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Topological phases induced by charge fluctuations in Majorana wires
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The influence of many-body interactions on topological phases is one of the problems that still remains urgent
in modern condensed-matter theory. In this study we address this issue within perturbative theory framework
by considering topological phase transitions related to charge correlations in the extended Kitaev chain model
that belongs to the BDI symmetry class. Obtained corrections to a zero-frequency quasiparticle Green’s function
allow to separate the mean-field and fluctuation contributions to a total winding number. As a result, the phase
transitions caused solely by the latter are unveiled. We thoroughly analyze the mechanism of such transitions
in terms of fluctuation-induced nodal points and spectrum renormalization. Additionally, features of other
quasiparticle properties such as effective mass and damping are discussed in the context of topological phase
transitions.
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I. INTRODUCTION

In the last decade, hybrid superconducting (SC) nanowires
have been intensively studied. One of the driving forces here
is an idea to utilize these structures as a platform for topo-
logical quantum computations based on the manipulation of
Majorana modes. It was predicted that the nonlocal Majorana
states being a hallmark of topologically nontrivial phase might
emerge in wires with s-wave SC pairing, spin-orbit coupling,
and the Zeeman splitting [1,2]. To detect Majoranas in prac-
tice, a semiconducting InSb or InAs wire is used as a core that
is covered by a parent SC layer, for example, Al. Such a shell
becomes a donor of Cooper pairs in the semiconducting core
inducing superconductivity there due to the proximity effect
[3]. The latter can be also responsible for the Zeeman splitting
if the core is additionally partly coated by a ferromagnetic EuS
layer (see, for example [4–6]). However, an external magnetic
field is an alternative option for this purpose [7–9].

As a result, the electronic subsystem of the hybrid structure
has properties of a spin-polarized superconducting nanowire
(SW) with spin-orbit interaction. From the symmetry point of
view [10–12], the Hamiltonian modeling such a system be-
longs to the BDI class, which makes it possible to implement
Majorana modes and even many pairs of them [13–15]. An
experimental study of such a system led to the discovery of a
stable zero-biased peak, which indirectly indicates the Majo-
rana mode presence. However, the obtained experimental data
are interpreted ambiguously and are the subject of discussions
(see, for example, [16–19]).

There are experimental data indicating that Coulomb in-
teraction in InAs can be controlled by gate electrodes and
becomes significant [20]. In particular, for an ensemble of
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InAs nanowires, the electron transport demonstrated features
which can be described in terms of the Luttinger liquid with
a constant K corresponding to strong electron correlation
regime.

Noticeable progress has been made in the study of charge-
charge interaction in Majorana wires. In specific cases of the
Kitaev model [21] with the local repulsion V , the twofold-
degenerate ground states with opposite parity and many-body
generalization of the Majorana operators were obtained ana-
lytically [22,23]. It was also shown that in some models the
local repulsion itself can be vital for the Majorana modes to
emerge [24,25]. Interestingly, although the interaction sup-
presses the bulk gap in both SW and Kitaev models, the
nontrivial phase can be achieved at the lower Zeeman energies
and wider range of the chemical potential values [26,27].

The latter effect is already seen at the mean-field level
and has rather obvious explanation: the higher the elec-
tron concentration in the system, the stronger the conditions
of topological phase transition are modified (in comparison
with the V = 0 regime). Such an extension of the chemical-
potential range correlates with the broadening of the electron
bands under the strengthening of the local repulsion. In the
strongly correlated regime, the new charge orders (density
waves) in an open wire can occur as was numerically shown
by density-matrix renormalization group [28,29]. In turn, as
we will demonstrate below, charge fluctuations change the
bulk topological invariant near the phase boundaries even
though V is small.

When the many-body effects are important, Bloch wave
functions cannot be used to characterize the spectral and topo-
logical characteristics of the system. A natural solution is to
apply a Green’s function approach [30]. In particular, topolog-
ical invariant can be expressed via the Green’s function matrix
at zero frequency, Ĝk (ω = 0), with the transitions between
phases defined by its zeros and poles [31–37]. Furthermore,
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one can interpret the topological invariant as a winding num-
ber of a complex function around the origin (an analog of the
Anderson pseudovector [38]) which real and imaginary parts
are the off-diagonal and diagonal components of Ĝk (ω = 0),
respectively [29,39].

As demonstrated in recent studies [40,41], it is possible to
decompose the winding number into some bare term corre-
sponding to noninteracting quasiparticles and a part related
to quasiparticle’s hybridization or interactions. Then, one can
observe topological phase transitions governed solely by the
quasiparticle’s interplay. In this work we extract the contribu-
tion to the topological invariant related to the nearest-neighbor
Coulomb repulsion in the extended Kitaev model [42–44] be-
yond the mean-field regime. The corrections to the self-energy
obtained up to the second order in perturbation theory make
it possible to analyze thoroughly the quasiparticle proper-
ties and the mechanism behind the fluctuation-induced phase
transitions.

The paper is organized as follows. In Sec. II the extended
Kitaev model is derived from an SW model in a highly spin-
polarized plus strongly correlated regime and its topological
phases are considered in the mean-field approximation. In
Sec. III we develop the perturbation theory for the Matsub-
ara normal and anomalous Green’s functions up to second
order in the intersite repulsive interaction and describe the
corresponding effects on quasiparticle properties. In Sec. IV
we show that the topological invariant can be represented
as a sum of the mean-field and fluctuation terms. Next, we
elucidate in detail how this residual interaction gives rise to
the topological phase transitions. We end the paper with con-
clusions (Sec. V). Some details of computations are delegated
to the Appendixes. Throughout the paper we use units with
kB = h̄ = 1.

II. MODEL AND MEAN-FIELD TREATMENT

A. Formulation of the model

We write the SW Hamiltonian describing the electronic
system of the hybrid structure in the following form [45,46]:

HW = 1

2

∑
f σ

(ξσ a+
f σ a f σ + Un f σ n f σ̄ − t0a+

f σ a f +1σ

+ αησ a+
f σ a f +1σ̄ + 2�sησ a f σ a f σ̄

+ 2�1sησ (a f σ a f +1σ̄ + a f +1σ a f σ̄ ) + H.c.)

+ V0

∑
f σσ ′

n f σ n f +1,σ ′ . (1)

Here the terms in the first line represent the one-dimensional
(1D) Hubbard model with a hopping amplitude t0/2, a
spin-dependent single-site energy ξσ = −μ0 + ησ h, and a
Hubbard repulsive interaction U . The Zeeman energy re-
lated to the external magnetic field or induced magnetism
from the EuS layer is denoted by h. The second line of the
Hamiltonian contains the terms associated with the spin-orbit
coupling with the magnitude α/2. The proximity-induced s-
wave superconducting pairing has amplitudes �s (the second
line) and �1s (the third line). Note that the induced order
parameter with both onsite and nonlocal components can be

obtained by bringing the semiconducting wire in contact with
extended s-wave superconductors, for example, iron-based
SCs [47–49]. The last term in Eq. (1) describes the intersite V0

Coulomb repulsion of electrons. a f σ (a+
f σ ) is an annihilation

(creation) operator of a fermion at a site f and spin projection
σ = ↑,↓, η↑,↓ = ±1. The electron number operator at the
f th site is n f σ = a+

f σ a f σ . Bearing in mind large g factors in
InAs, InSb (g � 50) [7,50] and, consequently, strong Zeeman
splitting, in the following it is reasonable to assume that
2|h| � |t0|, |α|, |�s|, |�1s|.

We will focus on the regime of low-electron densities and
high-spin polarization motivated by the available experimen-
tal results [6,20]. Hence, let us project the Hamiltonian (1)
onto the spin-polarized lower Hubbard band by an operator

P =
∏

f

(
X 00

f + X ↑↑
f

)
.

The above expression is written using the Hubbard operators
acting on single-site states, X nm

f = | f , n〉〈 f , m|. In our case
there are four states on the site f : a state | f , 0〉 with no elec-
trons, two states | f , σ 〉 describing one electron with the spin
σ , and a state | f , 2〉 with two electrons possessing opposite
spin projections.

The restriction of Hubbard operators to the low-energy
subspace allows to express HW in terms of spinless fermion
operators:

PX 0↑
f P = c f , PX ↑↑

f P = c+
f c f = n f . (2)

As a result, the desired Hamiltonian in terms of the spinless
fermions is given as (see Appendix A)

H =
N∑

f =1

( ε − μ ) n f

− 1

2

N−1∑
f =1

(t1 c+
f c f +1 + �1 c+

f c+
f +1 − V n f n f +1 + H.c.)

+
N−1∑
f =2

( c+
f +1 t̂2 c f −1 + c+

f −1 �̂2 c+
f +1 + H.c.), (3)

where

t̂2 = t2 + F n f , �̂2 = �2 − G n f , (4)

and the amplitudes t2 and �2 describe conventional next-
nearest-neighbor hopping and SC pairing, respectively. The
Hamiltonian (3) is a generalization of the Kitaev chain Hamil-
tonian [1,21]. The parameters of low-energy model (3) depend
on the parameters of the original one (1) [see Eqs. (A12)–
(A15)]. In the regime 1/|μ0| ∼ |1/h| ∼ 1/(U + 2|μ0|) 

max |{t0, α, �s, �1s}| the effective model (3) describes the
low-energy properties of (1) with a good accuracy. However,
in this study we will consider the parameters of (3) as inde-
pendent ones. This is useful since the effective Hamiltonian
similar to (3) can be derived from other microscopic mod-
els such as the XY spin- 1

2 chain with next-nearest-neighbor
frustration [51].

The three-center interactions H3, last line in Eq. (3), with
amplitudes F and G describe charge-correlated hoppings and
SC pairings in the second coordination sphere. The physical
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meaning of these terms is discussed in Appendix A [see
Eq. (A16)]. Note that the effective interactions are weak,
F, G 
 1, and vanish in the absence of Hubbard repulsion,
U = 0. In that follows, we will treat these interactions at the
mean-field level, and the charge fluctuations will be described
only by the term ∼V . Thus, the Hamiltonian studied further
belongs to the BDI symmetry class [52] and is described by
the Z8 topological classification [53].

