the generalized multifractality
in the bulk for class C reported in Ref. [66]. An operator with-
out derivatives which involves the number q of Q fields can be
constructed as follows [65,66]. We introduce the quantity

Kq(E1, . . . , Eq ) = 1

4q

∑
p1,...,pq=±

⎛⎝ q∏
j=1

p j

⎞⎠
× Pα1,...,αq;p1,...,pq

q (E1, . . . , Eq ), (20)

depending on the set {E1, . . . , Eq} of real energies. The cor-
relation function Pα1,...,αq;p1,...,pq

q (E1, . . . , Eq ) can be obtained
from its Matsubara counterpart P

α1,...,αq
q (iεn1 , . . . , iεnq ) by

the analytic continuation to the real frequencies: εn j →Ej +

ip j0+. The corresponding Matsubara correlation function is
given as

P
α1,...,αq
q

(
iεn1 , . . . , iεnq

) = ∑
{k1,...,kq}

μk1,...,ks

〈
Rk1,...,ks

〉
,

Rk1,...,ks =
ks∏

r=k1

trQ
α j1 α j2
n j1 n j2

Q
α j2 α j3
n j2 n j3

. . . Q
α jr α j1
n jr n j1

.

(21)

The summation on the right-hand side of Eq. (21) is performed
over all partitions3 of the integer number q. We note that all
replica indices in Eq. (20) are different: α j �= αk if j �= k for
j, k = 1, . . . , q. One coefficient among the set {μk1,...,ks} can
be chosen to be arbitrary. We adopt the following convention:
μ1,1,...,1 = 1.

The energy dependence of the operator Kq, given by
Eq. (20), complicates its renormalization. The energies Ej

provide infrared regularization of otherwise divergent terms
in the perturbative renormalization scheme for the operator
Kq (see details in Ref. [65]). In order to avoid such a com-
plication, we introduced the infrared regulator h2; cf. Eq. (9).
It allows us to compute the renormalization of the operator
Kq, setting all Ej = 0. However, in the Matsubara counter-
part of the operator Kq, we cannot set Matsubara energies
εn j to zero from the very beginning. In order to be able to
make the proper analytic continuation to the real frequencies,
εn j → Ej + ip j0+, we have to keep track of the signs of εn j

since p j ≡ sgnεn j . Therefore, once signs of εn j are treated
properly, it is convenient to set all εn j to zero. In this way,
the simplified operator [66]

Kq = 1

4q

∑
pk=±

⎛⎝ q∏
j=1

p j lim
εn j →0

⎞⎠P
α1,...,αq
q

(
ip1

∣∣εn1

∣∣, . . . , ipq

∣∣εnq

∣∣)
(22)

can be used to study the renormalization of the operator
Kq(E1, . . . , Eq ). Therefore, in what follows, we will work
with Kq instead of Kq.

In the absence of interaction, γ = 0, the NLσM action
reduces to Eq. (2a). Then one can project the Q matrix to
the 2 × 2 subspace of a given single pair of positive and neg-
ative Matsubara frequencies.4 The projection corresponds to
reduction of Sp(2N ) to Sp(4Nr ). The effective action becomes
invariant under rotations Q→T−1QT with T∈U(2Nr ). This
allows one to average operators Kq over U(2Nr ) rotations.
The resulting rotationally invariant operators can be classified
with respect to the irreducible representations of Sp(2N ).
Each irreducible representation contains a single rotationally
invariant pure scaling operator [6,7,19]. The corresponding
eigenoperators can uniquely be characterized by the Young
tableau λ = (k1, . . . , ks) (with |λ| =∑s

j=1 kj = q).

3The partitions are a set of positive integer numbers {k1, . . . , ks}
which satisfy the following conditions: k1 + k2 + . . . ks = q and k1 �
k2 � · · · � ks > 0.

4It is possible since the Matsubara indices of the Q matrix are not
mixed in the absence of interaction (the energy of diffusive modes
conserves).
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TABLE I. The coefficients μk1,...,ks for eigenoperators with q =
2, 3, 4.

q = 2 μ1,1 μ2

(2) 1 −1
(1,1) 1 2

q = 3 μ1,1,1 μ2,1 μ3

(3) 1 −3 2
(2,1) 1 1 −2
(1,1,1) 1 6 8

q = 4 μ1,1,1,1 μ2,1,1 μ3,1 μ2,2 μ4

(4) 1 −6 8 3 −6
(3,1) 1 −1 −2 −2 4
(2,2) 1 2 −8 7 −2
(2,1,1) 1 5 4 −2 −8
(1,1,1,1) 1 12 32 12 48

Although interaction breaks the beautiful mathematical
structure of the NLσM manifold, surprisingly, it does not
spoil the structure of non-U(2NrNm)-invariant eigenoperators
Kλ [63–66]. The coefficients μk1,...,ks for |λ| = 2, 3, 4 are
listed in Table I. Not surprisingly, the anomalous dimension
of Kλ is changed by the interaction. The renormalized eigen-
operator can be written as

