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Deformation of a Néel-type skyrmion in a weak inhomogeneous magnetic field:
Magnetization Ansatz and interaction with a Pearl vortex
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In this work, we develop a theory of (meta)stable states of Néel-type skyrmions in weak nonuniform magnetic
fields. We claim an Ansatz for modeling the nonsymmetric magnetization that can be implied for both analytics
and numerical simulations. Our theory accounts for changes in the size of skyrmion parameters and also
includes deformations from the centrally symmetric shape. The Ansatz streamlines the analytic calculation of
the skyrmion free energy, enhancing the efficiency of the minimizing process. Performing the minimization in
two stages, one can find all the minima, global and local, of the free energy, discovering the stable and metastable
states. We apply the developed methodology to investigate the (meta)stable configurations of skyrmions influ-
enced by the stray field of a Pearl vortex. Our study reveals the dependence of skyrmion spatial parameters on the
vortex field effective strength and presents a phase diagram identifying regions where metastable configurations
are predicted. Corroborated by micromagnetic simulations, our findings offer a detailed perspective on the
interaction between magnetic skyrmions and superconducting vortices.
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I. INTRODUCTION

Magnetic skyrmions, predicted in the late 1980s [1] and
discovered in recent decades [2–4], have rapidly ascended to
prominence in the field of magnetism and novel materials,
offering new paradigms for information storage and process-
ing. They are distinguished by their topological stability [5,6],
which renders them resistant to perturbations, and their small
size, which makes them ideal candidates for high-density
storage applications. The interplay between skyrmions and
magnetic fields is a cornerstone of skyrmionics, influencing
their formation, stability, and dynamic properties [2–4,7–10].
This relationship is particularly nuanced in the presence of
nonuniform fields, where skyrmions exhibit a range of behav-
iors that are critical to their practical utility [11–13].

The study of superconductor–chiral ferromagnet (SF) bi-
layers has become increasingly relevant in this context. Over
the past few decades, the intricate relationship between mag-
netism and superconductivity in heterostructures has piqued
interest among researchers [14–18]. These bilayers are partic-
ularly intriguing as they can host both magnetic skyrmions,
which emerge through the effects of the Dzyaloshinskii-
Moriya interaction [1], and superconducting vortices [19,20].
The discovery of skyrmions in SF bilayers has led to intensive
investigations into their physical attributes and prospective
technological applications. Skyrmions have been shown to
give rise to bound states similar to Yu-Shiba-Rusinov states
[21,22] and to modify the Josephson effect between supercon-
ductors [23], as well as to affect the superconducting critical
temperature [24].

The coexistence of skyrmions and superconducting vor-
tices introduces intriguing dynamics. They are known to form
bound pairs influenced by various mechanisms, including

spin-orbit coupling, proximity effects, and magnetic stray
fields [25–32]. Recent works [33–42] suggest that these pairs
might offer a foundation for topological quantum computing.

From an experimental perspective, the interplay between
skyrmions and superconductivity has seen recent advance-
ments. Observations have shown that skyrmions can modulate
vortex dynamics [43], couple with vortices in chiral magnet-
superconductor heterostructures [44], and even slightly en-
large due to the presence of Pearl vortices [45]. Importantly,
their potential in next-generation computing and memory de-
vices is underscored by the capability to precisely manipulate
single skyrmions using tunneling microscopes [46].

In our research, we focus on the interactions between a
skyrmion and a vortex via stray fields. We propose that a
thin insulator layer separates the ferromagnetic and super-
conducting layers, mitigating the quantum proximity effect.
A sketch of the considered setup can be found in Fig. 1
of Ref. [30]. Commonly, studies have overlooked the subtle
changes in skyrmion structure due to stray fields. However,
as highlighted in Ref. [32], these changes play a significant
role in the overall understanding of the system. In the case of
coaxial configurations, interaction of a skyrmion with a vortex
can lead to significant changes in the size of the skyrmion, its
shape, and even its chirality [32].

Recent theoretical works [30,47] have shown that stable
bound states of a skyrmion and a vortex can exist in both
coaxial (with a = 0, where a represents the relative dis-
tance between the centers of the skyrmion and the vortex)
and eccentric (with a �= 0) configurations. Solving the exact
Euler-Lagrange equations for the minimization problem of the
total free energy, presented in Eq. (8), is a notoriously difficult
problem. Below, we propose a variational method based on an
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FIG. 1. Visual representation of the Ansatz (18). For this illus-
trative example, we utilized the field generated by a pair consisting
of a vortex (positioned on the left side of the topmost left plot,
colored in orange) and an antivortex (located on the right side of
the same plot, depicted in green tones). In each plot of the figure,
distance coordinates are measured in units of the domain wall width
�w , with the displayed region being 8�w × 8�w in size. First row:
decomposition of the total field ba acting on a skyrmion into (i)
a cylindrically symmetric component b̄

a
, and (ii) the residual term

ba − b̄
a
. Second row: the total magnetization response mSk (left

column) is presented as a sum of several components. The middle
column shows the cylindrically symmetric term, consisting of (top)
the domain wall Ansatz mRδ ∼ γ 0, and (bottom) the γ 1 correction
γ δm̄Sk = (m̄Sk − mRδ ). Deviations from polar symmetry, also a γ 1

correction, are depicted in the right column and include (top) the
response of a ferromagnetic film (without a skyrmion) to the field
ba − b̄

a
, denoted by μba − μb̄a , and (bottom) corrections due to the

unit-vector nature of total magnetization. To emphasize the breaking
of cylindrical symmetry, contour plots are added to the leftmost
figure of the second row, with the dashed black line for mz = 0.5, the
dashed white line for mz = −0.5, and the solid black line for mz = 0.

effective approximation to the exact solution, circumventing
the need to solve the exact Euler-Lagrange equation directly.

In this study, we explore the effects of weak magnetic
fields on skyrmion behavior in thin films, particularly focusing
on Néel-type skyrmions. Our Ansatz, as detailed in Eq. (18)
and illustrated in Fig. 1, describes skyrmion magnetization in
arbitrary weak inhomogeneous magnetic fields. These fields
are considered weak enough to only slightly disrupt the cylin-
drical symmetry of a skyrmion. The Ansatz is pivotal for
understanding skyrmion deformation. It effectively predicts
the skyrmion’s stable position and spatial parameters, such as

radius and domain wall width, and identifies metastable states
beyond the reach of conventional micromagnetic simulations.

The Ansatz’s main concept involves decomposing
skyrmion magnetization into two parts: a cylindrically
symmetric component resulting from the magnetic field av-
eraged over the polar angle around the skyrmion center, and a
component accounting for deviations in cylindrical symmetry
due to the actual magnetic field distribution. While our focus
is on Néel-type skyrmions, we suggest that the fundamental
approach of the Ansatz could be applicable to Bloch-type
skyrmions, though this requires further verification.

For clarity, we define some key notations: we assume that
a skyrmion exists within a spatially inhomogeneous magnetic
field B(r). A coaxial configuration implies that the skyrmion’s
center is at the point a = 0, particularly relevant as we later
consider the radially symmetric field of a Pearl vortex. Con-
versely, if the skyrmion is displaced to a point a �= 0, we
define this as an eccentric state.

The paper’s structure is as follows. Section II formulates
the method developed for studying a deformed skyrmion in
an inhomogeneous magnetic field. In particular, Sec. II A
introduces the model of a Néel-type skyrmion in an in-
homogeneous magnetic field. Section II B formulates the
generalized Ansatz for skyrmion deformation in any weak
external magnetic field. Section II C explains the theoretical
approach for coaxial configurations, including a comprehen-
sive description of the coaxial skyrmion Ansatz, as informed
by Ref. [32], and being the framework for the eccentric
skyrmion Ansatz. Section II D is dedicated to detailed con-
structing the Ansatz and calculation of the free energy to
the second-order approximation in weakness of the external
field. Section II E outlines the method for determining optimal
skyrmion parameters, such as its radius and effective domain
wall width, and its optimal position relative to the nonuniform
external field.

The developments of Sec. II are then applied to a skyrmion
in the stray field of a Pearl vortex in Sec. III. In this section,
we delineate the structure of the field, perform the neces-
sary calculations, and present the results, namely, the phase
diagram for a skyrmion-vortex pair and the variation of the
skyrmion parameters as a function of the vortex effective
strength. Comparative analysis of the analytical results with
micromagnetic simulations is presented in Sec. III D. Finally,
the paper concludes with a summary of the findings in Sec. IV.