B. Mean-field approximation

At first let us consider the model (3) in the mean-field
approximation. Using the Hartree-Fock decoupling

c+
n c+

mc f cg →〈c+
n c+

m〉c f cg + 〈c f cg〉c+
n c+

m − 〈c+
n c f 〉c+

mcg

− 〈c+
mcg〉c+

n c f + 〈c+
n cg〉c+

mc f + 〈c+
mc f 〉c+

n cg,

and introducing the Fermi operators in the momentum space

ck = 1

N

∑
f

c f e−ik f , (5)

one can obtain the following mean-field Hamiltonian in k
space from the expression (3) [42–44]:

Hmf =
∑

k

[
ξ̃k c+

k ck +
(

i

2
�̃k c+

k c+
−k − i

2
�̃k c−k ck

)]
,

ξ̃k = −μ̃ − t̃1 cos k − t̃2 cos 2k,

�̃k = �̃1 sin k + �̃2 sin 2k. (6)

Here the renormalized parameters are given as follows:

μ̃ = μ − 2V n − 2F Re(〈c+
f c f +2〉) − 2G Re〈c f c f +2〉,

t̃1 = t1 + 2V 〈c+
f c f +1〉 + 4F 〈c+

f c f +1〉 + 4G Re〈c f c f +1〉,
�̃1 = �1 + 2V 〈c f c f +1〉 − 4F 〈c f c f +1〉 − 4G Re〈c+

f c f +1〉,
t̃2 = t2 − 2F n, �̃2 = �2 − G n, (7)

and depend on a fermion concentration n as well as on normal
and anomalous correlation functions

n = 〈n f 〉 = 1

2
− 1

4π

∫ π

−π

ξk

εk
dk,

Nl = 〈c+
f c f +l〉 = − 1

4π
Re

∫ π

−π

ξk eikl

εk
dk,

Al = 〈c f c f +l〉 = − 1

4π
Im

∫ π

−π

�k eikl

εk
dk. (8)

We emphasize that they should be calculated self-consistently.
The diagonalization of the Hamiltonian can be carried

out using the unitary transformation in the Fock space [54].
Denote by C the Fock space in which the operators ck act.
Consider the unitary rotation to the space A,

U : C → A, U+ : A → C, (9)

in such a way that the Hamiltonian (6) has a diagonal form
in the basis A. For this purpose, we define the annihilation
operators αk in the space A using the relation

αk U | � 〉 = U ck | � 〉, U+ αk | � 〉 = ck U+ | � 〉, (10)

where | � 〉 ∈ C and | � 〉 ∈ A. As a result, it becomes possible
to define the structure of Fock space in A.

We set unitary operators U and U+ as follows:

Ũ =
∏

0�k�π

exp

(
pk

βk

2
(eiφk d+

k d+
−k − e−iφk d−kdk )

)

=
∏

0�k�π

[
1 + pk (eiφk d+

k d+
−k − e−iφk d−kdk ) sin

βk

2

+ (1 − (nk − n−k )2)

(
cos

βk

2
− 1

)]
, (11)

U = Ũ |dk→αk , U+ = Ũ+ |dk→ck , (12)

where nk = d+
k dk , βk, φk ∈ R, and pk = sign(�̃k ). If we

would like to find the result of the action of the operator U
(U+) on the many-body state | � 〉 ∈ C (| � 〉 ∈ A), then we
should act as if the occupation numbers are defined in A (C),
respectively. Using Eqs. (10)–(12) one obtains the Bogoliubov
transformation

αk = U ck U+ = cos
βk

2
ck − eiφk pk sin

βk

2
c+
−k, (13)

ck = U+ αk U = cos
βk

2
αk + eiφk pk sin

βk

2
α+

−k . (14)

Then, substituting Eq. (14) into the Hamiltonian (6), the re-
quirement for its diagonalization reduces to

tan βk = �̃k/ξ̃k, φk = ±π/2. (15)

Due to periodicity of the function tan βk , each value of �̃k/ξ̃k

can correspond to a set of βk values. A natural way to uniquely
determine this angle is to fix

cos βk = ξ̃k

εk
, sin βk = �̃k

εk
, εk =

√
ξ̃ 2

k + �̃2
k . (16)

In this case, the βk angle determines the Berry phase of the
Bloch states of the mean-field Hamiltonian (6). However, for
certain problems, other special choices of βk values that do
not violate Eq. (15) may be useful. In what follows, in order to
construct a perturbation theory with respect to the interaction
parameter V , it will be convenient to modify the definition of
βk in such a way that the unitary operator U does not perform
rotations in the subspaces corresponding to the nodal points
of �̃k:

ck′ → αk′ = ck′ , �̃k′ = 0, βk′ = 0. (17)

Consider the action of unitary operator U on subspace corre-
sponding to the nodal points k′. As can be seen from Eq. (7),
the system has symmetric nodal points k̄ = 0, π , at which
the action of the unitary operator (9) is reduced to the iden-
tity mapping: U = I. Thus, the conditions of Eq. (17) are
performed automatically. However, due to the presence in
the model of the next-nearest-neighbor SC pairing additional
nodal points emerge:

k∗ = arccos

(
− �̃1

2�̃2

)
, if |�̃1| < 2|�̃2|. (18)

For these points k∗ �= −k∗ (mod 2π ) and U �= I. So, to satisfy
the relations (13) and (17) at these points we will use operator
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transformations of the following form:

ck = uk αk − i vk α+
−k, lk = sign(ξ̃k )|sign(�̃k )|+1,

uk =
√

1

2

(
1 + lk

ξ̃k

εk

)
, vk = sign(�̃k )

√
1

2

(
1 − lk

ξ̃k

εk

)
.

(19)

Then the Hamiltonian (6) in the space A takes the form

Hmf = ξ̃0 α+
0 α0 + ξ̃π α+

π απ + ξ̃k∗ (α+
k∗αk∗ + α+

−k∗α−k∗ )

+
∑

k �=0,π,k∗

√
ξ̃ 2

k + �̃2
k α+

k αk + E0, (20)

where the terms for which �̃k = 0 are written in the first line.
The main reason for using transformation (19) instead of

(14) and (16) is that such a choice will allow further study of
only particlelike excitations. If we used transformations (14)
and (16) to diagonalize the Hamiltonian (6), then at the nodal
points k∗ the operators αk∗ would be expressed in terms of the
fermion annihilation operators if ξ̃k∗ > 0 or the hole ones if
ξ̃k∗ < 0:

ck∗ → αk∗ = 1 + sign(ξ̃k∗ )

2
ck∗ + 1 − sign(ξ̃k∗ )

2
c+
−k∗ .

Thus, the quasiparticle Green’s functions (27), studied in the
next section, would describe either particlelike or holelike
excitations (depending on the system parameters), that is in-
convenient.

Knowledge of the Berry phase βk [see Eq. (16)] is useful
for the description of the ground-state (GS) structure and
topological phase. Then, acting by the unitary operator U+
[Eqs. (11) and (12)] on the many-body GS of the Hamiltonian
Hmf, we find that the GS of the system can be one from the
following set:

| �0 〉 =
∏

0�k�π

(
cos

βk

2
+ i p pk

k sin
βk

2
c+

k c+
−k

)
| 0 〉C,

| �1 〉 = c+
0 | �0 〉, | �2 〉 = c+

π | �0 〉, | �3 〉 = c+
π c+

0 | �0 〉,
(21)

where | 0 〉C is the vacuum state in the space C. If one of
the values of ξ̃0, ξ̃π , ξ̃k∗ is negative, then the corresponding
mode will be filled changing the GS [55–57]. The observed
effects of such quantum transitions will be described in the
next section.

The mean-field topological phase diagram can be obtained
by calculating the topological invariant [57–59]

Nmf
BDI = 1

2π

∫ π

−π

ε−2
k (�̃k ∂k ξ̃k − ξ̃k ∂k�̃k )dk

= 1

2π

∮
dβk . (22)

In what follows we will use a notation ∂k f = ḟ . The geo-
metric meaning of the Nmf

BDI is the winding number of the
curve { ξ̃k, �̃k }, k ∈ [−π, π ] around the origin. Physically,
the |Nmf

BDI| determines the number of Majorana mode pairs that
are localized at the edges of the open and long wire. A map of
Nmf

BDI values for various magnitudes of the chemical potential

FIG. 1. The mean-field topological phase diagram of the system.
The values of topological index Nmf

BDI for different parameter ranges
are marked with numbers. When passing through solid black lines,
a topological phase transition occurs. The integers −1, 0, 1, and 2
indicate the topological charge in a given phase. The white dots,
numbered as a, . . . , h, correspond to the parameters for which a
visualization of Nmf

BDI values as the winding number of angle βk =
arctan(�̃k/ξ̃k ) is shown on Fig. 2. The model parameters in the uni-
form case in units of t1 are t2 = −0.8, �2 = 0.6, V = 1.2, F = 0.2,
G = 0.1.

μ and the amplitude of the nearest SC pairings �1 is shown in
Fig. 1. The dots mark the values of the parameters for which
the curves { ξ̃k, �̃k } are plotted in Fig. 2. It can be seen that the
possibility of realizing phases with several pairs of Majorana
modes is related to the existence of nodal points k∗ �= −k∗
(mod 2π ): their implementation leads to the appearance of an
additional loop on the curve { ξ̃k, �̃k }, which, if it encircles
the origin, leads to a change of Nmf

BDI. It can also be seen from
Fig. 2 that the conditions for the phases with different |Nmf

BDI|
are determined by the relations∣∣Nmf

BDI

∣∣ = 0 : sign(ξ̃0) = sign(ξ̃π ) = sign(ξ̃k∗ ),∣∣Nmf
BDI

∣∣ = 1 : sign(ξ̃0) = −sign(ξ̃π ) = ±sign(ξ̃k∗ ),∣∣Nmf
BDI

∣∣ = 2 : sign(ξ̃0) = sign(ξ̃π ) = −sign(ξ̃k∗ ). (23)

Note that, in the first two lines (23), the existence of k∗ is
not necessary, while for the conditions of the third line it
is needed. The boundaries of the topological phases can be
carried out by searching the gapless excitations εk = 0. They
can be obtained from the conditions ξ̃0,π = 0 and ξ̃k∗ = 0:

μ̃1,2 = 2(t̃2 ± t̃1), μ̃∗ = �̃1

�̃2

(
t̃1 − t̃2

�̃1

�̃2

)
. (24)

For V, F, G = 0 these relations explicitly determine the
boundaries of the topological phases. If V, F, G �= 0 the
above relations turn to nonlinear equations against to μ. In
this case, the boundaries of the phases that correspond to
the low filling of electron band (negative and close to zero
values of μ/ t1 in Fig. 1) almost do not move compared to
the case V, F, G = 0. Otherwise, the boundaries significantly
shift towards higher values of μ causing the overall expansion
of the parameter range where the nontrivial phases occur.