Kλ = ZqMλKλ[], (23)

where the factor Z describing renormalization of the local
density of states is governed by the following RG equation:

η(1) = −d ln Z

d�
= [1 − 3 ln(1 + γ )]t + O(t2). (24)

We note that in the presence of interaction, the expression
for η(1) is known up to the one-loop approximation only. The
quantity Mλ determines the anomalous dimension,

ηλ = −d ln Mλ

d�
= μ2,1,...,1t[1 + 3c(γ )t] + O(t3), (25)

where μ2,1,...,1 is a coefficient in the expansion of the eigen-
operator in series in the basis operators Rk1,...,ks ; see Eq. (21).
For the eigenoperator characterized by the Young tableau
λ = (k1, . . . , ks), this coefficient is given as [19] (see Table I
for |λ| = 2, 3, 4)

μ2,1,...,1 = −1

2

s∑
j=1

kj(cj + 2 + kj), cj = 1 − 4j. (26)

The function c(γ ) contains information about the interaction
and is given as [63–66]

c(γ ) = 2 + 1 + γ

2γ
ln2(1 + γ ) + 2 + γ

γ
li2(−γ ). (27)

The anomalous dimensions ηλ determine the scaling with
the system size L of the eigenoperators at the fixed point,

Kλ ∼ L−xλ , xλ = |λ|x(1) + �λ. (28)

Here the exponent x(1) coincides with the magnitude of η(1) at
the fixed point, x(1) = η∗

(1). Similarly, the exponent �λ is equal
to the anomalous dimension of Mλ at the fixed point, �λ = ηλ.

Next we discuss how Eqs. (24) and (25) are modified for
the local eigenoperators situated near the boundary.

IV. GENERALIZED SURFACE MULTIFRACTALITY

In this section, we compute anomalous dimensions of the
renormalization group eigenoperators without derivatives near
the boundary.

A. Operator with a single Q matrix

We start the analysis from the local eigenoperator with a
single Q matrix,

Pα
1 (iεn) = tr

〈
Qαα

nn

〉
. (29)

Physically, it corresponds to the average local density of states
near the boundary. Substituting the expansion Q �  + W −
W 2/2, we find that

Pα
1 (iεn) = 2Z (s)(iεn)sgnεn, (30)

where

Z (s)(iεn) = 1 − v
g
D̂(2i|εn|; r, r)

+ 12πT γ

gD

∑
ωm>|εn|

D̂Dt (iωm; r, r). (31)

Assuming that the point r is close to the boundary at x = 0,
we find that

D̂(iωn; r, r) � 2
∫

q
Dq(iωn), (32a)

D̂Dt (iωn; r, r) � 2
∫

q
DDt

q(iωn). (32b)

We note that the factors 2 in the above equations reflect the
well-known physical result of increase of the return probabil-
ity near the reflecting boundary. Therefore, we find

K(1) = Z (s)K(1)[],

Z (s) = 1 +
[

v
2

− 3 ln(1 + γ )

]
2thε

ε

= 1 + [v/2 − 3 ln(1 + γ )]2th′ε/ε. (33)

Applying the minimal subtraction scheme, we deduce the
anomalous dimension of the operator K(1),

η
(s)
(1) = −d ln Z (s)

d�
= 2t[1 − 3 ln(1 + γ )] + O(t2). (34)

We note that similar to the bulk anomalous dimension η(1), the
interaction affects the anomalous dimension of Z (s) already in
the one-loop approximation. The effect of the boundary is a
factor 2 in front of t on the right-hand side of Eq. (34); cf.
Eq. (24). This factor 2 comes from the factor 2 in Eqs. (32a)
and (32b).
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Since the two-loop expression for the bulk anomalous di-
mension η(1) is not known at the moment, in this work we
restrict our computation of the surface anomalous dimension
η

(s)
(1) to the one-loop order only. As we shall see below (cf.

Sec. IV B 3), one-loop renormalization of Z (s) will be enough
in order to determine the surface anomalous dimensions of
eigenoperators with q � 2 within a two-loop approximation.

B. Local eigenoperators with two Q matrices

1. One-loop renormalization

As known, there are two local eigenoperators with two Q
matrices denoted as K(2) and K(1,1). It will be convenient to
consider the irreducible part of the corresponding correlation
function,

Pαβ;(irr)
2 (iεn, iεm) = 〈〈trQαα

nn trQββ
mm

〉〉+ μ2
〈
trQαβ

nmQβα
mn

〉
. (35)

Here, μ2 = −1 and 2 corresponds to the operator K(2) and
K(1,1), respectively. We note that the full correlation function

can be restored as follows:

Pαβ

2 (iεn, iεm) = (2Z (s) )2sgnεnsgnεm + Pαβ;(irr)
2 (iεn, iεm).

(36)
After expansion of Q to the first order in W , the one-loop

contribution becomes

Pαβ;(irr)
2,1 (iεn, iεm)

= μ2
〈
trW αβ

nm W βα
mn

〉
= 16μ2

g

1 − sgnεnsgnεm

2
D̂(i|εn| + i|εm|; r, r). (37)

Neglecting the energy dependence in the diffusive propa-
gators and using Eq. (32a), we find the following one-loop
result for the irreducible part of the operator K2:

K (irr)
2,1 = 2tμ2hε/ε. (38)

We note the same additional factor 2 as in the one-loop ex-
pression for Z (s).