II. MAGNETIZATION ANSATZ FOR A DEFORMED
SKYRMION IN A WEAK EXTERNAL MAGNETIC FIELD

A. Model: Skyrmion in ferromagnetic film

We consider a thin chiral ferromagnet film, whose mag-
netic free energy is given by [1]

Fmagn[m] = dF

∫
d2r{A(∇m)2 + K

(
1 − m2

z

)

+ D[mz∇ · m − (m · ∇)mz]}. (1)

Here, m(r) denotes the unit vector of the magnetization direc-
tion, dF is the film thickness, A > 0 and K > 0 represent the
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exchange and effective1 perpendicular anisotropy constants,
respectively, and D > 0 is the Dzyaloshinskii-Moriya interac-
tion constant (DMI). The magnetic free energy is normalized
such that Fmagn is zero for the ferromagnetic state with
mz = 1.

In the absence of an external magnetic field, the free en-
ergy, Eq. (1), suggests the existence of skyrmions. A single
free Néel-type skyrmion located at the coordinate origin can
be described by the following magnetization profile:

mSk = er sin θ (r) + ez cos θ (r). (2)

Here, er and ez are the unit vectors in the radial direction and
along the z axis (perpendicular to the interface), respectively.
The skyrmion angle θ (r) satisfies the Euler-Lagrange equa-
tion (ELE), which is derived by minimizing the free energy
Fmagn (see Appendix A),

�2
w

r
∂r (r∂rθ ) − �2

w + r2

2r2
sin 2θ + 2ε

sin2 θ

r/�w

= 0, (3)

where we introduce the dimensionless DMI parameter ε and
the domain wall width �w,

ε = D/2
√

AK, �w =
√

A/K . (4)

The latter serves as a natural length scale in the problem.
Equation (3) describes a Néel-type skyrmion under the

following boundary conditions:

θ (r → ∞) = 0, θ (r = 0) = χπ. (5)

The first condition ensures that the magnetization at a distance
from the skyrmion center is uniform. The second condition
specifies that the magnetization at the skyrmion center is
inverted relative to the uniform magnetization. The term χ =
±1 represents the skyrmion chirality. It is important to note
that a free skyrmion in an isolated ferromagnetic film exhibits
only one chirality, determined by the sign of the DMI param-
eter χ = sgn(ε). This paper considers only a positive DMI,
ε > 0. Consequently, the only possible solution of Eq. (3) for
the free skyrmion of chirality χ = +1 is stable. However, the
skyrmion in the external inhomogeneous magnetic field can
posses both chiralities (see details in Ref. [32]).

The direct numerical solution of Eqs. (3) and (5) allows
one to determine the skyrmion profile. It is well established
that the direct solution is well approximated by the so-called
360◦ domain wall Ansatz θ (r) ≈ θRδ (r):

θRδ (r) ≡ 2 arctan
sinh(R/δ)

sinh(r/δ)
. (6)

Here, the parameter R encodes two quantities: the skyrmion
radius |R| and chirality χ = sgn(R), while δ represents the
effective domain wall width. We refer to R as the skyrmion
radius, unless otherwise specified. The parameters R and δ can
be obtained by numerically minimizing the free energy Fmagn

using the domain wall Ansatz.
The effect of the external inhomogeneous magnetic field

B(r) on the thin ferromagnetic film is captured by the Zeeman

1The demagnetizing field contribution is included in the effective
perpendicular anisotropy constant K = K0−2πM2

s [28,30,48].

term, which is added to the free energy,

FZ [m, B] = −dF

∫
d2r Msm · B|z=+0, (7)

where Ms denotes the saturation magnetization. In subsequent
calculations, the external magnetic field is considered at the
surface of the thin ferromagnetic film, i.e., at z = +0. Thus,
we will omit the notation |z=+0 unless it is specifically re-
quired.

To determine the stable states of the ferromagnetic film in
the presence of an external magnetic field B(r), one minimizes
the total free energy,

Ftot[m, B] = Fmagn[m] + FZ [m, B]. (8)

The simplest stable state is the “no-skyrmion” configu-
ration, where the ferromagnetic film remains skyrmion free
under the influence of the inhomogeneous magnetic field B.
We consider the field to be weak, characterized by an effective
strength γ :

γ = MsB0/(2K ) 
 1, (9)

where B0 is the spatially constant characteristic magnitude2

of the field B = B0b within the film. The magnetization mb of
this stable state is then approximately given by

mb ≈ ez + γμb, (10)

where μb(r) is a vector of the order of γ 0, orthogonal to ez,
i.e., μb · ez = 0.

By expanding the total free energy in Eq. (8) with m = mb

to second order in γ and minimizing it, one obtains the ELE
for μb,

�2
w
μb − μb + b|| = 0, (11)

where 
 denotes the Laplacian, and b‖(r) represents the
in-plane component of the normalized external magnetic
field b(r),

b‖ = b − ezbz. (12)

If the external magnetic field exhibits central symmetry,

b(r) = br (r)er + bz(r)ez, (13)

then the vector μb aligns with er ,

μb(r) = θb(r)er, (14)

and, given b‖ = br (r)er , Eq. (11) reduces to

�2
w

r
∂r (r∂rθb) − �2

w + r2

r2
θb + br = 0. (15)

For a “no-skyrmion” configuration, with the radial component
of the external field diminishing at infinity, the preceding
equation is complemented by the following boundary condi-
tions:

θb(r = 0) = 0, θb(r → ∞) = 0. (16)

2Note that there is an ambiguity in definition of B0. It should
be chosen providing (i) the reasonable estimation of the effective
strength γ in Eq. (9), and (ii) vector μb in Eq. (10) to be of order
of γ 0.
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More complex stable states may involve the ferromagnetic
film hosting one or several skyrmions. This paper focuses on
configurations with a single skyrmion centered at a specific
point a. The analytic investigation of such states poses a sig-
nificant challenge in determining the suitable magnetization
profile m. One approach involves deriving the Euler-Lagrange
equations (ELEs) and establishing boundary conditions where
m = −ez at the skyrmion’s center and m = ez at a distance.
However, solving these ELEs, which are partial-differential
vector equations, demands computational resources compara-
ble to those required for micromagnetic simulations.

An alternative is to develop a simpler analytical Ansatz
that closely approximates the exact ELE solutions or micro-
magnetic simulation results. We introduce and detail such an
Ansatz for skyrmion magnetization under the influence of an
external weak inhomogeneous magnetic field below.

B. Formulation of the magnetization Ansatz

In this subsection, we briefly outline the basic framework
for constructing the Ansatz. The comprehensive justification
with some technical details for this approach will be provided
in subsequent subsections, namely, the coaxial skyrmion
Ansatz in Sec. II C and the eccentric skyrmion Ansatz in
Sec. II D. An alternative representation of the Ansatz using
local coordinates is detailed in Appendix B. For ease of sub-
sequent construction, we consider the skyrmion centered at
a point a and shift the coordinate origin to this skyrmion
center. Consequently, the external magnetic field is redefined
as Ba(r) = B(ra), with ra = r + a.

The core concept of the Ansatz is to approximate the
skyrmion magnetization mSk with a centrally symmetric unit-
vector function as the leading term,

m̄Sk = er sin θ̄ (r) + ez cos θ̄ (r), (17)

where θ̄ (r) represents the skyrmion angle.3 The deformation
from this symmetric state is considered only as a first-order
correction in the small effective strength γ of the external
magnetic field,

mSk ≈ m̄Sk + γ [m̄Sk × [(μba − μb̄
a ) × m̄Sk]]

= m̄Sk{1 − γ [(μba − μb̄
a ) · m̄Sk]} + γ (μba − μb̄

a ).

(18)

In this expression, μba and μb̄
a are determined analogously to

μb in Eq. (11):

�2
w
μba − μba + ba

‖ = 0, �2
w
μb̄

a − μb̄
a + b̄

a
‖ = 0,

with ba = Ba/B0 and b̄
a = B̄a

/B0, respectively, and boundary
conditions of Eqs. (16). The function B̄a(r) is defined as the
magnetic field averaged over the polar angle φ around the
skyrmion center, considering radial, azimuthal, and out-of-
plane components:

B̄a = 〈
Ba

r

〉
φ
er + 〈

Ba
z

〉
φ
ez, 〈. . .〉φ ≡

∫ π

−π

dφ

2π
. . . . (19)

3Hereafter we use the bar sign over the functions to indicate that
they are centrally symmetric and related to the averaged magnetic
field B̄a

(r) [see Eq. (19)].

It should be noted that the magnetization mb̄
a ≈ ez + γμb̄

a is
determined by the centrally symmetric field B̄a, and thus it
maintains central symmetry, with μb̄

a being proportional to er

as indicated in Eq. (14), i.e., μb̄
a (r) = θb̄

a (r)er .
The skyrmion angle θ̄ can be considered as an angle of

a skyrmion in the centrally symmetric field B̄a, and, conse-
quently, it obeys the correspondent Euler-Lagrange equation.
The exact solution of the mentioned equation can be approxi-
mated by the following coaxial Ansatz (see Sec. II C and [32]):

θ̄ (r) ≈ θ
γ a
Rδ (r) ≡ θRδ (r) + γ θb̄

a (r) cos θRδ (r), (20)

where θRδ (r) represents the domain wall Ansatz from Eq. (6),
and θb̄

a (r) is derived from Eq. (15) with br = b̄a
r . The use of

the Ansatz for θ̄ (r), Eq. (20), provides the way for the further
analytic study. An explanatory visual representation of our
proposed Ansatz is illustrated in Fig. 1.