As follows from Fig. 2 the realization of quantum phase
transitions is not always accompanied by topological quantum
transitions. The same topological phases can correspond to
different GSs. To clarify this statement let us consider two
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FIG. 2. Quasimomentum dependencies of renormalized parameters ξ̃k and �̃k [see Eq. (7)] for parameters corresponding to the points
a, . . . , h on Fig. 1. Correspondence of color scheme and quasimomentum magnitudes is represented by the gray bar on the right. The origin
of coordinates with values { �̃k, ξ̃k } = { 0, 0 } is marked with a red dot. The distance from the origin to the curve determines the excitation
spectrum of the system εk =

√
ξ̃ 2

k + �̃2
k , while the winding number of the curve around the origin in the clockwise direction determines the

value of the mean-field topological invariant Nmf
BDI. The modes with �̃k = 0 and ξ̃k < 0 are filled in the system GSs. For plots a, . . . , h the

same parameters as in Fig. 1 are used. The points a, . . . , h in Fig. 1 have the following coordinates in variables ( μ/t1, �̃1/t1 ): (−1.3, −1.85),
(−0.1, −0.12), (−1.3, 1.7), (2.3,−1.85), (2.3, −0.12), (2.3, 1.7), (5.5, −1.85), (5.5, −0.12).

pair of points on the topological phase diagram Fig. 1. In the
first case of “c” and “g” points, we have different types of GSs
(with the same fermion parity) as the states with k = 0, π ei-
ther occupied or not. However, the loops in the corresponding
Figs. 2(c) and 2(g) are homeomorphic. In the second case of
“a” and “b” points, the wave-function structure is equivalent
(that is | �0 〉), but the loops in Figs. 2(a) and 2(b) are already
not homeomorphic. Thus, in general situation the topology of
the set of wave functions grouped according to the filling of
symmetric points (k = 0 and π ) is not equivalent to the topol-
ogy of the loops group, or mapping S1 → S1, and the index
Nmf

BDI describing the degree of the last mapping. There is still
isomorphism between the Majorana number M = (−1)Nmf

BDI

and the GS fermion parity [21].

III. INTERACTION EFFECTS BEYOND
THE MEAN-FIELD APPROXIMATION

A. Self-energy corrections

Here we consider the effect of quasiparticle interaction.
For simplicity, we will further assume that the three-center
interactions with amplitudes F and G renormalize the system
parameters only at the mean-field level in accordance with
Eq. (7). To justify this approximation, let us remind that
the three-center interactions arise as effective ones for the
spin-polarized nanowire in the second order of the operator
perturbation theory [see Appendix A and Eqs. (A14) and
(A15)]. At the same time, the effective intersite repulsion of
fermions V [see Eq. (A13)] results from both renormalizations
caused by the virtual transitions to the upper Hubbard subband
and the original intersite Coulomb repulsion V0, which can be
significant in the strongly correlated regime. Taking these two

points into account, let us make the following steps: (i) using
the Fourier (5) and Bogoliubov (19) transforms, we represent
Hamiltonian (3) in terms of the quasiparticle operators αk

and α+
k ; (ii) bring the Hamiltonian to normal ordering; (iii)

neglect the terms which consist of four quasiparticle operators
and proportional to F and G. Then the Hamiltonian can be
divided into two parts, the mean-field term and residual ones
H = Hmf + Hint [60],

Hmf =
∑

k

εk α+
k αk,

Hint = V

N

∑
kpq

[(Ak,p,−q;k+p−q α+
k α+

p α+
−q αk+p−q

+ Bk,p,−q,−k−p+q α+
k α+

p α+
−q α+

−k−p+q + H.c.)

+ Ck,p;q,k+p−q α+
k α+

p αq αk+p−q], (25)

where the amplitudes in Hint have the following structure:

Ak,p,−q;k+p−q = iukv−q{vpvk+p−q[ei(k−q) − e−i(k+p)]

+ upuk+p−q[e−i(p−q) − ei(k−q)]},
Bk,p,−q,−k−p+q = −ukupv−qv−k−p+qe−i(p−q),

Ck,p;q,k+p−q = vkvpvqvk+p−qei(p−q)+ukupuquk+p−qei(q−p)

+ 2ukvpvquk+p−q[cos(k + p) − cos(p− q)].

(26)

From the perturbation theory point of view, the Hint is treated
as an interaction operator leading to fluctuation corrections to
the mean-field approximation.
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Let us introduce the quasiparticle Matsubara Green’s
function

Ĝ (α)
k (τ − τ ′) = −

(
〈 Tτ αk (τ ) α+

k (τ ′) 〉 〈 Tτ αk (τ ) α−k (τ ′) 〉
〈 Tτ α+

−k (τ ) α+
k (τ ′) 〉 〈 Tτ α+

−k (τ ) α−k (τ ′) 〉

)

= T
∑

ω

e−i(τ−τ ′ )ω Ĝ (α)
k (iω),

Ĝ (α)
k (iω) = [

ĝ−1
k (iω) − �̂k (iω)

]−1
, (27)

where ĝk (iω) = iω τ0 − εk τz is bare propagator of the sys-
tem depending on nth Matsubara frequency ω = (2n + 1)πT .
Hereinafter τ0,x,y,z denote standard Pauli matrices. By defini-
tion, the elements of the Fourier transformed matrix are[

Ĝ (α)
k (iω)

]
2,2 = −[

Ĝ (α)
−k (−iω)

]∗
1,1

,[
Ĝ (α)

k (iω)
]

1,2 = −[
Ĝ (α)

−k (−iω)
]∗

2,1
. (28)

The nonzero anomalous components of Ĝk (iω) and the self-
energy �̂k (iω) arise from the presence of the anomalous terms
with the amplitudes Ak,p,−q;k+p−q and Bk,p,−q,−k−p+q in Hint.
However, such anomalous quasiparticle Green’s functions
have lower order compared to the ones built on the original
fermion operators ck . This feature will be used below when
calculating the quasiparticle spectrum.

In general, the diagrammatic series generated by Hint

[Eq. (25)] involve three types of vertices obtained by sym-
metrizing the interaction amplitudes with respect to the
quasimomenta [61]

�A
k;p,−q,k−p+q =

∑
P3

(−1)P3 Ak;P3{p,−q,k−p+q},

�B
k,p,q,−k−p−q =

∑
P4

(−1)P4 BP4{k,p,q,−k−p−q},

�C
k,p;q,k+p−q =

∑
P2, P′

2

(−1)P2+P′
2 CP2{k, p}P′

2{q, k+p−q}. (29)

In the above expressions all possible permutations in a set of
two, three, and four quasimomenta, {k, p} ({q, k + p − q}),
{p,−q, k − p + q}, and {k, p, q,−k − p − q}, are denoted by
P2 (P′

2), P3, and P4, respectively. In turn, (−1)P2,3,4 provides the
parity of such permutations. The quasimomentum variables
under symmetrization should correspond to propagators that
have the same direction with respect to the vertices, i.e., either
entering or leaving them (see Fig. 3).

Expanding the scattering matrix up to the second order in
Hint and averaging according to Wick’s theorem, we obtain
15 irreducible diagrams describing the corrections for the
normal and anomalous Green’s functions. The explicit form of
such diagrams and analytical expressions for the self-energies
are given in Appendix B. The diagrams can be divided into
four classes as it is depicted in Fig. 4. Then, the corre-
sponding analytical expressions for the self-energies of each
class are

�
(1)
(i) = −V

N

∑
p

�μ fp, (30)

FIG. 3. Various types of vertices and propagators that ap-
pear when calculating self-energy corrections (see Fig. 4 and
Appendix B).

�
(2)
(ii) =

(
V

N

)2 ∑
pq

�μ �ν

2εp
(2 fp − 1) fq, (31)

�
(2)
(iii) =

(
V

N

)2
⎛
⎝∑

p

�ν∂ω f |ω=εp

⎞
⎠(�μ fq), (32)

�
(2)
(iv) = Cμν

(
V

N

)2 ∑
pq

s s′ s′′ �μ �ν

iω − s′εp − s′′εq − sεsr

× [ fs′ p fs′′q fsr + (1 − fs′ p)(1 − fs′′q)(1 − fsr )], (33)

where μ, ν = A, B, C; s, s′, s′′ = ±1; sr = sk − s′ p − s′′q;
fs′ p ≡ f (s′εp) stands for the Fermi-Dirac distribution func-
tion. Cμν are coefficients depending on the types of vertices in
the diagram (see Appendix B for details). The explicit depen-
dencies of �μ on the k, p, and q are skipped but can be easily
restored. It is important to note that in the above expressions,

FIG. 4. Four classes of irreducible diagrams providing the first-
and second-order corrections to the self-energy. Variables s, s′, s′′ =
±1 in the circles on the propagator lines determine the direction of
their arrows. If s, s′, s′′ = 1 (s, s′, s′′ = −1), then the circles have
to be replaced by arrows directed from �μ to �ν (from �ν to �μ)
vertices.
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the excitation energies at the nodal points coincide with ξ̃p,

εp =
{√

ξ̃ 2
p + �̃2

p > 0, �̃p �= 0

ξ̃p, �̃p = 0
(34)

and can be negative. At low temperatures we can
assume∂ω f (ω)|ω=εp ∼ δ(εp). The case of εp = 0 corresponds
to the bulk gap closing and is beyond the scope of our study.
Hence, in what follows we will set∂ω f (ω)|ω=εp = 0.

