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Abstract
The interplay between electron–electron interactions and weak localization (or anti-
localization) phenomena in two-dimensional systems can significantly enhance 
the superconducting transition temperature. We develop the theory of quantum 
fluctuations within such multifractally enhanced superconducting states in thin 
films. In conditions of weak disorder, we employ the Finkel’stein nonlinear sigma 
model to derive an effective action for the superconducting order parameter and 
the quasiclassical Green’s function, meticulously accounting for the influence 
of quantum fluctuations. This effective action, applicable for interactions of 
any strength, reveals the critical role of well-known collective modes in a dirty 
superconductor, and its saddle-point analysis leads to modified Usadel and gap 
equations. These equations comprehensively incorporate the renormalizations 
stemming from the interplay between interactions and disorder, resulting in the non-
trivial energy dependence of the gap function. Notably, our analysis establishes a 
direct relation between the self-consistent gap equation at the superconducting 
transition temperature and the known renormalization group equations for 
interaction parameters in the normal state.

Keywords Superconductivity · Anderson localization · Multifractality · Collective 
modes

1 Introduction

Superconductivity and Anderson localization [1] are pivotal topics in quantum 
mechanics, and their interplay has long been a subject of interest. At a basic level, 
without diving into quantum interference or how disorder impacts interactions, 
s-wave superconductivity seems resilient against electron scattering caused by 
non-magnetic disorder, leaving some important parameters, such as the critical 
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temperature Tc or the order parameter Δ , unaffected. This observation is commonly 
referred to as the “Anderson theorem” [2–4].1

However, when we incorporate quantum interference effects, the situation 
becomes more intricate. Some theories suggest that strong localization [7–10] or 
even a blend of weak disorder with Coulomb interaction [11–20] could undermine 
superconductivity. This perspective is bolstered by a discovery [21] and later 
research on the superconducting-insulating transition (SIT) in thin films [22–24].

Yet, recent studies challenge this view. There are indications that the 
superconducting transition temperature, Tc , might increase due to multifractal 
properties of wave functions near the Anderson transition, especially when long-
ranged Coulomb repulsion is not dominant [25, 26]. This idea has gained attraction 
both theoretically [27–30] and through numerical tests [31–33] in two-dimensional 
disordered systems.

A notable feature of this multifractally enhanced superconductivity is the 
significant mesoscopic fluctuations in the local order parameter [26, 34] and giant 
fluctuations of the local density of states (LDOS) [29, 30]. These fluctuations 
have been consistently observed in various experiments [35–43] and numerical 
studies [32, 33, 43]. Additional established feature of a multifractally enhanced 
superconducting state is strong energy dependence of the gap function [29, 30].

it is widely acknowledged that important characteristics of superconductors are 
subgap collective modes. Although the collective modes have been intensively 
studied in the past (see Refs. [44–48] for a review), a permanent interest in their 
behavior in clean [49–55] and disordered [56–59] superconductors still persists. 
Usually, the collective modes are studied atop the BCS-type mean-field solution 
for the superconducting phase. This approach often assumes an energy-independent 
gap function. However, this assumption breaks down in the case of a multifractally 
enhanced superconducting state. Given that the collective modes themselves 
influence the gap equation, it is necessary to formulate a self-consistent scheme for 
simultaneously computing both the collective modes and the gap function.

In this paper, we extend the previous studies of the multifractally enhanced 
superconducting state in several interrelated directions: (i) we investigate the 
effects of short-ranged interactions on the superconducting gap function beyond 
the assumption of their weakness; (ii) elucidate the relation between modified 
Usadel and self-consistent equations and the collective modes in disordered 
superconductors; (iii) propose a self-consistent scheme for simultaneous solution 
for the gap function and collective modes. Notably, unlike previous approaches that 
restricted themselves to weak interactions [27, 29, 30], we achieve an exact solution 
for the transition temperature for arbitrary magnitudes of the interaction parameters. 
We also present fluctuations-modified Usadel and self-consistency equations that 
explicitly involve contributions from the collective modes in a superconductor.

1 We would also like to acknowledge Fomin’s extension of the “Anderson theorem” to p-wave states in 
the presence of columnar defects [5], which was recently experimentally verified in the polar phase of 
3 He in aerogel [6]. However, the exploration of these unconventional pairing mechanisms falls beyond 
the scope of our current analysis.
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The structure of the paper is as follows. Section 2 introduces the Finkel’stein 
nonlinear sigma model formalism, incorporating superconductive pairing, which 
is crucial to our approach in tackling the problem. In Sect.  3, the mean-field 
solution is discussed. This solution neglects quantum fluctuations that lead to the 
interplay between disorder and interactions. Section 4 is dedicated to introducing 
Gaussian quantum fluctuations around the mean-field solution. Specifically, 
we detail the propagators for diffusive modes in the spin-triplet (Sect.  4.2) and 
singlet sectors (Sect. 4.3). The modified action obtained by integrating out these 
Gaussian fluctuations is presented in Sect.  5. From this action, Sect.  6 derives 
the spectrum of collective modes in superconductors based on a simplified BCS 
saddle. Section  7 investigates how the inclusion of fluctuations alters the BCS 
saddle equations. The saddle and its behavior near the critical temperature Tc , 
accounting for these modifications, are explored in Sect. 8, expressing Tc in terms 
of renormalization group equations. Finally, discussions and conclusions are 
presented in Sect.  9. Technical details we delegate to Appendices A, B, and C. 
Appendix D discusses the relationship between the Finkel’stein parameter Z� and 
the corresponding parameter Z� that arises in our work.

2  Finkel’stein NLSM Formalism with Superconductivity

The Finkel’stein nonlinear sigma model (NLSM) formalism provides an insightful 
perspective into quantum systems governed by interactions and disorder. Employing 
this approach, we gather a comprehensive formulation of the NLSM which encom-
passes the non-interacting component, S� , along with distinct contributions from the 
three quasiparticles interaction channels: the particle-hole singlet channel, S(�)

int
 , the 

particle-hole triplet channel, S(�)
int

 , and the particle-particle channel, S(c)
int

 [60–62].
The action of this system is succinctly described as

Each component in this sum has a definitive role and is elaborated upon as follows.
The non-interacting component ( S� ) captures the primary behavior of the system 

without considering the intricacies of quasiparticles interactions. It is expressed as

where g is the dimensional (in the units of e2∕h ) bare conductivity and the trace 
operation, Tr , encompasses replica (indices �, � = 1,… ,Nr with the replica 
limit being Nr → 0 ), Matsubara (indices n that correspond to fermionic energies 
�n = �T(2n + 1) for integer n), spin (subscript j = 0, 1, 2, 3 ), and particle-hole 
( r = 0, 1, 2, 3 ) spaces.

Central to our formalism is the matrix field, Q(r), characterized by its behavior 
across different spaces. It is bound by specific constraints that ensure the system 

(1)S = S� + S
(�)

int
+ S

(�)

int
+ S

(c)

int
.

(2)S𝜎 = −
g

32 ∫ ddrTr (∇Q)2 + 2z𝜔 ∫ ddrTr �̂�Q,
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adheres to symmetry under time reversal and spin rotational (in the absence of 
spin-relaxation mechanisms) symmetries. The constraints are:

Here the matrix trj acts on spin and particle-hole spaces and equals to

with �0,1,2,3 and s0,1,2,3 being the usual Pauli matrices in the particle-hole and spin 
spaces, respectively. The second part of S� contains the constant matrix �̂� , whose 
entries are given by

The parameter z� , introduced by A. M. Finkel’stein, characterizes the frequency 
renormalization during the renormalization group action [60]. The initial value of 
z� is given by ��∕4 , with � representing the intrinsic density of states at the Fermi 
level, factoring in spin degeneracy.

The particle-hole singlet channel ( S(�)
int

 ) and triplet channel ( S(�)
int

 ) are the result of 
electron–hole interactions that arise from different spin configurations. Specifically, 
the particle-hole singlet channel ( S(�)

int
 ) originates from interactions where quasiparticle 

pairs have opposite spins, forming a singlet state. It is given as follows,

where Γs describes strength of the interaction in the singlet channel and the constant 
matrix I�

n
 is

Here and throughout the paper, no implicit summation over the repeated indices is 
assumed.

The particle-hole triplet interactions ( S(�)
int

 ) come from quasiparticle pairs that share 
the same spin direction, forming a triplet state. Within the NLSM formalism, it is given 
by the following expression,

where Γt denotes the coupling constant in the triplet channel. Here, the summation 
encompasses j ≠ 0 , corresponding to massless triplet modes exclusively. It is 
noteworthy that in the fully spin-symmetric scenario, all modes j = 1, 2, 3 remain 
gapless. Conversely, the introduction of spin–orbit coupling or the addition of a spin 
relaxation mechanism, such as the one suggested by M.I. D’yakonov and V.I. Perel’ 
[63], alters the picture by making some of the channels with j ≠ 0 massive. To 
distinguish between these possible scenarios, we introduce the parameter N  , which 

(3)Q2(r) = 1, Tr Q = 0, Q = Q† = −CQTC, C = it12.

(4)trj = 𝜏r ⊗ sj, r, j = 0, 1, 2, 3,

(5)�̂�𝛼𝛽
nm

= 𝜀n𝛿𝜀n,𝜀m𝛿
𝛼𝛽 t00.

(6)S
(�)

int
= −

�T

4
Γs

∑
�,n

∑
r=0,3

∫ ddrTr I�
n
tr0QTr I�

−n
tr0Q,

(7)(I
�

k
)��
nm

= ��n−�m,�k
������ t00, �k = 2�Tk (k ∈ ℤ).

(8)S
(�)

int
= −

�T

4
Γt

∑
�,n

∑
r=0,3

∑
j≠0 � ddrTr I�

n
trjQTr I�

−n
trjQ,
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counts the number of massless triplet diffusive modes. We emphasize that N  may 
take the values 0, 1, or 3. For an overview of possible relaxation mechanisms and an 
explanation of the possible values of N  , see [61, 64, 65] and [66].

Lastly, the particle-particle channel ( S(c)
int

 ) represents the interactions of two electrons 
or two holes. It is also responsible for the emergence of the superconducting pairing for 
which the Cooper interaction’s zero frequency transfer plays a crucial role. Specifically, 
at the zero-frequency transfer ( n = 0 ) we employ the Hubbard–Stratonovich transfor-
mation, introducing the real field Δ�

r
 , that is further delineated into static and fluctuat-

ing components:

which ensures that while the Δ�
r
 is spatially independent, its fluctuating counterpart 

�Δ�
r
(r) varies in real space, but on average it is zero: ∫ ddr�Δ�

r
(r) = 0 . Details of this 

method are elaborated upon in [29].
After all the steps described above, the interaction in this channel takes the following 

form:

The first zero-frequency term is

where V is the volume of our system. The remaining finite-frequency interaction is

The last constant matrix L�
n
 , that enters the expression for S(c)

int
 , is equal to

Before proceeding, it is important to mention that our theory is constructed under the 
assumption that g ≫ 1 , which translates into the physical assumption of our sample 
being a good conductor. Now, under this condition, we can develop a perturbation 
theory based on the condition that 1∕g ≪ 1.

For convenience, we introduce the dimensionless coupling constants 
�s,t,c ≡ Γs,t,c∕z� . It is relevant to note that in the presence of Coulomb interaction, 
the relation �s = −1 holds. Additionally, in the Cooper channel, the interaction is 
characterized by a negative magnitude, with Γc < 0 (or 𝛾c < 0 ) indicating an attraction 
in the particle-particle channel.

(9)Δ�
r
= Δ�

r
+ �Δ�

r
(r),

(10)S
(c)

int
= S̃

(c)

int
+ Ŝ

(c)

int
.

(11)S̃
(c)

int
=

4z2
𝜔
V

𝜋TΓc

∑
𝛼

∑
r=1,2

[Δ𝛼
r
]2 + 2z𝜔V

∑
𝛼

∑
r=1,2

Δ𝛼
r ∫ ddrTr tr0L

𝛼
0
Q,

(12)Ŝ
(c)

int
= −

𝜋T

4
Γc

∑
𝛼,n≠0

∑
r=1,2

� ddr
[
Tr tr0L

𝛼
n
Q
]2
.

(13)(L
�

k
)��
nm

= ��n+�m,�k
������ t00, �k = 2�Tk (k ∈ ℤ).
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3  Mean‑Field Description of the Superconducting State

At the first level of sophistication, the mean-field approach provides a crucial 
approximation. Leveraging this method, we find the solution to the saddle-point 
equations—that are derived from the variation of the action with respect to Q(r) and 
Δ�

r
(r)—in the proposed structure:

and

Here, t� aligns with our specific choice of the superconducting order parameter 
defined as t� = t10 cos� + t20 sin� . For future convenience, we choose to express 
Q as

where

and

We emphasize that R−1 = R† and CRT = R−1C . At this saddle point, the sigma 
model action, represented by Scl[��,Δ] , can be decomposed as

where 𝛾c = 4Γc∕(𝜋𝜈) < 0 . Again, we remind that Nr in the expression above denotes 
the number of replicas. Provided we assume the angles ��n to be spatially homogene-
ous and neglect the derivative ∇2��n∕2 , this leads to the familiar Usadel equation:

complemented by the self-consistency equation:

These two equations (21) and (22) form the well-known BCS system of equations. 
The solution to this system is given by

(14)Q��

nm
= (t00 cos ��n sgn �n��n,�m + t� sin ��n��n,−�m)�

�� ,

(15)Δ
�

1
= Δ cos�, Δ

�

2
= Δ sin�.