Then one should calculate the total free energy given by
Eq. (8), incorporating the Ansatz according to Eqs. (18) and
(20), and minimize it with respect to unknown skyrmion
parameters, the radius R and effective wall width δ, and
the stable skyrmion position a. Typically, this involves two-
dimensional (2D) integration over the variable r. However,
Sec. II D will present arguments supporting the Ansatz in
Eq. (18) and introduce simplified expressions for the total free
energy that only require 1D radial integration, substantially
lowering computational demands.

Further, we proceed to the detailed justifications of the
Ansatz introduced in that subsection and start our studying
with the simplest case where the external magnetic field is
centrally symmetric, and the skyrmion’s center aligns with the
field’s center, as discussed in Sec. II C. In this scenario, the
term m̄Sk alone persists in Eq. (18). Building on the coaxial
configuration findings, Sec. II D extends the discussion to the
more complex scenario of an eccentric skyrmion.

C. Coaxial skyrmion configuration

We commence the detailed analysis with the simpler
case of a coaxial skyrmion in a centrally symmetric exter-
nal magnetic field, as discussed in Ref. [32]. This scenario
corresponds to a = 0 and B̄0(r) = B(r) as per the previous
subsection. In such a configuration, the skyrmion is centrally
symmetric, and the exact magnetization profile is sought as

mSk = er sin θ (r) + ez cos θ (r). (21)

By minimizing the total free energy, Eq. (8), with the mag-
netization mSk from Eq. (17), we obtain the Euler-Lagrange
equation for θ (r), detailed in Appendix A:

�2
w

r
∂r (r∂rθ ) − �2

w + r2

2r2
sin 2θ + 2ε

sin2 θ

r/�w

= γ (bz sin θ − br cos θ ). (22)

The boundary conditions for Eq. (22) remain the same [see
Eq. (5)], with identical implications: the chirality χ takes
the value of ±1 for the skyrmion solution. It is important to
note that, theoretically, both chiralities are possible for ε > 0
when influenced by an external magnetic field, as indicated by
Ref. [32].
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If the second boundary condition in Eq. (5) is modified to
θ (r = 0) = 0, the resulting solution of Eq. (22) characterizes
the magnetization in a “no-skyrmion” state. For a weak mag-
netic field, characterized by γ 
 1, Eq. (22) can be linearized
using θ (r) = γ θb, leading to Eqs. (15) and (16).

As demonstrated in Ref. [32], the exact solution of Eq. (22)
under boundary conditions (5) can be efficiently approximated
with the following coaxial Ansatz:

θ (r) ≈ θ
γ

Rδ (r) ≡ θRδ (r) + γ θb(r) cos θRδ (r). (23)

The coaxial Ansatz is predicated on the premise that the
magnetization of an unperturbed skyrmion, represented by the
angle θRδ , rotates by an angle δθ due to the external magnetic
field. At a distance from the skyrmion, where mz ≈ +1, this
rotation angle is approximately δθ ≈ +γ θb(r), akin to the
“no-skyrmion” state. Conversely, near the skyrmion’s cen-
ter, where mz ≈ −1, the rotation is reversed, yielding δθ ≈
−γ θb(r). Within the transitional region, δθ is proportionate to
γ θb(r) scaled by mz ≈ cos θRδ (r), leading to the formulation
of the Ansatz in Eq. (23).

The Ansatz (23) should be inserted into the free-energy
expression (8). Subsequently, the free energy must be mini-
mized with respect to the two parameters R and δ. This method
is faster and more efficient than directly solving Eq. (22)
numerically. Furthermore, it yields relevant results across a
broad range of the parameters ε and γ [32].

It is important to note that the rotation angle δθ remains
small when γ 
 1, making the Ansatz in Eq. (23) seem as
a minor variation of the free skyrmion. Nonetheless, this ap-
proach can account for significant changes in the skyrmion
radius R as well as alterations in chirality [32].

In this section, we have omitted the bar notation used in the
previous subsection. However, the correspondence is straight-
forward for the reader to discern, considering that br/z = b̄0

r/z,
θ (r) = θ̄ (r), and θb = θb̄

0 within the coaxial setup.

D. Total free energy for an eccentric skyrmion configuration

In this subsection, we expand the total free energy to first
and second order in the small effective strength γ and mini-
mize it analytically. Consequently, we derive formulas for the
Ansatz presented in Sec. II B and simplify the total free energy
to the form of 1D integrals. These simplified expressions are
intended for use in the numerical calculation of skyrmion
parameters: radius R, effective wall width δ, and position a.

It is also instructive to outline the procedure for deter-
mining these parameters. As detailed in Appendix C 1, to
ascertain the parameters R and δ with linear precision in γ ,
one must expand the free energy to first order in the small
parameter γ 
 1, as shown in Eq. (C5), and then minimize
this expanded expression with respect to R and δ. At this
step, we can assume deformations of the centrally symmetric
skyrmion profile to be negligible, but depending on a via the
averaged field b̄

a
. Formally speaking, we get the radius and

effective wall thickness as a function of skyrmion position,
R(a) and δ(a).

Then, to accurately determine a with linear precision
in γ , one must consider the quadratic terms in the free-
energy expansion, as indicated by Eq. (C6). These terms
involve the deformation part of the skyrmion magnetization.

After substituting the functions R(a) and δ(a) into this
quadratic expansion, the total free energy is minimized with
respect to a.

1. First-order approximation

For a weak inhomogeneous external magnetic field, char-
acterized by γ 
 1, the leading approximation m̄Sk of the
skyrmion magnetization mSk is a centrally symmetric unit-
vector function. The deformation due to the field manifests in
the first-order approximation in γ . Consequently, we express
the deformed magnetization as

mSk ≈ m̄Sk + γ m̃, (24)

where m̄Sk is defined by the skyrmion angle θ̄ in Eq. (17).
The deformation vector m̃ must be orthogonal to m̄Sk since

both mSk and m̄Sk are unit vectors. Therefore, m̃ can be repre-
sented as a vector product,

m̃ = m̄Sk × ω, (25)

where ω will be specified subsequently.
Note that any variation of θ̄ on the order of the small

parameter γ would significantly affect the first approximation
γ m̃ in Eq. (24). Indeed, if it varies as θ̄ → θ̄ + γϑ , then the
azimuthal component of ω should be simultaneously modi-
fied, ωφ → ωφ + ϑ , in order to keep mSk unchanged. To avoid
this ambiguity, we stipulate that the skyrmion angle θ̄ should
be defined to the first order of small γ such that ωφ (and,
subsequently, the radial and out-of-plane components of m̃)
is zero when averaged over the polar angle φ:

〈ωφ〉φ = 〈m̃r〉φ = 〈m̃z〉φ = 0. (26)

To determine the unknown skyrmion angle θ̄ to the first
order in γ 
 1, we insert the magnetization mSk in the form of
Eq. (24) into the total free-energy expression (8) and expand it
to the first order in γ . This expansion reveals that the magne-
tization mSk should be approximated by the leading term m̄Sk:

Ftot[mSk, Ba] ≈ Ftot[m̄Sk, Ba]. (27)

In fact, Eq. (27) should also include the first variation of
the magnetic energy,

F (1)
magn[mSk, γ m̃] = −2γ dF

∫
d2r

[
Am̃ · 
mSk + Km̃zm̄Sk,z

− D(m̃z∇ · mSk − m̃ · ∇m̄Sk,z )], (28)

where 
 denotes the Laplacian. Integration over the polar
angle φ is necessary only for the radial and out-of-plane
components of m̃, as mSk is a centrally symmetric function.
By considering Eqs. (26), one can verify that the first vari-
ation equals zero, F (1)

magn[γ m̃, mSk] = 0, and thus it does not
contribute to Eq. (27).

Upon integrating over the polar angle, it becomes appar-
ent that the external field Ba can be replaced in Eq. (27)
by its azimuthally averaged counterpart B̄a, as detailed in
Eq. (19). Consequently, we arrive at an explicit formula
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for the total free energy,

Ftot[mSk, Ba]

2πdF A
≈ Ftot[m̄Sk, B̄a]

2πdF A
= Ftot[mb, B]

2πdF A
+

∫ ∞

0

dr r

�2
w

{(
�2

w

r2
+ 1

)
sin2 θ̄ + 2ε

(
�w∂r θ̄ + sin 2θ̄

2r/�w

)

+ �2
w(∂r θ̄ )2 − 2γ

[
b̄a

r sin θ̄ − 2b̄a
z sin2(θ̄/2)

]}
. (29)

Here, the first term represents the free energy of the
“no-skyrmion” configuration, which is independent of any
skyrmion parameters such as radius R, effective wall width
δ, or position a. Therefore, it can be disregarded during the
minimization process.