In order to compare the contributions from different types
of diagrams [Eqs. (30)–(33)], let us denote by � the char-
acteristic value of the vertices �ν , explicit expressions for
which are given in Eqs. (B1)–(B4). By definition given in
Appendix B, � < 1 for majority points of the Brillouin zone
(for which �̃k �= 0). Hence, performing the perturbation ex-
pansion with V < 1, we have V � < 1.

The first-order normal (with the vertex index ν = C) term
�

(1)
(i) does not depend on frequency and can lead to a shift

of the excitation spectrum. However, due to the presence of
the Fermi functions, such corrections can contribute to the
self-energy at low temperatures only if �̃p = 0. Since the
number of such points ∼1, it can be seen from Eq. (30) that
�

(1)
(i) ∼ V/N .

The second-order corrections �
(2)
(iv) ∼ (V �)2 depend on the

external Matsubara frequency and contribute in both spectrum
renormalization and damping. In what follows, we will inves-
tigate chains of finite length, large enough for the formation
of the Majorana zero modes, N ∼ 100. In this case the spec-
trum shifts, δε(1,2), found numerically from the terms �

(1)
(i)

and �
(2)
(iv), respectively, can be of the same order. Comparison

of such self-energy corrections shows that in the mentioned
parameter window 1/N ∼ V �2. Thus, in what follows we
consider both contributions.

Corrections to the self-energy of the second type �
(2)
(ii) also

contribute at the nodal points of the SC order parameter only.
Therefore, they can be estimated as �

(2)
(ii) ∼ V 2� / N ∼ (V �)3

that is beyond the accuracy of our consideration. Similarly, the
contributions from the type (iii) diagrams are also negligible
due to the factor ∂ω f (ω)|ω=εp . Thus, only the corrections (30)
and (33), which actually have the same (second) order of
smallness, will be relevant for our further consideration.

Since the renormalized excitation spectrum ε̄k can be de-
termined from the equation

det
[
ĝ−1

k (iω) − �̂k (iω)
] = 0, (35)

it is obvious that the anomalous (off-diagonal) elements of the
self-energy matrix result in the negligible fourth-order contri-
butions. Then, to obtain ε̄k , it is sufficient to consider only
the normal electronlike matrix element due to the symmetry
properties of Ĝ (α)

k (τ − τ ′) [see Eq. (28)]:

[
Ĝ (α)

k (iω)
]

1,1 = 1

iω − εk − �k (iω)
, (36)

where [�̂k (iω)]1,1 = �k (iω). According to the above argu-
ments, the actual self-energy �k (iω) has the following form:

�k ( iω ) = �
n(1)
k +

4∑
j=1

�
n(2)
k; j (iω), (37)

where the explicit expressions of the right-side terms are given
in Appendix B.

B. Modification of the excitation spectrum

The first-order perturbation correction has only real part
that is nonzero exceptionally in the nodal points with the
negative excitation energy,

�
n(1)
k = δε

(1)
k

= − 2
V

N

ξ̃k

εk

{
(1 − cos k) f (ξ̃0) + (1 + cos k) f (ξ̃π )

+ 2

(
1 + �̃1

2�̃2
cos k

)
f (ξ̃k∗ )

}
. (38)

Such corrections lead to the fluctuation shift in the single-
particle excitation energy δε(1). The physical reason for this
shift is as follows: when nodal modes with negative energies
ξ̃0, ξ̃π , and ξ̃k∗ appear the fermions that fill such modes emerge
in the many-body GS of the system. These added fermions
renormalize the many-body spectrum due to the Coulomb in-
teraction. Accordingly, the single-particle excitation spectrum
is modified as well. This effect should be enhanced under the
V increase and vanish at N → ∞, when the partial weights of
single fermions in the many-body spectrum vanish.

Thus, the excitation spectrum is renormalized due to the
coexistence of the Coulomb interaction, finite-size effects, and
nodal points,

εk → ε̄k = εk + �
n(1)
k . (39)

As shown in Sec. II, quantum transitions with the filling of
the nodal modes do not necessarily cause topological phase
change. However, their experimental identification can be a
precursor of the latter.

The spectrum ε̄k has extrema at the points k̄ = 0, π with
an effective mass

mk̄ = sign(ξ̃k̄ )

[
¨̃ξk̄ + 1

ξ̃k̄

( ˙̃�k̄ )2

]−1

. (40)

In turn, its change caused by the many-body effects at these
points has the form

δm(1)
k̄

= −V

N

[
[(1 − Lk̄ ) cos k̄ + Lk̄] f (ε0)

− [(1 − Lk̄ ) cos k̄ − Lk̄] f (επ )

−
(

�̃1

�̃2
(1 − Lk̄ ) cos k̄ − 2Lk̄

)
f (εk∗ )

]−1

, (41)

where Lk̄ = ˙̃�k̄ / ξ̃k̄ .
It can be seen from Eq. (41) that the filling of each nodal

mode with k = 0, π, k∗ leads to a unique change in the
effective mass at k̄. Based on the expression (41), one can dis-
tinguish between different topological phases. For example, in
the limit of weak superconductivity, |�̃1,2| 
 |t̃1,2|, Lk̄ 
 1,
and |�̃1| > 2|�̃2| (i.e., k∗ does not exist), in the topologically
trivial phases with the GSs | �0 〉 or | �3 〉 the effective mass
change at k̄ is absent δm(1)

k̄
≈ 0. For the nontrivial phase
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FIG. 5. (k, μ) maps of the damping parameter γk and mean-field spectrum εk at �1 = 0.5 (a), (b); (μ, �1) map of the damping parameter
minimum with the quasimomentum k̃ (|γk̃ | maximum) (c); (μ, �1) map of the quasimomentum k̃ (d). Parameters: t1 = 1, �1 = 0.626,
t2 = �2 = 0, V = 0.3, F = G = 0, N = 100.

with the GSs | �1,2 〉 = c+
0,π | �0 〉, the mass modification is

δm(1)
k̄

≈ ∓(V/N ) cos k̄.
According to (37), the spectrum changes in the second-

order perturbation theory are given by the four self-energy
terms. Taking into account their analytical form (B6) and
making analytic continuation from iω to ω + i0+ it becomes
obvious that for ω > 0 the main contribution is determined by
�

n(2)
1 . Its real and imaginary parts can be obtained using the

Kramers-Kronig relations

Im�
n(2)
1 (k, ω) = − V 2

24π

∫ π

−π

dp
Nq∑
i=1

∣∣�A
k;p,−q0i,k−p+q0i

∣∣2

|ε′
q0i

+ ε′
k−p+q0i

| F1,

Re�n(2)
1 (k, ω) = 1

π
p.v.

∫ ∞

−∞

Im�
n(2)
1 (k, ω′) d ω′

ω − ω′ . (42)

The quasimomenta q0 are the roots of the equation

εp + εq0 + εk−p+q0 − ω = 0. (43)

It is seen from Eqs. (42) and (43) that Im�
n(2)
1 (k, ω = 0) = 0

due to the gapped bulk spectrum.
In order to calculate the quasiparticle shift δεk and damping

γk parameters in the second-order perturbation theory, let us
denote the denominator of the Green’s function by

D(ω) = ω − εk − �k (ω). (44)

If damping γ is small, the following expansion is valid:

D(ω + iγ ) ≈ D(ω) + i
∂ D

∂ ω
γ = ReD − ∂ ImD

∂ ω
γ

+ i

(
ImD + ∂ ReD

∂ ω
γ

)
= 0. (45)

Then, assuming that (∂ ImD/∂ω) γ ∼ γ 2, the expressions for
the attenuation and shift of the spectrum are as follows:

γk = −ImD

∂ ReD/∂ω

∣∣∣∣
ω=ωk

,

δεk = ωk − εk = Re�k (ωk ). (46)

Thus, δεk and γk are proportional to the real and imaginary
parts of the self-energy at the frequency ωk , at which the real
part of the Green’s function denominator is zero, respectively.
Numerical study of the dependencies of δεk and γk on the

model parameters showed that their behavior is similar and
further in this section we will discuss only γk .

The search for quasiparticles with finite lifetime (nonzero
damping) should meet the condition of Eq. (43) with the
frequency

ω ≈ max(εk ) > 3 min(εk ). (47)

Thus, the most significant renormalizations are achieved
around the boundaries of topological phases, where
min(εk ) 
 1, and for quasimomenta near the maximum
of spectrum.

In Figs. 5(a) and 5(b) the dependencies of γk and εk on μ

and k are shown for the original Kitaev model, t2 = �2=0,
at V = 0.3 (hereinafter all energy quantities are measured in
t1 units). The topological transitions for such parameters are
at μ ≈ −1 and μ ≈ 1.5. It can be seen that the maximum
damping |γk| is near k = π at μ ≈ −1 as well as near k = 0
at μ ≈ 1.5. Comparing Figs. 5(a) and 5(b) one can observe
that highest values of |γk| and εk occur at the close parametric
regions [see the dark areas in Figs. 5(a) and 5(b)].

Next, we denote the quasimomenta corresponding to the
maximum attenuation as k̃, i.e., |γk=k̃| = max(|γk|). As a
function of μ and �1, in the nontrivial phase, the high-
est values of |γk̃| are localized close to the boundary [see
Fig. 5(c)]. They penetrate deeper inside the topological region
at �1 
 1. The (μ, �1) map of k̃ plotted in Fig. 5(d) displays
that below (above) half-filling these quasimomenta are mainly
near k ≈ π (k ≈ 0).