(16)Q = R−1ΛR,

(17)Λ��
nm

= sgn �n��n,�m�
�� t00,

(18)R
��

mk
= (t00 cos(��k∕2)��k ,�m − t� sgn �k sin(��k∕2)��k ,−�m)�

�� ,

(19)(R−1)
��

mk
= (t00 cos(��k∕2)��k ,�m − t� sgn �m sin(��k∕2)��k ,−�m)�

�� .

(20)Scl[𝜃𝜀,Δ] = 4𝜋𝜈Nr ∫ ddr

{
Δ2

4𝜋T𝛾c
+
∑
𝜀>0

[Δ sin 𝜃𝜀 + 𝜀 cos 𝜃𝜀]

}
,

(21)−|�n| sin ��n + Δ cos ��n = 0,

(22)Δ = 2𝜋T|𝛾c|
∑
𝜀>0

sin 𝜃𝜀.
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where �EM ≃ 0.577 is the Euler–Mascheroni constant and we have assumed the dirty 
limit, 𝜏−1 ≫ Δ , as ensured by |𝛾c| ≪ 1 . Here � stands for the elastic mean free time. 
We note that the bare value of the attraction parameter �c that enters Eq. (23) is 
defined at the energy scale 1∕� (see Ref. [28]). It makes the corresponding solutions 
resilient to disorder, consistent with Anderson’s theorem.

4  Effect of Quantum Fluctuations in d = 2 : Gaussian Approximation

In understanding the interplay of disorder and interactions between quasiparticles, one 
cannot solely rely on the mean-field approximation discussed in the previous section. 
The fluctuations of the matrix Q around the saddle-point ansatz (16) are pivotal, as they 
modify the effective potential for the spectral angle ��.

To factor in the fluctuations of Q, we aim to renormalize the NLSM action. Our 
methodology involves a perturbation expansion around the saddle point Q and compu-
tation of the correction to the mean-field action that arises due to Gaussian fluctuations. 
To achieve this, we employ the square-root parametrization of the matrix field Q:

It is worth highlighting the structure of W in the Matsubara space. The blocks w and 
w̄ function as matrices in both the replica and spin, particle-hole spaces, and they 
adhere to specific symmetry constraints:

It is also useful to decompose all fields in terms of generators trs according to

These constraints imply that some elements wrj(r) in the expansion are purely real 
and the others are purely imaginary. Our next step is to input (24) into the action (1) 
and expand it to a quartic order in fluctuations W. Subsequently, our aim is to com-
pute the effective action Seff [�] up to the one-loop order:

(23)

sin ��n =
Δ√

�2
n
+ Δ2

, Δ = �−1 exp(−1∕|�c|), TBCS = �−1
�EM

�
exp(−1∕|�c|),

(24)Q = R−1(W + Λ
√
1 −W2)R, W𝜀𝜀� = w𝜀𝜀�𝜃(𝜀)𝜃(−𝜀

�) + w̄𝜀𝜀�𝜃(−𝜀)𝜃(𝜀
�).

(25)w̄ = −CwTC, w = −Cw∗C.

(26)[w(r)]𝛼𝛽
𝜀n1

𝜀n2
=
∑
r,j

[wrj(r)]
𝛼𝛽
𝜀n1

𝜀n2
trj, [w̄(r)]𝛼𝛽

𝜀n1
𝜀n2

= −
∑
r,j

[wrj(r)]
𝛽𝛼
𝜀n2

𝜀n1
CtT

rj
C.

(27)

Seff [��,Δ] = ln∫ DW exp(Sf l[��,Δ,W]) =
�

i=�,�,c
∫

1

0

d�⟨S(i,2)
int

[��,Δ,W]⟩� ,
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where the average ⟨… ⟩� is computed with respect to the action2:

Here the superscript “2” denotes the quadratic terms in W. In the subsequent 
subsections, we will outline each step required to determine the effective action and 
the associated correlation functions.

4.1  Gaussian Action

To find the effects fluctuations around the mean-field solution have on the system, it 
is vital to express the Gaussian action in a form that reveals its underlying structure. 
This can be achieved with the following representation:

where ∫
q
≡ ∫ d2q∕(2�)2 , D= g∕(16z�) is the diffusion coefficient, and 

mrj = −
1

4
Tr [trjCt

T
rj
C] = (�r≠3 − �r3)(�j0 − �j≠0) . Here, S(2)

f l
 is a functional of three 

fields: S(2)
f l

= S
(2)

f l
[��,Δ,W] . We emphasize again that the contribution from j ≠ 0 to 

the above expression is provided solely by massless triplet modes (enumerated using 
N  , which can assume values 0, 1, or 3). Contributions that possess a gap will be 
suppressed at low momentum; for a complete discussion, see [66]. To further 
simplify the expression for the Gaussian action, we have introduced vector functions

These vectors’ components have been indexed with new coordinates b, b� = 1, 2 . 
The matrix in Eq.  (29) is detailed as

(28)S(2)
�
[��,Δ,W] + �

∑
i=�,�,c

S
(i,2)

int
[��,Δ,W].

(29)

S
(2)

f l
= −

g

4D ∫q

∑
{𝜀i>0}
{𝛼i}

∑
r=0,3

j=0,1,2,3
bb�=1,2

Φ
𝛼1𝛼2,(r,j)

𝜀1,−𝜀2,b
(q)[Âr,j(q)]

𝛼1𝛼4;𝛼2𝛼3
𝜀1𝜀4;𝜀2𝜀3;bb

�

× (𝛿b�,1mrj + 𝛿b�,2m0j)Φ
𝛼4𝛼3,(r,j)

𝜀4,−𝜀3,b
� (−q),

(30)
�

��,(0,j)

�,−��
=
(
[w0j]

��

�,−��
, [w1j]

��

�,−��

)T

, �
��,(3,j)

�,−��
=
(
[w3j]

��

�,−��
, [w2j]

��

�,−��

)T

,

(31)
�̄

𝛼𝛽,(0,j)

−𝜀�,𝜀
=
(
[w̄0j]

𝛼𝛽

−𝜀�,𝜀
, [w̄1j]

𝛼𝛽

−𝜀�,𝜀

)T

, �̄
𝛼𝛽,(3,j)

−𝜀�,𝜀
=
(
[w̄3j]

𝛼𝛽

−𝜀�,𝜀
, [w̄2j]

𝛼𝛽

−𝜀�,𝜀

)T

.

2 If we express the replica structure of the action as w𝛼𝛽 (a + 𝛿𝛼𝛽b)w̄𝛽𝛼 , this translates into the fluctuation 
action as N

r
Tr ln(a + b) + N

r
(N

r
− 1) Tr ln a → N

r
Tr ln

[
(a + b)∕a

]
 , in the replica limit N

r
→ 0 . How-

ever, the latter logarithm can be alternatively derived via integration over the variable � , as suggested in 
Eq. (27).
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Here, the functions X(r,j)

n,b
 and Y (r)

n,b�
 are dependent on the Matsubara energies and the 

angles �� . Their exact expressions are elaborated in Appendix A.
As we venture further, our next step is the inversion of the Â matrix mentioned 

above. Before diving into that, it is convenient to introduce the correlation function 
of the � fields. Given that the � fields appear quadratically in (29), we can directly 
determine their correlation functions:

It is also worth emphasizing that the bare diffusion propagator (which is not 
influenced by the interplay of disorder and interactions) is represented as

Clearly, in the normal region (when both Δ and �� are equal to zero), this expression 
coincides with the usual diffusive propagator in a disordered metal.

4.2  Correlation Functions: Triplet Sector

First, we consider the triplet sector j ≠ 0 . In this case, inverting the matrix entering 
Eq. (29) yields

(32)

[Âr,j(q)]
𝛼1𝛼4;𝛼2𝛼3
𝜀1𝜀4;𝜀2𝜀3;bb

�

= [D(0)
q
(|𝜀1|, |𝜀2|)]−1𝛿𝜀2𝜀3𝛿𝜀1𝜀4𝛿bb�𝛿𝛼1𝛼4𝛿𝛼2𝛼3

+
16𝜋T

g
(𝛿j0Γs + 𝛿j≠0Γt)

∑
n

X
(r,j)

n,b
(𝜀1, 𝜀2)[X

(r,j)

n,b�
(𝜀4, 𝜀3)]

∗𝛿𝛼1𝛼4𝛿𝛼2𝛼3𝛿𝛼1𝛼2

+
16𝜋T

g
𝛿j0Γc

∑
n

(
1 −

(2𝜋)2𝛿(q)𝛿n0

V

)
Y
(r)

n,b
(𝜀1, 𝜀2)[Y

(r)

n,b�
(𝜀4, 𝜀3)]

∗𝛿𝛼1𝛼4𝛿𝛼2𝛼3𝛿𝛼1𝛼2 .

(33)

⟨
Φ

𝛼1𝛼2,(r,j)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,j)

−𝜀3,𝜀4,b
� (−q)

⟩

=
2D

g
(𝛿b,1mrj + 𝛿b,2m0j)

[
[Âr,j(q)]

−1
]𝛼1𝛼4;𝛼2𝛼3
𝜀1𝜀4;𝜀2𝜀3;bb

�
(𝛿b�,1mrj + 𝛿b�,2m0j).

(34)
⟨Φ𝛼1𝛼2,(r,j)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,j)

−𝜀3,𝜀4,b
� (−q)⟩0 = 2D

g
D

(0)
q
(�𝜀1�, �𝜀2�)𝛿𝛼1𝛼4𝛿𝛼2𝛼3𝛿𝜀1𝜀4𝛿𝜀2𝜀3𝛿bb� ,

D
(0)
q
(�𝜀1�, �𝜀2�) = 1

Dq2 + E𝜀1
+ E𝜀2

, E𝜀 ≡ �𝜀� cos 𝜃𝜀 + Δ sin 𝜃𝜀.

(35)

⟨
Φ

𝛼1𝛼2,(r,j)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,j)

−𝜀3,𝜀4,b
� (−q)

⟩

=
2D

g
D

(0)
q
(|𝜀1|, |𝜀2|)𝛿𝛼1𝛼4𝛿𝛼2𝛼3

{
𝛿𝜀1𝜀4𝛿𝜀2𝜀3𝛿bb�

−
4T

𝜈
𝛿𝛼1𝛼2D(0)

q
(|𝜀3|, |𝜀4|)

∑
m

Γ̃t(|𝜔m|, q)
[
X
(r,j)

m,b
(𝜀1, 𝜀2)

]∗
X
(r,j)

m,b�
(𝜀4, 𝜀3)

}
,

j = 1, 2, 3.
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The summation extends over all bosonic Matsubara energies, �m = 2�Tm , where 
m ∈ ℤ . The first line corresponds to the bare expression given in (34) while the sec-
ond line account for changes in the interaction in the relevant channel amidst super-
conductivity and disorder. We also introduced the modified vertex

The diagrammatic representation of Γ̃t is pictured in Fig.  1. We mention that 
Γ̃t(|𝜔n|, q) determines the dynamical part of the spin susceptibility via a straightfor-
ward relation Γ̃t(|𝜔n|, q)Π(t)(|𝜔n|, q)∕Γt . Thus, the denominator of Γ̃t(|𝜔n|, q) , after 
analytic continuation to real frequencies, determines the spectrum of spin waves in a 
disordered superconductor.

It is instructive to inspect expression (35) in the limit of a weak superconducting 
background in the vicinity of Tc and compare it with the well-established results derived 
for the normal-state metal.

4.2.1  Limiting Case: T > T
c

When superconductivity is suppressed, �� → 0 , Eq. (35) can be significantly simplified:

where

Notably, this result coincides with Eq.(A14) in [28].

(36)Γ̃t(|𝜔n|, q) =
Γt

1 + ΓtΠ
(t)(|𝜔n|, q)

,

(37)

Π(t)(|𝜔n|, q) =𝜋T

z𝜔

∑
𝜀,𝜀�>0

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±[
𝛿𝜀+s𝜀�,|𝜔n| + 𝛿𝜀+s𝜀�,−|𝜔n|

][
1 + s cos(𝜃𝜀 − s𝜃𝜀� )

]
.

(38)
⟨Φ𝛼1𝛼2,(r,j)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,j)

−𝜀3,𝜀4,b
� (−q)⟩ = 2D

g
D

(0)
q
(�𝜀1�, �𝜀2�)𝛿𝛼1𝛼4𝛿𝛼2𝛼3𝛿bb�

�
𝛿𝜀1𝜀4𝛿𝜀2𝜀3

− 𝛿𝛼1𝛼2𝛿𝜀1+𝜀2,𝜀3+𝜀4𝛿b1
8TΓt

𝜈
D

(t)
q
(�𝜀1�, �𝜀2�)

�
,

(39)D
(t)
q
(|�1|, |�2|) = 1

Dq2 + (1 + �t)(|�1| + |�2|)
.