2. Equation and Ansatz for θ̄

Minimizing the total free energy, given by Eq. (29), with
respect to the skyrmion angle θ̄ (r), we obtain ELE

�2
w

r
∂r (r∂r θ̄ ) − �2

w + r2

2r2
sin 2θ̄ + 2ε

sin2 θ̄

r/�w

= γ
(
b̄a

z sin θ̄ − b̄a
r cos θ̄

)
, (30)

which is analogous to Eq. (22) for the coaxial case, but with
b̄a

r/z replacing br/z.
Appropriate boundary conditions must accompany this

equation, analogously to Eq. (5) and the related discussion:

θ̄ (r → ∞) = 0, θ̄ (r = 0) = χπ. (31)

The approximate solution of Eq. (30) can be obtained simi-
larly to that of Eq. (22) for the coaxial configuration. In fact,
we should simply change b to b̄

a
in Eq. (23) and get Eq. (20).

Then, we employ the Ansatz as specified in Eq. (20) and
perform numerical minimization of the total free energy in
Eq. (29). This process yields the optimal skyrmion parame-
ters, radius R, and effective wall width δ, for a given skyrmion
position a. To ascertain the stable position a, we must evaluate
the second-order approximation of the total free energy, as
elucidated in Appendix C 1.

3. Second-order approximation

To determine the dependence of the skyrmion position a on
the effective strength γ of the magnetic field, it is necessary
to minimize the total energy Ftot[mSk, Ba] with respect to a
as well. Since the position a, after redefining the coordinate
origin to the skyrmion center, influences the total energy start-
ing from the first order in γ , we compute Ftot[mSk, Ba] to the
second order in γ to accurately determine the function a(γ ),
as detailed in Appendix C 1.

To achieve that, we extend the expansion of mSk to include
terms up to the second order in γ . Introducing a second-order
term γ 2λ into Eq. (24) and ensuring the normalization of mSk

to unity, we express the expansion up to the second order as

mSk ≈ m̄Sk + γ m̃ + γ 2
[
λ − (λ · m̄Sk )m̄Sk − m̄Skm̃2/2

]
.

(32)
Upon substituting this form of mSk into Eq. (8), we obtain

the following expression for the total energy:

Ftot[mSk, Ba] ≈ Ftot[m̄Sk, B̄a] + F (2)[m̄Sk, m̃, a], (33)

where the first term is as defined in Eq. (29), and the second
term is given by

F (2)[m̄Sk, m̃, a] = F ′
tot[γ m̃, Ba]

− F (1)
magn[m̄Sk, γ

2m̄Skm̃2/2]. (34)

In this equation, the prime notation in the first summand
indicates that the calculation of Fmagn, as per Eq. (1), within
the total free-energy formula (8) excludes the constant term
proportional to K .

Additional terms from Eq. (32) that contribute to F (2) are
of the order of γ 3 and are therefore omitted. For a detailed
explanation, refer to Appendix C 2. The validity of this ap-
proximation is confirmed below for a specific term only:

F (1)
magn[m̄Sk, γ

2λ(1 − λ · m̄Sk )]

2πdF A

= 2γ 2
∫

dr r

�2
w

[λ × m̄Sk]φ

×
[
�2

w

r
∂r (r∂r θ̄ ) − �2

w + r2

2r2
sin 2θ̄ + 2ε

sin2 θ̄

r/�w

]
. (35)

While this term may initially appear to be of the order of γ 2,
the expression within the square brackets is actually of the
order of γ , as indicated by Eq. (30). Consequently, the term is
effectively of the order of γ 3 and can be disregarded.

It is important to note that θ̄ , as it enters Ftot[m̄Sk, B̄a]
within Eq. (33), should be computed only up to the first
order, as specified by Eqs. (30) and (20). Any second-order
correction to θ̄ , of the magnitude of γ 2, would only alter λ in
Eq. (32), and thus would contribute to the free energy at an
order of γ 3. Such a contribution is considered negligible and
can be omitted.

4. Ansatz for skyrmion deformations

As we can conclude from Eq. (34) the minimization of
Ftot[mSk, Ba] should yield the Euler-Lagrange equations for
the unknown vector function m̃ or, equivalently, ω [see
Eq. (25)]. As mentioned at the beginning of Sec. II D, directly
solving such vector equations numerically is as intensive as
micromagnetic modeling in terms of computer time and re-
sources. To simplify calculations, we propose an Ansatz for
m̃ that closely approximates the exact magnetization. This
Ansatz will subsequently be validated through micromagnetic
modeling, as detailed in Sec. III D.

By expanding the leading approximation m̄Sk, which incor-
porates θ̄ from Eq. (20), for small γ , we obtain

m̄Sk ≈ mRδ + γ [mRδ × μb̄
a × mRδ], (36)

where mRδ is defined similarly to Eq. (2), but with θ replaced
by θRδ .
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On the other hand, the magnetization mba in the “no-
skyrmion” configuration can be represented as

mba ≈ ez + γ [ez × μba × ez]. (37)

By comparing Eqs. (36) and (37), and considering that mag-
netization mSk should include the position a exclusively in the
term γμba , we formulate it as

mSk ≈ mRδ + γ [mRδ × μba × mRδ]. (38)

Revisiting Eq. (24) with (25), we define ω as

ω = μa × m̄, μa = μba − μb̄
a , (39)

which is consistent with Eqs. (38) and (18).
The condition 〈ωφ〉φ = 0, as stated in Eq. (26), translates

in the context of Eq. (39) to 〈μa
r 〉φ = 0 or, more explicitly,

〈μba · er〉φ = μb̄
a · er = θb̄

a (r), (40)

which can be confirmed by comparing Eq. (15) with b = b̄
a

and Eq. (11) with b = ba after multiplying by er and averaging
over φ.

5. Explicit expression for F (2)

Now, utilizing Eq. (39) for ω, we can integrate over the
polar angle φ in Eq. (34) and present the explicit form for
F (2):

F (2)[m̄Sk, m̃, a]

2πdF A
= γ 2

∫
dr r

�2
w

{
2b̃a

r sin2 θ̄ + b̃a
z sin 2θ̄ + [

μ̃a
r sin2 θ̄ − μ̃a

φ

]
�2

w(∂r θ̄ )2 − μ̃a
r

2r2

(
�2

w + r2
)

sin2 2θ̄

− 2ε

[
μ̃a

φ�w∂r θ̄ + μ̃a
r×φ

2r/�w

sin 2θ̄ + μ̃a
r

4r/�w

sin 4θ̄

]}
, (41)

where we define certain functions considering position a as a
parameter,

b̃a
r (r) = 〈

μa
r · (ba

r + �2
w
μa

r /2)
〉
φ

− (�w/r)2μ̃a
r×φ

+ [(�w/r)2 − 1]
[
μ̃a

r + μ̃a
φ

]
/2,

b̃a
z (r) = 〈

μa
r ba

z

〉
φ
, μ̃a

r (r) = 〈(
μa

r

)2〉
φ
, μ̃a

φ (r) = 〈(
μa

φ

)2〉
φ
,

μ̃a
r×φ (r) = μ̃a

r + μ̃a
φ + 〈

μa
r ∂φμa

φ − μa
φ∂φμa

r

〉
φ
. (42)

E. Optimal skyrmion configuration

Finally, we outline the procedure for determining the op-
timal skyrmion parameters (radius R, effective domain wall
width δ, and position a) using the Ansatz given by Eq. (18).

As briefly mentioned at the beginning of the previous sec-
tion, the procedure involves taking the total free energy, as
described by Eq. (33), and incorporating explicit expressions
from Eqs. (29) and (41). In these expressions, θ̄ is given as
specified in Eq. (20). Consequently, we express the total free
energy as a function of R, δ, and a. Minimizing with respect
to these parameters yields the stable skyrmion configuration,
characterized by the radius R, effective domain wall width δ,
and position a.

Furthermore, this procedure can be executed in two phases.
Initially, the total free energy is minimized with respect to
R and δ alone. Subsequently, the resulting function of a is
analyzed to locate its minima, which correspond to the stable
skyrmion positions. This approach differs from micromag-
netic simulations in that it facilitates the identification of all
potential metastable extremal states.

The numerical method described is notably efficient, uti-
lizing solely 1D integration to compute the free energy.
However, the accuracy of the results is confined to the regime
where γ 
 1. A detailed comparison between the analytical
findings and micromagnetic simulations will be presented in
the following section.

III. SKYRMION DISTORTION DUE TO A PEARL VORTEX

In this part of the paper, we apply our generic findings to a
specific problem: we study stable configurations of the Néel-
type skyrmion in the stray field of a Pearl vortex.

