
Comment on “Super-Universality in
Anderson Localization”

In a recent Letter, Horváth and Markoš [1] investigated
the quantity

N � ¼
X

j

minfLdjψðrjÞj2; 1g; ð1Þ

termed the “minimal effective amount” or “minimal count-
ing scheme,” at the Anderson transitions in orthogonal (AI),
unitary (A), symplectic (AII), and chiral unitary (AIII)
classes in three spatial dimensions, d ¼ 3. Here ψðrjÞ is a
wave function on a site with coordinate rj, and L is the
system size. The authors of Ref. [1] presented numerical
evidence for a “super-universal” (intact for all four sym-
metry classes studied) power-law scaling of the quantity
[Eq. (1)] averaged over disorder realizations,

hN �i ∼ LdIR with dIR ≈ 8=3: ð2Þ
In this Comment, for the standard Wigner-Dyson (WD)

symmetry classes, we shall demonstrate that the result
[Eq. (2)] is incorrect. The quantity can be computed
explicitly in the limit of large L as

hN �i ¼ 4
�jf00ðα0Þj=ð2π lnLÞ

�
1=2LfðdÞ: ð3Þ

Here, fðαÞ is the singularity spectrum characterizing multi-
fractality atAnderson transitions (seeRef. [2] and references
therein) and α0 is the point of its maximum, f0ðα0Þ ¼ 0.
Equation (3) shows that (i) dIR is nothing but fðdÞ and
(ii) hN �i does not demonstrate “super-universality” in a
strict sense: its behavior does depend on the symmetry class
via fðdÞ and f00ðα0Þ (see Table I).
The derivation of Eq. (3) is based on the exact relation
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ffiffiffiffiffiffiffiffi
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p R
dαLfðαÞminfLd−α;1g, where the normali-

zation constant can be estimated as c0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijf00ðα0Þj=ð2πÞ

p
.

Then, using properties of fðαÞ and the symmetry relation
fð2d − αÞ ¼ fðαÞ þ d − α [2], one obtains Eq. (3), pro-
vided lnL ≫ jf00ðdÞj.
It is worthwhile to emphasize that, according to Eq. (3),

the scaling of hN �i with the system size is not purely
power-law-like, in contrast to the assumption of Ref. [1].

The presence of
ffiffiffiffiffiffiffiffi
lnL

p
in the denominator affects

significantly the analysis of the L dependence at not too
large L; see Fig. 1. This is the reason why the exponent dIR
found in Ref. [1] by extrapolating the results for L ≤ 128 to
L → ∞ is smaller than fðdÞ.
At the same time, we note a striking numerical closeness

of the values of fðd ¼ 3Þ, which might indeed suggest a
kind of universality, as hypothesized by the authors of
Ref. [1]. Moreover, the whole singularity spectrum func-
tions are very close (albeit certainly distinct) in d ¼ 3 for
classes A, AI, and AII [3]. However, this fact is specific for
Anderson transitions in d ¼ 3. Indeed, in d ¼ 2þ ϵ
dimensions, one finds fðdÞ ≃ d − bϵ=16, where b ¼ 4

and 1 for the classes AI and A, respectively (see, e.g.,
Ref. [2]). Therefore, in d ¼ 2þ ϵ dimensions hN �i clearly
demonstrates no “super-universality.” For the class AII, the
situation is even more interesting, since the Anderson
transition occurs already in d ¼ 2 dimensions and
fðd ¼ 2Þ ≃ 2 − 0.04 [6]. Thus, there is no reason to expect
exact “super-universality” in d ¼ 3, either.
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TABLE I. Numerical results for fðα ¼ d ¼ 3Þ and c0 at
Anderson transitions in the WD classes in three dimensions.
In order to estimate c0 we used data from Ref. [3].

Class AI Class A Class AII

fð3Þ 2.730 ÷ 2.736 [3] 2.719 ÷ 2.721 [3] 2.712 ÷ 2.715 [3]
2.7307 ÷ 2.7328 [4] 2.7187 ÷ 2.7195 [5]

c0 0.291 0.282 0.278

FIG. 1. Plot of dIRðL; sÞ ¼ fln½hN �ðLÞi=hN �ðL=sÞi�g= ln s
introduced in Ref. [1], as a function of L on the logarithmic
scale for s ¼ 2. Blue, red, and green curves correspond to Eq. (3)
for the symmetry classes AI, A, and AII, respectively. The
parameters of the curves are taken from Table I. The limiting
value 8=3 for dIR proposed in Ref. [1] is shown by the black
dashed line. The blue (AI), red (A), and green (AII) dashed lines
indicate the asymptotic expression fðd ¼ 3Þ for dIRðL; 2Þ in the
limit L → ∞. The shaded area denotes the region of system sizes
for which numerical simulations in Ref. [1] were performed.
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