2. Two-loop renormalization

Next expanding Q to the second order in W , we obtain the
two-loop contribution as

Pαβ;(irr)
2,2 = 1

4
sgnεnsgnεm

〈〈
tr(W 2)αα

nn tr(W 2)ββ
mm

〉〉+ μ2
1 + sgnεnsgnεm

8

〈
tr(W 2)αβ

nm(W 2)βα
mn

〉
+ μ2

1 − sgnεnsgnεm

2

〈〈
trW αβ

nm W βα
mn

[
S(4)

0 + S(4)
h + S(4)

int

+ 1
2

(
S(3)

int

)2
]〉〉

. (39)

In order to compute (39), we need to calculate several contractions of the W matrices. At first, using Eq. (13), we find

〈〈
tr(W 2)αα

nn tr(W 2)ββ
mm

〉〉 = 64

g2
[D̂(i|εn| + i|εm|; r, r)]2 � 64

g2

[
2
∫

q
Dq(i|εn| + i|εm|)

]2

→ 16
(2t )2h2ε

ε2
. (40)

In the last line, we use Eq. (32a) and neglect the energy dependence in the propagators.
Next, we proceed as follows:

〈
tr(W 2)αβ

nm(W 2)βα
mn

〉 = −3
27πT γ

g2D

∑
εk>0

D̂(i|εm| + iεk; r, r)D̂Dt (i|εn| + iεk; r, r) + 32v
g2

D̂(2i|εn|; r, r)D̂(i|εn| + i|εm|; r, r) + (n↔m)

� −3
29πT γ

g2D

∑
εk>0

∫
qp
Dq(i|εm| + iεk )DDt

p(i|εn| + iεk ) + 32v
g2

4
∫

qp
Dq(2i|εn|)Dp(i|εn| + i|εm|) + (n ↔ m)

→ 16v
(2t )2h2ε

ε2
− 48

(2t )2h2ε

ε2

[
ln(1 + γ ) − ε

4
ln2(1 + γ )

]
. (41)

Here we use Eqs. (32a) and (32b). We refer the reader to Ref. [64] for details on the computation of integrals over momenta and
frequency involved in Eq. (41).

Next we have to introduce the following non-Gaussian terms stemming from the expansion of the Q matrix in powers of W
of the NLσM action,

S(4)
0 + S(4)

h = − g

64

∫
r

∑
αi,ni

(
∇12∇34 + ∇14∇23 + ωn12+n34

D
+ 2h2

)
tr
{
[w(r1)]α1α2

n1n2
[w†(r2)]α2α3

n2n3
[w(r3)]α3α4

n3n4
[w†(r4)]α4α1

n4n1

}∣∣
ri=r (42)
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(here we use a shorthand notation ∇12≡∇1 + ∇2) and

S(3)
int = πT �t

4

∑
α,n

∫
r
trIα

n sW TrIα
−nsW 2, (43a)

S(4)
int = −πT �t

16

∑
α,n

∫
r
TrIα

n sW 2TrIα
−nsW 2. (43b)

Performing averaging with the help of Wick theorem and Eq. (13), we obtain

〈〈
Tr
[
W αβ

nm W βα
mn

][
S(4)

0 + S(4)
h

]〉〉 = −8v
g2

∫
r′

[
∇12∇34 + ∇14∇32 + 2|εn| + |ωnm|

D
+ 2h2

]
D̂(i2|εn|; r1, r2)D̂(i|ωnm|; r3, r)

× D̂(i|ωnm|; r, r4)|ri=r′ + 96πT γ

g2D

∑
ωk>|εn|

[
∇12∇34 + ∇14∇32 + |ωk| + |ωnm|

D
+ 2h2

]

× D̂Dt (i|ωk|; r1, r2)D̂(i|ωnm|; r3, r)D̂(i|ωnm|; r, r4)|ri=r′ + (n↔m)

= −16v
g2

∫
qp

(
p2 + q2 + 2|εn| + |ωnm|

D
+ 2h2

)
Dp(i2|εn|)D2

q (i|ωnm|)

− 16v
g2

∫
qp

(
4p2

x + 2pxqx + p2 + q2 + 2|εn| + |ωnm|
D

+ 2h2

)
Dp(i2|εn|)Dq(i|ωnm|)

× Dqx+2px,q‖ (i|ωnm|) + 2
96πT γ

g2D

∑
ωk>|εn|

∫
qp

(
4p2

x + 2pxqx + p2 + q2 + |ωk| + |ωnm|
D

+ 2h2

)

× DDt
p(iωk )Dq(i|ωnm|)Dqx+2px,q‖ (i|ωnm|) + 192πT γ

g2D

×
∑

ωk>|εn|

∫
qp

(
p2 + q2 + |ωk| + |ωnm|

D
+ 2h2

)
DDt

p(iωk )D2
q (i|ωnm|) + (n↔m)