Fig. 1  Diagrammatic representation of the equation determining the amplitude in the triplet channel, Γ̃t . 
The solid black lines denote fermionic Green’s functions, and the direction of the arrows determines their 
specific type (in this channel, only the normal Green’s functions enter the spin-polarization bubble Π(t) 
dressed with the impurity ladders). The explicit numerical prefactors in front of each diagram are omitted
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4.3  Correlation Functions: Singlet Sector

We now turn our attention to the singlet channel j = 0 . This scenario presents 
a greater challenge due to the mixture of the singlet particle-hole and the Cooper 
channels, as evident in (32). We emphasize that such mixing occurs in the 
superconducting phase only: in the normal state, these channels are independent at 
the Gaussian level. Upon inversion, the result is expressed as:

For brevity, we introduce the following notations:
(40)

⟨
Φ

𝛼1𝛼2,(r,0)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,0)

−𝜀3,𝜀4,b
� (−q)

⟩

=
2D

g
D

(0)
q
(|𝜀1|, |𝜀2|)𝛿𝛼1𝛼4𝛿𝛼2𝛼3

{
𝛿𝜀1𝜀4𝛿𝜀2𝜀3𝛿bb�

−
4T

𝜈
𝛿𝛼1𝛼2D(0)

q
(|𝜀3|, |𝜀4|)

∑
m

[v
(r,0)

m,b
(𝜀1, 𝜀2)]

†M̂(r)(|𝜔m|, q)v(r,0)m,b�
(𝜀4, 𝜀3)

−
4T

𝜈
𝛿𝛼1𝛼2D(0)

q
(|𝜀3|, |𝜀4|)

∑
m

Γ̃
(r)

3
(|𝜔n|, q)

[
Y
(r)

−m,b
(𝜀1, 𝜀2)

]∗
Y
(r)

m,b�
(𝜀4, 𝜀3)

}
.

(41)

v
(r,0)

m,b
(𝜀1, 𝜀2) =

(
X
(r,0)

m,b
(𝜀1, 𝜀2)

Y
(r,0)

m,b
(𝜀1, 𝜀2)

)
,

M̂(r)(|𝜔m|, q) =
(

Γ̃
(r)

1
(|𝜔m|, q) sgn𝜔mΓ̃

(r)

4
(|𝜔m|, q)

sgn𝜔mΓ̃
(r)

5
(|𝜔m|, q) Γ̃

(r)

2
(|𝜔m|, q)

)
.

Fig. 2  a Diagrammatic representation of the system of coupled equations determining the effective inter-
action amplitudes Γ̃2,Γ̃3 , and Γ̃4 . b The decoupled equation determining the amplitude Γ̃1 . The solid black 
lines denote fermionic Green’s functions, and the direction of the arrows determines their specific type 
(i.e., normal or anomalous). All polarization bubbles are appropriately dressed with the impurity ladders. 
The explicit numerical prefactors in front of each diagram, as well as any dependence on the particle-
hole index r = 0, 3 , are omitted
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Further details pertaining to the new vertices Γ̃(r)

1,2,3,4,5
 are elaborated in Appendix B 

and their diagrammatic representations are illustrated in Fig.  2. We conclude this 
section by examining the expression in the limit �� → 0 or equivalently T > Tc.

4.3.1  Limiting Case: T > T
c

Considering the limits �� → 0 , the preceding comprehensive expression simplifies 
to:

The functions

represent the diffusions renormalized by the interaction in the singlet channel and 
the fluctuation propagator, respectively. It is worth noting that (42) aligns with the 
normal-state expressions as shown in Eqs. (10) and (13) of [67].

5  One‑Loop Effective Potential

Building upon Eq.  (27) and the results from the prior section, we can derive the 
effective action that captures the effect of quantum fluctuations beyond the mean-
field superconducting state. After intensive calculations, we propose the subsequent 
streamlined expressions:

(42)

⟨Φ𝛼1𝛼2,(r,0)

𝜀1,−𝜀2,b
(q)Φ̄

𝛼3𝛼4,(r,0)

−𝜀3,𝜀4,b
� (−q)⟩ = 2D

g
D

(0)
q
(�𝜀1�, �𝜀2�)𝛿𝛼1𝛼4𝛿𝛼2𝛼3𝛿bb�

�
𝛿𝜀1𝜀4𝛿𝜀2𝜀3

− 𝛿𝛼1𝛼2𝛿𝜀1+𝜀2,𝜀3+𝜀4𝛿b1
8TΓs

𝜈
D

(s)
q
(�𝜀1�, �𝜀2�)

− 𝛿𝛼1𝛼2𝛿𝜀1+𝜀4,𝜀2+𝜀3𝛿b24𝜋TD
(0)
q
(�𝜀3�, �𝜀4�)Lq(�𝜀1 − 𝜀2�)

�
.

(43)

D
(s)
q
(|�1|, |�2|) = 1

Dq2 + (1 + �s)(|�1| + |�2|)
,

Lq(|�n|) = 1

ln
TBCS

T
+ �

(
1

2

)
− �

(
Dq2+|�n|

4�T
+

1

2

)

(44)S
(t)

ef f
[��,Δ] = −

NNr

2 ∫q

∑
�n

ln(1 + ΓtΠ
(t)),

(45)

S
(s+c)

ef f
[��,Δ] = −

Nr

2 ∫q

∑
�n

ln
{
(1 + ΓsΠ

(s))(1 + Γc[Π
(c)

∥
+ Π

(c)

⟂
]) − 4ΓsΓc[Π

(c)

A
]2
}

−
Nr

2 ∫q

∑
�n

ln(1 + Γc[Π
(c)

∥
− Π

(c)

⟂
]).
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Here, �n = 2�Tn , where n ∈ ℤ , and we have introduced a suite of polarization func-
tions Π(i)

j
≡ Π

(i)

j
(|�n|, q) , for which the exact expressions are given as

We note that the polarization operators introduced in Eqs. (46)–(49) have clear 
physical meaning in terms of diagrams (see Fig. 2). We also note that the diagram 
for Π(c)

A
 resembles the process of Andreev reflection and for that reason, we use sub-

script ‘A’.
It is crucial to underscore that Eqs.  (44)–(49) represent central outcomes of 

this study. Armed with these expressions, we can probe the impact of quantum 
fluctuations to any order in interaction constants (and to the lowest in 1∕g ≪ 1 ). 
A noteworthy aspect is the modification to the saddle solution. Section 3 touched 
upon the mean-field solution that sidesteps these fluctuations, while the subsequent 
sections will illustrate that quantum fluctuations can profoundly influence the mean-
field solution. But before diving into the modification of the saddle-point equations, 
we discuss the collective modes within the mean-field solution.

(46)

Π(s∕t)(|𝜔n|, q) = 𝜋T

z𝜔

∑
𝜀,𝜀�>0

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±[
𝛿𝜀+s𝜀�,|𝜔n| + 𝛿𝜀+s𝜀�,−|𝜔n|

][
1 + s cos(𝜃𝜀 ± s𝜃𝜀� )

]
,

(47)

Π
(c)

∥
(|𝜔n|, q) = 𝜋T

z𝜔

∑
𝜀,𝜀�>0

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±[
𝛿𝜀+s𝜀�,|𝜔n| + 𝛿𝜀+s𝜀�,−|𝜔n|

][
1 − s cos 𝜃𝜀 cos 𝜃𝜀�

]
,

(48)

Π
(c)

⟂
(|𝜔n|, q) = 𝜋T

z𝜔

∑
𝜀,𝜀�>0

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±[
𝛿𝜀+s𝜀�,|𝜔n| + 𝛿𝜀+s𝜀�,−|𝜔n|

]
sin 𝜃𝜀 sin 𝜃𝜀� ,

(49)

Π
(c)

A
(|𝜔n|, q) = −

𝜋T

2z𝜔

∑
𝜀,𝜀�>0

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

s

[
𝛿𝜀+s𝜀�,|𝜔n| + 𝛿𝜀+s𝜀�,−|𝜔n|

]
sgn (𝜀+s𝜀�) sin(𝜃𝜀+s𝜃𝜀� ).
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6  Collective Modes Within the Mean‑Field Solution

Before employing the Eqs. (44)–(49) for computation of the fluctuation correction 
to the Usadel equation, we discuss the relation of the fluctuation-induced action 
with the collective modes in superconducting phase. We start from expressing the 
polarization operators (46)–(49) on the mean-field solution, Eqs. (21)–(22),

Here E� =
√
Δ2 + �2 is nothing but E� evaluated on the mean-field solution.

We mention that the polarization operators Π(s) , Π(c)

∥
− Π

(c)

⟂
 , Π(c)

∥
+ Π

(c)

⟂
 , Π(c)

A
 com-

puted at the mean-field solution, Eqs. (21)–(22), coincide with the operators 
4(� − Π��)∕(��

2) , 4ΠΔΔ∕(��
2) , Π��∕(��

2) , and 2Π��∕(��
2) of Ref. [56], 

respectively.
It is instructive to discuss the fluctuation action (44)–(45) in a more detailed man-

ner. Its structure in the form of ‘ Tr ln ’ suggests that each contribution can be written 
as a result of integration over some bosonic mode (see Appendix A). On the other 
hand, these bosonic modes are nothing but collective modes.

6.1  Gapless Collective Modes

The first line of Eq. (45) describes the contribution from Carlson–Goldman mode 
[68, 69] that is the result of hybridization between the Plasmon mode and the 
Anderson–Bogoliubov mode [70–72]. The latter corresponds to fluctuating phase of 
the superconducting order parameter.

In the absence of interaction in the singlet channel, Γs = 0 , (i.e., for neutral parti-
cles), the computation of the combination Π(c)

∥
(|�n|, q) + Π

(c)

⟂
(|�n|, q) at q,�n → 0 

on the mean-field solution, Eqs. (21) and (22), suggests that the Anderson–Bogoli-
ubov mode is gapless,

(50)

Π(s∕t)(|�n|, q)
Eqs. (21)–(21)
���������������������������������������������→

�T

z�

∑
�

1

Dq2 + E� + E�+|�n|

[
1 −

�(� + |�n|) ± Δ2

E�E�+|�n|

]
,

(51)

Π
(c)

∥
(|�n|, q) ± Π

(c)

⟂
(|�n|, q)

Eqs. (21)–(21)
���������������������������������������������→

�T

z�

∑
�

1

Dq2 + E� + E�+|�n|

[
1 +

�(� + |�n|) ± Δ2

E�E�+|�n|

]
,

(52)
Π

(c)

A
(|�n|, q)
Eqs. (21)–(21)
���������������������������������������������→ −

�T

2z�

∑
�

1

Dq2 + E� + E�+|�n|

|�n|Δ
E�E�+|�n|

.
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Here we introduced a notation 𝛽k = T
∑

𝜀>0 Δ
k−1∕Ek

𝜀
 . We note that the frequency 

and momentum independent term in the first line of Eq. (53) vanishes in virtue of 
the mean-field self-consistency condition (22). Making analytic continuation to real 
frequencies i�n → � + i0 and nullifying the above expression we obtain the sound-
like dispersion of the Anderson–Bogoliubov mode [46]

The presence of non-zero interaction in the singlet channel transforms gapless 
Anderson–Bogoliubov mode into gapped Carlson–Goldman mode. Indeed, 
computations of the following polarization functions at q = 0 and � → 0 yield

We note that Π(c)

A
(|�n|, 0)∕|�n| in the limit �n → 0 is proportional to the fraction 

of superconducting electrons. Indeed, the ratio of the density of superconducting 
electrons to the density of total electrons is given as ns∕n = 2��3 [73],

Making analytic continuation to real frequencies i�n → � + i0 and, then, nullifying 
the above expression, we obtain the dispersion of the Carlson–Goldman mode [46]

Since 4��2
3
∕(3�5) ⩽ 1 and, in the case of short-ranged interaction 𝛾s > −1 , the 

Carlson–Goldman mode remains sound-like but with renormalized velocity 
due to interaction in the singlet channel. A special situation occurs for Coulomb 
interaction when there is an estimate �s ≃ −1 + qaB at q → 0 for a thin film. Here 
aB = 1∕(2�e2�) denotes the effective screening length (Bohr radius). Then, since 
4��2

3
∕(3�5) = 1 at T = 0 , the cancellation in the denominator of Eq. (57) happens, 

and the Carlson–Goldman mode acquires Plasmon-like dispersion, �
��

∼
√
q.

(53)

1 + Γc

[
Π

(c)

∥
(|𝜔n|, q) + Π

(c)

⟂
(|𝜔n|, q)

]

Eqs. (21)–(21)
���������������������������������������������→ 1 + 2𝜋T𝛾c
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1
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Δ
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2
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4Δ2
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��
=
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DΔ tanh(Δ∕2T)
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)1∕2

.

(55)
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Eqs. (21)–(21)
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2
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�Δ2
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Π
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A
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2�3|�n|
�Δ

.