If we analyze the quasimomenta k0 corresponding to the
minima of the mean-field spectrum that, in the trivial phases,
k0 = 0 at μ < −1 and k0 = π at μ > 1.5 as it is shown at the
(μ, �1) map in Fig. 6(b). In the nontrivial phase, the picture
is richer. At small �1, one can observe a smooth change of k0.
The mentioned features are additionally depicted in Fig. 5(b)
for a particular value of �1. In Fig. 6(a) the dependence
of the damping at k0 on μ and �1 is plotted. It is nonzero
[|γk0 | 
 |γk̃| yet, compare Figs. 6(a) and 5(c) in the nontrivial
phase and increases while the chemical potential approaches
the half-filling value, μ = V , and the SC pairing amplitude de-
creases (see domelike pattern). In Sec. IV B we will show that
similar conditions, i.e., �1 
 1, μ ≈ V , V < 1, are favorable
for the charge-fluctuation-induced topological phase. Thus,
the lifetime of low-energy quasiparticles in this topological
phase is by several orders of magnitude less than the lifetime
of the corresponding excitations in the trivial phase as well
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FIG. 6. (μ, �1) maps of the damping parameter γk0 at the wave
vector k0 where the mean-field spectrum has minimum (a) and k0

values themselves (b). Parameters are identical to the ones of Fig. 5.

as in the topological mean-field phase that is far from the
fluctuation topological transition in the parametric space.

C. Interaction-induced anomalous pairing

While calculating the excitation spectrum, we neglected
the anomalous self-energy components. However, the knowl-
edge of [ �̂k (iω = 0) ]1,2 is necessary when calculating the
topological invariant. It is useful to consider the first-order
anomalous corrections to bring out some important features
of such dependencies:

�̂
(1)
k = V

N

∑
p

fp
(
�C

kp; pk τz + i �A
k,p,−k; p τy

)
,

δ(1)Ĝ (α)
k (iω) = ĝk (iω) · �̂

(1)
k · ĝk (iω), (48)

where analytical expressions for vertices �C
kp; pk ∈ R and

�A
k,p,−k; p ∈ iR are given in Appendix B. We emphasize that in

Eq. (48) the matrix Ĝ (α)
k describes the perturbative corrections

to the Green’s function built on quasiparticle operators αk [see
Eq. (27)].

Summation over the Matsubara frequencies yields the
sought first-order fluctuation corrections to the anomalous
pairing amplitude,

δ�
(1)
k = T

∑
ω

eiω0+ [
δ(1)Ĝ (α)

k (iω)
](1)

1,2

= i
V

N

1

ε2
k

∑
p

[ ξ̃p �̃k[1 − cos(k − p)]

− ξ̃k �̃p cos(k − p)]
f (εp)

εp
. (49)

Note that, by analogy with the energy shift discussed in
Sec. III B, the presence of nodal points of �̃k leads to the
nonzero δ�

(1)
k ∼ V / N in the finite-size chains.

Let us focus on the k dependence of δ�
(1)
k in the case of

the Kitaev chain, for which

ξ̃k = −μ̃ − t̃1 cos k, �̃k = �̃1 sin k. (50)

In this case, the antisymmetric dependence of δ�
(1)
k on k is

formed by two harmonics:

δ�
(1)
k ∼ a1 sin k + a2 sin 2k.

So, one can conclude that the interaction effects induce the
additional harmonic in p-wave superconductivity. In turn, the

new harmonic can provide additional nodal points of SC order
parameter. As shown in Sec. IV B and Appendix C, the similar
nodal points, induced by charge fluctuations, occur in the
second-order perturbation theory as well. Moreover, Sec. IV B
and Appendix C show that these nodal points lie nearby the
extreme points of the mean-field spectrum,

k0 = arccos

(
−μ̃ / t̃1

1 − (
�̃1 / t̃1

)2

)
: ε̇ |k=k0

= 0. (51)

The noted features underlie the mechanism of the fluctuation
topological transitions according to the scenario similar to that
discussed in Sec. II B.

IV. TOPOLOGICAL PHASE TRANSITIONS

A. Fluctuation contribution to winding number

To calculate the fluctuation contributions to the topological
invariant, we use the well-known expression in terms of the
Green’s functions [31,33,62]

NBDI = 1

4π i

∫ ∞

0
dω

∫ π

−π

Tr
[
τx ∂kĜ (c)

k ∂ω

(
Ĝ (c)

k

)−1

− τx ∂ω Ĝ (c)
k ∂k

(
Ĝ (c)

k

)−1]
dk. (52)

Here Ĝ (c)
k (iω) is the matrix Green’s function built on the bare

operators ck:

Ĝ (c)
k (τ − τ ′) = −

(〈 Tτ ck (τ ) c+
k (τ ′) 〉 〈 Tτ ck (τ ) c−k (τ ′) 〉

〈 Tτ c+
−k (τ ) c+

k (τ ′) 〉 〈 Tτ c+
−k (τ ) c−k (τ ′) 〉

)

= T
∑

ω

e−i(τ−τ ′ )ω Ĝ (c)
k (iω). (53)

It can be obtained by the SU(2) rotation of the matrix Ĝ (α)
k (iω)

that is valid for the arbitrary n-order correction

Ĝ (c)
k = Um f Ĝ (α)

k U +
m f ; Um f =

(
uk −ivk

−ivk uk

)
. (54)

Note that, when calculating the topological invariant, we
put lk ≡ 1 in Eq. (19) and the Green’s functions Ĝ (c)

k in
Eq. (52) depend on the real frequency iω → ω ∈ R. Using
its asymptotic behavior

Ĝ (c)
k (ω)|ω→∞ → ( 1 /ω )τ0,

that does not depend on the quasimomentum, the expression
for the topological invariant can be rewritten as

NBDI = 1

4π i

∫ π

−π

dk Tr
(
τx Ĝ (c)

k · ∂k
(
Ĝ (c)

k

)−1)∣∣
ω=0. (55)

This expression involves the matrix Green’s functions at zero
frequency Ĝ (c)

k (ω = 0). Let us transfer to a basis in which such
a matrix is diagonal. It can be seen from Eqs. (54) and (55) that
for this goal it is sufficient to diagonalize the matrix

[
Ĝ (α)

k (ω = 0)
]−1 =

(
Xk iYk

−iYk −Xk

)
, (56)

where

Xk = −εk − [ �̂k (ω = 0)]1,1, Yk = i[ �̂k (ω = 0)]1,2, (57)
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and Xk = X−k , Yk = −Y−k , with Xk, Yk ∈ R. The latter can be
diagonalized by the unitary rotation

U +
f l Ĝ

(α)
k (ω = 0)Uf l = λkτz, Uf l = xkτ0 − iykτx,

xk =
√

1

2

(
1 + Xk

Rk

)
,

yk = sign(Yk )

√
1

2

(
1 − Xk

Rk

)
,

Rk =
√

X 2
k + Y 2

k . (58)

Then, by combining Eqs. (53)–(58) it is easy to get an expres-
sion for the topological invariant

NBDI = 1

2π i

∫ π

−π

Trτx(U +
mf ∂kUmf + U +

f l ∂kUfl) dk

= 1

2π

∮
( dβk + dβ̄k ) ≡ Nmf

BDI + Nfl
BDI, (59)

where the angle βk is defined in Eq. (16), and the angle β̄k is
defined similarly,

β̄k = arctan

(
Yk

Xk

)
, cos

β̄k

2
= xk, sin

β̄k

2
= yk . (60)

Thus, contribution to the winding number due to the Coulomb
fluctuations can be written by analogy with the mean-field
term Nmf

BDI (22) as follows:

Nfl
BDI = 1

2π

∫ π

−π

XkẎk − YkẊk

X 2
k + Y 2

k

dk. (61)

As it will be discussed below, such contributions can signifi-
cantly modify the topological phase diagram.

B. Fluctuation topological phase transitions

Let us consider the mechanism of the topological phase
transitions conditioned by the charge fluctuations using again
the standard Kitaev model as an example (t2,�2, F, G = 0).
For this case, the NBDI map in variables (μ, �1) obtained
taking into account the perturbation theory corrections up
to the second order in interaction is shown in Fig. 7(a) for
V = 0.8. The mean-field term Nmf

BDI in Eq. (59) possesses
the following values: Nmf

BDI = −1 if { −1 � μ � 2.5, �1 >

0 } ; Nmf
BDI = 1 if { −1 � μ � 2.5, �1 < 0 } ; NBDI = 0 else.

The deviation from these values in Fig. 7(a) is due to the
fluctuation contribution Nfl

BDI.
It can be seen that, for example, if 0 < �1 
 1 and inside

the mean-field nontrivial phases, the fluctuation loop with
coordinates Xk, Yk can wrap the origin. Hence, they are able
to give the contribution to the total winding number that is
additional to the mean-field locus with coordinates ξ̃k, �̃k .
To analyze the causes and conditions of this effect, we focus
on the three points on the topological diagram [circles in
Fig. 7(a)] with parameters: � = 0.1; μ = −1.5, −0.5, 1. For
such points, the plots are presented in the left, central, and
right columns in Fig. 8, respectively. The graphs demonstrate
the mean-field and fluctuation loops (gray and colored curves
in the first line); the mean-field and renormalized excitation
spectra (blue and red curves in the second line); the spectrum

FIG. 7. (Upper panel) (μ, �1) map of the topological invariant
NBDI [Eq. (59)]. The fluctuation contributions, Eq. (61) for V = 0.8t1

are taken into account. Pockets of height δ1, located near the line
�1 = 0 and inside the nontrivial phases, are caused precisely by such
contributions. Dots, asterisk, and dashed line indicate the parameters
for which Figs. 8, 15, and 9 are plotted, respectively. (Bottom panel)
V dependence of the dome height δ1 which is described by the
dependence δ1 ≈ 0.5(V / t1)2. The dashed part of the curve is an
anticipated behavior where the interaction parameter is beyond the
formal limitation of perturbation theory, V / t1 > 1

2 , but the actual pa-
rameter V � / t1, arising in the diagrammatic expansion with � < 1,
can be less than 1

2 yet [see Eqs. (30)–(33) and the discussion below].

shift and static part of quasiparticle anomalous pairings (blue
and red curves in the third line).