A. Stray field of a Pearl vortex

We consider a heterostructure composed of superconduct-
ing and ferromagnetic films separated by a thin insulating
layer, with the thickness being much smaller than the London
penetration depth λL, effectively suppressing the proximity
effect. The stray magnetic field generated by a Pearl vortex
outside the superconducting film is given by [49]

BV = φ0sgn(z)∇
∫

d2q
(2π )2

e−q|z|+iq·r

q(1 + 2qλ)
. (43)

Here, φ0 = hc/(2e) denotes the magnetic flux quantum, λ =
λ2

L/dS is the Pearl length [20], and the superconducting film
thickness dS is assumed to be much smaller than the London
penetration depth, dS 
 λL. A more general formula for the
magnetic field for arbitrary superconducting film thicknesses
is available in Ref. [50] and detailed in Appendix D.

The magnetic field of the Pearl vortex exhibits central
symmetry around the vortex core and is represented in the
ferromagnetic film (at z = +0) as follows:

BV |z=+0 = φ0

4π�wλ
[br (r)er + bz(r)ez], (44)

where the functions bz(r) and br (r) are specified by Eq. (D4).
Note that the characteristic magnitude of the Pearl vortex

stray field is B0 = φ0/(4π�wλ), and thus the vortex effective
strength γ , as defined in Eq. (9), is given by

γ = Msφ0

8πλ
√

AK
. (45)
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In subsequent analytical studies, we will consider γ to be
small, which is consistent with experimental observations
[32].

In this study, we examine the following range of model
parameters:

dF ∼ dS 
 λL 
 �w ∼ δ ∼ |R| 
 λ. (46)

Within these assumptions, the functions br/z(r) can be approx-
imated as described in Appendix D and detailed in Ref. [32]:4

bz(r) = br (r) = −�w/r, λL 
 r 
 λ. (47)

We note that the behavior of the vortex magnetic field at
both short distances r 
 λL and large distances r � λ is
not important for the physics within the parameter range of
conditions (46).

B. Skyrmion configurations

Now we can apply the methodology developed in Sec. II to
a Néel skyrmion under the influence of the stray field from a
Pearl vortex.

The coaxial configurations for skyrmion with both chi-
ralities, χ = ±1, are detailed in Ref. [32]. This study con-
centrates on eccentric configurations with positive skyrmion
chirality χ = +1, as such configurations are feasible only for
this chirality sign, while stable configurations with χ = −1
are coaxial only. Qualitatively, this phenomenon was pre-
dicted in Ref. [30] for the nearly free skyrmion, here we only
mention the reason. The free energy of the skyrmion with chi-
rality χ can be presented in the form F = F+ − χF−, where
F± are monotonic functions of the distance between centers
of skyrmion and vortex. When χ = −1, the function F (a)
is monotonic, and the only minimum is possible in a = 0.
In the opposite case χ = +1 two monotonic functions are
subtracted, which can produce a function with several minima.

To minimize the total free energy as described by Eq. (33),
it is necessary to compute the functions related to the external
magnetic field BV preliminarily. With the assumptions listed
in Eq. (46), some of these functions are amenable to analytical
calculation, as detailed in Appendix D 5, specifically,

b = −er + ez

r/�w

, θb(r) = K1(r/�w ) − �w/r, (48)

ba = −era + ez

ra/�w

, μba = θb(ra)era , (49)

b̄
a = b̄a

r (r)er + b̄a
z (r)ez, μb̄

a = θb̄
a (r)er, (50)

b̄a
r (r) = −�(r − a)

r/�w

, b̄a
z (r) = −K[4ar/(a + r)2]

π (a + r)/2�w

, (51)

θb̄
a (r) = [I0(a/�w )K1(r/�w ) − �w/r]�(r − a)

− K0(a/�w )I1(r/�w )�(a − r). (52)

Here, era = ra/ra is a unit vector in the radial direction with
respect to the shifted center ra = r + a of the Pearl vortex (for
the explanation of the shift, see the beginning of Sec. II B).

4The expressions for br/z(r) provided herein are inverted in sign
compared to those in Ref. [32] due to differing normalization
choices.

FIG. 2. The black and green solid lines present the dependence
of the skyrmion radius R/�w and the distance a/�w between the
centers of the skyrmion and vortex on the vortex effective strength γ ,
obtained by the minimization of the total free energy [Eq. (33)] with
the Ansatz for θ̄ [Eq. (20)]. The numbers near the curves correspond
to the values of the DMI parameter ε. The circles mark the results
extracted from the micromagnetic simulations.

The functions In(z) and Kn(z) are the modified Bessel func-
tions of the first and second kinds, respectively, K[z] is the
complete elliptic integral of the first kind, and �(z) is the
Heaviside step function.

The other functions, b̃a
r/z, μ̃a

r/φ , and μ̃a
r×φ , must be calcu-

lated numerically from Eq. (42). Then, the total free energy
can be minimized using the form given in Eq. (33) with
explicit expressions from Eqs. (29) and (41), applying θ̄ as
per Eq. (20).

Due to the radial symmetry of the Pearl vortex, the
skyrmion position a enters the total free energy only as its
magnitude a, i.e., the distance between the centers of the
skyrmion and the vortex. The minimization is thus by the
three skyrmion parameters: radius R, effective domain wall
width δ, and distance a to the Pearl vortex center. The stable
distance a = 0 corresponds to the coaxial configuration, as
studied in Ref. [32]. The eccentric skyrmion configurations,
where a �= 0, are detailed in the following subsection.

C. Results of analytic approach

In this section, we showcase the results derived from min-
imizing the total free energy, as outlined in Eq. (33), while
employing the Ansatz for θ̄ described in Eq. (20).

1. Skyrmion radius and distance in an eccentric configuration

Figure 2 presents the skyrmion radius R (lower group of
black curves) and the distance a (upper group of green curves)
between the centers of the skyrmion and the vortex in stable
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eccentric configurations as functions of the vortex effective
strength γ for various values of the DMI parameter ε (in-
dicated by the numbers near the corresponding curves). The
solid black and green curves result from minimizing Eq. (33)
using Eq. (20), while the red and blue circles are derived from
the outcomes of micromagnetic simulations (see Sec. III D).

All curves initiate with a gentle slope at small γ and
culminate in an abrupt increase for the radius R and an
abrupt decrease for the distance a. This behavior aligns with
a square-root dependency near a certain critical value γ +

cr ,
where |γ +

cr − γ | 
 γ +
cr . For further details, see the subsequent

Sec. III C 2 and Appendix C 3:

R(γ +
cr ) − R(γ ) ∝ a(γ ) − a(γ +

cr ) ∝ √
γ +

cr − γ . (53)

An interesting feature can be observed in Fig. 2: the values
of the skyrmion radius and the distance between the centers
of the skyrmion and vortex draw close as γ approaches γ +

cr .
This peculiarity can be understood physically as follows. As
the vortex effective strength γ increases, the skyrmion radius
R expands due to the influence of the stray magnetic field.
The larger the radius, the smaller the distance a must be,
as can be deduced from the Zeeman energy [Eq. (7)], even
for a free skyrmion. When R is significantly greater than a,
it implies that the skyrmion only contacts the vortex cen-
ter with its tail, where the magnetization is approximately
vertical, m = ez. As the radius approaches the distance, the
skyrmion’s core, where the magnetization significantly devi-
ates from the vertical, begins to overlap with the vortex center.
The concurrent sharp changes in magnetization and the stray
magnetic field in the same region are energetically unfavor-
able, leading the skyrmion to position itself directly above
the vortex center. The subsequent subsection will delve into
the dependence of the free energy on the distance a in greater
detail.

2. Dependence of the free energy on distance: Several minima

In this subsection, we examine the dependence of the free
energy on the distance a to ascertain whether an eccentric or
coaxial configuration is more favorable, given specific values
of the parameters ε and γ . To this end, we introduce the
function F(a) as

F(a) ≡ min
R,δ

Ftot
[
mSk, Ba

V

]
2πdF A

, (54)

which represents the total free energy Ftot[mSk, Ba
V ] from

Eq. (33) with θ̄ from Eq. (20), normalized by 2πdF A and min-
imized with respect to the skyrmion size parameters, namely,
the radius R and effective domain wall width δ. A minimum
of F(a) at a specific point a = amin indicates a potential stable
skyrmion configuration within the stray field of the Pearl
vortex.

Figure 3 illustrates the variation of F(a) for the DMI pa-
rameter ε = 0.45 across several values of γ . The subsequent
discussion provides a more comprehensive categorization of
potential types of dependence, based on the critical values
γ −

cr (ε), γcr (ε), and γ +
cr (ε).

When ε < ε−
cr ≈ 0.488 and γ < γ −

cr (ε), the function F(a)
exhibits a single minimum at a = amin > 0, indicating that
the only viable skyrmion-vortex configuration is eccentric.