(56)

(1 + ΓsΠ
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(c)

∥
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6.2  Gapped Collective Modes

The term in the last line of Eq. (45) comes from the so-called Schmid-Higgs 
mode [74], corresponding to fluctuations of amplitude of the superconducting 
order parameter (see Appendix A). Employing Eq. (51), we find at q → 0,

Here E(x) = ∫ �∕2

0
d�

√
1 − x sin2 � and K(x) = ∫ �∕2

0
d�∕

√
1 − x sin2 � stand for the 

complete elliptic integrals. We note that the first two terms in the r.h.s. of the first 
line of Eq. (58) cancel each other due to the mean-field self-consistency condition 
(22). The last line of Eq. (58) contains square-root singularity that is a hallmark 
of the Schmid-Higgs mode with the gap 2Δ . We are not aware of the results for 
the momentum dependence of the frequency of the Schmid-Higgs mode in a dis-
ordered superconductor (for the clean case see recent work [75]). As evident from 
Eq. (58), the expansion in a series in terms of Dq2 actually includes denominators of 
the form (�2

n
+ 4Δ2) , which diverge upon analytic continuation to real frequencies at 

|�| = 2Δ . Consequently, a direct expansion in a series in Dq2 is not justifiable when 
|�| ∼ 2Δ.

Fortunately, at T = 0 , we are able to compute the expression 
Π

(c)

∥
(|�n|, q) − Π

(c)

⟂
(|�n|, q) analytically and then perform the necessary analytic 

continuation. Taking the imaginary part, we obtain

(58)
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[
Π

(c)

∥
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⟂
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]
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where Π(x|y) = ∫ �∕2

0
d�∕((1 − x sin2 �)

√
1 − y sin2 �) is the complete elliptic 

integral of the third kind. The corresponding behavior of Eq.  (59) is depicted in 
Fig. 3. In addition, one can also expand �Im

[
Π

(c),R

∥
(�, q) − Π

(c),R

⟂
(�, q)

]
 in powers of 

two small parameters Dq2∕Δ ≪ 1 and (|𝜔| − 2Δ)∕Δ ≪ 1 assuming |�| ≥ 2Δ , while 
keeping the ratio D2q4∕(|�| − 2Δ) fixed. In this limit, we obtain the following sim-
ple expression

We observe that the square-root non-analyticity near |�| ∼ 2Δ adds complexity to 
determining the momentum dependence of the Schmid-Higgs mode. The result in 
Eq. (60) indicates that the deviation of the Schmid-Higgs mode frequency from 2Δ 
is proportional to D2q4∕Δ , that is, |�

��
| − 2Δ ∝ D2q4∕Δ . The calculation of the 

exact numerical coefficient, however, will be the subject of future work.
The term S(t)

ef f
[��,Δ] describes the effect of the collective mode corresponding to 

spin density oscillations. Using Eqs. (21)–(22), we obtain at q → 0
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4sgn(�)�(|�| − 2Δ)

(
4Δ2 + D2q4 + �2

)

��Dq2(2Δ + |�|)(D2q4 + �2
)

{
D2q4K

(
(|�| − 2Δ)2

(|�| + 2Δ)2

)

+
4Δ2�2 −

(
D2q4 + �2

)2
4Δ2 + D2q4 + �2

Π

(
(|�| − 2Δ)2

(
D2q4 + �2

)

D2q4
(
4Δ2 − D2q4 − �2

)
|||||
(|�| − 2Δ)2

(|�| + 2Δ)2

)}
,

(60)

�Im
[
Π

(c),R

∥
(�, q) − Π

(c),R

⟂
(�, q)

]
≈ 2sgn(�)�(|�| − 2Δ)

(√
D2q4

4Δ2
+

|�| − 2Δ

Δ
−

Dq2

2Δ

)
.

Fig. 3  Imaginary part of the inverse Schmid-Higgs susceptibility �Im[Π
(c),R

∥
(�, q) − Π

(c),R

⟂
(�, q)] at T = 0 

within the mean-field solution, for two values of Dq2∕Δ = 0.1 and 0.5
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The analytic continuation of Π(t)(|�n|, q) to the real frequencies can be obtained 
in the standard way, and its imaginary part corresponds to the spectral function in 
the spin channel. Remarkably, at T = 0 it can be expressed in the closed form even 
without expanding in powers of Dq2∕Δ:

The corresponding behavior of the spectral function given by Eq. (62) is depicted in 
Fig. 4. Similarly to Eq. (60), one can also expand Eq. (62) in powers of two small 
parameters Dq2∕Δ ≪ 1 and (|𝜔| − 2Δ)∕Δ ≪ 1 for |�| ≥ 2Δ , while keeping the ratio 
D2q4∕(|�| − 2Δ) fixed. This leads to the following expression

(61)

1 + ΓtΠ
(t)(|𝜔n|, q)

Eqs. (21)–(21)
���������������������������������������������→ 1 + 2𝜋𝛽3𝛾t − 𝜋𝛾tDq

2T
∑
𝜀>0

E𝜀E𝜀+|𝜔n| − 𝜀(𝜀 + |𝜔n|) + Δ2

(E𝜀 + E𝜀+|𝜔n|)
2E𝜀E𝜀+|𝜔n|

T=0
⟶ 1 + 𝛾t − 𝛾tDq

2

√
𝜔2
n
+4Δ2

𝜔2
n

(
E

(
𝜔2
n

𝜔2
n
+4Δ2

)
−

4Δ2

𝜔2
n
+4Δ2

K

(
𝜔2
n

𝜔2
n
+4Δ2

))
.

(62)

ImΠ(t),R(�, q)T=0

=
4Dq2sgn(�)�(|�| − 2Δ)

��(2Δ + |�|)(D2q4 + �2
)2
{
4Δ

(
D2q4(Δ + |�|) + |�|3

)
K

(
(|�| − 2Δ)2

(|�| + 2Δ)2

)

+
4Δ2

(
D4q8 + 2�2

(
D2q4 − 2Δ2

)
+ �4

)

D2q4 + �2 − 4Δ2
Π

(
(|�| − 2Δ)2

(
D2q4 + �2

)

D2q4
(
4Δ2 − D2q4 − �2

)
|||||
(|�| − 2Δ)2

(|�| + 2Δ)2

)

−(2Δ + |�|)2
(
D2q4 + �2

)
E

(
(|�| − 2Δ)2

(|�| + 2Δ)2

)}
,

Fig. 4  a Imaginary part of the spin susceptibility −�ImΠ(t),R(�, q) at T = 0 within the mean-field solu-
tion, for two values of Dq2∕Δ = 0.1 and 0.5. b The same as in (a), but the overall prefactor Dq2∕Δ is 
removed. The green curve corresponds to the limit of −�ΔImΠ(t),R(�, q)∕Dq2 at q = 0 (Color figure 
online)
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The equation presented above exhibits a square-root singularity at |�| ∼ 2Δ . 
Analogous to the situation with the Schmid-Higgs mode, this characteristic 
complicates the calculation of the spin wave spectrum in dirty superconductors. 
Addressing this issue is left as a subject for future work.

7  Modified Saddle Equation

After incorporating the effects of fluctuations around the mean-field solution (21)-
(22), the saddle point is modified to satisfy the following system of equations:

In these expressions, the mean-field action Scl[��,Δ] is given by Eq.  (20). The 
first equation is commonly referred to as the Usadel equation, while the second is 
called the self-consistency equation. Variation of the effective action with respect 
to a variable x, which can be either the field �� or the constant Δ , can be succinctly 
expressed as follows:

where �x =
�

�x
 if x = �� or �x =

�

�x
 if x = Δ , and the vertices Γ̃t(|𝜔n|, q) , 

Γ̃
(0)

1,2,3,4
(|𝜔n|, q) are the same as those introduced in Sect. 4.1.

It should be noted that the modified part of this equation is small, owing to 
Seff [��,Δ] being a 1/g-order correction to Scl[��,Δ] . However, this seemingly 
small correction can lead to interesting physics, as we will demonstrate later in 
this paper.

7.1  Modified Usadel Equation

The solution to the first (Usadel) equation of the system (64) can be sought in a 
form that mirrors the bare equation (21). This involves introducing an additional 
frequency renormalization Z� and the energy-dependent gap function Δ� . The 
Usadel equation can then be reformulated as (we remind that we consider the 
spatially homogeneous saddle-point solution):

(63)ImΠ(t),R(�, q)T=0 ≈ sgn(�)�(��� − 2Δ)
Dq2

�Δ

⎛
⎜⎜⎜⎝

Dq2∕2Δ�
D2q4

4Δ2
+

���−2Δ
Δ

− 1

⎞
⎟⎟⎟⎠
.

(64)
�

���
(Scl[��,Δ] + Seff [��,Δ]) = 0,

�

�Δ
(Scl[��,Δ] + Seff [��,Δ]) = 0.

(65)

𝛿xSeff [𝜃𝜀,Δ] = −
Nr

2 ∫q

�
𝜔n�

NΓ̃t𝛿xΠ
(t) + Γ̃

(0)

1
𝛿xΠ

(s) + 2Γ̃
(0)

2
𝛿xΠ

(c)

‖ − 2Γ̃
(0)

3
𝛿xΠ

(c)

⟂
+ 4Γ̃

(0)

4
𝛿xΠ

(c)

A

�
,
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To avoid any confusion, we emphasize that z� = ��∕4 and dimensionless Z� 
introduced in the later expression are different, albeit related (see below), objects. 
We also note the even parity of the aforementioned functions in energy � : �−� = �� , 
Z−� = Z� , and Δ−� = Δ� . By comparing the exact expressions (64) with the newly 
introduced parametrization (66), we deduce:

Here, in the triplet channel, we find:

Additionally, we obtain:

The expression for Γ̃t(|𝜔n|, q) is detailed in Eq.  (3637). For all other vertices 
appearing in this section, the expressions are provided in Appendix B. It is 
imperative to note that when only the lowest-order contributions in |𝛾t,s,c| ≪ 1 are 
retained, the first line of (68) corresponds to equation (2) from [30]. However, the 
second line of Eq. (68), being of the second order in small coupling constants, was 
omitted in [29, 30]. This contribution is second-order in the interaction constants, 
as Δ , which precedes the remaining part of the expression, is proportional to �c , 
see Eq.  (22). When combined with Γ̃t(|𝜔n|, q) under the integral sign, it results in 
a second-order contribution, assuming that |𝛾s,t,c| ≪ 1 . Likewise, the first and the 
second lines of (69), which are solely quadratic in �t,s,c , were omitted in earlier 
research, [29, 30]. Similar logic applies to both singlet and Cooper channels. 
Renormalization of Z� and Δ� in their combined channel brings

(66)−|�|Z� sin �� + Δ� cos �� = 0.

(67)Δ� = Δ + �Δ(t)
�
+ �Δ(s+c)

�
, �Z� = � + ��Z(t)

�
+ ��Z(s+c)

�
.

(68)

𝛿Δ(t)
𝜀

= −
2NT

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

Γ̃t(|𝜀 + s𝜀�|, q) sin 𝜃𝜀�

+
2NT

𝜋𝜈2
Δ
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

Γ̃t(|𝜀 + s𝜀�|, q)
[
1 + s cos(𝜃𝜀 − s𝜃𝜀� )

]
.

(69)

𝜀𝛿Z(t)
𝜀

= −
2NT

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

sΓ̃t(|𝜀 + s𝜀�|, q) cos 𝜃𝜀�

+
2NT

𝜋𝜈2
𝜀
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

Γ̃t(|𝜀 + s𝜀�|, q)
[
1 + s cos(𝜃𝜀 − s𝜃𝜀� )

]
.
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and

Where for conciseness we introduced the matrix

and a number of vertices Γ̃(0)

i
 that are discussed in Appendix B. Again, at the 

lowest order in |𝛾t,s,c|≪1 , the first line of Eq. 70 converges to Eq. (2) of [30] and the 
subsequent terms provide only quadratic corrections. Conversely, Eq. 71 approaches 
zero in the linear order of �i.

(70)

𝛿Δ(s+c)
𝜀

=
2T

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

[
Γ̃
(0)

1
(|𝜀 + s𝜀�|, q) + 2Γ̃

(0)

3
(|𝜀 + s𝜀�|, q)

]
sin 𝜃𝜀�

+
4T

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

s sgn (𝜀 + s𝜀�)Γ̃
(0)

4
(|𝜀 + s𝜀�|, q) cos 𝜃𝜀�

+
4T

𝜋𝜈2
Δ
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|) (sin 𝜃𝜀 cos 𝜃𝜀
)
K̂(𝜀, 𝜀�, q)

(
sin 𝜃𝜀�
cos 𝜃𝜀�

)

+
2T

𝜋𝜈2
Δ
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

[
Γ̃
(0)

1
(|𝜀 + s𝜀�|, q) + 2Γ̃

(0)

2
(|𝜀 + s𝜀�|, q)

]

(71)

𝜀𝛿Z(s+c)
𝜀

= −
2T

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

s
[
Γ̃
(0)

1
(|𝜀 + s𝜀�|, q) + 2Γ̃

(0)

2
(|𝜀 + s𝜀�|, q)

]
cos 𝜃𝜀�

+
4T

𝜋𝜈2

∑
𝜀�>0

∫q

D
(0)
q
(|𝜀|, |𝜀�|)∑

s=±

sgn (𝜀 + s𝜀�)Γ̃
(0)

4
(|𝜀 + s𝜀�|, q) sin 𝜃𝜀�

+
4T

𝜋𝜈2
𝜀
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|) (sin 𝜃𝜀 cos 𝜃𝜀
)
K̂(𝜀, 𝜀�, q)

(
sin 𝜃𝜀�
cos 𝜃𝜀�

)

+
2T

𝜋𝜈2
𝜀
∑
𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

[
Γ̃
(0)

1
(|𝜀 + s𝜀�|, q) + 2Γ̃

(0)

2
(|𝜀 + s𝜀�|, q)

]
.