When �1 = 0.1, μ = −1.5 [the left point in Figs. 7(a) and
8(a)–8(c), the mean-field and fluctuation loops give trivial
winding numbers Nmf

BDI = Nfl
BDI = 0. The loops intersect the

lines �̃k = 0 and Yk = 0 at the symmetrical nodal points
k = 0, π . The minimum distance from the loops to the origin
is determined by the minima of the mean-field εk and renor-
malized ε̄k spectra, respectively, presented in Fig. 8(b). With
the parameters under consideration, such spectra are almost
indistinguishable and have the minimum at k = 0. Therefore,
the distance from the mean-field loop to the origin is positive
and equal to ξ̃0, while the distance from the fluctuation loop
to the origin is negative X0

∼= −(ξ̃0 + δε0). The different signs
can be explained simply by the definition of Xk [see Eq. (57)].

The shape of the mean-field loop is ellipsoidal. In turn, the
fluctuation loop is more complex. This is due to the fact that
the mean-field loop is described by the single k harmonic [see
Eq. (50)]. In opposite, the fluctuation loop is determined by
the several ones. The similar effect was obtained in Sec. III C
for the first-order corrections to the anomalous self-energy
[see Eq. (49) and the discussion below]. Despite the oscil-
lating behavior Yk , the Yk vs k dependence shows that this
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FIG. 8. Mechanism of topological phase transition caused by charge fluctuations. First line: �̃k vs ξ̃k (gray) and Xk vs Yk (color)
dependencies forming the mean-field and fluctuation loops which winding numbers determine Nmf

BDI and Nfl
BDI, respectively [see Eq. (59)].

The points k = −π and k = π correspond to the black and white (blue and red) colors on the mean-field (fluctuation) loop, respectively. To
make loops of the similar size, a scaling factor β is used. Second line: quasimomentum dependencies of the mean-field, εk (blue lines), and
fluctuation-renormalized, ε̄k = εk + δεk (red lines), quasiparticle spectra. The insets are zoom-ins the vicinity of the spectral minima. Third
line: quasimomentum dependencies of the fluctuation-induced spectrum shift δεk as well as the scaled static part of the anomalous pairing
amplitude Yk . The inset is zoom-in the Brillouin zone interval where Yk is almost zero. The first, second, and third columns of the plots
correspond to three points in Fig. 7(a) with parameters t1 = 1, V = 0.8; �1 = 0.1; μ = −1.5, −0.5, 1, respectively. All energy variables are
in units of t1.

quantity is equal to zero only at the symmetric nodal points
k = 0, π . Finally, the spectrum shift δεk shown in Fig. 8(c) is
much less than the gap and dispersion width of the mean-field
spectrum (see also the inset).

Next, at the central point in Fig. 7(a), the mean-field loop
covers the origin and Nmf

BDI = −1 [see Fig. 8(d)]. Although
Nfl

BDI = 0, the fluctuation loop contains an important new fea-
ture. In addition to the symmetric nodal points k = 0, π , it
intersects the Yk = 0 line at k = ±k(2)

∗ . The latter is clearly
seen in Fig. 8(f) as well where the Yk vs k dependence is
displayed. Essentially, the appearance of k(2)

∗ is accompanied
by the occurrence of new minimum points k0 of the mean-
field spectrum and k(2)

∗ ∼= k0 [cf. Figs. 8(f) and 8(e)]. The last
feature was already observed for the first-order corrections
in Sec. III C and is quite general. Its justification is given in
Appendix C. The spectrum-shift magnitude |δεk| presented
in Fig. 8(f) significantly increases in comparison with the
trivial phase in Fig. 8(c). Moreover, this correction becomes
comparable to the excitation energy at minimum points εk0 =
( ξ̃ 2

k0
+ �̃2

k0
)1/2. As a result, the renormalized spectrum ε̄k =

εk + δεk approaches zero: min(ε̄k ) ∼= 0 [see inset in Fig. 8(e)].

Note that in the presented case min(ε̄k ) > 0 yet. Therefore, the
fluctuation loop still does not wrap the origin and Nfl

BDI = 0.
Finally, we consider the right point in Fig. 7(a) with �1 =

0.1, μ = 1 represented by the plots in Figs. 8(g)–8(i). Their
main features are the same as in Figs. 8(d)–8(f) with the im-
portant difference that min(ε̄k ) < 0. It compels the fluctuation
loop to wind two times around the origin in Fig. 8(g) leading
to Nfl

BDI = 2. Thus, the total invariant NBDI = Nmf
BDI + Nfl

BDI =
1 at �1 = 0.2 and μ = 1.

Note that the occurrence of fluctuation topological tran-
sitions (FTT) accompanied by the Nfl

BDI change can be
effectively interpreted as the filling of the “nodal modes” with
k = k(2)

∗ and Yk(2)
∗ = 0. Then, we can formulate the following

self-consistent mechanism of the phase transitions caused by
the fluctuations: the mean-field spectrum minima εk0 
 1 in-
duce nodal points k(2)

∗ of the fluctuation “order parameter”
Yk near k0. In this situation, due to the Kramers-Kronig re-
lations (42), the nonzero negative shift δεk < 0 appears. If it
is enough to close and reopen the gap of the renormalized
spectrum ε̄k = εk + δεk or, in other words, to fill effective
the modes with k = k(2)

∗ , the fluctuating transitions occur.
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FIG. 9. Chemical-potential dependencies of topological invariant NBDI [see Eq. (59)] (a); mean-field εk0 and renormalized εk0 + δεk0 spectra
(b); damping parameter γk0 and spectrum shift δεk0 (c) at the quasimomentum k0 where the mean-field spectrum has minimum. Parameters,
t1 = 1, �1 = 0.1, V = 0.8, t2, �2, F, G = 0, correspond to the dashed line in Fig. 7(a). All energy variables are in units of t1.

Mathematically, to implement the FTT, one should satisfy the
following conditions:∣∣ δεk(2)

∗

∣∣〉εk(2)
∗ , k(2)

∗ ∼= k0, ε̇ |k=k0
= 0. (62)

Since the behavior of the spectrum shift δεk and damping
parameter γk is similar, the FTT emergence, in principle, im-
plies the finite lifetime of the low-energy excitations. Indeed,
the ( μ, �1 ) maps of γk0 and NBDI displayed in Figs. 6(a) and
7(a), respectively, demonstrate qualitatively similar domelike
patterns (or pockets) near the �1 = 0 line where the FTT
conditions are met. This situation is also clearly seen in
Fig. 9(c) where both the μ dependencies of the damping
parameter γk0 and spectrum shift δεk0 at the quasimomentum
k0 of the mean-field-spectrum minimum are provided. For the
chosen �1, the damping and shift are nonzero throughout
the nontrivial phase with NBDI �= 0 shown in Fig. 9(a), i.e.,
at −1 < μ < 2.5. However, the rich maximum amplitudes at
the center of the fluctuation-caused topological phase whose
boundaries are determined by the zeros of the renormalized
spectrum at k0 [see red curve in Fig. 9(b)]. However, it is
worthwhile to emphasize that the presence of damping does
not affect the magnitude of NBDI since the latter is determined
by the Green’s function at zero frequency.

The maxima of |γk0 | and |δεk0 | correspond to the half-
filling regime μ = V and μ̃ = 0. Then, the value of �1, at
which Nfl

BDI changes [i.e., the dome height δ1 in Fig. 7(a)],
can be approximately found from the equation | δεk0 | = εk0 .
Numerical calculation of δ1 in Fig. 7(b) shows that its depen-
dence on the interaction V is δ1(V ) ≈ V 2 / 2, for V < 1, as
expected in the developed second-order perturbation theory.
It is necessary to stress that the formal limitation of the theory
is V < 1

2 [see Eq. (3) and a solid part of the δ1(V ) curve
in Fig. 7(b)]. However, as it was already mentioned, due to
the vertex renormalizations, the radius of perturbation theory
convergence can extend beyond the region in which the V
value is small [63]. Hence, we expect qualitative correctness
of the obtained results at V ≈ 1 [see a dashed part of the δ1(V )
curve in Fig. 7(b)]. Note that the actual applicability limits of
the developed theory are a subject of further study.

Backed by numerical data, in the presence of the next-
nearest-neighbor hopping and SC pairing the above-described
FTT features are preserved: the parametric regions of fluc-
tuation transitions lie near some mean-field topological
boundaries if V 
 t1 and can deviate from them significantly
if V ∼ t1 [see Figs. 7(a) and 10].

Now we return to the extended Kitaev chain model. One
of the consequences the fluctuation-induced nodal points give

rise to is the appearance of the nontrivial phases with |NBDI| >

1 if t2 �= 0, �2 = 0. Since the condition (18) is not met, these
phases cannot exist within the mean-field framework. How-
ever, taking into account the fluctuation effects makes their
realization possible. It is easy to see this striking difference
by comparing the topological phase diagrams in Figs. 10(a)
and 10(b) where Nmf

BDI and NBDI are displayed, respectively.
Next, in a general case of both t2 �= 0 and �2 �= 0, it is
natural to expect an even richer picture of the topological
phase transitions due to an interplay between the native and
fluctuation-induced nonsymmetrical nodal points k∗ and k(2)

∗ .
For example, in Fig. 10(c) we show the modification of the
mean-field phase diagram depicted in Fig. 1. In the parametric
range of the initially nontrivial phase where Nmf

BDI = 2, one can
observe a cascade of topological transitions. In particular, the
charge fluctuations result in new phases with NBDI = 4 and
NBDI = 0 since k∗, k(2)

∗ are close to each other here.

V. CONCLUSIONS

In this paper we have developed the theory of fluctuation
topological transitions in Majorana nanowires of the BDI
class with Coulomb interaction. In particular, the extended Ki-
taev chain model with longer-range hopping and SC pairing,
as well as Coulomb repulsion between neighboring fermions
of the strength V was considered. It was demonstrated that the
topological invariant NBDI, built on the Green’s functions, for
such a system decomposes into the sum of the mean-field and
fluctuation contributions: NBDI = Nmf

BDI + Nfl
BDI. The existence

of the latter is due to residual interaction between the Bogoli-
ubov quasiparticles beyond the mean-field treatment. In the
second order of perturbation theory in V , corrections to the
Matsubara quasiparticle Green’s function were calculated in
the Gorkov-Nambu formalism. It turned out that the fluctua-
tions lead to the nonzero Nfl

BDI values only near the lines in
parametric space where Nmf

BDI changes. The maximum width
of the fluctuation-modified topological diagram regions near
these lines scales as ∼V 2.