FIG. 3. The plot of the function [F(a) − F(3�w )] × 100, pro-
duced from the total free energy, Eq. (54), for the DMI parameter
ε = 0.45 and several values of the vortex effective strength γ : γ −

cr ≈
0.084; 0.115; γcr ≈ 0.138; 0.147; γ +

cr ≈ 0.156 (from top to bottom).
The circles, diamonds, and squares indicate the minima, maxima, and
inflection points, respectively. The dashed curve continuously marks
the positions of minima and maxima when varying γ . All plotted
functions exhibit a monotonous increase in the hidden region, where
a > 3�w .

When γ > γ +
cr (ε) or ε > ε+

cr ≈ 0.493, the function F(a) dis-
plays a solitary minimum at a = 0, signifying that the coaxial
skyrmion-vortex configuration is the sole possibility.

In the intermediate regime, where γ −
cr (ε) < γ < γ +

cr (ε),
the heterostructure can support both coaxial and eccentric
skyrmion-vortex configurations, as the function F(a) presents
at least two minima: one at a = 0 and another at a = amin > 0.
Nonetheless, the free-energy levels of these configurations
differ, with the global minimum occurring for the coaxial
configuration when γcr (ε) < γ < γ +

cr (ε), and for the eccentric
configuration when γ −

cr (ε) < γ < γcr (ε).
It is noteworthy that the function F(a) may potentially

exhibit more than two minima. Specifically, an additional
local minimum at a = aadd ∼ 0.3�w has been identified. How-
ever, for all values of ε and γ , this minimum is only local
and its significance falls outside the accuracy of our second-
order approximation for γ 
 1. Consequently, the analytic
approach alone cannot guarantee the existence of such a stable
configuration. Moreover, micromagnetic simulations have not
confirmed the presence of this configuration, as detailed in
Sec. III D.

The dashed line in Fig. 3 continuously traces the posi-
tions of the minima and maxima as γ varies. It is evident
that near γ ≈ γ +

cr , the location of the minimum amin changes
rapidly with γ , converging with the maximum point amax at
the inflection point ain precisely at γ = γ +

cr . This swift change
leads to a sharp decrease (increase) in the distance a (radius
R), as shown in Fig. 2 and explained in Sec. III C 1 and
Appendix C 3.

The distance a is highly susceptible to the second-order
terms detailed in Eq. (41), as elaborated in Appendix C. This
precision in calculation is reflected in the close correspon-
dence between the curves for a(γ ) in Fig. 2. However, this
susceptibility also implies that potential corrections to the free
energy, arising from effects not accounted for and comparable

104406-9



APOSTOLOFF, ANDRIYAKHINA, AND BURMISTROV PHYSICAL REVIEW B 109, 104406 (2024)

FIG. 4. Phase diagram, produced in accordance with the total
free energy of Eq. (33) with the Ansatz for θ̄ , Eq. (20). The blue,
green, and red solid curves show γ −

cr (ε), γcr (ε), and γ +
cr (ε), respec-

tively, delineating the separation of the phases from below to the
top. The shaded areas represent the phases where the coaxial and
eccentric states can coexist. The black dashed straight line denotes
γ +

∞ = 1 − πε/2, indicating the condition under which the coaxial
skyrmion radius is comparable to the Pearl length. Black squares
denote γcr (ε) values obtained from micromagnetic simulations.

in magnitude to the second-order approximation, could influ-
ence the experimental distance between the skyrmion and the
vortex.

3. Phase diagram

The findings from the previous subsection are represented
in the phase diagram on the (ε, γ ) plane, illustrated in Fig. 4.
This diagram delineates four distinct phases. The two un-
shaded regions indicate phases where exclusively eccentric
configurations for γ < γ −

cr (ε), or solely coaxial configurations
for γ > γ +

cr (ε), are viable. The two shaded regions denote
phases where both eccentric and coaxial configurations are
theoretically feasible within the same heterostructure, as the
free energy exhibits two minima with respect to the dis-
tance a. In practice, both configurations have been observed
in micromagnetic simulations around γ ≈ γcr, as detailed in
Sec. III D.

Note that the curves γ −
cr (ε) and γcr (ε) approach the asymp-

totic line γ +
∞(ε) = 1 − πε/2 for ε � 0.3. As the vortex

effective strength γ nears the critical threshold γ +
∞, detailed

in Ref. [32], the radius R of the coaxial skyrmion increases
substantially, becoming comparable to the Pearl length λ,
which is much larger than �w. Consequently, the free energy
of such an expanded coaxial skyrmion is markedly lower than
that of any eccentric configuration. Given that γ −

cr (ε) and
γ +

cr (ε) delineate the transition to coaxial configurations and
the point where the energies of coaxial and eccentric con-
figurations equalize, both critical values naturally fall below
γ +

∞. The black squares in Fig. 4 represent the values of γcr (ε)
ascertained from micromagnetic simulations, corroborating
the analytical predictions with a high degree of concordance.

4. Comparison between different approximations
of the skyrmion profile

We complete the analytic study presented in this subsection
by comparing several possible forms that can be used as

FIG. 5. Distribution of mz(x, y = 0) calculated through mini-
mization of the total free energy with several forms of Ansätzes,
mSk (solid black), m̄Sk (dashed blue), mRδ (dashed-dotted green), and
m0 (dotted brown curves). The stars mark the values of mz(x, y = 0)
extracted from the micromagnetic simulation.

an Ansatz for the skyrmion magnetization. In particular, we
take the magnetization m in one of the following forms and
minimize the total free energy with respect to the skyrmion
parameters, radius R, and effective domain wall thickness
δ, and the distance a between skyrmion and vortex centers.
These forms are as follows:

(1) m = mSk, where mSk is the full anisotropic Ansatz
given by Eq. (18);

(2) m = m̄Sk, where m̄Sk is the centrally symmetric lead-
ing approximation given by Eq. (17);

(3) m = mRδ , where mRδ is the centrally symmetric do-
main wall approximation given by Eq. (2) with θ = θRδ , see
Eq. (6);

(4) m = m0, where m0 = mR0δ0 is the same domain wall
approximation as in the previous item, but with R and δ taken
for the free skyrmion, R = R0 and δ = δ0 at γ → 0, and un-
changed when minimizing total free energy only with respect
to distance a.

Figure 5 demonstrates the distribution mz(x, y = 0) of
skyrmion, when Pearl vortex is placed in coordinate origin.
The solid black, dashed blue, dashed-dotted green, and dotted
brown lines correspond to mSk, m̄Sk, mRδ , and m0 from the list
above. The stars mark the values extracted from the micro-
magnetic simulation and they fit well by a solid black line of
mSk. The values of R, δ, and a, obtained from the minimization
of the free energy, according to the list of magnetizations m
above, are presented in Table I.

TABLE I. The values of the radius R, the effective wall width
δ, and the distance a corresponding to the several forms of Ansätze
shown in Fig. 5.

m R/�w δ/�w a/�w

mSk 1.37 0.841 1.76
m̄Sk 1.38 0.842 1.69
mRδ 1.56 0.788 0
m0 1.00 0.785 2.12
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Note that solid black and dashed blue curves are close
enough to each other, but the accounting for the nonsym-
metric terms in the full Ansatz mSk (solid black) provides a
more precise result than only the centrally symmetric leading
approximation m̄Sk (dashed blue). The coarse approximation
with domain wall Ansatz (dashed-dotted green) or even simply
free skyrmion profile (dotted brown) yields inadequate results
for the radius R, thickness δ, and distance a. In particular, for
the sole domain wall Ansatz and parameters used in Fig. 5 the
free energy has the only minimum in a = 0.

D. Micromagnetic simulations

In support of our findings, we conducted a set of micro-
magnetic simulations using the object oriented micromagnetic
framework (OOMMF) [51] and a Python library, UBERMAG

[52]. We represent the system using classical magnetic mo-
ments positioned at the mesh centers, governed by magnetic
interactions. To simulate an isolated magnet region, we ap-
plied periodic boundary conditions on the x-y plane.

To generate a skyrmion, we began with a region of reversed
magnetization and allowed it to relax under the influences
of Heisenberg exchange, Dzyaloshinskii-Moriya, and mag-
netic anisotropy interactions, and the vortex-induced magnetic
field. In our simulations, we assumed a Pearl vortex with zero-
sized core anchored at the grid’s origin. As previously stated,
we consider the vortex to be large, signified by λ � �w, al-
lowing its magnetic field to be approximated using Eqs. (44),
with bz(r) and br (r) detailed in Eqs. (47). For other details of
our micromagnetic analysis we refer to Appendix E.

This subsection addresses the configurations where the
vortex and skyrmion are offset from one another. We explored
the parameters ε and γ to determine conditions that stabilize
the shifted configuration. Figure 4 displays th possible stabil-
ity regions for both eccentric and coaxial configurations. By
initializing a skyrmion at the vortex’s center and at an offset
distance, we relaxed the system and compared the resulting
energies. While displaced configurations corresponding to a
local minimum were stabilized for γcr < γ < γ +

cr (see Fig. 6),
we can confidently identify only the transition boundary at
γcr. The associated dots are illustrated using black squares in
Fig. 4. Consistent with theoretical predictions, our numerical
experiments indicate that as ε increases, γcr decreases.