(72)

K̂(𝜀, 𝜀�, q) = −
∑
s=±(
Γ̃
(0)

1
(𝜀 + 𝜀�, q)∕2 + Γ̃

(0)

3
(|𝜀 + s𝜀�|, q) s sgn (𝜀 + s𝜀�)Γ̃

(0)

4
(|𝜀 + s𝜀�|, q)

sgn (𝜀 + s𝜀�)Γ̃
(0)

4
(|𝜀 + s𝜀�|, q) sΓ̃

(0)

2
(|𝜀 − s𝜀�|, q)

)
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7.2  Modified Self‑Consistency Equation

It is essential to note that, in addition to the saddle condition with respect to the 
angle �� , we also need to consider the condition of extreme action in the Δ . This 
results in the following modified self-consistency equation:

These corrections arise in the variation of D(0)
q
(|�|, |��|) with respect to Δ , which 

enters into its denominator, as explicitly shown in Eq. (34).
Equations (66) and (73) form a close set of equations for �� and Δ . These equations 

can be viewed as Eliashberg-type equations for a dirty superconductor.
This concludes our discussion about the general expressions for modifications on 

the saddle brought up by fluctuations. As we delve deeper into our study, a critical 
consideration emerges when examining the new saddle at temperatures approaching Tc . 
This topic will be further explored in the subsequent section.

8  Saddle Structure Near Tc

In the vicinity of Tc , the intricate nonlinear Usadel and self-consistency equations can 
be drastically simplified. This simplification arises due to the vanishing Δ� and �� . After 
careful linearization and taking logarithmic integrals over momentum, see Appendix C 
for details, we obtain the following equation for Δ̃𝜀

(73)

Δ = −2𝜋T𝛾c
∑
𝜀>0

sin 𝜃𝜀

− 2𝜋T𝛾c
4NT

𝜋𝜈2

∑
𝜀,𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

Γ̃t(|𝜀 + s𝜀�|, q)
[
1 + s cos(𝜃𝜀 − s𝜃𝜀� )

]
sin 𝜃𝜀

− 2𝜋T𝛾c
8T

𝜋𝜈2

∑
𝜀,𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|) (sin 𝜃𝜀 cos 𝜃𝜀
)
K̂(𝜀, 𝜀�, q)

(
sin 𝜃𝜀�
cos 𝜃𝜀�

)
sin 𝜃𝜀

− 2𝜋T𝛾c
4T

𝜋𝜈2

∑
𝜀,𝜀,𝜀�>0

∫q

D
(0)2
q

(|𝜀|, |𝜀�|)∑
s=±

[
Γ̃
(0)

1
(|𝜀 + s𝜀�|, q) + 2Γ̃

(0)

2
(|𝜀 + s𝜀�|, q)

]
sin 𝜃𝜀.

(74)

Δ̃𝜀 = −2𝜋T
∑
𝜀�>0{

𝛾c −
1

𝜋g
ln

LΩ

�

[
(1 + 𝛾c)(𝛾s −N𝛾t) − 2𝛾2

c
+ 2𝛾3

c
+ 2N𝛾c(𝛾t − ln(1 + 𝛾t))

]}
Δ̃𝜀�

𝜀�
,
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where we defined Δ̃𝜀 ≡ Δ𝜀∕Z𝜀 . We also introduced a diffusive length L� =
√
D∕� 

and the mean-free path in our diffusive system, � . Ω = max(�, ��) arises if in the 
diffusions we take the maximum of � + �� or |� − ��| and only leave max(�, ��) . This 
is justified by the shallowness of the ln-function. The frequency renormalization 
parameter Z� also receives a logarithmic correction as given by

It is instructive to compare the right-hand side with what appears if we consider the 
renormalization group (RG) flow within the same model above Tc . In [28] a full set 
of RG equations is presented in Eqs. (23-27). Notably, the right-hand side of (74) 
coincides with the expression for �c(L) mentioned in Eq. (26) in [28] (or Eq. (79) of 
the present paper) and Eq. (75) matches with Eq. (27) (or Eq. (80) presented below). 
Additionally, it is worth mentioning that the standard term, −�2

c
 , associated with 

Cooper instability in the clean case, is absent from Eq. (74). The reason is that this 
term is encompassed within the definition of the field Δ�

r
 . For a detailed discussion, 

refer to [29].
For a clear comparison, we present the aforementioned renormalization group 

equations above Tc [28]3:

Here, y = ln L∕� , where L is a characteristic RG length scale, and t = 2∕(𝜋g) ≪ 1 , 
which represents dimensionless resistance. However, it is important to bear in 
mind that in the present research, we limited our perturbative calculations to the 
lowest order in 1∕g ≪ 1 , while in [28], it is also a running constant as described by 
Eq. (76). Nonetheless, we propose that near Tc , the actual kernel in the right-hand 

(75)Z� = 1 +
1

�g
ln

L�

�

(
�s +N�t + 2�c + 2�2

c

)
.

(76)
dt

dy
= t2

[
N − 1

2
+ f (�s) +Nf (�t) − �c

]
, f (x) = 1 − (1 + 1∕x) ln(1 + x),

(77)
d�s

dy
= −

t

2
(1 + �s)

[
�s +N�t + 2�c + 2�2

c

]
,

(78)
d�t

dy
= −

t

2
(1 + �t)

[
�s − (N − 2)�t − 2�c(1 + 2�t − �c)

]
,

(79)
d�c

dy
= −2�2

c
−

t

2

[
(1 + �c)(�s −N�t) − 2�2

c
+ 2�3

c
+ 2N�c(�t − ln(1 + �t))

]
,

(80)
d ln z�

dy
=

t

2
(�s +N�t + 2�c + 2�2

c
).

3 Note that there were multiple misprints in [28]. In Eq. (27), the coefficient in front of �2
c
 was twice as 

it should have been, which resulted in errors in Eqs. (24)-(26) in terms corresponding to the order of �2
c
.
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side of (74) will contain the running constant �c(LΩ) . Also, comparing Eq. (80) and 
Eq. (75), we observe that the frequency renormalization parameter z� introduced 
by Finkel’stein is related with the logarithmically divergent part of Z� through 
z� ≃ z�Z� (see Appendix D for details).

To shed light on the behavior of Tc , let’s consider the following set of equations:

where ��c is the r.h.s. of Eq. (79), not including the −�2
c
 term for the reasons 

mentioned before. By applying the Euler–Maclaurin formula to the first equation 
and expressing Δ� as Δ0h(�) , we derive:

where �0 = �Tc corresponds to the lowest positive Matsubara energy. The value 
of a, given by 1 +

∑∞

k=1
B2k2

(2k−1)∕k ≃ 1.27 , arises from the infinite sum in the 

(81)Δ𝜀 = −2𝜋T
∑
𝜀�>0

𝛾c
(
Lmax(𝜀,𝜀�)

)Δ𝜀�

𝜀�
,

d𝛾c

d ln L∕�
= 𝛽𝛾c ,

(82)h(�) = −�c(L�)∫
�

�0

d��
h(��)

��
− ∫

1∕�

�

d���c(L�� )
h(��)

��
− a�c(L�),

Fig. 5  Left panel: Typical behavior of the spectral-gap function h(�) = Δ�∕Δ0 near the critical tempera-
ture for different numbers of gapless triplet modes: N = 3 , 1, or 0, obtained from solving Eq. (83) with 
t0 = 0.2 , �c0 = −0.08 , �t0 = −0.005 , and �s0 = 0.05 . As expected, accounting for disorder-induced inter-
actions leads to a strong dependence of Δ� on Matsubara energy � , contrary to the BCS scenario where 
Δ is energy-independent. Right panel: Multifractally enhanced critical temperature Tc as a function of 
dimensionless resistance t0 . The parameters used are again �c0 = −0.08 , �t0 = −0.005 , and �s0 = 0.05 . 
Remarkably, disorder-induced renormalizations significantly increase Tc , in agreement with predictions 
in [29, 30]. Open markers (circle, triangle, and squares) indicate the solutions for Δ� and Tc obtained 
from the self-consistency Eq.  (81) provided that in Eqs. (76)–(80) we retained only the linear order of 
�s,t,c in the right-hand side. These markers serve to compare and highlight the impact of collective modes. 
We note that for small values of t0 and �s0,t0,c0 , the differences between the two solutions are marginal. 
However, as any of these constants increase, these differences grow pronounced
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Euler–Maclaurin formula. This integral equation can be reformulated as a Cauchy 
problem on some interval u0 ⩽ u ⩽ �c0:

where the variable change from � to u is defined by u ≡ �c(L�) . �c0 corresponds to 
the bare value of the coupling constant, �c0 = �c(�) , and u0 = �c(L�0) . We introduced 
Φc(u) ≡ ��c , resolved as a function of u. Finally, this would lead to:

This implies that the behavior of Tc will be governed by the RG expression for �c(L) 
derived from the normal-state calculations. Typical plots illustrating the behavior of 
h(�) and the enhancement of Tc as a function of t0 are presented in Fig. 5. There are 
several factors limiting the magnitude of ln(Tc∕TBCS) from above. Firstly, as disor-
der strength increases, a point is eventually reached where strong localization effects 
come into play, naturally limiting the magnitude of ln(Tc∕TBCS) . A detailed phase 
diagram of this phenomenon can be found in [28]. Additionally, while we have for-
mally shown that the renormalization of �c on the right-hand side of the self-con-
sistency equation (74) coincides with a similar expression from the renormalization 
group analysis, Eq. (79), to the first order in 1∕g ≪ 1 , the question of substituting the 
constant g with the running g(L�) remains open.

A discussion on the relationship between Tc , as extracted from Eq. (84), and TRG
c

 , 
derived from the solution of the renormalization group equations above Tc , is 
detailed in [29, 30]. In essence, while these solutions exhibit similar behavior in 
terms of their dependence on the dimensionless parameter t0 and the effective 
coupling strength in the Cooper channel �0 (refer to the aforementioned works for 
details), the exact numerical constant in the exponent of ln(�Tc) cannot be precisely 
determined from solving the renormalization group equations. Indeed, the transition 
temperature Tc in this approach can be approximated using the relation |�c(LTRG

c
)| ∼ t0 

at which the coupling strength �c rapidly diverges indicating the transition, see [30] 
for details, leading to

While this expression bears resemblance to Eq. (84), it is important to note that the 
precise value of uRG

0
 in the exponent may differ (and it does differ, as demonstrated 

in early works [29, 30]) from u0 as obtained from Eqs. (83). We also mention that 
in the works [29, 30], the expression for Tc was obtained in the lowest order in qua-
siparticle coupling strength as opposed to Eq.  (84). For comparison, we demon-
strate the results of this weak coupling approximation in Fig. 5 (indicated by open 

(83)h��(u) =
2h(u)

Φc(u)
, h�(u0) = −a, h�(�c0) = h(�c0)∕�c0, h(u0) = 1,

(84)Tc ∼ �−1 exp
[
−2

u0

∫
�c0

du

Φc(u)

]
.

(85)TRG
c

∼ �−1 exp
[
−2

uRG
0

∫
�c0

du

Φc(u)

]
, −uRG

0
= −�c(LTRG

c
) ∼ t0.
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markers) alongside Tc and Δ� obtained from Eq. (84) for the same values of the bare 
parameters t0 and �c0,t0,s0 . From this, one can see that the higher-order terms in the 
gap equation result in an appreciable reduction in the magnitude of the spectral-gap 
function and Tc already for the coupling constants that are much smaller than one, 
with the difference between approximate and exact values increasing rapidly as the 
coupling strength increases. We also note that this suppression becomes more pro-
nounced when the number of the gapless triplet modes is reduced.

9  Discussions and Conclusions

In this work, we have developed a theory of quantum fluctuations in disordered 
superconducting thin films, accounting for the interplay between electron–electron 
interactions and weak localization phenomena. We demonstrated an intimate 
relation between contributions from collective modes to the effective action for the 
order parameter and quasiclassical Green’s function in a superconducting phase, on 
the one hand, and the modified Usadel and self-consistent equations, on the other 
hand. In particular, the latter equations involve the very same vertices Γ̃(0)

j
 , whose 

denominators determine the spectrum of collective modes. However, we note a sub-
tlety here: in the modified Usadel and self-consistency equations, the corresponding 
vertices depend on Matsubara frequencies rather than frequencies on the real axis.

The fluctuation corrections to the effective action technically arise from fluctua-
tions, W, of the Q matrix around the superconducting saddle point. These fluctua-
tions of the Q matrix contain modes corresponding not only to fluctuations of the 
order parameter magnitude but also to its phase fluctuations. It is these phase fluc-
tuations that are responsible for the mixing of Anderson–Bogoliubov and Plasmon 
modes (the Π(c)

A
 polarization operator).