The FTT physics is closely related to the properties of
the anomalous Green’s function at zero frequency, Yk . Its
quasimomentum dependence is determined by several Fourier
harmonics. Therefore, in addition to the symmetrical nodal
points k = 0, π , native to the system, the function Yk has
additional ones, k(2)

∗ . It is important that some of them appear
near the minima of the mean-field spectrum εk . On the other
hand, in such k(2)

∗ the spectral shift is negative, δεk(2)
∗ < 0. If

it is sufficient to close the gap [see Eq. (62)], then the nodal
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FIG. 10. Effect of charge fluctuations on topological phase diagram of the generalized Kitaev chain. (μ, �1) maps of the mean-field Nmf
BDI

(a) and total NBDI = Nmf
BDI + Nfl

BDI (b) invariants. In both cases t1 = 1, t2 = −0.8, �2 = 0, V = 1.2, �2 = F = G = 0. (c) (μ, �1) map of NBDI

for the parameters of Fig. 1. In the latter case, the coexistence of nodal points of proximity- and fluctuation-induced SC order parameters (k∗
and k(2)

∗ , respectively) leads to a cascade of topological transitions in a narrow window of the system parameters.

points induced by the fluctuations are effectively filled leading
to the topological transitions. This mechanism is similar to
what happens at the mean-field level, when the nodal points k∗
of the proximity-induced order parameter are filled. Moreover,
if k(2)

∗ ≈ k∗, a cascade of topological transitions can occur
with a slight change of the system parameters.

Note that an open issue in the study of the fluctuation topo-
logical phases is features of bulk-boundary correspondence.
In our situation, the preliminary calculations show that the
change of the topological invariant is related to the poles (but
not the zeros [37,64]) of quasiparticle Green’s function. Then,
one has to expect that the bulk-boundary correspondence
would not be violated. In turn, due to the fact that FTTs are
caused by residual interactions between Bogoliubov quasipar-
ticles, but not by bare fermions, some unusual bulk-boundary
correspondence peculiarities can be expected as well.

Considering the original Kitaev chain model [21], we
showed that the quasiparticle states with the energies near
min(εk ), which mostly contribute to the nonzero Nfl

BDI, have
a finite lifetime τk = 1/γk . This time is much less than the
one of the states for which Nmf

BDI �= 0 and Nfl
BDI = 0. However,

it is still much longer than the lifetime of high-energy exci-
tations near max(εk ) which is minimal if �1 
 t1 and near
the borders of the mean-field nontrivial phase. Analysis of
the mean-field-spectrum shift features δεk made it possible
to find the effect potentially suitable for detecting topologi-
cal phase transitions in the long but finite nanowires. Since
the implementation of topological phase is accompanied by
the filling of nodal modes with quasimomenta k = 0, π,±k∗,
such additional fermions renormalize the excitation spectrum
due to the interaction leading to the observable modification
of the effective mass in the finite system [cf. Eq. (41)].

Finally, the fluctuation topological phases found in this
work can be interpreted as a topological analog of the so-
called, vestigial order, implemented in quantum systems with
composite order parameters [65–67]. In our case, the resid-
ual interactions between quasiparticles Hint [cf. Eq. (25)]
can be considered as corrections that describe fluctuations
of the charge (the amplitude C) and superconducting (the
amplitudes A and B) orders. When εk0 
 1, such fluctuations
begin to play an important role, and ultimately lead to the
destruction of topological order at εk0 = 0. However, those
fluctuations near the transition boundaries give rise to the

fluctuation-induced phase that can be thought as a topological
vestigial phase.

To summarize, we developed the analytical theory of fluc-
tuation topological transitions in Majorana wires of the BDI
symmetry class. The key point of the theory is an idea to
go beyond mean-field approximation and to treat the residual
interactions of the Bogoliubov quasiparticles. The residual
interactions were considered as perturbations when calculat-
ing the diagram series for quasiparticle Green’s functions.
This made it possible to explicitly extract the contribution
to the topological invariant due to charge correlations and to
calculate a topological phase diagram taking the latter into ac-
count. The effective filling of the nodal points of the SC order
parameter induced by the residual interactions was proposed
as a mechanism of the fluctuation topological transitions. In
addition, we studied the interaction effects on the quasiparticle
spectrum.

A further extension of the work would be to study a dis-
order effect on the fluctuation topological transitions. Taking
into account the results of recent studies [52,68–70], one can
expect an even richer picture of the topological transitions in
the model (3) due to, e.g., interplay of disorder and nonlocal
interactions ∼F, G.
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APPENDIX A: DERIVATION OF THE EFFECTIVE MODEL

Let us rewrite the original Hamiltonian HW as a sum of
terms of zero, first, and second order of smallness:

HW = H0 + V1 + V2. (A1)

Here H0 is an unperturbed Hamiltonian and V j ( j = 1, 2)
operators describing weak interactions.

It is convenient to choose many-body eigenstates | m 〉 of
the Hamiltonian H0 as a basis in the Hilbert space of the oper-
ator H: H0| m 〉 = Em| m 〉. An essential assumption allowing
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us to develop the perturbation theory is an existence of a large
energy gap in the Em spectrum [71]. The subspace below the
gap (the, so-called, “low-energy” sector of the Hilbert space)
is denoted as M. The corresponding eigenstates and eigenval-
ues are enumerated by m. To count the eigenstates above the
gap in the “high-energy” sector L, the symbol l is used. Note
that both |m〉 ∈ M and |l〉 ∈ L can be degenerate but not all
the eigenvalues Em (and as well El ) must necessarily be equal
to each other.

Using the many-body states |m〉 we can define projec-
tion operator P onto the low-energy sector M as P =∑

m∈M X mm, with X mm = |m〉〈m| being the Hubbard oper-
ators. The projection operator allows to divide interactions
V j ( j = 1, 2) in the Hamiltonian (A1) into two parts: V j =
V̄ j + ¯̄V j . The first part V̄ j consisting of two terms,

V̄ j = P V j P + (1 − P)V j (1 − P),

P V j P =
∑

m,m′∈M
(V j )m,m′ X mm′

,

(1 − P)V j (1 − P) =
∑

l,l ′∈L
(V j )l,l ′ X ll ′ , (A2)

does not mix the low- and high-energy sectors of the Hilbert
space and, hence, is called a diagonal part. The second part ¯̄V j

also consisting of two terms

¯̄V j = (1 − P)V j P + P V j (1 − P),

(1 − P)V j P =
∑

m∈M
l∈L

(V j )l,m X lm,

P V j (1 − P) =
∑

m∈M
l∈L

(V j )m,l X ml , (A3)

is nondiagonal because of mixing the sectors M and L. In
Eqs. (A2) and (A3) the matrix elements 〈m|V j |l〉 are denoted
as (V j )m,l .

Consider the following unitary transformation of the
Hamiltonian H:

H → H̃ = e−S H eS = H + [H, S ] + 1
2 [ [H, S ], S ]

+ 1
6 [ [ [H, S ], S ], S ] + · · · . (A4)

We will assume that the operator S in (A4) is nondiagonal

S =
∑

m∈M
l∈L

[(S)m,l X ml + (S)l,m X lm], (A5)

and its decomposition starts with terms of the first order of
smallness:

S = S1 + S2 + S3 + · · · . (A6)

Substituting the expressions (A1) and (A6) into the series
(A4), we retain only the terms whose order of smallness is not
higher than three. Next, to get rid of the nondiagonal terms in
H̃, the following conditions on the operators S1 and S2 have
to be imposed:

¯̄V1 + [H0, S1 ] = 0, (A7)

¯̄V2 + [H0, S2 ] + [ V̄1, S1 ] = 0. (A8)

Then, the matrix elements of S1 can be found from the opera-
tor equation (A7):

(S1)m,l = (V1)m,l

El − Em
, (S1)l,m = − (V1)l,m

El − Em
. (A9)

Here we took advantage of the equalities H0| m 〉 = Em| m 〉
and H0| l 〉 = El | l 〉.

Projecting out the high-energy processes the operators act-
ing within the low-energy sector M of the Hilbert space are
only left. Thus, the general form of the required effective
Hamiltonian is

Heff = P HP + 1
2 P([ ¯̄V1, S1 + S2] + [ ¯̄V2, S1])P. (A10)

If we consider the spin-polarized SW the projection operator
on the sector M can be written in the form

P =
∏

f

( | f , 0 〉〈 f , 0 | + | f , ↑〉〈 f ,↑|). (A11)

The performed calculations for the original model (1) allow
us to find the effective Hamiltonian (3) with the following
parameters of effective interactions:

E0

N
= �2

1s

2μ0
− �2

s

U − 2μ0
,

μ = μ0 + h + α2

4h
+ 2�2

1s

μ0
+ 2�2

1s − �2

U − 2μ0
,

t1 = t0 − 4�s�1s

U − 2μ0
; t2 = �2

1s

μ0
− α2

4h
,

�1 = α�s

U − 2μ0
+ α�s

U + 2h
; �2 = α�1s

2

(
1

h
− 1

μ0

)
,

(A12)

where E0 gives corrections to the ground-state energy due to
the virtual creations and annihilations of Cooper pairs. This
term is omitted in (3). Taking into account the Hubbard re-
pulsion U leads to the effective interactions between spinless
fermions. On the one hand, a repulsive interaction between
fermions with amplitude V is induced. On the other hand,
nonzero U leads to three-centered charge-correlated hoppings
and SC pairings of fermions belonging to the secondary co-
ordination sphere (parameters F and G, respectively). The
dependence of such parameters on the SW parameters reads
as

V = V0+ (α/2)2

2h
− (α/2)2

U+2h
+ �2

1s

2μ0
+ �2

1s

U−2μ0
, (A13)

F = (α/2)2

U + 2h
− (α/2)2

2h
+ �2

1s

2μ0
+ �2

1s

U − 2μ0
, (A14)

G = α�1s

2

(
1

2h
− 1

U+2h
− 1

2μ0
− 1

U−2μ0

)
. (A15)