→ −5v
(2t )2h2ε

ε2
+ 6

(2t )2h2ε

ε2

[
5 ln(1 + γ ) + εγ

1 + γ

]
+ 192γ

g2
I0
110(1 + γ ). (44)

Here we introduced the following notation: [
Dqx,q‖ (iω)

]−1 = q2
x + q2

‖ + ω/D + h2. (45)

We emphasize that the appearance of such diffuson as defined in Eq. (45) is specific for the problem of boundary multifractality.
The corresponding integrals are evaluated in Appendix B. The definition of the integral I0

110 is given in Appendix B. Instead of
computing the integral I0

110 separately, it is convenient to calculate it in combination with two other similar integrals; see below.
The last contribution in Eq. (39) can be evaluated using the following simplification, which is possible due to different replica

indices, α �= β:

S(4)
int + 1

2

(
S(3)

int

)2→ −
∑
νn

∫
r,r′

[
δ(r − r′) − γ |ωn|

D
D̂t (i|ωn|; r, r′)

]
πT �t

4

3∑
j=1

TrIν
n sjW 2(r)TrIν

−nsjW 2(r′). (46)

After tedious but straightforward calculations, we obtain〈〈
trW αβ

nm W βα
mn

[
S(4)

int +
(
S(3)

int

)2
2

]〉〉

= 96πT γ

g2D

∫
r′,r′′

( ∑
|εn|>ωk

+
∑

|εm|>ωk

)[
γ |ωk|

D
D̂t (i|ωk|; r′, r′′) − δ(r′ − r′′)

]
D̂(i|εn| + i|εm|; r, r′)

× D̂(i|εn| + i|εm|; r, r′′)D̂(i|εn| + i|εm| − iωk; r′, r′′)
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� 192πT γ

g2D

∫
qp

( ∑
|εn|>ωk

+
∑

|εm|>ωk

)[
γ |ωk|

D
Dt

p+q(i|ωk|) − 1

]
Dq(i|εn| + i|εm|)[Dq(i|εn| + i|εm|) + Dqx+2px,q‖ (i|εn| + i|εm|)]

× Dp(i|εn| + i|εm| − iωk )

= 6
(2t )2h2ε

ε2

{
2γ − (2 + γ ) ln(1 + γ )

γ
− ε

(2 + γ ) ln(1 + γ )

γ
− εγ

1 + γ
− ε

2 + γ

γ

[
li2(−γ ) − 1

4
ln2(1 + γ )

]}
− 192γ

g2

[
I0
110(1) − γ I1

111(1 + γ )
]
. (47)

Here, li2(z) =∑∞
k=1 zk/k2 denotes the polylogarithm. Again we emphasize the emergence of boundary diffusons (45) in the

expression (47). Combining the above results, given by Eqs. (40)–(44) and (47), we find

K (irr)
2,2 =

(
μ2[v − 6 ln(1 + γ )] + 1 + μ2v

8
− 3μ2

2
f (γ ) + 3εμ2

4

{
2 + 3γ

4γ
ln2(1 + γ ) + 2 + γ

γ
[li2(−γ ) + ln(1 + γ )]

})
(2t )2h2ε

ε2

− 24γμ2

g2

[
I0
110(1 + γ ) − I0

110(1) + γ I1
111(1 + γ )

]
. (48)

Using the result for the combination of I integrals from
Eq. (B11) in Appendix B, we obtain

K (irr)
2,2 = {μ2[v − 6 ln(1 + γ )] + (b(2)

2 + εμ2b3
)} (2t )2h2ε

ε2
,

(49)
where

b(2)
2 = 1 + μ2v

8
− 3μ2

2
f (γ ),

b3 = 3

4

{
2 + 3γ

4γ
ln2(1 + γ ) + 2 + γ

γ
[li2(−γ )

+ ln(1 + γ )] − γ

4
�(γ )

}
. (50)

Here we introduced the function �(γ ) = ln2(1 + γ )/γ [see
Eqs. (B12) and (B13)]. We note that �(γ ) appears from the
combination of I integrals.

3. Anomalous dimension

Employing the one-loop [see Eq. (38)] and two-loop [see
Eq. (49)] results, we write the operator K2 in the following
form:

K2 = (Z (s) )2M (s)
2 K2[]. (51)

Here, K2[] = 1 is the classical value of K2 and

M (s)
2 = 1 + Z−2(K (irr)

2,1 + K (irr)
2,2

)
= 1 + μ2

2thε

ε
+ (b(2)

2 + εμ2b3)
(2t )2h2ε

ε2

= 1 + μ2
2th′ε

ε
+ (b(2)

2 + εμ2b̃3
) (2t )2h′2ε

ε2
, (52)

where b̃3 = b3 + b/4, with b given by Eq. (18). Next we apply
the minimal subtraction scheme to Eq. (52). We note that the
following relation holds (for μ2 = −1 and 2):