Applying the modified Usadel and self-consistent equations at T = Tc , we investi-
gate the effects of short-ranged interactions on the superconducting gap function and 
Tc itself beyond the assumption of their weakness. We emphasize that the correspond-
ing self-consistency equation for the gap function can be interpreted as a standard gap 
equation but with a scale-dependent interaction in the Cooper channel, �c(L�) . Within 
logarithmic approximation, �c(L�) obeys an RG-type equation that aligns with the cor-
responding one in the normal phase. The scale dependence of the Cooper channel 
attraction leads to the energy dependence of the gap function. In the regime of multi-
fractally enhanced Tc the gap function increases toward small Matsubara energies of the 
order of Tc , see Fig. 5. Future work will address the solutions of modified Usadel and 
self-consistent equations at T < Tc.

The other interesting question that remained beyond the scope of the present man-
uscript is the effect of the energy-dependent gap function on the spectrum of collec-
tive modes in disordered two-dimensional superconductors. What characteristics of 
collective modes are present in the multifractally enhanced superconducting phase? 
To answer this question, one must compute the effective action beyond the Gaussian 
approximation. This task is reserved for future work.
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It is also important to discuss the applications of our theory. While this study focuses 
formally on d = 2 materials, e.g., epitaxial monolayers of superconductors on semicon-
ducting surfaces, our approach can be extended to superconducting thin films, provided 
that the film’s width, dsc , satisfies dsc ≪ 𝜉dif f (0) , restricting the motion of Cooper pairs 
in the third direction. Here, �dif f (0) represents the superconducting coherence length in 
the dirty limit at zero temperature. We also note that �dif f (0) ∼ LTc =

√
D∕Tc , where 

LTc is the diffusive length scale associated with the critical temperature Tc.
In conclusion, we have accounted for quantum fluctuations at the Gaussian level and 

derived the effective action for the superconducting order parameter and Green’s func-
tion. The saddle point of this action corresponds to the Usadel and self-consistency 
equations, modified by these fluctuations, which essentially represent collective modes 
in a superconductor. Our formalism has been applied to extend previous studies on the 
multifractally enhanced superconducting state. Notably, we achieved an exact solution 
for the superconducting transition temperature that is valid for arbitrary magnitudes of 
interaction parameters, albeit in the regime of weak disorder strength.

A One‑Loop Effective Action

In this appendix, we provide some details for the calculation of the effective fluctua-
tions action. We begin with the expression Eq. (29). In this expression, the vectors X(r,j)

n
 

and Y(r)
n

 that are used in Eq. (32) are given as follows:

Recall that mrj = (�r≠3 − �r3)(�j0 − �j≠0) . We also note that these vector functions 
satisfy the following relations: X(r,j)

−n
(�, ��) = mrjX

(r,j)
n

(�, ��) . Furthermore, the com-
plex conjugate of X(r,j)

n,b
(�, ��) is given by [X(r,j)

n,b
(�, ��)]∗ = (1 − 2�r3�b2)X

(r,j)

n,b
(�, ��) , and 

the complex conjugate of Y (r)

n,b
(�, ��) by [Y (r)

n,b
(�, ��)]∗ = (1 − 2�r3�b2)Y

(r)

n,b
(�, ��).

To decouple the fields ���,(r,j)

�,−��
 (or [wrj]

��

�,−��
 ) in Eq.  (29), we can use the Hub-

bard–Stratonovich transformation. This involves adding auxiliary bosonic fields ��,n

r,j
(r) 

(86)X(0,j)
n

(�, ��) =

(
cos

��+m0j���

2
(m0j��n,�+�

� + �−�n,�+�
� )

sin
��−m0j���

2
(m0j�−�n,�−�

� + ��n,�−�
� )

)
,

(87)X(3,j)
n

(�, ��) =

(
cos

��+m0j���

2
(m3j��n,�+�

� + �−�n,�+�
� )

i sin
��−m0j���

2
(m3j�−�n,�−�

� + ��n,�−�
� )

)
,

(88)Y(0)
n
(�, ��) = 2

(
cos

���

2
sin

��

2
�−�n,�+�

� − cos
��

2
sin

���

2
��n,�+�

�

cos
���

2
cos

��

2
��n,�−�

� − sin
��

2
sin

���

2
�−�n,�−�

�

)
,

(89)Y(3)
n
(�, ��) = 2

(
−i cos

���

2
sin

��

2
�−�n,�+�

� − i cos
��

2
sin

���

2
��n,�+�

�

cos
���

2
cos

��

2
��n,�−�

� + sin
��

2
sin

���

2
�−�n,�−�

�

)
.
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and Δ�,n
r
(r) . While it seems necessary to introduce complex-valued fields ��,n

r,j
(r) to 

decouple the [wr,j(r)]
��
�,−��

-fields in Eq.  (29), in reality, we remind the reader that the 
[wr,j(r)]

��
n1n2

 fields can only be either real-valued or purely imaginary. This distinction 
can be demonstrated as follows:

Consequently, we only need to consider either purely real or purely imaginary 
auxiliary fields ��,n

r,j
(r) . Nonetheless, the simplest way to address this decoupling is 

to enforce all the w-fields to be real by applying the transformation:

After this transformation, we can express the resulting action in terms of the old 
field [wrj(r)]

��

�,−��
 , the new fields ��,n

r,j
(r) and 2z�Δ�,n

r
(r) , alongside the � and Δ

-dependent current J�,n
rj

(�, ��) . The action is represented as follows:

Traces are taken over � , for n > 0 , and they include integration over r . The Cooper 
channel was decoupled using the field 2z�Δ�,n

r
 to maintain consistency with the 

decoupling at the static energy level where n = 0 . It is important to note that while 
the fields ��,n

r,j
 for positive and negative energies are related by ��,−n

r,j
= ��,n∗

r,j
 , this is 

not the case for the Δ�,n
r

 fields. Therefore, we explicitly divide them into the n > 0 
and n < 0 components.

(90)
[wrj(r)]

��
n1n2

= mrj[wrj(r)]
��∗
n1n2

,

mrj = −
1

4
Tr [trjCt

T
rj
C] = (�r≠3 − �r3)(�j0 − �j≠0).

(91)[wrj(r)]
��
n1n2

→ (�mrj,1
+ i�mrj,−1

)[wrj(r)]
��
n1n2

.

(92)

S(2)
𝜎

+ S̃
(c,2)

int
= −

g

4D

∑
r = 0, 3

j = 1, 2, 3

∑
𝛼𝛽

∑
𝜀,𝜀�>0

∫q

[D(0)
q
(𝜀, 𝜀�)]−1[wrj(q)]

𝛼𝛽

𝜀,−𝜀�
[wrj(−q)]

𝛼𝛽

𝜀,−𝜀�
,

(93)

S
(𝜎,2)

int
=

∑
𝛼,n>0

∑
r=0,3

∑
j≠0

∑
𝜀𝜀�>0

� d2r

(
2

𝜋TΓt

[𝜙𝛼,n

r,j
]2 + [wrj]

𝛼𝛼
𝜀,−𝜀�

J
𝛼,n

rj
(𝜀, 𝜀�)

)
−NTr ln

(
−
𝜋T

2
Γt

)
,

(94)

S
(𝜌,2)

int
+ Ŝ

(c,2)

int
=

∑
𝛼,n>0

∑
r=0,3

∑
𝜀𝜀�>0

∫ d2r

(
2

𝜋TΓs

[𝜙𝛼,n

r,0
]2 +

4z2
𝜔

𝜋TΓc

([Δ𝛼,n
r
]2 + [Δ𝛼,−n

r
]2) + [wr0]

𝛼𝛼
𝜀,−𝜀�

J
𝛼,n

r0
(𝜀, 𝜀�)

)

− Tr ln
(
−
𝜋T

2
Γs

)
− Tr ln

(
−𝜋TΓc

)
.
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In the triplet sector, where j ≠ 0 , the �-dependent currents are given by

Note that here, for brevity, we did not explicitly indicated the dependence of the 
current J�,n

r,j
 on the energies � , �′.

In the singlet sector ( j = 0 ), the picture becomes more intricate. The currents 
hybridize and become dependent on both � and Δ fields. Furthermore, the n > 0 and 
n < 0 components of Δ�,n

r
 intermingle. The currents are expressed as follows:

Next, we integrate out the w-fields. This leads to the following action in terms of the 
� and Δ fields,

where the vector ��,Δ consists of

In the triplet sector, ��,n
r,�

 is a vector composed of ��,n

r,j
 for all j ≠ 0 that correspond to 

some massless triplet mode. In this basis, the matrix Ŝ is

(95)

(
J
�,n

0,j

J
�,n

1,j

)
= −8

(
X
(0,j)

n,1

X
(0,j)

n,2

)
��,n

0,j
,

(
J
�,n

2,j

J
�,n

3,j

)
= 8

(
−iX

(3,j)

n,2

X
(3,j)

n,1

)
��,n

3,j
, j ≠ 0.

(96)
(
J
�,n

0,0

J
�,n

1,0

)
= 8

(
X
(0,0)

n,1

X
(0,0)

n,2

)
��,n

0,0
+ 8z�

∑
s=±

(
Y
(0)

sn,1

Y
(0)

sn,2

)
Δ�,sn

0
,

(97)
(
J
�,n

2,0

J
�,n

3,0

)
= 8

(
−iX

(3,0)

n,2

X
(3,0)

n,1

)
��,n

3,0
+ 8z�

∑
s=±

(
Y
(3)

sn,2

iY
(3)

sn,1

)
Δ�,sn

3
.

(98)
S
(2)

int
[𝜙,Δ] = �T

𝜙,Δ
Ŝ�𝜙,Δ −NTr ln

(
−
𝜋T

2
Γt

)

− Tr ln
(
−
𝜋T

2
Γs

)
− Tr ln

(
−𝜋TΓc

)
,

(99)��,Δ =
(
�
�,n

0,�
�
�,n

3,�
��,n

0,0
��,n

3,0
2z�Δ

�,n

0
2z�Δ

�,n

3
2z�Δ

�,−n

0
2z�Δ

�,−n

3

)T
.

(100)

Ŝ =
1

𝜋T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

Γ
t

+ 2Π(t) 0 0 0 0 0 0 0

0
2

Γ
t

+ 2Π(t) 0 0 0 0 0 0

0 0
2

Γ
s

+ 2Π(s) 0 2Π
(c)

A
0 − 2Π

(c)

A
0

0 0 0
2

Γ
s

+ 2Π(s) 0 2Π
(c)

A
0 − 2Π

(c)

A

0 0 2Π
(c)

A
0

1

Γ
c

+ Π
(c)

∥
0 − Π

(c)

⟂
0

0 0 0 2Π
(c)

A
0

1

Γ
c

+ Π
(c)

∥
0 − Π

(c)

⟂

0 0 − 2Π
(c)

A
0 − Π

(c)

⟂
0

1

Γ
c

+ Π
(c)

∥
0

0 0 0 − 2Π
(c)

A
0 − Π

(c)

⟂
0

1

Γ
c

+ Π
(c)

∥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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 Finally, upon integrating this quadratic action over the ��,n

r,j
 and Δ�,n

r
 fields, we 

obtain Eq. (44) and Eq. (45). To determine the correlation functions for the ���,(r,j)

�,−��
 

fields, it is necessary to introduce auxiliary �-dependent currents into the initial 
action and compute the corresponding generating functional. Following some 
algebra, one can derive Eq. (35) and Eq. (40).

This representation of the effective action allows us to explicitly observe the 
collective modes as discussed in Sect. 6. For instance, it is evident that the triplet 
( j ≠ 0 ) sector forms a distinct block, which can be associated with spin density 
fluctuations. Furthermore, the intertwining of Δ�,n

r
 and Δ�,−n

r
 with ��,n

r,0
 reveals the 

Carlson–Goldman mode. Additionally, it is clear that the mode associated with the 
amplitude fluctuations of the superconducting order parameter can be easily isolated 
within the Δ�,n

r
 and Δ�,−n

r
 subspaces through simple transformations.

B Vertices 0̃(r)

i

In this appendix, we provide the exact expressions for the renormalized vertices 
Γ̃
(r)

i
(|𝜔n|, q) as introduced in the main text and illustrated in Fig.  2. The precise 

expressions are as follows:

where the common denominator is defined as A = (1 + Γ
s
Π(s))(1 + Γ

c
[Π

(c)

∥
+ Π

(c)

⟂
])

−4Γ
s
Γ
c
[Π

(c)

A
]2 . For conciseness, we omitted the explicit dependence of the 

polarization functions on |�n| and q in the right-hand side of the above expression. 
The polarization operators Π(s),Π

(c)

∥
,Π

(c)

⟂
,Π

(c)

A
 are elaborated in Eqs. (46)-(49). Addi-

tionally, the relations between the r = 0 and r = 3 vertices are given by:

It is noteworthy that Γ̃(r)

5
 , found in Eq.  (41), is expressed in terms of Γ̃(0)

4
 and is 

therefore not shown in Fig. 2.