Note that the three-center interactions can be considered as the
operators of the number of high-energy states deformed when
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FIG. 11. Irreducible diagrams containing fermionic loop and ap-
pearing in the first and second orders of the perturbation theory for
the normal Green’s function.

projected onto the low-energy sector

H3 = P e−S (X ↓↓ + X 22) eS P. (A16)

APPENDIX B: ANALYTIC EXPRESSIONS FOR VERTICES
AND SELF-ENERGY CONTRIBUTIONS

Symmetrization of the interaction amplitudes with respect
to the quasimomenta results in the following vertices �A,B,C :

�
(A)
k;p,q,k−p−q

= 2i (uk vp uq uk−p−q + vk up vq vk−p−q )(ck−q − cp+q)

+ 2i (uk up vq uk−p−q + vk vp uq vk−p−q )(cp+q − ck−p)

+ 2i (uk up uq vk−p−q + vk vp vq uk−p−q )(ck−p − ck−q ),

(B1)

�
(A)
k+p+q;q,p,k

= 2i (uk up vq uk+p+q + uq vp vk vk+p+q )(ck+q − cp+q)

+ 2i (uk uq vp uk+p+q + up vk vq vk+p+q )(cp+q − ck+p)

+ 2i (up uq vk uk+p+q + uk vq vp vk+p+q )(ck+p − ck+q ),

(B2)

�
(C)
k,p;q,k+p−q

= �
(C)
k+p−q,q;p,k

= 2 (uk up uq uk+p−q + vk vp vq vk+p−q )(cp−q − ck−q )

+ 2 (uk uk+p−q vp vq + up uq vk vk+p−q )(ck+p − cp−q)

+ 2 (up uk+p−q vk vq + uk uq vp vk+p−q )(ck−q − ck+p),

(B3)

�
(B)
k,p,q,−k−p−q

= 2 (uk uq vp v−k−p−q + up u−k−p−q vk vq)(cp+q − ck+p)

+ 2 (uk up vq v−k−p−q + uq u−k−p−q vk vp)(ck+q − cp+q )

+ 2 (uk u−k−p−q vp vq + up uq vk v−k − p− q)(ck+p − ck+q),

(B4)

where for the sake of brevity we use cα±β = cos(α ± β ),
α, β = k, p, q.

Analysis of the diagrammatic series for the normal elec-
tronlike Green’s function up to the second-order results in
three diagrams containing fermionic loops (see Fig. 11) and

FIG. 12. Irreducible diagrams leading to the second-order cor-
rections to the normal self-energy.

leads to the following self-energy terms:

�n(1) = −V

N

∑
p

�
(C)
k,p;p,k fp,

�
n(2)
5 =

(
V

N

)2 ∑
pq

�
(A)
k;k,p,−p �

(A)
q;p,q,−p

2εp
(1 − 2 fp) fq,

�
n(2)
6 =

(
V

N

)2
( ∑

p

�
(C)
k,p;p,k∂ω f |w=εp

)( ∑
q

�(C)
p,q;q,p fq

)
,

(B5)

where fp,q ≡ f (εp,q ) are Fermi-Dirac distribution functions.
At low temperatures and in the thermodynamic limit, such
corrections are exponentially suppressed due to the Fermi
functions. For finite N , they can give contributions of the
order ∼V/N , ∼V 2/N , and ∼(V/N )2. The rest of diagrams
for the normal Green’s function are loopless as it can be
seen in Fig. 12. The contributions from them to the normal
self-energy are given by

�
n(2)
1 = 1

6

(
V

N

)2 ∑
p,q

∣∣�(A)
k;p,q,k−p−q

∣∣2
F1

iω − εp − εq − εk−p−q
,

�
n(2)
2 = −1

6

(
V

N

)2 ∑
p,q

∣∣�(B)
k,p,q,−k−p−q

∣∣2
F2

iω + εp + εq + ε−k−p−q
,

�
n(2)
3 = 1

2

(
V

N

)2 ∑
p,q

∣∣�(A)
k+p+q;q,p,k

∣∣2
F3

iω + εp + εq − εk+p+q
,

�
n(2)
4 = 1

2

(
V

N

)2 ∑
p,q

∣∣�(C)
k,p;q,k+p−q

∣∣2
F4

iω + εp − εq − εk+p−q
, (B6)

where combinations of the Fermi functions are

F1 = fp fq fk−p−q + [1 − fp] [1 − fq] [1 − fk−p−q],

F2 = fp fq f−k−p−q + [1 − fp] [1 − fq] [1 − f−k−p−q],

F3 = fp fq [1 − fk+p+q] + [1 − fp] [1 − fq] fk+p+q,

F4 = [1 − fp] fq fk+p−q + fp [1 − fq] [1 − fk+p−q]. (B7)
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FIG. 13. Diagrams with fermionic loop occurring in the first and
second orders of the perturbation theory for the anomalous Green’s
function.

These corrections determine both the excitation spectrum shift
and quasiparticle damping.

By analogy, the corrections to the anomalous self-
energy from the loop-containing diagrams displayed in
Fig. 13 are

�a(1) = −V

N

∑
p

�
(A)
k,p,−k;p fp,

�
a(2)
5 =

(
V

N

)2 ∑
pq

�
(C)
k,−k;p,−p �

(A)
p,q,−p;q

2εp
(1 − 2 fp) fq,

�
a(2)
6 =

(
V

N

)2
( ∑

p

�
(A)
k,p,−k;p∂ω f |w=εp

)( ∑
q

�(C)
p,q;q,p fq

)
,

�
a(2)
7 = 1

2

(
V

N

)2 ∑
pq

�
(B)
k,p,−p,−k �

(A)
p,q,−p;q

2εp
(1 − 2 fp) fq.

(B8)

FIG. 14. Irreducible diagrams leading to the second-order cor-
rections to the anomalous self-energy.

The corresponding contributions from the second-order
loopless diagrams shown in Fig. 14 read as

�
a(2)
1 = 1

6

(
V

N

)2 ∑
p,q

�
(B)
k−p−q,p,q,−k �

(A)
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iω − εp − εq − εk−p−q
F1,

�
a(2)
2 = −1

6

(
V

N

)2 ∑
p,q

�
(B)
k,p,q,−k−p−q �

(A)
p,q,−k−p−q;−k

iω + εp + εq + ε−k−p−q
F2,

�
a(2)
3 = 1

2

(
V

N

)2 ∑
p,q

�
(A)
k,p,q;k+p+q�

(C)
k+p+q,−k;p,q

iω + εp + εq − εk+p+q
F3,

�
a(2)
4 = −1

2

(
V

N

)2 ∑
p,q

�
(A)
−k,q,k+p−q;p�

(C)
k,p;q,k+p−q

iω + εp − εq − εk+p−q
F4.

(B9)

APPENDIX C: VICINITY OF MEAN-FIELD SPECTRUM
MINIMA AND FLUCTUATION-INDUCED NODAL POINTS

Here we analyze the qualitative reasons why the nodal
points of Yk can appear near the points of mean-field spectrum
minimum k0. Let us start with the introduction of functions

Xk → X̄k = ωk − εk − Re[ �̂k (ωk + i0+)]11,

Yk → Ȳk = Im[�̂k (ωk + i0+)]12, (C1)

that, in fact, define the real parts of the normal and anomalous
components of the inverse Green’s function at the frequency
ω = ωk ∈ R. The frequency ωk is determined from the

FIG. 15. Real and imaginary parts of anomalous self-energy
[ �

(2)
k0

]12 as functions of frequency ω at the wave vector k0 where
the mean-field spectrum has minimum for parameters correspond-
ing to the central point (a) and asterisk (b) on Fig. 7(a). The dots
mark the functions at the mass shell ω = ωk . It can be seen that
Im[ �

(2)
k0

(0) ]12
∼= Im[ �

(2)
k0

(ωk ) ]12 and Re[ �
(2)
k0

(ωk ) ]12
∼= 0 justify-

ing the relations (C3) and (C2).
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equation

Re
(

det
[
ĝ−1

k (ωk ) − �̂k (ωk )
]) = 0,

which is similar to Eq. (46), but takes into account the anoma-
lous self-energy components. Bearing in mind that |γk0 | 

|γk̃|, |δεk0 | 
 |δεk̃|, where k̃: |γk̃| = max(|γk|) [see Figs. 5(c)
and 6(a) in Sec. III B], and the behavior of the anomalous self-
energy shown in Fig. 15, the two branches of the renormalized
spectrum can be approximately defined as

ε̄k0 ≈ ±
√

X̄ 2
k0

+ Ȳ 2
k0
,

˙̄εk0 ∼ (
X̄k0

˙̄Xk0 + Ȳk0
˙̄Yk0

) = 0, (C2)

and

Xk0 ≈ X̄k0 , Yk0 ≈ Ȳk0 . (C3)

Since there is the proximity-induced superconductivity in
the system, it can be assumed that the functions X̄k and Ȳk are
independent from each other. Therefore, to satisfy Eq. (C2)

one has to require that

X̄k0
˙̄Xk0 = 0, Ȳk0

˙̄Yk0 = 0. (C4)

As noted in Sec. III A, the renormalized energy of the parti-
clelike excitations is ε̄k0

∼= −X̄k0 �= 0 since the contributions
from Ȳ 2

k0
give the corrections ∼(V �)4. Therefore, ˙̄Xk0

∼= 0 at
the extreme point of the mean-field spectrum.

On the other hand, the derivatives ˙̄Xk0 and ˙̄Yk0 cannot simul-
taneously become zero due to the condition (C3) and the fact
that the vector ( Ẋk, Ẏk ) is a tangent to the fluctuation loop.
Then, in order to satisfy Eqs. (C2) and (C4), we should expect
that

˙̄Xk0
∼= 0, Ȳk0

∼= 0, ˙̄Yk0 �= 0. (C5)

Comparing expressions (C3) and (C5), we see that the
static part of the anomalous self-energy component Yk [see
Eq. (57)] should have the nodal points in the vicinity of the
minimum of the mean-field spectrum εk . This is confirmed by
the numerical calculations of the k dependence of εk and Yk for
a wide range of the system parameters including the system
with the next-nearest-neighbor hopping and SC pairing.
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