2μ2(2μ2 − a1) = 8b(2)
2 , (53)

which guarantees the finiteness of the anomalous dimension at
ε → 0. Hence, we obtain the anomalous dimensions for two

eigenoperators K(2) and K(1,1) at the boundary

μ2 = −1, η
(s)
(2) = −2t[1 + 3c(γ )t] + O(t3),

μ2 = 2, η
(s)
(1,1) = 4t[1 + 3c(γ )t] + O(t3). (54)

C. Local eigenoperators with arbitrary number of Q matrices

The above results for the local eigenoperators with two Q
matrices can be extended to the case of an arbitrary number
of Q matrices in the same way as has been done for the bulk
generalized multifractality (see Ref. [66]). The eigenoperator
with the number q of the Q matrices involved characterized
by the Young tableau λ = (k1, . . . , ks) (with

∑s
j=1 kj = |λ|)

becomes

Kλ = (Z (s) )|λ|M (s)
λ Kλ[]. (55)

The quantity M (s)
λ determines the anomalous dimension,

η
(s)
λ = −d ln M (s)

λ

d�
= 2μ2,1,...,1t[1 + 3c(γ )t] + O(t3), (56)

where μ2,1,...,1 is given by Eq. (26). Equation (56) is the main
result of our work.

The anomalous dimensions η
(s)
λ determine the scaling with

the system size L of the eigenoperators near the boundary at
criticality,

Kλ ∼ L−x(s)
λ , x(s)

λ = |λ|x(s)
(1) + �

(s)
λ . (57)

Here the exponent x(s)
(1) coincides with the magnitude of η

(s)
(1),

given by Eq. (34), at the fixed point, x(s)
(1) = η

(s)∗
(1) . Similarly, the

exponent �
(s)
λ is equal to the anomalous dimension of M (s)

λ at
the fixed point, �

(s)
λ = η

(s)
λ .

V. DISCUSSIONS AND CONCLUSIONS

A. Generalization to higher orders in t

In this paper, we determine the anomalous dimensions of
the local eigenoperators situated near the boundary for the
symmetry class C in the presence of interaction. We apply
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perturbative renormalization group expansion for the anoma-
lous dimensions up to the second order in t . It was known that
bulk and surface anomalous dimensions within the first order
in t are related by the factor 2. We find that the same factor
2 appears within the second order. Interestingly, it happens in
spite of the fact that the two-loop contribution to anomalous
dimension is a nontrivial function of interaction strength γ .

A naïve idea could be that the bulk and surface exponents
are related by the factor 2 in all orders of expansion in t .
However, it is definitely not the case for the spin quantum
Hall transition in d = 2 dimensions. The set of bulk and
surface exponents which are known exactly from mapping
to percolation [8,15,56–59] are not related by a factor of 2,
e.g., x(2) = 1/4 while x(s)

(2) = 1/3. Additionally, the numerical

computation of xλ and x(s)
λ indicates that the ratio between

them is not a universal factor equal to 2 [18].
Having in mind the above discussion, it would be interest-

ing to develop a scenario where a factor of 2 in weak coupling
transforms into nontrivial factors that are different for dif-
ferent operators. Is the factor 2 a feature of the perturbative
expansion to all orders in t while nonperturbative instanton
effects are responsible for transformation to nontrivial factors?
Or is the factor 2 limited to the lowest-order terms of the series
in t only?

B. Relations to other symmetry classes

The results reported in this paper for the surface anoma-
lous dimensions can be directly translated to the standard
Wigner-Dyson classes (classes A, AI, and AII) where the bulk
generalized multifractality in the presence of interaction has
been recently developed [63–65]. Similarly, within a two-loop
approximation, the boundary multifractal exponents are twice
larger than the bulk ones. Moreover, our results can be ex-
tended to the other two superconducting classes, CI and DIII,
that allow interaction within the Finkel’stein NLσM. We will
provide details for the above-mentioned results elsewhere.

C. The role of topology

Similar to the class A, the NLσM for class C allows the
presence of the topological θ term. The topological term does
not change the classification of the local pure scaling opera-
tors but, certainly, contributes to their anomalous dimensions.
At weak disorder, t  1, where the instanton effects can be
treated in a controlled manner, the question of how instantons
affect the anomalous dimension of an arbitrary local operator
is still not well understood. The only exception are the anoma-
lous dimensions of bilinear in Q eigenoperators for class A
in the absence of interaction [74]. Instantons are expected to
affect both the bulk and boundary anomalous dimensions.