(101)Γ̃
(0)

i
(�𝜔n�, q) = 1

A
×

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Γs(1 + Γc[Π
(c)

∥
+ Π

(c)

⟂
]), i = 1

Γc(1+ΓcΠ
(c)

∥
+ΓsΠ

(s)+ΓcΓs{Π
(c)

∥
Π(s)−2[Π

(c)

A
]2})

1+Γc[Π
(c)

∥
−Π

(c)

⟂
]

, i = 2

Γ2
c
(Π

(c)

⟂
+Γs{Π

(c)

⟂
Π(s)−2[Π

(c)

A
]2}))

1+Γc[Π
(c)

∥
−Π

(c)

⟂
]

, i = 3

−2ΓsΓcΠ
(c)

A
, i = 4

,

(102)
Γ̃
(r)

1
= Γ̃

(0)

1
, Γ̃

(r)

2
= Γ̃

(0)

2
, Γ̃

(r)

3
= mr0Γ̃

(0)

3
, Γ̃

(r)

4
= mr0(−i)

r∕3Γ̃
(0)

4
, Γ̃

(r)

5
= (−i)r∕3Γ̃

(0)

4
.
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C Linearized Self‑Consistency Equation

In this appendix, we detail the procedure for linearizing the saddle-point equations near 
the critical temperature Tc . Our approach is outlined as follows. First and foremost, we 
observe that the formal solution to Eq. (66) is given by sin 𝜃𝜀 = Δ̃𝜀∕

√
𝜀2 + Δ̃2

𝜀
 , where 

Δ̃𝜀 ≡ Δ𝜀∕Z𝜀 . Rather than using the bare Δ� , we will precisely formulate the self-con-
sistency equation for this modified quantity, Δ̃𝜀 . To this end, we recognize that the 
equations (67) can be interpreted as a modified self-consistency equation. Indeed, if we 
divide Δ� by Z� , we formally obtain:

It is important to note that in the above expression, we have retained only the one-
loop corrections as represented by the first order in 1∕g ≪ 1 . Furthermore, we can 
replace Δ with the expression provided in Eq. (73).

We can now simplify this equation. The corrections proportional to D(0)2
q

(|�|, |��|) , 
arising from the variation of D(0)

q
(|�|, |��|) with respect to Δ and �� as introduced in the 

polarization operators (see Eqs. (46)–(49)), are precisely canceled out when we include 
1∕Z� in the definition of Δ̃𝜀 . As an illustration, consider the second lines of Eqs. (68) 
and (69), and their combination in (103). Clearly, these terms eliminate each other.

Next, we apply certain approximations to further simplify this equation and isolate 
the logarithmic contributions. As mentioned in the main text, in the case of diffusions, 
we consistently use the maximum of either � + �� or |� − ��| , retaining only max(�, ��) , 
in the expressions. Moreover, we substitute Lq(|�n|) , as defined in Eq. (43), with �c . 
This leads to the following equation:

Here, D̄q(|𝜔n|)−1 = Dq2 + |𝜔n| and D̄
(t)

q
(|𝜔n|)−1 = Dq2 + |𝜔n|(1 + 𝛾t) represent 

the corresponding diffusive correlators in the absence of superconductivity. It is 
also important to note that the final contribution to the above equation, originating 
from the renormalization of Δ as detailed in Eq. (73), does not formally include the 
energy � . On the other hand, the contribution that stems from the renormalization 
of Z� , see Eqs. (69) and (71), as demonstrated in the first expression of the second 
line, does not depend on �′ . However, at low energies, which are critical in determin-
ing the temperature Tc , this detail becomes less significant. Consequently, we will 

(103)Δ̃𝜀 = Δ − Δ(𝛿Z(t)
𝜀
+ 𝛿Z(s+c)

𝜀
) + 𝛿Δ(t)

𝜀
+ 𝛿Δ(s+c)

𝜀
.

(104)

Δ̃𝜀 = −2𝜋T
∑
𝜀�>0

Δ̃𝜀�

𝜀�

{
𝛾c −

2(𝛾s −N𝛾t) + 2𝛾c(N𝛾t + 𝛾s)

g ∫q

DD̄q(max(𝜀, 𝜀�))

+
4𝛾c

g

∑
𝜀��>0

2𝜋T ∫q

DD̄q(𝜀 + 𝜀��)
[
N𝛾tD̄

(t)

q
(𝜀��) − 𝛾2

c
D̄q(𝜀

��)
]

+
4𝛾2

c

g

∑
𝜀��>0

2𝜋T ∫q

DD̄
2

q
(𝜀� + 𝜀��)

}
.
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also apply the cutoff max(�, ��) to the energy in this term. Following these steps, 
we proceed to evaluate the sums over Matsubara frequencies and the integrals over 
momentum, ultimately deriving the expression (74) presented in the main text.

D Relation of Z" with the Finkel’stein Parameter z!

In this section, we demonstrate how Z� is related to the Finkel’stein parameter z� . 
For simplicity, we consider the contribution from the triplet channel only, Eq. (69). 
Setting �� = 0 , we obtain (for 𝜀 > 0)

Performing analytic continuation to real frequencies i� → E + i0+ , we find

Expanding the above equation in series in small E, we obtain

The term in the first line of Eq.  (107) survives at E = 0 . This term represents the 
contribution to the dephasing rate 1∕��(T) at E = 04 that arises from interaction in 
the triplet channel in the normal phase [76–78].

On the other hand, the last line of Eq. (107) yields the logarithmically divergent 
contribution,

(105)

𝜀𝛿Z(t)
𝜀

= −
NT

2𝜈z𝜔 ∫q

[∑
𝜔>𝜀

D
(0)
q
(𝜔) −

∑
𝜔>0

D
(0)
q
(𝜔 + 2𝜀) −

∑
𝜀>𝜔⩾0

D
(0)
q
(2𝜀 − 𝜔)

]
Γ̃t(𝜔, q)

+ 𝜀
NT

𝜈z𝜔 ∫q

∑
𝜔>𝜀

D
(0)2
q

(𝜔)Γ̃t(𝜔, q).

(106)

𝜀𝛿Z(t)
𝜀

→ −
N

2𝜈z𝜔 ∫q ∫
d𝜔

4𝜋i

{
tanh

𝜔 − E

2T

[
D

(0)R
q

(𝜔) +D
(0)A
q

(𝜔 − 2E)

]

− coth
𝜔

2T

[
D

(0)R
q

(𝜔 + 2E) +D
(0)A
q

(𝜔 − 2E)

]

+ 2iE tanh
𝜔 − E

2T
D

(0)R2
q

(𝜔)

}
Γ̃R
t
(𝜔, q).

(107)

𝜀𝛿Z(t)
𝜀

→
N

𝜈z𝜔 ∫q ∫
d𝜔

4𝜋

[
coth

𝜔

2T
− tanh

𝜔

2T

]
ReD(0)R

q
(𝜔) Im Γ̃R

t
(𝜔, q)

+ E
N

𝜈z𝜔 ∫q ∫
d𝜔

2𝜋

[
coth

𝜔

2T
− tanh

𝜔

2T

]
ReD(0)R2

q
(𝜔) Im Γ̃R

t
(𝜔, q)

+ iE
N

𝜈z𝜔 ∫q ∫
d𝜔

4𝜋
tanh

𝜔

2T
𝜕𝜔

[
D

(0)R
q

(𝜔) Re Γ̃R
t
(𝜔, q)

]
.

4 We note that in order to obtain the full energy dependence of 1∕��(T ,E) one has to first compute the 
Cooperon self-energy Σ�,�� as a function of two independent Matsubara frequencies � and �′ , and only 
then perform the analytic continuation as i� → E + i0+ , i�� → E − i0+ . This calculation is beyond the 
scope of our present analysis, and we leave it for future work.



219

1 3

Journal of Low Temperature Physics (2024) 217:187–222 

Therefore, we can state that Z� contains information on both the Finkel’stein param-
eter z� and on the dephasing rate.

Acknowledgements We thank A. Mel’nikov, V. Kravtsov, and A. Levchenko for useful discussions. 
E.S.A. and I.S.B. are grateful to F. Evers for collaboration on related projects. The work of I.S.B. was 
supported by the Russian Ministry of Science and Higher Education and by the Basic Research Program 
of HSE. P.A.N. acknowledges the hospitality extended to him during his time as a Graduate Fellow at the 
Kavli Institute for Theoretical Physics where his research was supported in part by the National Science 
Foundation under Grant No. NSF PHY-1748958 and NSF PHY-2309135, the Heising-Simons Founda-
tion, and the Simons Foundation (216179, LB). The work of P.A.N. and S.R. was supported in part by 
the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engi-
neering, under contract number DE-AC02-76SF00515. E.S.A acknowledges support by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) within Project-ID 314695032-SFB 1277 
(project A03 and IRTG). In our study of superconductivity theory, we were captivated by the astonishing 
beauty of the physical phenomenon where normal quasiparticles transform into Cooper pairs, a process 
known as Andreev reflection. We were pleased to discover that among the processes relevant to the col-
lective modes examined in our paper, one ( Π(c)

A
 ) bears a resemblance to Andreev reflection. One of the 

authors (I.S.B.) had the privilege of serving on the JETP editorial board for several years. The profound 
knowledge of physics exhibited by Aleksandr Fedorovich Andreev left an indelible impression that is 
unforgettable.

References

 1. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)
 2. A.A. Abrikosov, L.P. Gor’kov, On the theory of superconducting alloys, i. the electrodynamics of 

alloys at absolute zero. Sov. Phys. JETP 8, 1090 (1959)
 3. A.A. Abrikosov, L.P. Gor’kov, Superconducting alloys at finite temperatures. Sov. Phys. JETP 9, 

220 (1959)
 4. P.W. Anderson, Theory of dirty superconductors. J. Phys. Chem. Solid 11, 26 (1959)
 5. I.A. Fomin, Analog of the Anderson theorem for the polar phase of liquid 3He in a nematic aerogel. 

J. Exp. Theor. Phys. 127, 933–938 (2018). https:// doi. org/ 10. 1134/ S1063 77611 81100 2X
 6. T. Kamppinen, J. Rysti, M.M. Volard et al., Topological nodal line in superfluid 3He and the Ander-

son theorem. Nat. Commun. 14, 4276 (2023). https:// doi. org/ 10. 1038/ s41467- 023- 39977-2
 7. L.N. Bulaevskii, M.V. Sadovskii, Localization and superconductivity. JETP Lett. 39, 640 (1984)
 8. M. Ma, P.A. Lee, Localized superconductors. Phys. Rev. B 32, 5658 (1985)
 9. A. Kapitulnik, G. Kotliar, Anderson localization and the theory of dirty superconductors. Phys. Rev. 

Lett. 54, 473 (1985)
 10. G. Kotliar, A. Kapitulnik, Anderson localization and the theory of dirty superconductors. II. Phys. 

Rev. B 33, 3146 (1986)
 11. S. Maekawa, H. Fukuyama, Localization effects in two-dimensional superconductors. J. Phys. Soc. 

Jpn. 51, 1380 (1982)
 12. H. Takagi, Y. Kuroda, Anderson localization and superconducting transition temperature in two-

dimensional systems. Solid State Commun. 41, 643 (1982)
 13. S. Maekawa, H. Ebisawa, H. Fukuyama, Theory of dirty superconductors in weakly localized 

regime. J. Phys. Soc. Jpn. 53, 2681 (1984)
 14. P.W. Anderson, K.A. Muttalib, T.V. Ramakrishnan, Theory of the universal degradation of T

c
 in 

high-temperature superconductors. Phys. Rev. B 28, 117 (1983)
 15. C. Castellani, C.D. Castro, G. Forgacs, S. Sorella, Spin orbit coupling in disordered interacting elec-

tron gas. Solid State Commun. 52, 261 (1984)
 16. L.N. Bulaevskii, M.V. Sadovskii, Anderson localization and superconductivity. J. Low Temp. Phys. 