To quantify our simulations, using Eq. (18) for the
skyrmion magnetization, we derived relationships between
the parameters R and a, and the strengths from the skyrmion
(ε) and vortex (γ ). These results are summarized in Fig. 2.
For weak vortex magnetic fields, skyrmion deformations were
minor and their profile could be approximately represented
by the domain wall Ansatz (6). However, with increasing γ ,
the deformation grew pronounced, rendering Eq. (6) insuffi-
cient. In contrast, the effectiveness of our proposed ansatz, as
defined in Eq.(18), relative to the domain wall Ansatz and
numerical simulations, is evident from Figs. 2 and 4. Indeed,
the proposed Ansatz accurately captures the evolution of the
parameters R and a as functions of γ and even demonstrates
excellent performance in estimating γcr, despite the seemingly
large values.

In addition, we describe a numerical experiment that
demonstrates the possibility of stabilizing both coaxial and

FIG. 6. The energy dependencies of both the eccentric state (pink
triangles) and the coaxial state (black circles) in proximity to the
critical vortex force γcr for ε = 0.4. The plot and inset pictures are
obtained from the micromagnetic simulations. In the vicinity of this
critical point, the free energy exhibits nearly linear dependence on
γ − γcr. The intersection point of the two lines (pink and black)
determines γcr (ε), which is indicated by black dots in Fig. 4. We
emphasize the remarkable agreement between the numerical data and
the analytical predictions presented in the corresponding figure. The
magnetization profiles corresponding to these states are provided in
the figure’s insets. The black cross located at the grid’s center marks
the position of the vortex.

offset states with identical energy. As depicted in Fig. 6,
near γcr, two different configurations with closely matched
free-energy values are observed, as shown in the insets de-
picting magnetization. In the first, the skyrmion is stabilized
at a finite distance a (the upper inset), while in the sec-
ond, it is centered (the lower inset). Intriguingly, the coaxial
configuration is associated with a significant enlargement of
the skyrmion radius, nearly doubling. This observation aligns
with the findings in Ref. [32], which elucidate the skyrmion
radius expansion when a Pearl vortex is present.

Finally, we present a characteristic distribution of topolog-
ical charge density, calculated using the formula

ntop(r) = 1

4π
m(r) ·

(
∂m(r)

∂x
× ∂m(r)

∂y

)
. (55)

While both the magnetization profile and the topological
charge density of the skyrmion undergo deformations, no-
tably, these deformations exhibit dissimilarity, as depicted in
Fig. 7. In this instance, atop deviates from amin, as illustrated
in the inset of Fig. 7. Here, atop represents the center of
the topological charge distribution, which can be determined
using the formula

atop =
∫

dr ntop(r)r. (56)

IV. CONCLUSIONS

In this work, we have developed a theory of Néel-type
skyrmions in a weak nonuniform magnetic field. We have
introduced and elucidated an Ansatz for the magnetization, as
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FIG. 7. The topological charge density distribution for an eccen-
tric skyrmion-vortex configuration obtained from the micromagnetic
simulations. Material parameters are ε = 0.4 and γ = 0.3. For com-
parison, we also include black contours representing the shape of the
magnetization, ranging equidistantly from mz = −0.9 (innermost) to
mz = 0.9 (outermost). In the inset, we provide a calculation of the
center of topological charge density using Eq. (56). The plot also
depicts the position of the magnetization center amin as a function of
γ . It is evident that atop and amin follow a similar trend as γ increases,
yet they differ from one another significantly.

described by Eq. (18). Utilizing this Ansatz, we have detailed
the calculation of the skyrmion free energy accounting for
an external field up to both the first-[Eq. (29)] and second-
[Eq. (41)] order approximations in γ 
 1, where γ is the di-
mensionless external field strength, Eq. (9). This formulation
presents a significantly more tractable form of the free-energy
minimization problem. Typically, such a minimization prob-
lem corresponds to solving a two-dimensional second-order
vector differential equation. However, our Ansatz simplifies
it to a variational problem for three parameters R, δ, and a,
which is computationally more efficient.

Applying the developed methodology, we have examined
the behavior of a skyrmion in the stray field of a Pearl vortex.
By defining the field strength with the dimensionless parame-
ter γ , Eq. (45), we have adapted the results from the previous
sections to this context. Our approach has enabled the iden-
tification of numerous metastable skyrmion states within the
vortex field. We have demonstrated the potential for different
configurations, both coaxial and displaced from the vortex, to
coexist for certain values of the vortex effective strength γ

and DMI parameter ε, Eq. (4), as illustrated in the complete
phase diagram, Fig. 4. Notably, our Ansatz facilitates the
efficient identification of metastable system minima, which
would require specific conditions for detection via numerical
solutions in micromagnetic modeling.

Finally, we have sought to compare the outcomes of our
analytical calculations with those from micromagnetic simu-
lations. The comparison of parameters R and a, as depicted
in Fig. 2, underscores a remarkable correspondence between
the two methodologies, particularly regarding the skyrmion
size. Discrepancies in a can be attributed to the flatness of
the free-energy function near amin, which, in turn, influences
the sensitivity of the micromagnetic simulation outcomes to

the algorithm’s tolerance and the system’s mesh size. Despite
these considerations, the concordance between theoretical
predictions and numerical simulations for a is remarkably
robust.

The findings presented in this paper can be expanded in
several directions. On the one hand, it would be intriguing to
explore other geometries, akin to those discussed in [53], or
configurations of an inhomogeneous magnetic field, such as
those in a vicinity of a planar defect, as proposed by [54], or
near a domain wall [55]. Another avenue of research is the
investigation of multiple skyrmions in the field of a single
vortex or a lattice of vortices. The dynamics of skyrmions in
an external inhomogeneous field also presents a significant
interest of study, where the magnetization evolves in time,
m(r, t ). Lastly, within the context of a skyrmion-vortex pair,
examining the emergence and stability of Majorana bound
states, with consideration for alterations in the skyrmion pro-
file, is particularly compelling.
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APPENDIX A: EULER-LAGRANGE EQUATIONS FOR
DIFFERENT SKYRMION-VORTEX CONFIGURATIONS

In this Appendix we provide additional details on the
derivation of the Euler-Lagrange equations corresponding to
a free skyrmion and a skyrmion coaxial to a Pearl vortex.

1. Free skyrmion

Substituting mSk from Eq. (2) into (1), we find

Fmagn[mSk] = 2πdF

∫ ∞

0
dr r

{
A

[
(∂rθ )2 + sin2 θ

r2

]

+ Dη

[
∂rθ + sin 2θ

2r

]
+ K sin2 θ

}
. (A1)

Minimizing Fmagn[mSk] by θ (r) we derive Eq. (3).

2. Coaxial skyrmion and vortex

Substituting mSk from Eq. (21) into (8), we find

Ftot[mSk] = 2πdF

∫ ∞

0
dr r

{
A

[
θ ′2(r) + sin2 θ (r)

r2

]

+ D

[
θ ′(r) + sin 2θ (r)

2r

]
+ K sin2 θ (r)

− MsB0[bz(r) cos θ (r) + br (r) sin θ (r)]

}
, (A2)
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where br (r) and bz(r) are the components of the normalized
centrally symmetric magnetic field B [see Eq. (13)]. Minimiz-
ing Ftot[mSk] we derive Eq. (22).

APPENDIX B: MAGNETIZATION ANSATZ
IN LOCAL COORDINATES

Here we rewrite the developed Ansatz (18) in the special
form in local coordinates, which can be useful for some
theoretical frameworks. We introduce the local orthogonal
frame basing on the leading term m̄Sk of the skyrmion magne-
tization:

e1 = eφ × m̄Sk, e2 = eφ, e3 = m̄Sk. (B1)

Then the magnetization Ansatz mSk defined by Eq. (18) can
be presented as

mSk = e+ψ + e−ψ∗ + e3

√
1 − 2|ψ |2, (B2)

where e± = (e1 ± ie2)/
√

2, and the dimensionless complex
field ψ is related to μa [see Eq. (39)]:

ψ = (
μa

r cos θ̄ − iμa
φ

)
/
√

2. (B3)

APPENDIX C: TOTAL FREE ENERGY IN THE
SECOND-ORDER APPROXIMATION IN γ � 1

In this Appendix we explain why this approximation af-
fects the dependence of the distance a on γ , provide additional
details on the derivation of the free energy in the second-order
approximation by the small vortex effective strength γ 
 1,
and study the behavior near γ +

cr .