D. Breakdown of the Weyl symmetry

In the absence of interaction, the Weyl-group invari-
ance [7] forces not only the bulk generalized multifractal
dimensions xλ, but also surface generalized multifractal di-
mensions x(s)

λ to obey the symmetry relations [18]. These
symmetry relations make the exponents x(s)

λ the same for
the eigenoperators related by the following symmetry opera-
tions: reflection, kj→ − cj − kj, and permutation of some pair,
kj/i→ki/j + (ci/j − cj/i)/2. Our one-loop results for the bound-

ary anomalous dimensions are consistent with the Weyl-group
invariance symmetry in the absence of interaction. The pres-
ence of interaction is known to break the symmetry relations
between exponents characterizing bulk generalized multifrac-
tality [66]. A similar situation—interaction-induced breaking
of Weyl symmetry relations—occurs with the surface ex-
ponents within the two-loop approximation considered in
this paper. To illustrate how it occurs, let us consider the
Mott-Anderson transition in d = 2 + ε dimensions. Then,
as follows from Eq. (19), there is a line of fixed points at
t∗ = ε/[1 + 6 f (γ )] with arbitrary γ . The surface generalized
multifractal exponents become (to the order ε)

x(s)
λ = ε

[1 + 6 f (γ )]

s∑
j=1

kj[−cj − 3 ln(1 + γ ) − kj]. (58)

The above expression is inconsistent with Weyl symmetry
in the presence of interaction, γ �= 0. It occurs due to the
appearance of γ dependence in x(s)

(1). Such a situation also sug-
gests breaking Weyl symmetry for γ �= 0 at the spin quantum
Hall transition in d = 2. Unfortunately, the present numerical
computing power [75–78] is not enough to access generalized
multifractal exponents and to check our predictions, in partic-
ular, to test violation of symmetry relations in the presence of
interaction.

E. Summary

To summarize, we developed the theory of the generalized
boundary multifractality in class C in the presence of electron-
electron interaction. Employing the two-loop renormalization
group approximation controlled by inverse spin conductance
t , we computed the anomalous dimensions of the pure scaling
operators at the boundary of the sample. At the one-loop
approximation, we found the expected result that the boundary
anomalous dimensions are two times larger than the bulk
ones. Surprisingly, we found that the same relation (a factor 2
difference) holds within the two-loop approximation in spite
of the nontrivial dependence of bulk and surface anomalous
dimensions on interaction parameter γ . Consequently, we
showed that the presence of interaction invalidates the exact
symmetry relations between generalized surface multifractal
exponents, which are a consequence of Weyl symmetry in the
noninteracting case. We discussed future developments and
applications of our theory.
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APPENDIX A: DIFFUSION IN THE PRESENCE
OF A REFLECTING BOUNDARY

The diffuson propagator satisfies the following diffusion
equation:[−∇2 + h2

n

]
D̂(iωn; r, r′) = δ(x − x′)δ(y − y′), (A1)
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where h2
n = h2 + ωn/D. Following Ref. [79], we supplement Eq. (A1) by the Neumann boundary condition

∂xD̂(iωn; r, r′)|x=0 = 0. (A2)

Solving, by standard means, Eqs. (A1) and (A2), we find, for x, x′ � 0,

D̂(iωn; r, r′) = 1

2

∫
q‖

eiq‖(y−y′ )√
h2

n + q2
‖

[
e−|x−x′|

√
h2

n+q2
‖ + e−(x+x′ )

√
h2

n+q2
‖
]
. (A3)

We note that D̂(iωn; r, r′) is symmetric under the interchange of spatial coordinates r↔r′. The result (A3) coincides with
Eq. (14a).

In order to clarify the physical meaning of the Neumann boundary condition (A2), we compute the matrix current Jx = Q∇xQ
flowing perpendicular to the boundary in the lowest order of perturbation theory. Then we find

J αβ
nm (x = 0, y) � 2

g
δnmδαβs0∂x

[
v D̂(2i|εn|; r, r′) − 12πT γ

g

∑
ω>|εn|

D̂Dt (iω; r, r′)

]∣∣∣∣∣x=0,x′=0+,
y′=y

≡ 0, (A4)

as it should occur for a fully reflecting boundary.

APPENDIX B: EVALUATION OF CONTRACTIONS

1. Equation (44)

We start by rewriting the integrals over momenta in Eq. (44) as follows:〈〈
trW αβ

nm W βα
mn

[
S(4)

0 + S(4)
h

]〉〉→ −32v
g2

∫
qp

[
Dp(0)Dq(0) + D2

q (0)
]+ 384πT γ

g2D

∫
qp

∑
ω>0

[
DDt

p(iω)Dq(0) + Dt
p(iω)D2

q (0)
]

− 32v
g2

∫
qp

[
Dpx−qx,q‖ (0)Dpx+qx,q‖ (0) + Dp(0)Dpx+qx,q‖ (0) + 2p2

xDp(0)Dpx+qx,q‖ (0)Dpx−qx,q‖ (0)
]

+ 384πT γ

g2D

∫
qp

∑
ω>0

[
Dt

p(iω)Dq(0) + DDt
p(iω) + 2px(qx + 2px )DDt

p(iω)Dq(0)
]
Dqx+2px,q‖ (0).

(B1)

Next we find〈〈
trW αβ

nm W βα
mn

[
S(4)

0 + S(4)
h

]〉〉→ −4v
(2t )2h2ε

ε2
− 64v

g2
I1 + 192γ

g2

[
2J0

110(1 + γ ) + J0
020(1 + γ ) + I0

110(1 + γ ) + 2 ln(1 + γ )I1
]

→ −4v
(

1 + 1

4

)
(2t )2h2ε

ε2
+ 24

(2t )2h2ε

ε2

[(
1 + 1

4

)
ln(1 + γ ) + εγ

4(1 + γ )

]
+ 192γ

g2
I0
110(1 + γ ).