59, 89 (1985)

(108)��Z(t)
�

→ −iE
N�t

�g
ln

LT

�
.

https://doi.org/10.1134/S106377611811002X
https://doi.org/10.1038/s41467-023-39977-2


220 Journal of Low Temperature Physics (2024) 217:187–222

1 3

 17. A.M. Finkel’stein, Superconducting transition temperature in amorphous films. JETP Lett. 45, 46 
(1987)

 18. T.R. Kirkpatrick, D. Belitz, Logarithmic corrections to scaling near the metal-insulator transition. 
Phys. Rev. Lett. 70, 974 (1993)

 19. T.R. Kirkpatrick, D. Belitz, Cooperons at the metal-insulator transition revisited: constraints on the 
renormalization group and a conjecture. Phys. Rev. B 50, 8272 (1994)

 20. A.M. Finkel’stein, Suppression of superconductivity in homogeneously disordered systems. Phys. B 
197, 636 (1994)

 21. D.B. Haviland, Y. Liu, A.M. Goldman, Onset of superconductivity in the two-dimensional limit. 
Phys. Rev. Lett. 62, 2180 (1989)

 22. A.M. Goldman, N. Marković, Superconductor-insulator transitions in the two-dimensional limit. 
Phys. Today 51, 39 (1998)

 23. V.F. Gantmakher, V.T. Dolgopolov, Superconductor–insulator quantum phase transition. Phys. Usp. 
53, 1 (2010)

 24. B. Sacépé, M. Feigel’man, T.M. Klapwijk, Quantum breakdown of superconductivity in low-dimen-
sional materials. Nat. Phys. 16, 734 (2020)

 25. M.V. Feigel’man, L.B. Ioffe, V.E. Kravtsov, E.A. Yuzbashyan, Eigenfunction fractality and pseu-
dogap state near the superconductor–insulator transition. Phys. Rev. Lett. 98, 027001 (2007)

 26. M.V. Feigel’man, L.B. Ioffe, V.E. Kravtsov, E. Cuevas, Fractal superconductivity near localization 
threshold. Ann. Phys. 325, 1390 (2010)

 27. I.S. Burmistrov, I.V. Gornyi, A.D. Mirlin, Enhancement of the critical temperature of superconduc-
tors by Anderson localization. Phys. Rev. Lett. 108, 017002 (2012)

 28. I.S. Burmistrov, I.V. Gornyi, A.D. Mirlin, Superconductor–insulator transitions: phase diagram and 
magnetoresistance. Phys. Rev. B 92, 014506 (2015)

 29. I.S. Burmistrov, I.V. Gornyi, A.D. Mirlin, Multifractally-enhanced superconductivity in thin films. 
Ann. Phys. 435, 168499 (2021)

 30. E.S. Andriyakhina, I.S. Burmistrov, Multifractally-enhanced superconductivity in two-dimensional 
systems with spin–orbit coupling. J. Exp. Theor. Phys. 135, 484–499 (2022)

 31. M.N. Gastiasoro, B.M. Andersen, Enhancing superconductivity by disorder. Phys. Rev. B 98, 
184510 (2018)

 32. B. Fan, A.M. García-García, Enhanced phase-coherent multifractal two-dimensional superconduc-
tivity. Phys. Rev. B 101, 104509 (2020)

 33. M. Stosiek, B. Lang, F. Evers, Self-consistent-field ensembles of disordered Hamiltonians: efficient 
solver and application to superconducting films. Phys. Rev. B 101, 144503 (2020)

 34. J. Mayoh, A.M. Garc’ia-Garc’ia, Global critical temperature in disordered superconductors with 
weak multifractality. Phys. Rev. B 92, 174526 (2015)

 35. K. Zhao, H. Lin, X. Xiao, W. Huang, W. Yao, M. Yan, Y. Xing, Q. Zhang, Z.-X. Li, S. Hoshino, J. 
Wang, S. Zhou, L. Gu, M.S. Bahramy, H. Yao, N. Nagaosa, Q.-K. Xue, K.T. Law, X. Chen, S.-H. Ji, 
Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nat. Phys. 
15, 904 (2019)

 36. C. Rubio-Verdú, A.M. García-García, H. Ryu, D.-J. Choi, J. Zaldívar, S. Tang, B. Fan, Z.-X. Shen, 
S.-K. Mo, J.I. Pascual, M.M. Ugeda, Visualization of multifractal superconductivity in a two-dimen-
sional transition metal dichalcogenide in the weak-disorder regime. Nano Lett. 20, 5111 (2020)

 37. B. Sacépé, C. Chapelier, T.I. Baturina, V.M. Vinokur, M.R. Baklanov, M. Sanquer, Disorder-
induced inhomogeneities of the superconducting state close to the superconductor-insulator transi-
tion. Phys. Rev. Lett. 101, 157006 (2008)

 38. B. Sacépé, C. Chapelier, T.I. Baturina, V.M. Vinokur, M.R. Baklanov, M. Sanquer, Pseudogap in a 
thin film of a conventional superconductor. Nat. Commun. 1, 140 (2010)

 39. B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigel’man, L. Ioffe, 
Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239 (2011)

 40. D. Sherman, B. Gorshunov, S. Poran, N. Trivedi, E. Farber, M. Dressel, A. Frydman, Effect of 
Coulomb interactions on the disorder-driven superconductor-insulator transition. Phys. Rev. B 89, 
035149 (2014)

 41. M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J. Jesudasan, L. Benfatto, V. Trip-
athi, P. Raychaudhuri, Phase fluctuations in a strongly disordered s-wave NbN superconductor close 
to the metal-insulator transition. Phys. Rev. Lett. 106, 047001 (2011)



221

1 3

Journal of Low Temperature Physics (2024) 217:187–222 

 42. Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet, F. Debontridder, K. Ilin, M. Siegel, A. Semenov, 
H.-W. Hübers, D. Roditchev, Unconventional superconductivity in ultrathin superconducting NbN 
films studied by scanning tunneling spectroscopy. Phys. Rev. B 88, 014503 (2013)

 43. M. Lizée, M. Stosiek, I. Burmistrov, T. Cren, C. Brun, Local density of states fluctuations in a two-
dimensional superconductor as a probe of quantum diffusion. Phys. Rev. B 107, 174508 (2023)

 44. V.G. Vaks, V.M. Galitskii, A.I. Larkin, Collective excitations in a superconductor. Sov. Phys. JETP 
14, 1177–1185 (1962)

 45. S.N. Artemenko, A.F. Volkov, Electric fields and collective oscillations in superconductors. Sov. 
Phys. Usp. 22, 295–310 (1979)

 46. I.O. Kulik, O. Entin-Wohlman, R. Orbach, Pair susceptibility and mode propagation in supercon-
ductors: a microscopic approach. J. Low Temp. Phys. 43, 591–620 (1981)

 47. P.I. Arseev, S.O. Loiko, N.K. Fedorov, Theory of gauge-invariant response of superconductors to an 
external electromagnetic field. Phys. Usp. 49, 1–18 (2006)

 48. R. Shimano, N. Tsuji, Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11(1), 
103–124 (2020)

 49. I.C.V. Kos, A.J. Millis, A.I. Larkin, Gaussian fluctuation corrections to the BCS mean-field gap 
amplitude at zero temperature. Phys. Rev. B 70, 214531 (2004)

 50. R. Combescot, M.Y. Kagan, S. Stringari, Collective mode of homogeneous superfluid fermi gases in 
the BEC-BCS crossover. Phys. Rev. A 74, 042717 (2006)

 51. S. Fischer, M. Hecker, M. Hoyer, J. Schmalian, Short-distance breakdown of the Higgs mechanism 
and the robustness of the BCS theory for charged superconductors. Phys. Rev. B 97, 054510 (2018)

 52. P. Shen, M. Dzero, Gaussian fluctuation corrections to a mean-field theory of complex hidden order 
in URu2 Si2 . Phys. Rev. B 98, 125131 (2018)

 53. H. Kurkjian, S.N. Klimin, J. Tempere, Y. Castin, Pair-breaking collective branch in BCS supercon-
ductors and superfluid fermi gases. Phys. Rev. Lett. 122, 093403 (2019)

 54. Z. Sun, M.M. Fogler, D.N. Basov, A.J. Millis, Collective modes and terahertz near-field response of 
superconductors. Phys. Rev. Res. 2, 023413 (2020)

 55. P.A. Lee, J.F. Steiner, Detection of collective modes in unconventional superconductors using tun-
neling spectroscopy. Phys. Rev. B 108, 174503 (2023)

 56. R.A. Smith, M.Y. Reizer, J.W. Wilkins, Suppression of the order parameter in homogeneous disor-
dered superconductors. Phys. Rev. B 51, 6470–6492 (1995)

 57. M. Reizer, Electron-electron relaxation in two-dimensional impure superconductors. Phys. Rev. B 
61, 7108–7117 (2000)

 58. T. Cea, D. Bucheli, G. Seibold, L. Benfatto, J. Lorenzana, C. Castellani, Optical excitation of phase 
modes in strongly disordered superconductors. Phys. Rev. B 89, 174506 (2014)

 59. A.V. Shtyk, M.V. Feigel’man, Collective modes and ultrasonic attenuation in a pseudogapped super-
conductor. Phys. Rev. B 96, 064523 (2017)

 60. A.M. Finkel’stein, Electron Liquid in Disordered Conductors. Soviet Scientific Reviews, vol. 14 
(Harwood Academic Publishers, London, 1990)

 61. D. Belitz, T.R. Kirkpatrick, The Anderson–Mott transition. Rev. Mod. Phys. 66, 261–380 (1994)
 62. I.S. Burmistrov, Finkel’stein nonlinear sigma model: interplay of disorder and interaction in 2D 

electron systems. JETP 129, 669 (2019)
 63. M. D’yakonov, V. Perel’, Spin relaxation of conduction electrons in noncentrosymmetric semicon-

ductors. Sov. Phys. Solid State Ussr 13(12), 3023–3026 (1972)
 64. K.B. Efetov, A.I. Larkin, D.E. Khmelnitskii, Interaction of diffusion modes in the theory of localiza-

tion. Zh. Eksp. Teor. Fiz. 79, 1120–1133 (1980)
 65. S. Hikami, A.I. Larkin, Y. Nagaoka, Spin–orbit interaction and magnetoresistance in the two dimen-

sional random system. Prog. Theoret. Phys. 63(2), 707–710 (1980)
 66. E.S. Andriyakhina, Multifractally-enhanced superconductivity in two-dimensional systems with 

spin–orbit coupling. Moscow Institute of Physics and Technology (2023)
 67. I.S. Burmistrov, The effect of superconducting fluctuations on the ac conductivity of a 2d electron 

system in the diffusive regime. Ann. Phys. 418, 168201 (2020)
 68. R.V. Carlson, A.M. Goldman, Superconducting order-parameter fluctuations below T

c
 . Phys. Rev. 

Lett. 31, 880–883 (1973)
 69. R.V. Carlson, A.M. Goldman, Propagating order-parameter collective modes in superconducting 

films. Phys. Rev. Lett. 34, 11–15 (1975)



222 Journal of Low Temperature Physics (2024) 217:187–222

1 3

 70. N.N. Bogolyubov, V.V. Tolmachev, D.V. Shirkov, A new method in the theory of superconductivity. 
Fortsch. Phys. 6, 605–682 (1958)

 71. V.M. Galitskii, Sound excitations in Fermi systems. Sov. Phys. JETP 7(4), 698 (1958)
 72. P.W. Anderson, Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 

1900–1916 (1958)
 73. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 2. Course of Theoretical Physics, vol. 9 (1980)
 74. A. Schmid, The approach to equilibrium in a pure superconductor: The relaxation of the Cooper pair 

density. Physica Status Solidi (b) 8, 129–140 (1968)
 75. D. Phan, A.V. Chubukov, Following the Higgs mode across the BCS-BEC crossover in two dimen-

sions. Phys. Rev. B 107, 134519 (2023)
 76. B.L. Altshuler, A. Aronov, Electron–electron interaction in disordered conductors. Mod. Probl. 

Condens. Matter Sci. 10, 1–153 (1985)
 77. B.N. Narozhny, G. Zala, I.L. Aleiner, Interaction corrections at intermediate temperatures: dephas-

ing time. Phys. Rev. B 65, 180202 (2002)
 78. I.S. Burmistrov, I.V. Gornyi, K.S. Tikhonov, Disordered electron liquid in double quantum well het-

erostructures: renormalization group analysis and dephasing rate. Phys. Rev. B 84, 075338 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Authors and Affiliations

E. S. Andriyakhina1,2 · P. A. Nosov3 · S. Raghu3,4 · I. S. Burmistrov1,5

 * I. S. Burmistrov 
 burmi@itp.ac.ru

 E. S. Andriyakhina 
 esandriyakhina@itp.ac.ru

 P. A. Nosov 
 nosov@stanford.edu

 S. Raghu 
 sraghu@stanford.edu

1 L.D. Landau Institute for Theoretical Physics, Acad. Semenova av.1-a, Chernogolovka, 
Russia 142432

2 Institute of Theoretical Physics, University of Regensburg, 93051 Regensburg, Germany
3 Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA
4 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 

Menlo Park, CA 94025, USA
5 Laboratory for Condensed Matter Physics, HSE University, Moscow, Russia 101000


	Quantum Fluctuations and Multifractally enhanced Superconductivity in Disordered Thin Films
	Abstract
	1 Introduction
	2 Finkel’stein NLSM Formalism with Superconductivity
	3 Mean-Field Description of the Superconducting State
	4 Effect of Quantum Fluctuations in  : Gaussian Approximation
	4.1 Gaussian Action
	4.2 Correlation Functions: Triplet Sector
	4.2.1 Limiting Case: 

	4.3 Correlation Functions: Singlet Sector
	4.3.1 Limiting Case: 


	5 One-Loop Effective Potential
	6 Collective Modes Within the Mean-Field Solution
	6.1 Gapless Collective Modes
	6.2 Gapped Collective Modes

	7 Modified Saddle Equation
	7.1 Modified Usadel Equation
	7.2 Modified Self-Consistency Equation

	8 Saddle Structure Near 
	9 Discussions and Conclusions
	A One-Loop Effective Action
	B Vertices 
	C Linearized Self-Consistency Equation
	D Relation of  with the Finkel’stein Parameter 
	Acknowledgements 
	References