1. “Toy model” of minimization problem
with small parameter γ

Here we consider a simple problem of minimization of the
function F (p, a; γ ) by two arguments p and a, where γ is a
small parameter:

F (p, a; γ ) ≈ F0(p) + γ F1(p, a) + γ 2F2(p, a) → min .

(C1)

The values of arguments, where the minimum of the function
F (p, a; γ ) is achieved, can be found in the form of a series by
γ 
 1:

pmin = p0 + γ p1, amin = a0 + γ a1. (C2)

When limiting a problem (C1) to the zeroth-order approxima-
tion in γ ,

F (p, a; γ ) ≈ F0(p) → min, (C3)

we have lost the dependence on a and, minimizing, can find
only pmin = p0 from condition ∂pF0(p0) = 0.

In order to find value amin, we extend the problem to the
first approximation in γ ,

F (p, a; γ ) ≈ F0(p) + γ F1(p, a) → min . (C4)

Applying here Eqs. (C2) and minimizing, one can find amin =
a0 from condition ∂aF1(p0, a0) = 0, and

pmin = p0 + γ p1, p1 = ∂pF1(p0, a0)

∂2
pF0(p0)

. (C5)

Now to determine dependence on γ in amin, we should
extend the problem to the second approximation in γ , as in
Eq. (C1). Minimizing, we find

amin = a0 + γ a1, a1 = − p1∂
2
p,aF1 + ∂aF2

∂2
a F1

∣∣∣∣
p=p0
a=a0

. (C6)

So, we can see that to determine the dependence amin on γ one
should expand F (p, a; γ ) to the second order in γ at least.

Moreover, if pmin and amin depend on γ in more compli-
cated manner (see the next subsection) than linear, but variate
from p0 and a0 weakly,

|pmin − p0| 
 p0, |amin − a0| 
 a0, (C7)

we can use Eq. (C6) rewritten in the form

a0 − amin(γ ) = [pmin(γ ) − p0]∂2
p,aF1 + γ ∂aF2

∂2
a F1

∣∣∣∣
p=p0
a=a0

. (C8)

Indeed, the curves in Fig. 2 are in agreement with the last
expression for γ 
 1, i.e., partly for ε � 0.4 and for whole
curves for ε � 0.4.

2. Calculation of the F (2)

When deriving expression for F (2)[m̄, m̃, a], we keep the
only terms of order of γ 2 that are presented in Eq. (34).
The other possible contributions appear to be of the order
of γ 3 or smaller. In particular, in Eq. (35) the contribution
F (1)

magn[m̄Sk, γ
2λ(1 − λ · m̄)] is calculated and proven to be of

order of γ 3. The other contributions that can be neglected in
Eq. (34) are

F (1)
magn[γ m̃Sk, γ

2{. . .}] and F ′
tot[γ

2{. . .}, Ba], (C9)

where {. . .} means the whole expression in the curly brackets
in Eq. (32).

3. Dependencies a(γ ) and R(γ ) near γ ≈ γ+
cr

As we can see from Fig. 3 there is a critical value γ +
cr ,

when maximum and minimum of F(a) merge and turn into
the inflection point a = ain. For γ > γ +

cr the only minimum is
at a = 0. Considering F(a) for γ ≈ γ +

cr and a ≈ ain, we can
conclude that it should look like as

F(a) ≈ F(ain ) + α(γ +
cr − γ )(a − ain ) + β(a − ain )3/3,

(C10)

where F(ain ), α, and β some constants. Minimizing the func-
tion (C10) over a, we find that

amin/max(γ ) = ain ± √
γ +

cr − γ
√

α/β. (C11)

Based on Eq. (C8) we can conclude that Rmin(γ ) should have
the same behavior Rin − Rmin(γ ) ∝

√
γ +

cr − γ , where Rin is
a radius of a metastable skyrmion state that corresponds to
a = ain and γ = γ +

cr .
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APPENDIX D: STRAY MAGNETIC FIELD
OF A PEARL VORTEX

1. Arbitrary thickness of a superconducting film

The stray magnetic field of the vortex produced outside of
the superconducting film of thickness dS is given by [50]

BV,r/z(r, z > 0) = − φ0

2π

∫ ∞

0

dq qJ1/0(qr)

F (q)
e−qz, (D1)

where

F (q) = λ2
Lτ

(q + τ )2eτdS − (q − τ )2e−τdS

(q + τ )eτdS + (q − τ )e−τdS − 2q
, (D2)

and τ =
√

q2 + λ−2
L .

2. Thin superconducting film

In the limits dS → 0 and λL → 0, while the Pearl length
λ = λ2

L/dS is kept constant [20], we arrive to

F (q) = 1 + 2qλ. (D3)

Equations (D1) with the latter expression applied to define the
same stray field that Eq. (43). Therefore, normalizing the stray
field at z → +0 by means of Eq. (44), we get

br/z(r) = −2�w

∫ ∞

0

dq qJ1/0(qr)

λ−1 + 2q
. (D4)

3. Large Pearl length

In this paper we assume that the skyrmion radius |R| as
well as domain wall width �w are small in comparison to
Pearl length [see Eq. (46)]. Under this assumption one can
treat Eq. (D4) for r 
 λ only, neglect λ−1 in the denominator,
and arrive immediately to Eq. (47).

4. “No-skyrmion” configuration
in the stray field of a Pearl vortex

The magnetization angle described by Eq. (15) with bound-
ary conditions (16) can be calculated analytically for the
vortex stray field. Taking br (r) from Eq. (D1), we get

θb(r) = −2�wλ

∫ ∞

0

dq qJ1(qr)

F (q)[1 + (�wq)2]
. (D5)

Assuming thin superconducting layer and using Eq. (D3), we
can write the latter expression as

θb(r) = −2�w

∫ ∞

0

dq qJ1(qr)

(λ−1 + 2q)[1 + (�wq)2]
. (D6)

Finally, assuming r 
 λ, we arrive at Eq. (48).

5. Averaged eccentric vortex

Considering the integral FZ [m̄Sk, Ba
V ] in polar coordinates

with origin in a we can write it in the form of Eq. (7):

FZ
[
m̄Sk, Ba

V

] = −dF

∫
d2r Msm̄Sk · Ba

V |z=+0. (D7)

Since m̄Sk is radially symmetric, we can integrate over polar
angle (average) only the stray fields [cf. Eq. (19)]

Ba
V → B̄a

V = − φ0

4π�wλ

[
b̄a

r (r)er + b̄a
z (r)ez

]
. (D8)

Substituting into Eq. (D7) the expression for m̄Sk via θ̄ (r), we
arrive at the last line of Eq. (29).

The exact expressions for functions b̄a
r/z(r) can be obtained

from Eq. (D1) by definition of Eq. (19),

b̄a
r/z(r) = −2�wλ

∫ ∞

0

dq qJ0(qa)J1/0(qr)

F (q)
, (D9)

or for the thin films,

b̄a
r/z(r) = −2�w

∫ ∞

0

dq qJ0(qa)J1/0(qr)

λ−1 + 2q
. (D10)

Finally, assuming r 
 λ, we arrive at Eqs. (51). Applying
b̄a

r (r) from Eq. (51) to (15), we can find θb̄
a (r) in the form

of Eq. (52).

APPENDIX E: DETAIL OF MICROMAGNETIC
SIMULATIONS

In our micromagnetic simulations, we employed the dis-
cretized lattice version of the following Hamiltonian:

H = (∇m)2 − ε(m · ∇mz − mz∇ · m) − m2
z − 2γ m · ba.

(E1)
Assuming that the gradients are small and that m(r) is a
smooth and slow function of distance, the derivatives in the
continuous-limit Hamiltonian can be effectively mapped onto
a finite-mesh lattice provided that |dL ∂im j | 
 1 for i = x, y
and j = x, y, z. Next, we numerically minimize the energy
with respect to the unknown field m(r).

In our analysis, we used square samples of size 2L ×
2L with a square-cell dimension of dL × dL. We selected
L = 10.05�w and dL = 0.015�w to accommodate a range of
skyrmion radii (R ∼ 0.2–1.5�w) and displacements between
skyrmions and vortices (amin ∼ 1.5–3�w). It is important to
note that this wide spread of parameters imposes significant
limitations on our modeling capabilities. For example, at ε =
0.25, we are constrained to γ � 0.3. This restriction is due
to the fact that for smaller values of γ , the skyrmion radius
decreases, the depth of the free-energy minimum becomes
less pronounced, and the distance amin increases, all of which
require extensive computational resources.

To determine the typical parameters R, δ, and a, we utilized
Eq. (18) as a fitting model for our relaxed magnetization
profiles. The corresponding parameters R and a are depicted
in Fig. 2. Deformations from the cylindrical shape of the
skyrmion result in the insufficiency of the original domain
wall ansatz, as given by Eq. (6), to accurately represent the
altered profile shape. Conversely, our proposed Ansatz (18)
accounts for these changes and yields consistent profiles,
meaning that the simulation results are well approximated by
this model.
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