(B2)

Here we introduce the following notations for integral over momenta and frequency:

Jδ
νμη(a) =

∫
qp

∫ ∞

0
ds sδ 1

(p2 + h2 + s)ν
1

(p2 + h2 + as)

1

(q2 + h2)μ
1

[(p + q)2 + h2 + s]η
. (B3)

Also we used the following relations:∫
q
Dq(0) = −2�d hε�(1 − ε/2)�(1 + ε/2)

ε
,

∫
qp
D2

q (0) =
∫

qp
Dpx−qx,q‖ (0)Dpx+qx,q‖ (0) = 0,

2πT

D

∑
ω>0

DDt
p(iω) = ln(1 + γ )

γ
Dp(0),

2πT γ

D

∫
qp

∑
ω>0

2px(qx + 2px )DDt
p(iω)Dq(0)Dqx+2px,q‖ (0)

= 2πT γ

D

∫
qp

∑
ω>0

2px(qx + px )DDt
p(iω)Dqx−px,q‖ (0)Dqx+px,q‖ (0)

= 2 ln(1 + γ )
∫

qp
p2

xDp(0)Dqx−px,q‖ (0)Dqx+px,q‖ (0) = 2 ln(1 + γ )I1, (B4)
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where �d = Sd/[2(2π )d ] and Sd = 2πd/2/�(d/2) is the area of the d-dimensional sphere. We use t = 4�d/g at arbitrary
dimensionality such that t = 1/(πg) at d = 2. The integral I1 is evaluated as follows:

I1 =
∫

qp
p2

xDp(0)Dpx+qx,q‖ (0)Dpx−qx,q‖ (0) =
∫ 1

0
dz
∫

qp

p2
x

(p2 + h2){q2
‖ + [qx + px(1 − 2z)]2 + 4p2

xz(1 − z) + h2}2

=
∫ 1

0
dz
∫

Qp

p2
x

(p2 + h2)
[
4p2

xz(1 − z) + h2
]2−d/2

(Q2 + 1)2

= �d
�(d/2)�(2 − d/2)

�(2)

�(3 − d/2)

�(2 − d/2)

∫ 1

0
dz
∫ 1

0
du
∫

p

p2
xu1−d/2{

p2
‖(1 − u) + p2

x[1 − u(1 − 2z)2] + h2
}3−d/2

= h2ε�2
d

�(d/2)�(2 − d/2)

�(2)

�(3 − d/2)

�(2 − d/2)

�(d/2 + 1)�(2 − d )

d�(3 − d/2)

∫ 1

0
du
∫ 1

0
dvu1−d/2(1 − u)−(d−1)/2(1 − uv2)−3/2

= −h2ε�2
d

2ε
�2(d/2)�(3 − d )

∫ 1

0
du u1−d/2(1 − u)−d/2

= −h2ε�2
d

2ε
�2(d/2)�(3 − d )

�(2 − d/2)�(1 − d/2)

�(3 − d )
= Aεh2ε

ε2
, (B5)

where Aε = �2
d�

2(1 − ε/2)�2(1 + ε/2). The evaluation of integrals Jδ
νμη(a) is described in Ref. [64]. Also we introduced the

following new integrals:

Iδ
νμη(a) =

∫
qp

∫ ∞

0
ds sδ 1

(q2 + h2)ν
1

(p2 + h2 + as)

1

[(qx + 2px )2 + q2
‖ + h2]μ

1

[(p + q)2 + h2 + s]η
. (B6)

2. Equation (47)

〈〈
trW αβ

nm W βα
mn

[
S(4)

int + 1

2

(
S(3)

int

)2]〉〉→ −384πT γ

g2D

∫
qp

∑
ω>0

[
1 − γω

D
Dt

p+q(iω)

]
Dp(iω)[Dq(0) + Dqx+2px,q‖ (0)]

− 192γ

g2

[
J0

020(1) − γ J1
021(1 + γ ) + I0

110(1) − γ I1
111(1 + γ )

]
= −6

(2t )2h2ε

ε2

{
−2γ − (2 + γ ) ln(1 + γ )

γ
+ εγ

1 + γ
+ ε

(2 + γ ) ln(1 + γ )

γ

+ ε
2 + γ

γ

[
li2(−γ ) + 1

4
ln2(1 + γ )

]}
− 192γ

g2

[
I0
110(1) − γ I1

111(1 + γ )
]
. (B7)

Here we used the known results for the integrals Jδ
νμη(a) from Ref. [64]. Instead of the computation of integrals I0

110, I0
110, and

I1
111 separately, it is more convenient to evaluate the combination as they appear together:

I0
110(1 + γ ) − I0

110(1) + γ I1
111(1 + γ )

= γ

∫
qp

∫ ∞

0
ds s

[
1

[(p + q)2 + (1 + γ )s + h2]
− 1

[p2 + (1 + γ )s + h2]

]
1

(p2 + s + h2)

1

(q2 + h2)[(qx + 2px )2 + q2
‖ + h2]

= −γ

∫
qp

∫ ∞

0
ds

(q2 + 2pq)s

[(p + q)2 + (1 + γ )s + h2][p2 + (1 + γ )s + h2](p2 + s + h2)

1

(q2 + h2)
[
(qx + 2px )2 + q2

‖ + h2
]

=
∫

qp

∫ ∞

0
ds

[
1

[p2 + (1 + γ )s + h2]
− 1

(p2 + s + h2)

]
(q2 + 2pq)

(q2 + h2)[(qx + 2px )2 + q2
‖ + h2]

1

[(p + q)2 + (1 + γ )s + h2]

= −
∫

qp

∫ ∞

0
ds

(q2 + 2pq)

(p2 + s + h2)[(p+ q)2 + (1 + γ )s + h2](q2 + h2)
[
(qx + 2px )2 + q2

‖ + h2
] . (B8)
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Here, in the last line, we employed the following transformation: p → P + Q and q → −Q, that makes q2 + 2pq → −Q2 −
2PQ. Now we employ the Feynman trick and find

I0
110(1 + γ ) − I0

110(1) + γ I1
111(1 + γ )

= −�(4)
∫ 1

0
dz
∫

dx1dx2dx3δ(1 − x1 − x2 − x3)
∫

qp

∫ ∞

0
dsx1(q2 + 2pq)

[
x1(p‖ + zq‖)2 + [x2 + x3 + z(1 − z)x1]q2

‖

+ (x1 + 4x3)

(
px + zx1 + 2x3

x1 + 4x3
qx

)2

+ {x1[x2 + x3 + z(1 − z)x1] + 4x2x3}
x1 + 4x3

q2
x + (1 + γ z)sx1 + h2

]−4

= −�(4)
∫ 1

0
dz
∫

dx1dx2dx3δ(1 − x1 − x2 − x3)
h8−d

x1(d−1)/2

√
x1 + 4x3

∫
pq

∫ ∞

0
ds

(
q2 − 2q2

x

zx1 + 2x3

x1 + 4x3
− 2zq2

||

)

× 1

[p2 + h2]4

{
[x2 + x3 + z(1 − z)x1]q||2 + {x1[x2 + x3 + z(1 − z)x1]

+ 4x2x3}x1 + 4x3qx2 + (1 + γ z)s + h2

}d/2−4

. (B9)

Performing integration over momenta and frequency and using the parametrization x1 = s/(s + 1), x2 = u/(s + 1), x3 = (1 −
u)/(s + 1), where 0 � s < ∞ and 0 � u � 1 [with the Jacobian 1/(s + 1)3], we obtain

I0
110(1 + γ ) − I0

110(1) + γ I1
111(1 + γ )

= h2ε�2
d

2ε
�2(d/2)�(3 − d )

∫ 1

0
dz

(1 − 2z)

1 + γ z

∫ ∞

0
ds
∫ 1

0
du(s + 1)d−2s(1−d )/2[1 + z(1 − z)s](1−d )/2

× {s[1 + z(1 − z)s] + 4u(1 − u)}−1/2

[
d − 1

1 + z(1 − z)s
+ s

s[1 + z(1 − z)s] + 4u(1 − u)

]
. (B10)

The integrals over z, s, and u are convergent in d = 2; therefore, we can set d = 2. Then, we find

I0
110(1 + γ ) − I0

110(1) + γ I1
111(1 + γ )

= h2εAε

2ε

∫ 1

0
dz

(1 − 2z)

1 + γ z

∫ ∞

0
ds

1√
s[1 + z(1 − z)s]3

[
arctan

1√
s[1 + z(1 − z)s]

+
√

s[1 + z(1 − z)s]

{1 + s[1 + z(1 − z)s]}
]

= h2εAε

2ε

∫ 1

0
dz

(1 − 2z)

1 + γ z

∫ ∞

0
dy

[
1√

z(1 − z)

1√
y(1 + y)3

arctan

√
z(1 − z)√
y(1 + y)

+ 1

(y + 1)[z(1 − z) + y(1 + y)]

]

= h2εAε

2ε

∫ 1

0

dz

1 + γ z

[
(1 − 2z)√
z(1 − z)

∫ ∞

0

dv

cosh2(v/2)
arctan

2
√

z(1 − z)

sinh v
+ ln(1 − z)

z
− ln z

1 − z

]
= h2εAε

2ε
�(γ ). (B11)

Here we introduced y = z(1 − z)s and v = 2arcsinh
√

y. The function �(γ ) is given as follows:

�(γ ) =
∫ 1

0
dz

F (z)

1 + γ z
, F (z) = −(1 − 2z)

(
ln z

1 − z
+ ln(1 − z)

z

)
+ ln(1 − z)

z
− ln z

1 − z
= 2 ln(1 − z) − 2 ln z. (B12)

Finally, integrating over z exactly, we find

�(γ ) = ln2(1 + γ )

γ
. (B13)
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